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Abstract

Laboratory assignments can reinforce
material given in lecture by making it come alive
in practice. A prime example is the time
complexity of algorithms. However, laboratories
that confirm the time complexity ol algorithms
can be tedious exercises that do not really
challenge a student to think aboult the algorithms
they are testing. By giving students a set of
unknown executables, the laboratory becomes
more of a detective problem. Students are
required to apply what they know about the sort
algorithms so that they can identify them.

Preface

What is presented here is a piece of

experience. As with all experiences, it 1s
anccdotal and should be read with appropriate
skepticism. There is no attempt in this paper (o
justify the value of laboratories. Many computer
departments are instituting them based on a "gut"
feeling for what students need and how
laboratories can fulfill that need. Computer
science laboratories have become one of the fads
of the 90s!. This action involves substantial
risk. There is no conclusive evidence that
laboratories are accomplishing the needs they are
set out to satisly. Given that there is currently
no accepted criteria for measuring the value of
computer laboratories, ancedotal accounts are all
we currently have (o evaluate them.
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A problem

Several dozen laboratory exercises have
been introduced in beginning courses at the
University of Portland (UP). These laboratory
exercises have focused on five areas: [undamental
concepls, software development, natural language
writing, compuler languages, and basic software
tools. Empirically analyzing the complexity of
algorithms ts one laboratory designed to reinforee
fundamental concepts. It exemplifies what
laboratories are supposed to accomplish, i.e.
tying fundamental concepts to "hands-on"
experience.

In a "birds of a feather" session at
SIGCSE's technical symposium, it was not
surprising to find that many people had written
laboratorics demonstrating the complexity of
sorting algorithins.  However, it has been
discouraging to see the poor response which UP
students have shown to clementary laboratories
that evaluate the time complexity of algorithms.
‘The laboratory have been perceived as worthless,
tedious, and boring.

Unlike McCracken's  laboratorics?
designed for an algorithms course, our laboratory
was designed for beginning students with less
cmphasis on rigorous analysis and more
cmphasis on building intuition. A problem with
our analysis laboratory was that there is no
discovery it A student only records, plots,
reports, and lorgets, with little need to really
think.
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Learn how to measure the time complexity of algorithms and become familiar with the timne complexity of
the insertion, selection, and quick sort.

Assignment

L.

I

III.
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Copy the directory "~cs261/labg/sorts" into your home directory.

Run "link" to create the appropriate links to the data tiles and executables.

There are three sort programs: sortA, sortB, and sortC. Your task is to determine which one is an
insertion, selection, and quick sort. You will also find three data files, all of which contain 10,000
integers. One of the data files is in random order, a second in order, and a third in reverse order.
Run the sort programs against these data files to determine how long it takes to sort lists of
different length. Then, by graphing time versus number of elements, you should be able to
determune each algorithm's order of complexity.

For example, to test the "sortB" sort program on a list of 5300 random integers, type the
following command.

sortB 500 < random.dat

The number of microseconds of cpu time used will be displayed.

Build tables of runs as follows (the size of n may be different but should not exceed 10,000.)

insertion sort on random number

n - items sorted time in milliseconds

400

600

800

900

1000

Vol. 24 No. 4 Dec. 1992 12



Iv. Neatly graph cach table using a full sheet of graph paper for each graph. By varying the orderof n,
the time complexity of the algorithm can be determined. For example, if you want to show that an
algorithim is On?), you will get a straight line when graphing the time against the square of n. Given
the data below, you should create the following graph. Since the graph is a straight line when graphed
against n? the algorithm is On?).

n n2 time
5 25 95
10 100 380
15 225 850
20 400 1700
25 625 2400
Sort 1 - Random Data
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V. For each sort (sortA, sortB, and sortC) write down whether 1t is an inscrtion, selection, or
quick sort. Write down the clues (e.g., it is O(n) for ordered lists). The more good_clues you give, the
higher your grade will be. Turn in the graphs which determined the order of complexity of each
algorithin.
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A solution

One approach for adding some [un and a
little thinking into the laboratory is to give the
sort algorithms to the students, as one would
give a chemical unknown sample. The student's
role is to identify each mystery sort based on its
complexity signature. This (wist to the
laboratory forces the student to distinguish
between the selection sort and insertion sort
(based on how they behave in the best case) and
between the quick sort and heap sort (based on
how they behave in the worst case). An example
of this approach to an analysis laboratory is
given at the end of this paper.

Mechanics

Each student can be given a different set
of algorithms. As a result, students will have to
rely on their own detective work to discover
which algorithms they received.

Test data selection needs to be discussed.
Students need (o understand that the size of the
unsorted list must be large enough to create run-
times that are substantially longer than the timer
granularity. The granularity may be surprisingly
large, e.g., the "clock" function on a DecStation
3100 under Ultrix returns time in microseconds
with a resolution of 16.7 milliseconds. Some
students may not question the fact that all their
runs arc cxactly 16.7 milliscconds long. 1In
addition, the spacing between data points is
important. Student intuition may not be well
developed here, e.g., they tend to select evenly
spaced data points or a points spacing based on
squares (e.g. 100, 400, 900, and 1600 items in a
list). Students need help developing a criteria for
sclecting the interval between sample points.

The quick sort algorithm is written so
that the pivot point is the first element in the
unsorted list. This makes choosing worst case
data easier. Students will be surprised when the
quick sort exhausts memory in the worst case for
large data sets. This brings home the fact that
cach recursive call to the quick sort allocates an
activation record.
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Conclusion

Many laboratory excrcises have been
written in which students mechanically fill in the
blanks and then forget what they have done.
This litde twist to an analysis laboratory
represents a strategy that can require some
analytical skills. The only proof of its value is
that students asked appropriate questions during
the laboratory and did not complain about the
analysis laboratory this year.
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