
ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 53

Parameterized Specifications for Software Reuse

Jingwen Cheng
Department of Computer Science

Monash University, Clayton, Victoria, Australia, 3168
E-mail: jim@bruce.cs.monash.edu.au

M a y 19, 1992

Abs t rac t

Software reusability is believed to be the key to improving software development productivity,
while specification plays an important part in software reuse. From a modern object oriented view,
the reusable software components can be grouped into three categories: Procedural components,
abstract data types and concrete data objects. Both procedural components and abstract data
types can be parameterized in many Object-Oriented languages. Specifications for reuse of these
components are discussed in detail in this paper. The reusable software components and their spec-
ifications will form a reusable software library, and the information extracted from the specifications
forms a knowledge base. Based on the knowledge base and the reusable software library, a new
software development paradigm with software reusability can be realized.

1 Introduction
Many programming languages support polymorphism through type parameterization. Tha t is, types
can be parameters of a procedure or an abstract data type. In Ada [9] and Eiffel [6], this mechanism
is called gene r i c i t y ; In Smalltalk [7], it is called p o l y m o r p h i s m ; And in CLU [5], it is called t y p e
p a r a m e t e r i z a t i o n . C + + [8] does not support this mechanism directly, but it supports function name
and operator o v e r l o a d i n g by which we still can achieve polymorphism in the sense of doing different
things with the same operation on different objects.

The concept of polymorphism or overloading is not new. Many built-in data types and procedures
or functions in traditional languages embody the idea of polymorphism or overloading. For example,
the array data type in many languages (including those not supporting type parameterization) is a
parameterized data type. We can define variables of a r ray[in t] , a r r ay [rea l] , etc. The procedure
p r i n t (. . .) (the name may be different in different languages) is a parameterized or overloaded proce-
dure. We can use this procedure to print out different types of objects, such as print(5), print(3.6),
print("hello"), etc. Almost all operators , such as "+" , " - " , in all languages are overloaded. When
applied on different types of objects, they will perform different operations (generate different machine
codes). What is unusual is that the languages supporting type parameterization allow users to design
their own parameterized data types and procedures, while other languages do not.

One of the advantages of type parameterization is enhancing software reusability. A procedure or
an abstract data type with type parameters will be reused more frequently than nonparameterized one.

In order for a software component to be reused by other users, the provider of the component must
provide a specification of the component so that the user can understand what the software does and how
to use it without knowing its implementation details. The reusable software components can be grouped
into three categories: Procedural (procedure or function) components, abstract data types and concrete
data objects. The first two kinds of components can be either parameterized or nonparameterized.
We have discussed the specifications for nonparameterized reusable software components elsewhere[I].
In this paper, we will discuss the specifications for parameterized components. Section 2 discusses the
parameterized procedural specifications; Section 3 describes the specifications for overloaded procedures
or functions; Section 4 gives the paranaeterized abstract data type specifications; Section 5 explains the

http://crossmark.crossref.org/dialog/?doi=10.1145%2F141874.141886&domain=pdf&date_stamp=1992-10-01

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 17 no 4 Oct 1992 Page 54

specifications for concrete data objects created through parameterized abstract da ta types; And finally,
Section 6 summarizes our discussions.

2 Specif ications for Parameter ized Procedures

A parameterized procedure usually has more constraints to be specified than a nonparameterized one
because some operations on some types will not be meaningful. For example, a procedure performing
sorting function requires the type of the object to be sorted is totally ordered. So, when a procedure
is parameterized, any constraints on type parameters must be specified in the specification. Figure 1
gives the specification for parameterized procedure maximum.

maximum=proc[t:type] (a , b : t) - > t

precondi t ions: t has operat ion ' ' > = " (t , t) - >bool
behaviours : r e tu rns the maximum of a and b.
keywords: max, maximum, bigger_number.

end maximum

Figure 1: A parameterized specification

For con:tparison, figure 2 gives a specification for nonparameterized procedure IntMax.

IntMax=proc (a, b: int) -- > int

behaviours: returns the maximum of a and b.

keywords: max, maximum, bigger_number.

end I n t N a x

Figure 2: A nonparameterized specification

Now let us give some remarks on the parameterized specification:

• The parameterized specification differs in form from the nonparameterized one only in the header,
which now has an extra part that defines the type parameter(s).

• In preconditions clause, any constraints on type parameter(s) are stated in addition to other
constraints. If there are no constraints, the preconditions can be omitted as usual.

• The preconditions required on type parameters can be satisfied in two ways when the procedure
is used:

1. Only use the types which have the required built-in operation. For example, types of in t
and r ea l all have the operation " > = " .

2. Define the required operation on user defined types or built-in types having no the required
operation first, then use these types in the parameterized procedure. This, of course, requires
that the language support operator overloading (such as Ada and C + +) .

3 Specif ications for Overloaded Procedures

In the languages which support procedure or function name overloading, we can define many different
procedures or functions with the same name as long as there is at least one different parameter with each
other. Usually all the different procedures or functions do the same kind of thing except on different
types of objects. If not, we should have used different names rather than overloaded the different
things on the same name. So it is not necessary to write a specification for each procedure or function,
instead, we can write one specification for all the procedures or functions. This is, of course, not always
convenient. In the following, we will discuss in what cases this is convenient.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 55

3 .1 A l l p r o c e d u r e s o r f u n c t i o n s h a v e t h e s a m e n u m b e r , b u t d i f f e r e n t t y p e s
o f p a r a m e t e r s

This is the most case of overloading. In this case, we can write a specification for all the procedures or
functions easily. For example, there are three procedures overloaded on the same name max.

max=proc(a ,b : in t) - >int
max=proc(a ,b : rea l) - >real
max=proc(a ,b :s t r ing) - >s t r ing

The specification for all these three procedures is shown in figure 3.

max=proc[t:type] (a , b : t) - > t

preconditions: t may be int, real, string.

behaviours: returns the maximum o~ a and b.

keywords: max, maximum, bigger.number.

end max

Figure 3: A specification for overloaded procedures

What are the differences between this specification and the specification of parameterized procedure
shown in figure 1?

First, the constraint on type parameter ~ in this specification is specified by enumerating all the
allowed types, while in parameterized specification, it is specified by giving the required operations
which the types should have. Therefore, only those types enumerated in the precondition clause can be
used when calling the overloaded procedures. Whereas for parameterized procedures, any type, as long
as it has the required operation, can be used.

Second, the constraint on type parameters in overloaded specification must be explicitly given in
precondition clause, whreas it is optional in parameterized specification.

Third, an overloaded specification specifies several procedures overloaded on the same name, while a
parameterized specification only specifies one procedure which can be instantiated with different types.

And last, the procedures specified by an overloaded specification can be directly called. For example,
x, y, z: int;
x:=5; y:=10;
z:=max(x, y);

will call procedure max=proc(a ,b : in t) - >int .
While a parameterized procedure cannot be called directly. It must be instantiated with concrete

types first, then, the instances can be called. For example, we cannot use the following statement to
call the parameterized procedure maximum:

z:=maximum(x,y);
Instead, we should use the following statements:

p r o c e d u r e Int Max:=ma~ximum[int];
z:=IntMax(x,y);

In some languages, such as CLU, these two steps can be combined together, as below:
z:=maximum[int](x,y);

3 . 2 O v e r l o a d e d p r o c e d u r e s h a v e d i f f e r e n t n u m b e r o f p a r a m e t e r s

This case sometimes occurs, but not very often. Suppose we have the following procedures overloaded
on the same nmne sort:

sort =proc(array[int])
sort =proc(array[real])
sort =proc(array[string])
sort =proc(head:list,key:int)

A C M SIGSO]FT S O F T W A R E E N G I N E E R I N G N O T E S vol 17 no 4 Oct 1992 Page 56

sort =proc(head: l i s t ,key:s t r ing)
In the last two procedure,

l i s t = r e c o r d
name:s t r lng
IDnumber: int
next :list
e n d r e c o r d

The specification for these procedures is shown in figure 4.

sor t=proc [t 1, t2 , t3: type] (a: a r ray [t 1] I b: t2 , c: t3)

precondi t ions: t l may be int , real, s t r ing;
t 2 f r eco rd

name: s tr ing)
IDntmber: int
n e x t : t 2
end record

t3 may be i n t , str ing

slde_effects: modifies a or b.

belmviours: sorts the array or list in ascending order.

end s o r t

I f t3=int , so r t s the l i s t by
f i e l d IDnumber; I f t3=strlng, sor t s the l i s t by f i e l d name.

Figure 4: Another overloaded specification

In this specification, there is something different from other specifications. The input parameter
list is separated by a vertical bar. The separated parts represent different forms of the procedures
being specified. From this specification, we know that there are two different forms of procedures being
specified: One with one input parameter, the other with two input parameters.

Similarly, if the procedures have different number (0 or 1) or types of the return values, we can use
the same notation to specify the correspondences between different input forms and return types. For
example,

MinElement=proc(ar ray[t l] lb : t2 ,c : t3) - > t l l t3
implies that the procedures being specified have the following two forms:

M i n E l e m e n t = p r o c (a r r a y [t 1]) - > t l
and

MinElement=proc(b : t2 ,c : t3) - > t3

Other cases of procedure overloading rarely occur, so we do not discuss further. If the overloaded
procedures have many differences in parameters with each other, writing one specification for them may
not be easier than writing a specification for every procedure.

4 Specifications for Parameterized Abstract Data Types

Many languages, such as Ads, CLU, Eiffel, etc. support parameterized abstract data type. An ab-
stract data, type is an abstraction of a class of data structures which have some common features. A
parameterized abstract data type is an abstraction of a set of abstract data types with types as their
parameters. When we apply a concrete type to a parameterized abstract data type, we get a specific
abstract da ta type.

Just as in the case for parameterized procedures, any constraints on type parameters must be
specified in the preconditions clause of the specification. However, In this case, the type constraints can
be placed either on the abstract da ta type as a whole or on individual operations where the constraints
are required.

A C M S I G S O F T S O F T W A R E E N G I N E E R I N G N O T E S vol 17 no 4 Oct 1992 Page 57

Figure 5 gives a specification for parameterized set, in which the elements are of some arbitrary type.
Because there are no duplicate elements in sets, an equal ("=") operation is needed in most operations
on sets. So the element types are constrained to only those having equal operation, and this constraint
is placed on the set as a whole.

In the specification, we use s(+) to represent the state of s after the operation terminates.

se t=adt[t : type]- > create, insert, delete, member, size, choose, empty

precondi t ions: t has an operation "="(t , t) - >bool

o v e r v i e w : Sets are unbounded mathematical sets of elements of some type.

operat ions:

create=proc()-- >set[t]

behaviours : returns a new empty set.

end create

insert=proc(s: set[t], e: t)

side_effects: modifies s.

b e h a v i o u r s : adds e to s. i.e.
s(+)=s u {e}

end insert

delete--proc(s: set[t], e:t)

side_effects: modifies s.

b e h a v i o u r s : removes e from s. i.e.
s(+)=s-Te}

end delete

member=proc(s: set[t], e:t) - > bool

b e h a v i o u r s : I f e is an element of s, returns true; otherwise returns false, i .e.
returns e E s

end member

s ize=proc(s: set[t]) - > |n t

b e h a v i o u r s : returns the number of elements in s. e.g.
size(createO)=O

end size

choose=proc(s: s e t [t]) - > t

p r e c o n d i t l o n s : s is not empty.

b e h a v i o u r s : returns an arbitrary element of s.

end choose

empty=proe(s: set[t]) - > b o o l

b e h a v i o u r s : If s is empty, returns true; otherwise returns false, e.g.
empty(createO)=true

end empty

end set

Figure 5: A specification for parameterized set

Another example of specifications for parameterized abstract data types is shown in figure 6, which is
the specification for parameterized queue. In this specification, only in procedure IsIn is the constraint
on type placed, while all the other procedures have no constraint on type. So if a user does not intend to
use the operation IsIn, he can use any type in this abstract data type. If he intend to use IsIn operation
to check whether or not an element is already in the queue, then he can use only those types having
the required operation "=" (equal). This gives the user more flexibility than placing the constraint on

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 58

the abstract data type as a whole.

queue=adt[t : type]- >create, append, remove, empty, length, Isln

overview= A queue is a first-in-first-out list of elernents of type t. elements are appended to the end of the queue
and removed from the front.

operations=

create=proc()-- >queue[t]

behav iours : returns a new empty queue[t].

end. create

append=proc(q: queue[t], e: t)

side_effects: modifies q.
behav iours : adds e at the end of queue.

end append

remove=proc(q: queue[t]) - > t

p recond i t ions : q is not empty.
side_effects: modifies q.
behav lours : removes the front element from the queue and returns it.

end remove

empty=proe(q: queue[t])- >boo l

behav iours : returns true if q is empty; otherwise returns false, e.g.
empty(createO)=true.

end[empty

length=proc(q: queue[t]) - > i n t

behav iours : returns the length (the number of elements) of the queue, e.g.
length(creatO)=O

end length

Isln:=proc(q: queue[t], e : t) - >boo]

precondi t ions: t has an operation " = " (t , t) - >boo]
behav iours : returns true if e is in q otherwise returns false.

end Isln

end queue

Figure 6: Specification for parameterized queue

5 Specifications for Data Objects of Parameterized Abstract
Data Types

In traditional programming environments, da ta objects created by a program at run time exist only
during the.. execution of the program. It is sometimes necessary to keep them with their structures for
a longer time so that other programs or the same program at other run times can reuse the objects
directly instead of creating them from scratch every time. Persistent programming provides such a
support for storage and retrieval of data objects with their entire structures. However, for these objects
to be reused by other people, the programmer must provide their specifications in which the types or
structures and the contents of the objects are specified. The specifications for data objects of ordinary
types and nonparameterized abstract data types have been discussed elsewhere[l]. Here we discuss the
specifications for data objects of parameterized abstract data types.

Because a parameterized abstract data type contains type parameters, while an object of the abstract
data type must be of some specific type. For example, If an abstract data type is:

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 59

queue[t:type]
the objects of this type may be of

queue[|nt]
o r

queue[strlng]
The specifications for such objects must specify the types of the parameters as well as the abstract data
type.

Figure 7 gives a specification for an object of parameterized abstract data type queue (whose speci-
fication is shown in figure 6).

StudentsApplyingSchola.vships=data

type: adt queue[t : type]
tffiint

contents: A list of ID numbers of students who apply for scholarships.

end StudentsApplyingScholarships

Figure 7: A specification for a data object

To reuse this object, the user must retrieve the object and the abstract data type queue first, then
get an instance of the abstract data type by applying type int to it, then use the operations provided
by the abstract data type to access the object.

6 S u m m a r i e s

We have discussed the specifications for parameterized procedures and abstract data types, overloaded
procedures, and the objects of parameterized abstract data types for reuse of these kinds of software
components. The specifications given in this paper are not complete. For example, for the purposes
of search and retrieval, the keywords, implementation, identifier and other items should be specified.
Here we just want to highlight the new features of the parameterized specifications. The complete
specifications for each kind of software components can be found in [1]. The specifications and the
knowledge extracted from them will form a knowledge base of reusable software components. Based
on the knowledge base, an effective search and retrieval mechanism can be designed and an automatic
selection of reusable software components from user's query can be realized.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

Cheng, J. W. and Hurst, J. "Specifications in Software Development", in Proceedings of the Seventh
Annual University at Buffalo Graduate Conference on Computer Science, 1992, pp. 63-72.

Gorlen, K. E., Orlow, S. M. and Plexico, P. S. "Data Abstraction and Object-Oriented Program-
ming in C++" , John Wiley & Sons, 1990.

Kirkerud, B. "Object-Oriented Programming with Simula", Addison-Wesley Publishing Company,
1989.

Liskov, B. and Guttag, J. "Abstraction and Specification in Program Development", The MIT
Press, McGraw-Hill Book Company, 1986.

Liskov, B., Atkinson R., Bloom, T., Moss, E., Schaffert, J. C., Scheifler, R. and Snyder, A. "CLU
Reference Manual", Springer-Verlag, 1981.

Meyer, B. "Object-Oriented Software Construction", Prentice Hall, 1988.

Pinson, L. J. and Wiener, R. S. "An Introduction to Object-Oriented Programming and Smalltalk",
Addison-Wesley Publishing Company, 1988.

Stroustrup, B. "The C++ Programming Language", Addison-Wesley Publishing Company, 1987.

Wegner, P. "Programming with Ada: An Introduction by Means of Graduated Examples", Prien-
tice Hall, Inc. , Englewood Cliffs, New Jersey, 1980.

