
Yet Another
Analysis of Algorithms Laborator y

Ed C. Epp
Mathematics and Computer Scienc e

The University of Portland
5000 North Willamette Boulevard

Portland, OR 97203-579 8
(503) 283-7163

epp@uofport - bitne t

A proble m

11

Abstrac t

Laboratory assignments can reinforce
material given in lecture by making it come aliv e
in practice. A prime example is the tim e
complexity of algorithms . However, laboratorie s
that confirm the time complexity of algorithm s
can be tedious exercises that do not reall y
challenge a student to think about the algorithm s
they are testing. fly giving students a set of
unknown executables, the laboratory become s
more of a detective problem. Students are
required to apply what they know about the sor t
algorithm s so that they can identify them .

Preface

What is presented here is a piece of
experience. As with all experiences, it i s
anecdotal and should be read with appropriat e
skepticism . There is no attempt in this paper t o
justify the value of laboratories . I\iany computer
departments are instituting them based on a "gut "
feeling for what students need and ho w
laboratories can fulfill that need . Computer
science laboratories have become one of the fad s
of the 900 . This action involves substantia l
risk. There is no conclusive evidence tha t
laboratories are accomplishing the needs they tun e
set out to satisfy . Given that there is currentl y
no accepted criteria for measuring the value of
computer laboratories, anecdotal accounts are al l
we currently have to evaluate them .

SIGCSE

	

Vol . 24 No . 4 Dec . 199 2BULLETIN

Several dozen laboratory exercises have
been introduced in beginning courses at th e
University of Portland (UP) . These laboratory
exercises have focused on five areas : fundamenta l
concepts, software development, natural languag e
writing, computer languages, and basic software
tools . Empirically analyzing the complexity o f
algorithms is one laboratory designed to reinforc e
fundamental concepts . It exemplifies wha t
laboratories are supposed to accomplish, i .e .
tying fundamental concepts to "hands-on "
experience .

In a "birds of a feather" session a t
SIGCSE's technical symposium, it was no t
surprising to find that many people had writte n
laboratories demonstrating the complexity o f
sorting algorithms . However, it has bee n
discouraging to see the poor response which U P
students have shown to elementary laboratorie s
that evaluate the time complexity of algorithms .
The laboratory have been perceived as worthless ,
tedious, and boring .

Unlike McCracken's laboratories 2
designed for an algorithms course, our laboratory
was designed for beginning students with les s
emphasis on rigorous analysis and mor e
emphasis on building intuition . A problem with
our analysis laboratory was that there is n o
discovery in it . A student only records, plots ,
reports, and forgets, with little deed to reall y
think .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F141837.141842&domain=pdf&date_stamp=1992-12-01

Empirical Studies of the
Complexity of Sorting

Computer Science I
CS26 1

December 4, 199 1

© Edward C. Epp

Goal s

Learn how to measure the time complexity of algorithms and become familiar with the time complexity o f
the insertion, selection, and quick sort .

Assignmen t

I. Copy the directory -cs261/labs/sorts" into your home directory .

Run "link" to create the appropriate links to the data files and executables .

II. There are three sort programs : sortA, sortB, and sortC . Your task is to determine which one is an
insertion, selection, and quick sort . You will also find three data files, all of which contain 10,00 0
integers . One of the data files is in random order, a second in order, and a third in reverse order .
Run the sort programs against these data files to determine how long it takes to sort lists o f
different length . Then, by graphing time versus number of elements, you should be able t o
determine each algorithm's order of complexity .

For example, to test the "sortB" sort program on a list of 500 random integers, type th e
following command .

sortB 500 < random .da t

The number of microseconds of cpu time used will be displayed .

III. Build tables of runs as follows (the size of n may be different but should not exceed 10,000 .)

insertion sort

	

on random number

items sorted

	

time in millisecond s

SIGCSE
BULLETIN vol . 24 No . 4 Dec . 1992 12

IV .

	

Neatly graph each table using a full sheet of graph paper for each graph . By varying the order of n ,
the time complexity of the algorithm can be determined . For example, if you want to show that an

algorithm is 0(n2), you will get a straight line when graphing the time against the square of n . Given
the data below, you should create the following graph . Since the graph is a straight line when graphe d

against n2 the algorithm is 0(n 2) .

n t1 2 time

5 25 95

10 _

	

100 380

15 225 850

20 400 1700

25 625 2400

Sort 1 o Random Data

250 0

2000 -~

150 0

1000 ~--

	

L

500--

0	 ®	 	 	 l	

0

	

100

	

200

	

300

	

400

	

500

	

600

	

70 0

n - squared

V .

	

For each sort (sortA, sortB, and sortC) write down whether it is an insertion, selection, o r
quick sort . Write down the clues (e .g ., it is 0(n) for ordered lists) . The more good clues you give, th e

higher your grade will be . Turn in the graphs which determined the order of complexity of eac h
algorithm .

SIGCSE

	

Vol . 24 No . 4 Dec . 199 2BULLETIN 1 3

14

A solution

One approach for adding some fun and a
little thinking into the laboratory is to give the
sort algorithms to the students, as one woul d
give a chemical unknown sample . The student' s
role is to identify each mystery sort based on it s
complexity signature . This twist to th e
laboratory forces the student to distinguis h
between the selection sort and insertion sor t
(based on how they behave in the best case) an d
between the quick sort and heap sort (based o n
how they behave in the worst case) . An exampl e
of this approach to an analysis laboratory i s
given at the end of this paper .

Mechanic s

Each student can be given a different se t
of algorithms . As a result, students will have t o
rely on their own detective work to discove r
which algorithms they received .

Test data selection needs to be discussed .
Students need to understand that the size of th e
unsorted list must be large enough to create run -
times that are substantially longer than the time r
granularity . The granularity may be surprisingl y
large, e .g ., the "clock" function on a DecStation
3100 under Ultrix returns time in microsecond s
with a resolution of 16.7 milliseconds . Some
students may not question the fact that all their
runs are exactly 16 .7 milliseconds long . I n
addition, the spacing between data points i s
important . Student intuition may not be wel l
developed here, e .g ., they tend to select evenl y
spaced data points or a points spacing based o n
squares (e .g . 100, 400, 900, and 1600 items in a
list) . Students need help developing a criteria fo r
selecting the interval between sample points .

The quick sort algorithm is written s o
that the pivot point is the first element in th e
unsorted list . This makes choosing worst cas e
data easier . Students will be surprised when th e
quick sort exhausts memory in the worst case fo r
large data sets . This brings home the fact tha t
each recursive call to the quick sort allocates an
activation record .

SIGCSE

	

vol . 24 No . 4 Dec . :99 2BULLETIN

Conclusio n

Many laboratory exercises have bee n
written in which students mechanically fill in th e
blanks and then forget what they have done .
This little twist to an analysis laborator y
represents a strategy that can require som e
analytical skills . The only proof of its value i s
that students asked appropriate questions durin g
the laboratory and (lid not complain about the
analysis laboratory this year .

The Papers of the Twenty-Third
SIGCSE Technical Symposiu m
on Computer Science Education ,
SIGCSE Bulletin, vol . 24, no . 1
(March 1992) .

Daniel D . McCracken, Three "La b
Assignments" for an Algorithms
Course, SIGCSE Bulletin, vol . 21 ,
no. 2, (June 1989), pp 61-64 .

********************loci** ****k ;F ; ******** *

WRITING IN CS1-- continued from page 1 0

Hartman, J ., & White, C .M . (1990). "Real
World" Skills vs . "School Taught" Skills for th e
Undergraduate Computer Major . SIGCS E
Bulletin, 22(1), 216-218 .

Jackowitz, P .M., Plishka, R.M ., & Sidbury, J .R .
(1990) . Teach Writing and Research Skills in th e
Computer Science Curriculum . SIGCS E
BULLETIN, (22)1, 212-215 .

Pesante, L. H . Integrating Writing into
Computer Science Courses . (1991) . SIGCS E
BULLETIN, (23)1, 205-209 .

Soloway, Elliot . (1986) . Learning to Program
Learning to Construct Mechanisms an d
Explanations . Communications of the ACM ,
29(9), 850-858 .

1

2

