
Interactive Modular Programming in Scheme *

Sho-Huan Simon Tung

Computer Science Department

Indiana University

Bloomington, Indiana 47405

email: stung@ cs.indiana.edu

Abstract

This paper presents a module system and a program-

ming environment designed to support interactive pro-

gram development in Scheme. The module system ex-

tends lexical scoping while maintaining its flavor and

benefits and supports mutually recursive modules. The

programming environment supports dynamic linklng,

separate compilation, production code compilation, and

a window-based user interface with multiple read-eval-

print contexts.

1. Introduction

Interactive programming is an important technique for

reducing program development time. An interactive

programming system allows a programmer to enter a

program or program fragment directly into the sys-

tem and to receive the output from that program or

fragment immediately, reducing the usual compile-link-

execute process conceptually to a single evaluate step.

Interactive programming is also valuable for experimen-

tal programming, rapid prototyping, and debugging.

Modular programming is an important programming

paradigm for large-scale program development. Mod-

ular programs are easier to understand and main-

tain, thereby reducing overall program development

cost. Many programming languages provide facilities

for modular programming. These facilities give pro-

grammers direct control over the visibility of names

among modules using import and export mechanisms.

*This material is based on work supported in part by the Na-

tional Science Foundation under grant number CCR-8X03432 and

by the Motorola Inc.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, raquires a faa

and/or specific permission.

1992 ACM LISP & F. P.-6 I92ICA
Q 1992 ACM o-89791 -483 -X/92 /0006 /0086 . ..$l .50

Other benefits of modular programming include sepa-

rate compilation and enhanced reusability.

On the surface, it appeara that modular programming

and interactive programming are inherently incompat-

ible. Interactive programming relies on the ability to

make changes easily and dynamically. Modular pro-

gramming, on the other hand, typically requires a more

static model for program development. However, for

some languages, these two programming paradigms can

be merged gracefully while maintaining the benefits of

both.

This paper presents a module system and a program-

ming environment designed for Scheme [4, 10] that sup-

ports interactive modular programming, The module

system has the following features:

1.

2.

3.

It maintains the flavor and benefits of lexical scop-

ing.

It allows flexible and responsive interactive pro-

gramming. Interactive modifications of definitions

and module interfaces are allowed without requir-

ing recompilation.

It supports separate compilation, permits reuse of

existing modules, and provides an incremental mi-

gration path to obtain production code.

The programming environment features a window-

based user interface that associates each module with

a file and an edit window. It also provides a module-

sensitive read-eval-print loop for int eractive program de-

velopment.

We begin with an overview of related work. We then

present the design of the module system and of the IMP

(Interactive Modular Programming) programing envi-

ronment. This is followed by a description of the imple-

mentation of the IMP system. Finally, we discuss issues

of extending IMP to support object-oriented program-

ming.

86

http://crossmark.crossref.org/dialog/?doi=10.1145%2F141478.141512&domain=pdf&date_stamp=1992-01-01

2. Related Work

Among many concrete proposals we have looked at,

Felleisen and Friedman’s module proposal is the only

module system designed with consideration for interac-

tive programming [5]. However, their system does not

allow dynamically extended bindings to access lexical

variables in a module. This restriction is too strong to

be acceptable.

Some Scheme implementations support first-class en-

vironments [1]. A first-class environment captures the

current lexical environment at the point where the first-

class environment is created. When used with eval or

access, first-class environments can be used to support

a form of modular programming. This approach, how-

ever, disrupts the flavor and benefits of lexical scoping.

Curtis and Rauen recently proposed a module sys-

tem designed for large scale programming in Scheme

[3]. Their system supports more general interface spec-

ifications than IMP, but does not address interactive

programming.

Common Lisp’s [11] package system uses symbol ta-

bles to represent modules. Symbols defined as external

in a package can be exported. Various mechanisms are

available to access or to import exported symbols. The

package system could be used as the low-level implemen-

tation for fully developed (static) modules. However,

the major problem of the package system is that the

association of symbols to packages is fixed at read time

and can only be changed by rereading and recompiling

all affected code, which is undesirable in an interactive

programming system.

Queinnec and Padget designed a module system for

Lisp [9], but their system binds imported identifiers

early in the module definition phase. This requires the

module dependency graph to be acyclic and defeats pos-

sibilities for flexible interaction,

Standard ML is a statically scoped programming lan-

guage with a secure polymorphic type system and a

module system [6]. However, its type system limits

its flexibility as an interactive language. Modifying the

value of an existing top-level binding has no effect on

other bindings occurring before the modification. As a

result, almost all modifications require that the entire

program be reloaded.

We have also looked at conventional module-

supporting languages such as CLU [8], Modula-2 [16],

Modula-3 [2], and Ada [15]. CLU supports parame-

trized abstract data types. Modula-2 separates the

definition of a module from its implementation, and it

requires a one-to-one correspondence between the two

components. Modula-3 differs from Modula-2 by allow-

iug an implementation module to be associated with

several interface specifications. Ada supports generic

packages that must be instantiated statically through

declarations. These languages, however, do not support

interactive programming.

3. The Module System

The Revised* Report on Scheme [10] describes the struc-

ture of a Scheme program as consisting of a sequence of

expressions and definitions. It describes the semantics

of evaluating definitions as causing bindings to be cre-

ated in the top-level environment, and the semantics

of evaluating top-level expressions as executing them in

order when the program is invoked or loaded and per-

forming some kind of initialization. This kind of pro-

gram structure is suitable for interactive programming.

However, a single top-level environment is inadequate

to support modular programming.

The design of our module system extends Scheme’s

program structure to contain a sequence of module ex-

pressions and module definitions and replaces the single

top-level environment with a separate module envir-on-

ment for each module in a program. The syntax of the

module system is presented in Figure 1.

The effect of evaluating a public or a private definition

in a module is to cause a binding to be created in the

public or private portion of the module environment.

Public bindings are exported while private bindings are

visible only within the module.

The import definition provides a flexible way to de-

clare the imports of a module. As an example, the fol-

lowing definition:

(import main (stack (queue (q-init init) eng deq)))

declares that the public bindings of the module stack

and the init, enq, and deq binding of the module queue

are imported by the module main with init renamed as

q-init. It is possible to import a module or a binding

that is yet to be defined. However, actually using the

binding before it is defined would cause an error.

A module environment consists of its imported bind-

ings along with its private and public bindings. The

wit h syntactic form evaluates an expression in the mod-

ule environment of a designated module. Although the

syntax of the module system is text-oriented, it is de-

signed to be mapped into the window-based user inter-

face. In particular, the module name module is assumed

to be the name of the window, and explicit use of the

with statement is no longer necessary with the help of

a module-sensitive read-eval-print loop (see Section 4).

An important restriction of the system is that pub-

lic definitions cannot be assigned (although they may

be redefined interactively at top level during program

development) and can only bind identifiers to proce-

dures. No expressive power is lost as a result of these

87

id, ex-id, local-id,

m-all, m-sel, module E Ide Scheme identifiers

expression G Exp Scheme expressions

P e Pgm programs

MD G MDef module definitions

ME E MEzp module expressions

P ,:= {MD I it4E}*

MD ::= (import module Imports)

I (public module id expression)

I (private module id expression)

ME ::= (with module expression)

Imports ::= ({m-all I Select} . ..)

Select ::= (m-sel {id I (local-id ez-id)}+)

Figure 1: Syntax of the Module System

restrictions. If we wish to export the value of a vari-

able, say x, and to allow x to be assignable by other

modules, we can simply export a “reference procedure,”

e.g., (lambda () x) and an “assignment procedure,”

e.g., (lambda (v) (set! x v)),

These two restrictions encourages programmers to

write programs that are more easily analyzed by both

the compiler and the programmer, since any code that

can assign a variable is insulated within a single module.

The consequence is that the programmer and the com-

piler can simply scan a module to determine whether a

given variable is assigned, and can more often determine

the types of values assigned to the variable when it is

assigned. Furthermore, these restrictions naturally lead

to the use of assignment procedures that ensure the new

value is in the range of acceptable values. For example,

if a variable must be assigned to positive integers, the

assignment procedure could be written as:

(lambda (v)

(if (and (integer? v) (> v O))

(set! x v)

(error)))

which results in safer, more readable, and more easily

analyzed code.

Figure 2 presents an example containing two mod-

ules that import from and export to each other. Both

of the modules import scheme, which exports standard

Scheme primitives. From the user’s point of view, the

semantics of evaluating an expression in the context of a

module is essentially the same as the semantics of evalu-

ating the expression in Scheme except that a local mod-

(import even-module (odd-module scheme))

(public even-module even?

(lambda (z)

(if (= O x)

#t

(odd? (-z l)))))

(import odd-module (even-module scheme))

(public odd-module odd?

(lambda (z)

(if (= O z)

#f

(even? (-x l)))))

(with even-module (odd? 3)) => #t

(with even-module (even? 2)) => #t

Figure 2: Recursive modules

ule environment is used as the top-level environment,

For example, while evaluating (odd? 3) in even-module,

the free variable odd ? is found in even-module’s mod-

ule environment since even-module imports odd-module

which exports odd?. However, the odd? procedure it-

self is defined in odd-modul< the free variables =, —,

and even? should therefore find their values using odd-

module’s module environment.

In order to provide a more precise description of the

informal semantics described above, we present the de-

notational semantics of the system in Figure 3 using an

88

Syntactic Categories:

c E Con = {undefined, +,,..} constants

m, i E Ide identifiers

s E Stint statements

e E Exp expressions

Semantic Domains:

p G Env=Ide+E environments

p E MDB = Ide + MEnv module database

MEnv = (Env x Env x Ide*) module environments

c constant values

~ ~ E= C+(MEnv*E *E) expressed values

Semantic functions:

S: Stint -+ MDB + (MDB x E)

X: Con ~ E

E: Exp + MDB + Ide * Env ~ E

S [import mo m“)] p =

(P[mo - (Pmo 1 l,p~o J 2, m*)], undefined)
S [(private m i e)] p =

(P[m + ((flm 1 l)[i + $ [e]p~po], pm 12, pm J 3)], undefined)
S [(public m i e)] p =

(P[m + (Pm 11, (pm 12)[i + S [e]pmpO], pm 13)], undefined)
S [(with m e)] p = (p, S [e]pmpo)

s~so S,]p = S[s,](s[so]p) j. 1

Notations:

(. e.) sequence formation
s~k kth member of the seqnence s (1 – based)

(p[i + z]) i’ (i’=i)+z, pi’

xin D injection of x into domain D

xID projection of x to domain D

Figure 3: Denotational Semantics of Modules

89

lookup: MDB + Ide + Env + Ide + E

lookupM: MDB -+ Ide” * Ide ~ E

lookup p m p z =

H p i = undefined than

if (pm J 1) i = undefined then

if (#m J 2) i = undefined then

lookupM p (flm J 3) i

else (pm J 2) i

else (pm J 1) i

else p i

iookupM ~ [] i = undefined

~ookupM p [first rest”] i =

if (pfirst J 2) i = undefined then

lookupi%l p rest* i

else (pfirst J 2) z

Figure 4: The lookup function

extended subset of Scheme [12]. To simplify the presen-

tation, support for renaming imported identifiers has

been omitted.

In addition to the straightforward tasks performed by

import, private, and public to maintain the module

database, the following aspects of the semantics are es-

sential for the module system to preserve lexical scoping

and to support interactive programming and recursive

modules:

1.

2.

3.

The name of the module where the lambda ex-

pression appears is closed along with the lexical

environment in the returned closure.

The module database is provided dynamically as

an implicit argument when the closure is applied.

The interpretation of the textual description of a

module’s imports is delayed until a variable lookup

is performed.

The first item above and an extended variable lookup

mechanism preserves the essence of lexical scoping, al-

lowing the programmer to use the static program text

to determine a variable’s binding. The extended vari-

able lookup mechanism is described with the function

lookup in Figure 4. The lookup function uses the fol-

lowing precedence rule to find the value of a variable

in a module: lexical variables have precedence over lo-

cally defined private or public variables, and locally de-

fined private or public variables have precedence over

imported variables. The second and the third items sup-

port interactive programming and recursive modules.

4. The IMP System

We have implemented a prototype user interface for the

IMP system. The user interface relates modules with

files, editing windows, and a multiple-context read-eval-

print loop. It is based on GNU Emacs and can also be

used with Epoch, which is a variant of GNU Emacs sup-

porting true multi-window editing under the X window

system [7]. Figure 5 presents IMP’s user interface.

The syntax of the module system requires a module

name to be specified for every definition and expression

within the module. The IMP system removes this in-

convenience by implicitly using the name of the file or

the window with which the module is associated. The

implicit name is then used to obtain the evaluation con-

text for definitions and expressions in the module. The

import definition should appear at the beginning of

the file in order to prepare the evaluation context for

the rest of the file. The scheme module is implicitly

imported by every module.

Unlike traditional read-eval-print loops providing a

single evaluation context, IMP’s read-eval-print loop

can be associated with several evaluation contexts. The

prompt of the read-eval-print loop represents the name

of a module. Expressions subsequently entered after the

prompt would be evaluated in the module environment

of the module. The user can explicitly change the cur-

rent module to some other module. An expression can

also be sent from an editing window directly to the read-

eval-print loop; the module associated with the editing

window is then used to determine the evaluation con-

text.

An IMP program is organized as a project. A project

is composed of zero or more modules. The project

records the load order of the modules and the direc-

tories from which to load the modules. IMP supports

two kinds of modules: developing modules and devel-

oped modules. Definitions in developing modules can be

changed or deleted, Developed modules cannot change

their definitions and are not allowed to import from de-

veloping modules. Developed modules can be compiled

into more efficient code than developing modules. If

an IMP project contains only developed modules then

the entire project can be compiled into efficient Scheme

code without any of the module statements used during

the developing phase.

5. Implementation

The implementation of the IMP system is best described

by techniques used in implementing dynamic linking,

separate compilation, and production code compilation.

90

(import {{scanner scheme: (load-pro ject replace-word)

(mg-get-word get-uord) Module System Initialized

(my-get-replacement get-replacement) }))
loading: repl-word

(public make-symbol-table loading: scanner

(lambda (p) loading: symtab

(let loop ([syrn-table ’01) loading: output

(let ([w (my-get-word p) 1 output: evaluating make-symbol-tab 1e of modu1e symtab .+.

[s {my-get-replacement p} 1) make-sym~l-table

(cond [(not {and w s)) sym-tablel symtab: (make-symbol-table

[else {loop (cons (cons w s) (open-input-string

sym-table)) 1 “Indiana Hoosier
Kentucky Wildcat” })

((’’Kentucky” . “klildcat”) (“Indiana” . “Hoosier”))

El re~l-word.ms @ ~arbo

(import (symtab output})

{public replacer
{lambda (in-f w-r-f out-f)

{let ([in-p {open-input-file in-f)]
[w-r-p (open-input-f i le w-r-f)1
[out-p {open-output-f i le out-f

(dynamic-wind
{lambda () ‘ignored)
{lambda ()

(let ([sym-tab (make-symbol-tab
(produce-output in-p out-p sy

(lambda ()
(close-input-port w-r-p)
(close-input-port in-p)

ZJ Seat-mer+rns B garbo E!l

import ())

public get-word
(lambda (p)

{let loop {[c {read-char p)]}
(cond [{eof-object? c} #f 1

[(not (char-alphabetic? c))
{loop {read-char p)) 1

[else (list->string
(let loop ([c cl)

(if (memq {char-type c)

‘(letter digit underline))
(cons c (loop (read-char p)))
(begin

(unread-char c p)
‘{))) })1})))

Figure 5: User interface

91

Module ml:

(import (m2))

(private a 1)

(public set-a!

(lambda (n)

(set! a n)))

(public ~oo

(lambda () h-w))

Environments of m 1:

public

/
set-a!

Bproc.

\
foo

a

proc.

Module m2

(import (ml))

(private b 2)

(public bar

(l~~~a ()

(set-a! 3)))

Environments of m2:

private fve public private fve

I /

1

\ I
bar bar

c)proc.

/\
foo set-a!

I I I I

Figure 6: Module linkage

5.1 Dynamic Linking

The semantics of our module system requires the bind-

ings of free variables in a top-level expression to be

determined dynamically at run time. This property

provides the necessary flexibility for interactive pro-

gramming. However, a naive implementation of the se-

mantics can result in unacceptable performance. The

implementation presented here keeps track of the im-

port/export relations among modules and uses double

indirection with an implicit incremental link step after

each interactive modification to resolve the bindings of

free variables.

The IMP system keeps track of variable bindings for

All modules. Each module hag environments for public

variables, private variables, and free variables. The pub-

lic and private environments associate identifiers with

the locations that contain their values. The free-variable

environments (FVE) associate free variables with loca-

tions that contain pointers to the locations of local vari-

ables or public variables imported from other modules.

In consequence, variable references and assignments re-

quire at most one or two memory references. A binding

in the public or private environment of a module is cre-

ated when a public or private definition is evaluated. A

binding in the free-variable environment of a module is

created when an expression containing the free variable

is compiled. Before evaluating the compiled expression,

an implicit link step is performed that associates bind-

ings in the free-variable environment with the locations

of the variables defined in the module or imported from

other modules. A run-time error is signaled if a free vari-

able is used during evaluation for which no binding has

been established. In addition, the system also provides

a command that lists the identifiers that are currently

unbound in a module. Figure 6 depicts the implemen-

tation using two modules that import from and export

to each other, Note that the private variable a also ap-

pears in ml’s free-variable environment, since a occurs

free in the expression defined by set-a!.

IMP allows interfaces among modules to be modified

freely. Possible modifications include removing a mod-

ule, defining a module, changing a module’s imports,

deleting a binding, adding a binding, and modifying an

existing binding. To support these modifications, the

free-variable environments of affected modules must be

updated after every user interaction that changes the

92

dependencies among modules. For example, if ml im-

ports bar from another module m3, the entry bar in

ml’s FVE must be changed to point to the bar in the

public environment of m3. In extreme circumstances,

the amount of relinking required could be high. In prac-

tice, however, this does not appear to be a problem.

When a public or a private binding is removed from a

module, the free variables used in the removed binding

should be removed from the free-variable environment

if not referenced elsewhere in the module. Referring

to Figure 6, if the public procedure foo is removed from

module ml, the binding bar in ml’s FVE should also be

removed. The system uses reference counts to determine

whether free variables should be removed.

5.2 Separate Compilation

A separate compilation mechanism for developed mod-

ules

1.

2.

3.

must satisfy the following requirements:

Developed modules must integrate well with devel-

oping modules.

In order to support mutually recursive modules, the

system must allow loading a developed module even

though the developed module imports some items

that may not be available at load time.

The efficiency overhead for variable access present

when developing must be eliminated.

The first requirement can be satisfied by having the de-

veloped module establish the environments for its public

variables. The second requirement requires a “delayed

linking” mechanism for bindings that are not available

at load time. The third requirement is satisfied by ac-

cessing free variables in a developed module without

using indirection, which we can do since developed mod-

ules cannot import from developing modules.

Figure 7 shows the code generated for the module ml

in Figure 6. Procedures do-import, do-binds, and do-

public are provided by the IMP system 1. The procedure

do-import checks whether imported modules are also

developed. The procedure do-binds initializes the pub-

lic environment of the module. The procedure do-public

puts the value of a variable definition into the public en-
vironment. Note that the private variables need not be

initialized, since they are not visible outside the module.

The most interesting part of Figure 7 is the Ietrec

expression, which is used to establish bindings for free

variables in ml. Private variables are simply allocated

with ordinary bindings. Any free variable that refers to

1To aid the presentation, the original names of these proce-
dures are used in the generated code. In reality, these and other
system procedures are bound to otherwise inaccessible names to
avoid being captured by user-defined variables.

a locally defined public variable or an imported public

variable is bound to an if expression that returns a pro-

cedure if the public variable’s value is available at load

time or a delay procedure that postpones the reference

of the variable until the delay procedure is invoked. The

set! expression changes the delay procedure to an im-

ported procedure when it is first invoked. This link-by-

need mechanism allows mutually recursive modules to

be loaded into the system. The procedure value-getable?

checks whether the value of a variable is available. The

procedure get-value returns the value of a variable. The

restriction that public variables can be bound only to

procedures simplifies this link-by-need mechanism.

Except for the cost associated with the link-by-need

mechanism, the code generated for a developed module

is as efficient as the corresponding Scheme program.

5.3 Project Compilation

The goal of project compilation is to eliminate all over-

head associated with developing or developed modules.

Because bindings of free variables are available at com-

pile time and exported variables are not assignable, this

goal can be achieved.

The project compiler first translates the entire project

by consistently renaming every free variable name, say

vI, with a name of the form m-vi where VI is defined

in module m, or with a name of the form m-v2, if V2 is

the original name and is renamed to VI in an importing

module. The project compiler is free to open-code any

public procedure. The translated code is at least as effi-

cient as an equivalent Scheme program written without

modules.

6. Conclusion

One of the most important programming paradigms

that Scheme systems support is interactive program-

ming. We believe that modular programming facilities

are also important. Unfortunately, traditional module

systems are inherently at odds with interactive pro-

gramming. Adding a traditional module system to

Scheme would subvert most of Scheme’s interactive ca-

pabilities.

Scheme is a lexically scoped language. The static

nature of lexical scoping makes programs easier to un-

derstand and allows compilers to generate more efficient

code. A module system designed for Scheme should not

lose the benefits of lexical scoping.

The significant accomplishments of the system pre-

sented in this paper are that it supports interactive
modular programming and maintains the flavor and

benefits of lexical scoping. Efficient implementation

techniques are provided for dynamic linkhg, separate

93

(do-import ‘ml ‘(m2))

(do-binds ‘ml ‘((pubind foo) (pubind set-a!)))

(letrec (:;a:q

(if (value-getable? ‘m2 ‘bar)

(get-value ‘m2 ‘bar)

(lambda args

(if (value-getabJe? ‘m2 ‘bar)

(begin (set! bar (get-value ‘m2 ‘bar))

(apply bar args))

(em-or ‘()

“Variable ‘s imported from “s to ‘s is not bound”

‘bar ‘m2 ‘ml))))])

(set! a 1)

(do-public ‘ml ‘set-a! (lambda (n) (set! a n)))

(do-public ‘ml ‘foo (lambda () bar)))

Figure 7: Separate Compilation

compilation, and project compilation. In addition, we

have also presented the design of a programming en-

vironment that provides a window-based user interface

with multiple read-eval-print contexts and an incremen-

tal migration path for a programming project to obtain

production code.

Modular programming and object-oriented program-

ming are two programming paradigms that share many

common objectives. These common objectives include

encapsulation and modularity and should be supported

by common rather than different language facilities. We

have extended IMP to support object-oriented program-

ming [13, 14].

Several macro systems supporting hygienic macros

have been proposed for Scheme. These proposals pro-

vide different facilities for writing low-level macros. We

are considering integrating and extending the system

proposed by Hieb and Dybvig to support exported

macros [10].

Acknowledgements

I would like to thank Kent Dybvig, Bob Hieb, Michael

Ashley, Carl Bruggeman, Dan Friedman, and Shinn-

Der Lee for many useful insights and suggestions on the

design of the system and on earlier drafts of this paper.

The Scheme programs in this paper were typeset using

Dorai Sitaram’s S14T#.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Harold Abelson, Gerald J. Sussman, and Julie

Sussman. Structure and Interpretation of Com-

puter Programs. MIT Press, 1984.

Luca Cardelli, James Donahue, Lucille Glass-

man, Mick Jordan, Bill Kalsow, and Greg Nelson.

Modula-3 report. Technical Report 31, DEC Sys-

tems Research Center, 1988.

Pavel Curtis and James Rauen. A module system

for Scheme. In Conference Record of the 1990A CM

Lisp and Functional Programming, 1990.

R. Kent Dybvig. The Scheme Programming Lan-

guage. Prentice-Hall, 1987.

Daniel P. Friedman and Mat t hias Felleisen. A

closer look at export and import statements. Com-

puter Language, 11(1):29-37, 1986.

Robert Harper, Robin Milner, and Mads Tofte.

The definition of Standard ML. Technical Report

ECS-LFCS-89-81, Department of Computer Sci-
ence, University of Edinburgh, 1989.

Simon Kaplan, Alan M. Carroll, Christopher Love,

and Daniel M. LaLiberte. Epoch - GNU Emacs

for the X Window System. Department of Com-

puter Science, University of Illinois at Urbana-

Champaign, 1990.

Barbara Liskov, Alan Snyder, Russell Atkinson,

and Craig Schaffert. Abstraction mechanisms in

94

CLU. Communications of the ACM, 20(8):564-576,

1977,

[9] Christian Queinnec and Julian Padget. A detailed

summary of a deterministic model of modules and

macros for Lisp. Technical Report LIX/RR/90/01,

Ecole Polytechnique, Laboratoire d’Informatique,

91128 Palaiseau Cedex (France), July-December

1989.

[10] Jonathan Rees and William Clinger. (Edi-

t ors), Revised4 report on the algorithmic language

Scheme. Lisp Pointers, to appear.

[11] Guy L. Steele Jr. Common Lisp. Digital Press,

1990. Second Edition.

[12] Joseph E. Stoy. Denotational Semantics: The

Scott-Strachey Approach to Programming Lan-

guage Theory. MIT Press, Cambridge, Mass., 1977.

[13] Sho-Huan Simon Tung. Merging Interactive, Mod-

ular, and Object- Oriented Programming. PhD the-

sis, Indiana University, Bloomington, 1992.

[14] Sho-Huan Simon Tung and R. Kent Dybvig.

Object-oriented programming with interactive

modules. in preparation.

[15] US Government - Department of Defense. The pro-

gramming language ADA - reference manual. Lec-

ture Notes in Computer Science, Vol. 106, 1981.

[16] Niklaus Wlrth. Programming in hJodula-2.

Springer Verlag, 1983.

95

