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Abstract

The Python compiler for CMU Common Lisp has

been under development for over five years, and now

forms the core of a production quality public domain

Lisp implementation. Python synthesizes the good

ideas from Lisp compilers and source transforma-

tion systems with mainstream optimization and re-

targetability techniques. Novel features include strict

type checking and source-level debugging of compiled

code. Unusual attention has been paid to the com-

piler’s user interface.

1 Design Overview

CMU Common Lisp is a public domain implementa-

tion of Common Lisp. The intended application of

this implementation is as a high-end Lisp develop-

ment environment. Rather than maximum peak per-

formance or low memory use, the main design goals

are the ease of attaining reasonable performance, of

debugging, and of developing programs at a high level

of abstraction.

CMU Common Lisp is portable, but does not sacri-

fice efficiency or functionality for ease of retargeting.

It currently runs on three processors: MIPS R3000,

SPARC, and IBM RT PC. Python has 50,000 lines of

machine-independent code. Each back-end is 8,000

lines of code (usually derived from an existing back-

end, not written from scratch.) Porting takes 2–4

wizard-months.

An unusual amount of effort was devoted to user-

interface asp ects of compilation, even in comp arisen

to commercial products. One of the theses of this

paper is that many of Lisp’s problems are best seen

as user-interface problems.

In a large language like Common Lisp, efficient

compiler algorithms and clever implementation can

still be defeated in the details. In 1984, Brooks and

Gabriel[5] wrote of Common Lisp that:

Too many costs of the language were dis-

missed with the admonition that “any good

compiler” can take care of them. No one

has yet written nor is likely without tremen-

dous effort a compiler that does a fraction

of the tricks expected of it. At present, the

“hope” for all Common Lisp implementors

is that an outstandingly portable Common

Lisp compiler will be written and widely

used.

Python has a lot of operation-specific knowledge:

there are over a thousand special-case rules for 640

different operations, 14 flavors of function call and

three representations for multiple values. The + func-

tion has 6 transforms, 8 code generators and a type

inference method. This functionality is not without

a cost; Python is bigger and slower than commercial

CL compilers.

2 Type Checking
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Python brings strong typing to Common Lisp. Type

declarations are optional in Common Lisp, but

Python’s checking of any type assertions that do ap-

pear is both precise and eager:

Precise -- All type assertions are tested using the

exact type asserted. All type aaeertions (both

impli{ it and declared) are treated equally.
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Eager — Run-time type checks are done at the loca-

tion of the first type assertion, rather than being

delayed until the value is actually used.

Explicit type declarations are neither trusted nor

ignored; declarations simply provide additional asser-

tions which the type checker verifies (with a run-time

test if necessary) and then exploits. This eager type

checking allows the compiler to use specialized vari-

able representations in safe code.

Because declared types are precisely checked, dec-

larations become more than an efficiency hack. They

provide a mechanism for introducing moderately

complex consistency assertions into code. Type

declarations are more powerful than ass ert and

check-type because they make it easier for the com-

piler to propagate and verify assertions.

2.1 Run-Time Errors

Debuggers for other languages have caught up to

Lisp, but Lisp programs often remain easier to de-

bug because run-time errors are signalled sooner af-

ter the inconsistency arises and contain more useful

i nformat ion.

Debugger capabilities are important, but the time

that the debugger is invoked is also very important.

There is only so much a debugger can do after a pro-

gram has already crashed and burned. Strict type

checking improves the quality and timeliness of run-

time error messages.

The efficiency penalty of this run-time type check-

ing would be prohibitive if Python did not both min-

imize run-time checks through compile-time type in-

ference and apply optimizations to minimize the cost

of the residual type checks.

2.2 Compile-Time Type Errors

In addition to proving that a type check is unneces-

sary, type inference may also prove that the asserted

and derived types are inconsistent. In the latter case,

the code fragment can never be executed without a

type error, so a compile-time warning is appropriate.

Compiling this example:

(defmacro addf (x n)

‘(+ ,x (the single-float ,n)))

(defun type-error (x)

(addf x 3))

In: defun type-error

(addf x 3)

–> +
————

(tie single-float 3)

Warning: This is not a single-float:

3

In addition to detecting static type errors, flow

analysis detects simple dynamic type errors like:

(defun foo (x arg)

(ecase x

(:regist er-number

(and (integerp arg) (>= x O)))

.))

In: defun foo

(>= x o)

–> if <
————>

x

Warning: This is not a (or float rational):

:register-number

Johnson[8] shows both the desirability and feasibil-

ity of compile-time type checking as a way to reduce

the brittleness (or increase the robustness) of Lisp

programs developed using an exploratory methodol-

ogy.

Python does less interprocedural type inference, so

compile-time type checking serves mainly to reduce

the number of compile-debug cycles spent fixing triv-

ial type errors. Not all (or even most) programs can

be statically checked, so run-time errors are still pos-

sible. Some errors can be detected without testing,

but testing is always necessary.

Once th- basic subtypep operation has been im-

plemented, it can be used to detect any inconsisten-

cies during the process of type inference, minimizing

the difficulty of implementing compile-time type er-

ror checking. The importance of static type checking

may be a subject of debate, but many consider it a

requirement for developing reliable software. Perhaps

compile-time type errors can be justified on these un-

quantifiable grounds alone.

2.3 Style Implications

Gives thts compiler warntng: Precise, eager type checking lends itself to a new cod-

ing style, v-here:
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Declarations are specified to be as precise as

possible: (integer 3 7) instead of f ixnum,

(or node null ) instead of no declaration.

Declarations are written during initial coding

rather than being postponed until tuning, since

declarations now enhance debuggability rather

than hurting it.

Declarations are used with more confidence,

since their correctness is tested during debug-

ging.

Accountability to Users

isp implementation hides a great deal of com-

plexit y from the programmer. This makes it eas-

ier to write programs, but harder to attain good

efficiency. [7] Unlike in simpler languages such aa C,

there is not a straightforward eficiency model which

programmers can use to anticipate program perfor-

mance.

In Common Lisp, the cost of generic arithmetic and

other conceptually simple operations varies widely de-

pending on both the actual operand types and on the

amount of compile-time type information. Any accu-

rate efficiency model would be so complex as to place

unrealistic demands on programmers -– the work-

ings of the compiler are (rightly) totally mysterious

to most programmers.

A solution to this problem is to make the compiler

accountable for its actions[15] by establishing a dialog

with the programmer. This can be thought of as pro-

viding an automated efficiency model. In a compiler,

accountability means that efficiency notes:

are needed whenever an inefficient implementa-

tion is chosen for non-obvious reasons,

should convey the seriousness of the situation,

must explain precisely what part of the program

is being referred to, and

must explain why the inefficient choice was made

(and how to enable efficient compilation.)

Efficiency Note Example

Consider this example of “not good enough” declara-

tions:

(defun eff-note (s i x y)

(declare (string s) (fixnum i x y))

(arefs (+ i x y)))

which give;? these eficiency notes:

In: defun eff-note

(+ixy)
==

~~~ (+ i X) Y)

Forced to do inline (signed-byte 32) arithmetic (cost 3).

Unable to do inline fixnum arithmetic (cost 2) because:

The first argument is a (integer -1073741824

1073741822),

not a fixnum.

(arefs (+ i x y))

–> let*

==

(~ernel:data-vector-ref array kernel: index)

Note:

Forced to do full call.

Unable to do inline array access (cost 5) because:

The first argument is a base-string,

not a simple-base-string.

4 Source-Level Debugging

In addition to compiler messages, the other major

user interface that Lisp implementations offer to the

programmer is the debugger. Historically, debugging

was done in interpreted code, and Lisp debuggers of-

fered excellent functionality when compared to other

programming environments. This was more due to

the use of a dynamic-binding interpreter than to any

great complexity of the debuggers themselves.

There has been a trend toward compiling Lisp

programs during development and debugging. The

first-order reason for this is that in modern imple-

ment ations, compiled code is so much faster than

the interpreter that interpreting complex programs

has become impractical. Unfortunately, compiled de-

bugging makes interpreter-based debugging tools like

*evalhoo~* steppers much less available. It is usu-

ally not e+en possible to determine a more precise

error location than “somewhere in this function.”

One solution is to provide source-level debugging of

compiled t ode. Although the idea has been around

for a while l18], source level debugging is not yet avail-

able in the popular stock hardware implementations.

To provide useful source-level debugging, CMU Com-

mon Lisp had to overcome these implementation dif-

ficulties:

● Excessive space and compile-time penalty for

dumpmg debug information.
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Excessive run-time performance penalty because

debuggability inhibits important optimizations

like register allocation and untagged representa-

tion.

Poor correctness guarantees. Incorrect informa-

tion is worse tha~ none, and even very rare in-

correctness destroys user confidence in the tool.

The Python symbolic debugger information is com-

pact, allows debugging of optimized cc)de and pro-

vides precise semantics. Source-based debugging is

supported by a bidirectional mapping between loca-

tions in source code and object code. Due to careful

encoding, the space increase for source-level debug-

ging is less than 35’%0. Precise variable liveness infor-

mation is recorded, so potentially incorrect values are

not displayed, giving what Zellweger[22] calls truthful

behavior.

4.1 Debugger Example

This program demonstrates some simple source-level

debugging features:

(defstruct my-struct

(slot nil :type (or integer null)))

(defun source-demo (structs)

(dolist (struct structs)

(when (oddp (my-struct-slot

(return struct))))

(source-demo

(list (make-my-struct :slot O)

(make-my-struct :slot 2)

(pathname “foo’’)))

strucu))

Resulting in a run-time error and debugger session:

Type-error in source-demo:

#p’’foo” is not of type my-struct

Debug (type H for help)

~ The usual call frame printing,

~source-demo (#s(my-struct slot 0)

#s(my-struct slot 2)

#p’’foo” ))

. But also local variable display by name,

i] 1

struct = #p’’foo”

structs = (#s(my-struct slot O)

#s(my-struct slot 2)

#p’’foo” )

; evaluation of local variables in expressions, and

6] (my-struct-slot (cadr structs))

2

; display of the error location.

6] source 1

(oddp (#:=* *here*** (my-struct-slot struct)))

; and you an jump to editing the exact error locatton.

6] edit

4.2 The Debugger Toolkit

The implementation details of stack parsing, debug

info and code representation are encapsulated by an

interface exported from the debug-internals pack-

age. This makes it easy to layer multiple debug-

ger user interfaces onto CMU CL. The interface is

somewhat similar to Zurawski[23]. Unlike SmallTalk,

Common l,isp does not define a standard representa-

tion of activation records, etc., so the toolkit must be

defined as a language extension.

5 Efficient Abstraction

Powerful 1 lgh-level abstractions help make program

maintenan -e and incremental design/development

easier[20, ‘)1]; this is why Common Lisp has such a

rich

●

●

●

variety of abstraction tools:

Global and local functions, first-class functional

values,

Dynamic typing (ad-hoc polymorphism), generic

functions and inheritance,

Macrm, embedded languages, and other lan-

guage extensions.

Unfortu lately, inefficiency often forces program-

mers avoid appropriate abstraction. When the dif-

ficulty of efficient abstraction leads programmers to

adopt a low-level programming style, they have for-

feited the ~.dvantages of using a higher-level language

like Lisp In order to produce a high-quality Lisp

developme lt environment, it is not sufficient for the

C-equivaletlt subset of Lisp to be as efficient as C —

the higher level programming tools characteristic of

Lisp must also be efficiently implemented.
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Python increases the efficiency of abstraction in

several ways:

Extensive partial evaluation at the Lisp seman-

tics level,

Efficient compilation of the full range of Common

Lisp features: local functions, closures, multiple

values, arrays, numbers, structures, and

Block compilation and inline expansion (syner-

gistic with partial evaluation and untagged rep-

resent ations.)

Partial Evaluation

Partial evaluation is a generalization of constant

folding[9]. Instead of only replacing completely con-

stant expressions with the compile-time result of the

expression, partial evaluation transforms arbitrary

code using information on parts of the program that

are constant. Here are a few sample transformations:

●

●

●

●

Operation is constant:

(funcall #’eql x y) ~ (eql x y)

Variables whose bindings are invariant:

(let ((x (+ a b))) x)

=+

(+ a b)

Unused expression deletion:

(+ (progn (* a b) c) d)

+

(+ c d)

Conditionals that are constant:

(iftxy)+x

(if (consp a-cons) x y) * x

(ifp(if pxy)z)+(ifpxz)

The canonicalization of control flow and environment

during ICR Conversion aids partial evaluation by

making the value flow apparent.

Source transformation systems have demonstrated

that partial evaluation can make abstraction efficient

by eliminating unnecessary generality[15, 4], but only

a few non-experimental compilers (such as 0rbit[9])

have made comprehensive use of this technique. Par-

tial evaluation is especially effective in combination

with inline expansion[19, 13].

5.2 Partial Evaluation Example

Consider this analog of find which searches in a

linked list threaded by a specified successor function:

(declaim (inline find-in))

(defun find-in (next element list &key (key #’identity)

(test #’eql test-p)

(test-not nil not-p))

(when (and test-p not-p)

(error “Both :Test and :Test-Not supplied.”))

(if not-p

(do ((current list (funcall next current)))

((null current) nil)

(unless (funcall test-not (funcall key current)

element )

(return current)))

(do ((current list (funcall next current)))

((null current) nil)

[whet (funcall test (funcall key current) element)

(return current)) j))

When inline expanded and partially evaluated,

this transformation results:

(find-in #’foo-next 3 foo-list

:key #’foo-offset :test #’<)

+-

(do ((current foo-list (foo-next current)))

((null current) nil)

(when (< (foo-offset current) 3)

(return current)))

5.3 Meta-Programming and Partial

Evaluation

Mets-prog.:amming is writing programs by develop-

ing domain-specific extensions to the language. It is

an extremely powerful abstraction mechanism that

Lisp makes comparatively easy to use. However,

macro writing is still fairly difficult to master, and

efficient macro writing is tedious because the expan-

sion must be hand-optimized.

Partial evaluation makes meta-programming easier

by making inline functions efficient enough so that

macros can be reserved for cases where functional ab-

straction is insufficient. Such optimization also makes

it simpler to write macros because unnecessary condi-

tionals and variable bindings can be introduced into

the expam ion without hurting eficiency.

5.4 Block Compilation

Block compilation assumes that global functions will

not be red fined, allowing the compiler to see across

function b Jundaries[18].

In CMIJ Common Lisp, full source-level debugging

is still su~ ported in block-compiled functions. The
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only effect that block compilation has on debuggabil-

ity is that the entire block must be recompiled when

any function in it is redefined. Often block compila-

tion is first used during tuning, so full-block recom-

pilation is rarely necessary during development.

Block compilation reduces the basic call overhead

because the control transfer is a direct jump and ar-

gument syntax checking is safely eliminated. Python

also does keyword and optional argument parsing at

compile-time.

Another advantage of block compilation is that lo-

cally optimized calling conventions can be used. In

particular, numeric arguments and return values are

passed in non-pointer registers.

In addition to reductions in the call overhead itself,

block compilation is important because it extends

type inference and partial evaluation across function

boundaries. Block compilation allows some of the

benefits of whole-program compilation[3] without ex-

cessive compile-time overhead or complete loss of in-

cremental redefinition.

Python provides an extension which declares that

only certain functions in a block compilation are en-

try points that can be called from outside the com-

pilation unit. This is a syntactic convenience that

effectively converts the non-entry defuns into an en-

closing labels form. Whichever syntax is used, the

entry point information allows greatly improved op-

timization because the compiler can statically locate

all calls to block-local functions.

6 Numeric Efficiency

Efficient compilation of Lisp numeric operations has

long been a concern[16, 6]. Even when type inference

is sufficient to show that a value is of an appropriate

numeric type, efficient implementation is still diffi-

cult because the use of tagged pointers to represent

all objects is incompatible with efficient numeric rep-

resent at ions.

Python offers a combination of S( veral features

which make efficient numeric code much easier to at-

tain:

●

●

●

Untagged numbers can be allocated both in reg-

isters and on the stack.

Type inference and the wide palette of code gen-

eration strategies reduce the number of declara-

tions needed to get efficient code.

Block compilation increases the range over which

efficient numeric representations can be used.

● Efficiency notes provide reliable feedback about

numeric operations that were not compiled effi-

ciently.

In addition to open-coding operations on single and

double f losts and f ixnums, Python also implements

full-word integer arithmetic on signed and unsigned

32 bit operands. Word-integer arithmetic is used to

implement bignum operations, resulting in unusually

good bignum performance.

7 Implementation

Python’s structure is broadly characterized by the

compilation phases and the data structures (or z’nter-

mediate representations) that they manipulate. Two

major intermediate representations are used:

The Implicit Continuation Representation (ICR)

repres mts the lisp-level semantics of the source

code during the initial phases. ICR is roughly

equivalent to a subset of Common Lisp, but is

represented as a flow-graph rather than a syntax

tree. The main ICR data structures are nodes,

cent inuat ions and blocks. Partial evaluation

and semantic analysis are done on this represen-

tation. Phases which only manipulate ICR com-

prise the “front en~.

The Virtual Machine Representation (VMR)

represents the implementation of the source code

on a virtual machine. The virtual machine may

vary depending on the the target hardware, but

VMR is sufficiently stylized that most of the

phases which manipulate it are portable. All val-

ues are stored in Temporary Names (TNs). All

opera, ions are Virtual Operations (VOPS), and

their >perands are either TNs or compile-time

constants.

When compared to the intermediate representations

used by most Lisp compilers, ICR is lower level than

an abstract syntax tree front-end representation, and

VMR is higher level than a macro-assembler back-end

represent at ion.

8 Compilation Phases

Major phases are briefly described here. The phases

from “local call analysis” to “type check generation”

all interact; they are generally repeated until nothing

new is disf overed.

ICR conversion Convert the source into ICR, do-

ing m croexpansion and simple source-to-source
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transformation. All names are resolved at this

time, so later source transformations can’t intro-

duce spurious name conflicts. See section 9.

Local call analysis Find calls to local functions

and convert them to local calls to the correct en-

try point, doing keyword parsing, etc. Recognize

once-called functions as lets. Create entry stubs

for functions that are subject to general function

call.

Find components Find the flow graph components

and compute a depth-first ordering. Delete un-

reachable code. Separate top-level code from

run-time code, and determine which components

are top-level components.

ICR optimize A grab-bag of all the non-flow ICR

optimization. Fold constant functions, prop-

agate types and eliminate code that computes

unused values. Source transform calls to some

known global functions by replacing the function

with a computed inline expansion. Merge blocks

and eliminate if-if constructs. Substitute let

variables. See section 10.

Constant propagation This phase uses global flow

analysis to propagate information about lexical

variable values (and their types), eliminating un-

necessary type checks and tests.

Type check generation Emit explicit ICR code

for any necessary type checks that are too com-

plex to be easily generated on the flyby the back

end. Print compile-time type warnings.

Event driven operations Some ICR attributes are

increment ally recomputed, either eagerly on

modification of ICR, or lazily, when the relevant

information is needed.

Environment analysis Determine which distinct

TN

environments need to be allocated, and what

context needs to be closed over by each environ-

ment. We detect non-local exits and and mark

locations where dynamic state must be restored.

This is the last pure ICR pass.

allocation Iterate over all defined functions,

determining calling conventions and assigning

TNs to local variables. Use type and policy in-

formation to determine which VMR translation

to use for known functions, and then create TNs

for expression evaluation temporaries. Print ef-

ficiency notes when a poor translation is chosen.

Control analysis Linearize the flow graph in a way

that r.linimizes the number of branches. The

block-ievel structure of the flow graph is frozen

at this point (see section 12.3.)

Stack analysis Discard stack multiple values that

are u rused due to a local exit making the val-

ues re,.eiver unreachable. The phase is only run

when I’N allocation actually uses the stack val-

ues represent ation.

VMR conversion Convert the ICR into VMR by

translating nodes into VOPS. Emit simple type

checks. See section 12.

Copy propagation Use flow analysis to eliminate

unnecessary copying of TN values.

Representation selection Look at all references to

each TN to determine which representation has

the lowest cost. Emit appropriate VOPS for co-

ercions to and from that representation. See sec-

tion 13.

Register allocation Use flow analysis to find the

live set at each call site and to build the conflict

graph Find a legal register allocation, attempt-

ing to minimize unnecessary moves. Registers

are saved across calls according to precise life-

time information, avoiding unnecessary memory

references. See section 14.

Code generation Convert the VMR to machine in-

structions by calling the VOP code generators

(see section 15.1.)

Instruction-level optimization

Some optimizations (such as instruction schedul-

ing) must be done at the instruction level. This

is not a general peephole optimizer.

Assembly and dumping

Resol} e branches and convert to an in-core func-

tion o“ an object file with load-time fixup infor-

mation.

9 The Implicit Continuation

Representation (ICR)

ICR is a fl JW graph representation that directly sup-

ports flow analysis. The conversion from source into

ICR throws away large amounts of syntactic infor-

mation, eliminating the need to represent most envi-

ronment manipulation special forms. Control spe-

cial forms such as block and go are directly rep-

resented by the flow graph, rather than appearing
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as pseudo-expressions that obstruct the value flow.

This elimination of syntactic and control informa-

tion removes the need for most “bet a transformation”

optimizations[171.

The set of special forms recognized by ICR conver-

sion is exactly that specified in the Common Lisp

standard; all macros are really implemented using

macros. The full Common Lisp lambda is imple-

mented with a simple fixed-arg lambda, greatly sim-

plifying later compiler phases.

9.1 Continuations

A continuation represents a place in the code, or alter-

natively, the destination of an expression result and

a transfer of control[l]. This is the Implicit Continu-

ation Representation because the environment is not

directly represented (it is later recovered using flow

analysis. ) To make flow analysis more tractable, con-

tinuations are not first-class — they are an internal

compiler data structure whose representation is quite

different from the function representation.

9.2 Node Types

In ICR, computation is represented by these node

types:

if Represents all conditionals.

set Represents a setq.

ref Represents a constant or variable reference.

combination Represents a normal function call.

mv-combinat ion

Represents a multiple-value-call. This is

used to implement all multiple value receiving

forms except for mult iple-value-progi, which

is implicit.

bind This represents the allocation and initialization

of the variables in a lambda.

return This collects the return value from a lambda

and represents the control transfer on return.

entry Marks the start of a dynamic extent that can

have non-local exits to it. Dynamic state can be

saved at this point for restoration on re-entry.

exit Marks a potentially non-local exit. This node is

interposed between the non-local uses of a con-

tinuation and the value receiver so that code to

do a non-local exit can be inserted if necessary.

Some sk ts are shared between all node types (via

defstruct inheritance.) This information held in com-

mon betwt,en all nodes often makes it possible to

avoid special-casing nodes on the basis of type. The

common information primarily concerns the order of

evaluation and the destinations and properties of re-

sults. This control and value flow is indicated in the

node by references to continuations.

9.3 Blocks

The block structure represents a basic block, in the

control flow sense. Control transfers other than sim-

ple sequen,-ing are represented by information in the

block structure. The continuation for the last node in

a block represents only the destination for the result.

9.4 Source Tracking

Source location information is recorded in each node.

In additior, to being required for source-level debug-

ging, source information is also needed for compiler

error messages, since it is very difficult to reconstruct

anything resembling the original source from ICR.

10 Properties of ICR

ICR is a flow-graph representation of de-sugared Lisp.

It combines most of the desirable properties of CPS

with direct support for data flow analysis.

The ICR transformations are effectively source-to-

source, but because ICR directly reflects the control

semantics of Lisp (such as order of evaluation), it has

different properties than an abstract syntax tree:

Syntactically different expressions with the same

control flow are canonicalized:

(tagbody (go 1)

2y

(go 3)

lx

(go 2)

3 z)

*

(progn x y z nil)

Use/definition information is available, making

substitutions easy.

All lexical and syntactic information is frozen

in dul ing ICR conversion (alphatization[ 17]), so

transformations can be made with no concern for

variat Ie name conflicts, scopes of declarations,

etc.
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●

●

11

During ICR conversion this syntactic scoping in-

formation is discarded and the environment is

made implicit, causing further canonicalization:

(let ((fun (let ((val init))

#’(lambda

. . . (funcall fun) . . .

e

(let ((val init))

(let ((fun #’(lambda

. . . (funcall fun) . . .

() . ..val...))))

() . ..val...)))

All the expressions that compute a value (uses of

a continuation) are directly connected to the re-

ceiver of that value, so syntactic close delimiters

don’t hide optimization opportunities. As far as

opt imizat ion of + is concerned, these forms are

identical:

(+3 (progn (gork) 42))

(+3 42)

(+3 (unwind-protect 42 (gork)))

As the last example shows, this holds true even

when the value posit ion is not tail-recursive.

Type Inference

Type inference is important for efficiently compil-

ing generic arithmetic and other operations whose

definition is based on ad-hoc polymorphism. These

operations are generally only open-coded when the

operand types are known at compile-time; insufficient

type information can cause programs to run thirty

times slower. Almost all prior work on Lisp type

inference[4, 14, 9, 17] has concentrated on reducing

the number of type declarations required to attain

accept able performance (especially

metic operations.)

Type inference is also important

compile-time type error messages

cost of run-time type checking.

for generic arith-

because it allows

and reduces the

11.1 Type Inference Techniques

In order to support type inferences involving complex

types, type specifiers are parsed into an internal rep-

resentation. This representation supports subtypep,

type simplification, and the union, intersection and

difference of arbitrary numeric subrangcs, member and

or types. function types are used to represent func-

tion argument signatures. Baker[2] describes an ef-

ficient and relatively simple decision procedure for

subtypep, but it doesn’t support act ountable type

inference, since inferred types can’t be inverted into

intelligible type specifiers for reporting back to the

user.

One important technique is to separately rep-

resent the results of forward and backward type

inference [4, 8]. This separates provable type infer-

ences from assertions, allowing type checks to be

emitted only when needed.

Dynamic type inference is done using data flow

analysis tc solve a variant of the constant propaga-

tion problem. Wegman[19] offers an example of h~w

constant propagation can be used to do Lisp type in-

ference.

12 The Virtual Machine Rep-

resentation (VMR)

VMR preserves the block structure of ICR, but anno-

tates the nodes with a target dependent Virtual Ma-

chine (VM) Representation. VMR is a generalized

tuple representation derived from PQCC[l 1]. There

are only two major objects in VMR: VOPS (Virtual

Operations) and TNs (Temporary Names). All in-

structions are generated by VOPS and all run-time

values are stored in TNs.

12.1 Values and Types

A TN holds a single value, When the number of val-

ues is kno m, multiple TNs are used to hold multi-

ple values, otherwise the values are forced onto the

stack. TNs are used to represent user variables as

well as expression evaluation temporaries (and other

implicit values. )

A primitiue type is a type meaningful at the im-

plementation level; it is an abstraction of the pre-

cise Common Lisp type. Examples are f ixnum,

base-char and single-f loat. During VMR conver-

sion the primitive type of a value is used to determine

both where where the value can be stored and which

type-specific implementations of an operation can he

applied to the value. A primitive type maY have mul-

tiple possible representations (see Representation

Selection ).

VMR cc nversion creates as many TNs as necessary,

annotating, them only with their primitive type. This

keeps VMR conversion from needing any information

about the Llumber or kind of registers, etc. It is the

responsibi ity of Register Allocation to efficiently

map the al ,ocated TNs onto finite hardware resources.
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12.2 Virtual Operations

The PQCC VM technology differs from a conven-

tional virtual machine in that it is not fixed. The set

of VOPS varies depending on the target hardware.

The default calling mechanisms and a few prim-

itives are implemented using standard VOPS that

must implemented by each VM. In PQCC!, it was a

rule of thumb that a VOP should translate into about

one instruction. VMR uses a number of VOPS that

are much more complex (e.g. function call) in order

to hide implementation details from VMR conversion.

Calls to primitive functions such as ~ and car are

translated to VOP equivalents using declarative in-

formation in the particular VM definition; VMR con-

version makes no assumptions about which opera-

tions are primitive or what operand t~ pes are worth

special-casing.

12.3 Control flow

In ICR, control transfers are implicit in the structure

of the flow graph. Ultimately, a linear instruction se-

quence must be generated. The Control Analysis

phase decides what order to emit blocks in. In effect,

this amounts to deciding which arm of each condi-

tional is favored by allowing to drop through; the

right decision gives optimizations such as loop rota-

tion. A poor ordering would result in unnecessary

unconditional branches.

In VMR all control transfers are explicit. Con-

ditionals are represented using conditional branch

VOPS that take single target label and a not-p flag

indicating whether the sense of the test is negated.

An unconditional branch VOP is emitted afterward

if the other path isn’t a drop-through.

13 Representation selection

Some types of object (such as single-f lost) have

multiple possible representations [6]. Multiple repre-

sentations are useful mainly when there is a particu-

larly efficient untagged representation. In this case,

the compiler must choose between the normal tagged

pointer representation and an alternate untagged rep-

resentation, Representation selection has two sub-

phases:

● TN representations are selected by examining all

the TN references and choosing t~le representa-

tion with the lowest cost.

● Representation conversion code is inserted where

the representation of a value is chx;iged.

This phase is in effect a pre-pass to register allo-

cation. The main reason for its separate existence

is that representation conversions may be fairly com-

plex (e.g. themselves requiring register allocation),

and thus must be discovered before register alloca-

tion.

14 Register allocation

Consists of two passes, one which does an initial reg-

ister allocation, a post-pass that inserts spilling code

to satisfy violated register allocation constraints.

The interface to the register allocator is derived

from the e~tremely general storage description model

developed for the PQCC project [12]. The two major

concepts a. “e:

storage base ( SB): A storage resource such as a

register file or stack frame. It is composed of

same-size units which are jointly allocated to cre-

ate larger values. Storage bases may be fixed-size

(for registers) or variable in size (for memory.)

storage class (SC ): A subset of the locations in an

underlying SB, with an associated element size.

Examples are des cript or-reg (based on the

register SB), and double-float-stack (based

on the number-stack SB, element size 2, offsets

dual-word aligned.)

In add; t m to allowing accurate description of any

conceivable set of hardware storage resources, the

SC/SB mt }del is synergistic with representation se-

lection. Representations are SCS. The set of legal

representa~ions for a primitive type is just a list of

SCS. This is above and beyond the advantages noted

in [6] of having a general-purpose register allocator as

in the TN13ind/Pack model [l O].

15 Virtual Machine Definition

The VM description for an architecture has three ma-

jor parts:

● The SB and SC definition for the storage re-

sourws, with their associated primitive types.

● The il struction set definition used by the assem-

bler, z ssembly optimizer and disassembler.

. The definitions of the VOPS.
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15.1 VOP definition example

VOPS are defined using the def ine-vop macro. Since

classes of operations (memory references, ALU op-

erations, etc. ) often have very similar implement a-

tions, def ine-vop provides two mechanisms for shar-

ing the implementation of similar VOPS: inheritance

and VOP variants. It is common to define an “ab-

stract VOP” which is then inherited by multiple real

VOPS. In this example, single-f loat-op is an ab-

stract VOP which is used to define all dyadic single-

float operations on the MIPS R3000 (only the + def-

inition is shown.)

when the programmer can assume a high level of op-

timization.

The main cost of this additional functionality is

in compile time: compilations using Python may be

as much as 3x longer than they are for the quick-

est commercial Common Lisp compilers. However,

on modern workstations with at least 24 megabytes

of memory incremental recompilation times are still

quite acceptable. A substantial part of the slowdown

results from poor memory system performance caused

by Python”~ large code size (3.4 megabytes) and large

data structures (0.3-3 megabytes.)

(define-vop (single-float-op)

(:args (x :SCS (single-reg))

(y :scs (single-reg)))

(:results (r :SCS (single-reg)))

(:variant-vars operation)

(:policy :fast-safe)

(:note “inline float arithmetic”)

(:vop-var vop)

(:save-p :compute-only)

(generator 2

(note-this-location vop :internal-emor)

(inst float-op operation :single r x y)))

(define-vop (+/single-float single-float-op)

(:variant ‘+))

16 Evaluation

For typical benchmarks, CMU CL run-times are mod-

estly bet ter than commercial implementations. When

average speeds of the non-I/0, non-system Gabriel

benchmarks were compared to a commercial imple-

mentation, CMU unsafe code was 1.2 times faster,

and safe code was 1.8 times faster. Applications that

make heavy use of Python’s unique features (such as

partial evaluation and numeric representation) can be

5x or more faster than commercial implementations.

Generally, poorly tuned programs show greater

performance improvements under CMU CL than

highly tweaked benchmarks, since Py then makes a

greater effort to consistently implement all language

features efficiently and to provide efficiency diagnos-

tics.

The non-efficiency advantages of CMU CL are at

least as important, but harder to quantify. Commer-

cial implementations do weaker type checking than

CMU CL, and do not support source level debugging

of optimized code. It is also easier to write programs

17

●

●

●

●

●

●

●

●
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Summary

Strict type checking and source-level debugging

make development easier.

It is both possible and useful to give compile-

time warnings about type errors in Common Lisp

programs.

Optimization can reduce the overhead of type

checking on conventional hardware.

The d lfficulty of producing efficient numeric and

array code in Common Lisp is largely due to the

compiler’s opacity to the user, The lack of a

simph efficiency model can be compensated for

by making the compiler accountable to the user

for its optimization decisions.

Partial evaluation is a practical programming

tool when combined with inline expansion and

block compilation. Lisp-level optimization is im-

portant because it allows programs to be written

at a higher level without sacrificing efficiency.

[t is possible to get most of the advantages of

continuation passing style without the disadvan-

tages.

The clear ICR/VMR division helps portability.

It is probably a mistake to convert a Lisp-based

representation directly to assembly language.

A veq~ general model of storage allocation (such

as the one used in PQCC) is extremely helpful

when defining untagged representations for Lisp

values. This is above and beyond the utility of a

general register allocator noted in [6].
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