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Abstract 

There have been a number of attempts to blend object- 
oriented programming languages with techniques 
commonly employed for knowledge representation in 
artificial intelligence. In the main, such exercises have 
entailed the incorporation of rule-based programming 
ideas into object-oriented languages, or the imposition 
of object-oriented constructs on logical programming 
notations. 
In this report, we describe a system with a slightly dif- 
ferent approach to the problem, which augments an 
object-oriented language with term classification 
capabilities like those found in KL-One and its suc- 
cessors. We hope to establish that this approach results 
in a more natural and efficacious integration of con- 
ventional object-oriented programming and knowl- 
edge representation than has been attained up to now. 
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1. Introduction 
The provenance of the system described in this report 
was our requirement for a general-purpose information 
repository or knowledge base for use by applications 
managing telecommunications networks. One exam- 
ple of the sort of application we hoped to support would 
be a monitor assessing the effects of faults arising in a 
network upon the network’s users. The requirements 
imposed by this type of application are quite exacting. 
To begin with, the knowledge base has to store rela- 
tively large amounts of fairly simple information-te- 
lemetry data in the main, produced by a network’s 
diagnostic hardware. At the same time, storage is re- 
quired for more complicated forms of abstract infor- 
mation, such as contracts outlining services required 
by network users. As well as providing storage, the 
knowledge base is expected to assist the applications 
by efficiently relating these two forms of information. 
To do this effectively for the monitoring application, 
for example, the knowledge base would be called on 
to produce an abstract overview of the state of the net- 
work every five minutes from the (approximately) 
30,000 items of telemetry data which would arrive in 
that period. 

Our first steps in producing a knowledge base meet- 
ing these requirements involved extending an object- 
oriented programming system (Smalltalk’) with term 
classification facilities like those found in the knowl- 
edge representation language KL,-One and its succes- 

1. More precisely, ObjectWorks%Smalltalk~ (Release 4) from 
ParcPlace Systems, Inc. 
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sors. In the next section, we examine our reasons for 
choosing this approach. Subsequent sections describe 
the facilities offered by the system and outline its im- 
plementation. We conclude by indicating possible di- 
rections for further development. 

2. Possible Approaches 

We elected to make our information store “object-ori- 
ented” from the outset. There were a number of reasons 
for this decision: Firstly, experience in the telecommu- 
nications industry has shown that the object-oriented 
approach is particularly well suited to modelling com- 
munications networks-so well suited, in fact, that 
many of the industry’s standards are based on it. Fur- 
thermore, users of the knowledge base would be able 
to use object-oriented analyses of the network domain 
produced by other researchers in our organization. We 
also hoped eventually to incorporate an object-otient- 
ed database into our design so as to allow ready access 
to large amounts of structured data and to support fea- 
tures such as concurrency and transaction manage- 
ment. 

We acknowledged, however, that many of our pro- 
spective users wished to store rather complicated 
forms of information, and would feel disinclined to 
encode it using the programming notation offered by 
most object-oriented programming languages. Many 
authors ([GN87], for example) have averred that rep- 
resenting complex information using low-level proce- 
dural code results in a loss of clarity which can make 
a system difficult to implement, extend and maintain. 
What we wanted was a mechanism for declarative 
knowledge represenration (in the sense of [GN87]) in 
object-oriented systems. 

In selecting such a means of knowledge representa- 
tion, one of our primary concerns was to minimize the 
distinction which the users of the knowledge base 
would have to make between information encoded as 
native objects and information encoded using the 
knowledge representation mechanism. We wanted our 
users to be able to translate information easily between 
the two forms of representation, so that they could ex- 
periment in achieving the best balance of clarity and 
efficiency. 

2.1 Knowledge Representation and Object- 
Oriented Programming 

When we came to examine previous attempts to inte- 
grate declarativeknowledge representation and object- 
oriented programming,’ we decided that they could be 
broadly categorized either as rule-based programming 
facilities for object-oriented systems, or as combina- 
tions of logic- and object-oriented programming (a 
comprehensive survey of both types of system may be 
found in [S86]). 

Unfortunately, we felt that both of these approaches 
were at odds with our desire for a “seamless” combi- 
nation of object-oriented programming and declarative 
knowledge representation. For example, the control 
flow in a rule-based programming system is quite dif- 
ferent from that in an object-oriented one; whereas 
control is normally passed explicitly in an object-ori- 
ented system by the dispatch of messages, in a rule- 
based environment, control is seized when certain pat- 
terns emerge in a shared “working memory”. And 
whereas objects persistently encapsulate the state of a 
system, the state associated with rules is normally 
bound only transiently and shared globally through the 
working memory. The mechanics of most logic pro- 
gramming languages are even more alien to main- 
stream object-oriented systems-contrast, for 

example, Prolog’s unification-based parameter pass- 
ing and backtracking control flow with the more con- 
ventional mechanisms found in C++ or Smalltalk. 
Such considerations prompted us to look for other 
ways of representing knowledge. 

2.2 KL-One and Term Classification 

The techniques we actually decided to use in the in- 
formation store originated with the KL-One knowl- 
edge-representation system. These techniques- 
described collectively as subsumption or term cfussi- 
frcation-have been studied extensively since the in- 
troduction of KL-One. Summaries of work in this area 
may be found in [M91]. We were particularly im- 
pressed by the natural way in which it appeared that 

1. We havedeliberatelyomitteddiscussionofframe-basedsystems 
because for our purposes, their declarative knowledge-representa- 
tion capabilities do not differ significantly from those of object- 
oriented programming systems. 
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term classification facilities could be amalgamated 
with an object-oriented programming system. 

In fact, the degree of commonality between term 
classification and object-oriented languages has been 
noted by researchers in the field-most notably in [P- 
S90]. In addition, there have been projects in the past 
which have sought to combine term classification with 
object-oriented programming, at least to some degree. 
KL-One itself, for example, made provision for attach- 
ing procedures and data to items of information (see 
[BSSS]). KloneTalk-an implementation of KL-One 
in an early version of Smalltalk-is described in [F80]. 
The “boolean classes” of [MZ86] build a restricted 
form of term classification into object-oriented pro- 
gramming languages. There are also systems like 
Login [A-KN86], which unify term classification and 
other types of programming languages. To our knowl- 
edge, however, there have been no attempts at a com- 
prehensive integration of term classification and 
object-oriented programming on the scale of that de- 
scribed here. 

Our first step in constructing the knowledge base was 
to try and verify our initial suppositions by combining 
the Smalltalk object-oriented programming environ- 
ment with term classification mechanisms. The the re- 
mainder of this report describes the resulting system, 
and we begin our account by detailing some of the 
classification facilities it currently offers. 

3. Term Classification Facilities 
From the user’s point of view, the prime contributions 
of the term classification facilities are special kinds of 
classes called concepts, which describe their instances. 
Unlike conventional Smalltalk classes, whose instanc- 
es are determined explicitly by the programmer when 
those instances are created, the instances of concepts 
can be determined automatically by comparing exist- 
ing objects with the descriptions given by concepts. 
This has two main consequences: 

l Since an object may match the descriptions of 
more than one concept simultaneously, it may 
have more than one class.’ Additionally, because 

1. Multiple class membership (objects with more than one class) 
is a feature of some object-oriented programming systems without 
term subsumption facilities [ S9 11. 

the instance descriptions of concepts may specify 
aspects of an object’s state, a change in the state 
of an object may lead to revision of its set of 
classes. 

l Some of the sub- and superclasses of concepts can 
be determined automatically. This is because the 
system may conclude that a concept cl is a sub- 
class of concept c2 (that c2 subsumes cI in the par- 
lance of term classification) if cl’s instance 
description describes a subset of those objects de- 
scribed by the instance description of ~2. (Note 
that in general, this may entail some form of mul- 
tiple inheritance.) 

Much of the power of term classification mecha- 
nisms in an object-oriented programming system aris- 
es from the way in which they combine with the native 
facilities of the host-in particular, with inheritance, 
method binding and enumeration of instances2 The 
ability to deduce subsumption relationships between 
such classes, allied with conventional object-oriented 
inheritance, allows the system to apply knowledge 
about more general concepts to more specific cases, as 
described in [BSSS]. Also, when the classes of an ob- 
ject change, the effect of sending messages to it may 
alter too, as the method bindings specified by its classes 
are modified. This permits a form of “structured rule- 
based programming” (like that described in [SN86]), 
where a concept’s description represents a rule pattern 
(“matched” when objects are discovered to be instanc- 
es of the concept) and its associated methods act as 
rule bodies (“fired” by ordinary message-sending). In 
addition, term classification canbeused to answerque- 
ties which are posed by defining classes whose in- 
stance descriptions embody them. Enumerating the 
instances of such a class produces all the objects which 
satisfy the query it represents (an example is given in 
[P-SBL841). 

The next two sections outline the central character- 
istics of the term classification facilities (from now on 
normally referred to collectively as “the classifier”)-- 
viz. the definition of concepts and the manipulation of 

2. Accounts such as [A911 show how a term classification system 
can prove very useful in its own right; in this report we have chosen 
to emphasize the synergies which result from the combination of 
term classification and object-oriented programming. 
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their instances. 

3.1 Describing Objects 

Objects appear to the classifier as individuals which 
possess a number of roles. In general, these roles are 
sets containing other objects. (Note that the roles of an 
object are distinct from its instance variables, which 
are normally of no interest to the classifier.) Concepts 
describe their instances by specifying a number of re- 
strictions which their instances’ roles must satisfy. In 
the following, we will show how roles and role restric- 
tions are constructed, how restrictions can be com- 
bined, and how they are used in forming concepts. 

Defining Roles 

TLvo types of role may be associated with an object. 
Primitive roles are sets whose contents are determined 
explicitly by adding or removing elements. The con- 
tents of defined roles, on the other hand, are derived 
implicitly from the contents of other roles of the object. 
This is achieved in general by forming the intersection 
of a set of roles, and then selecting those elements of 
the intersection which are members of given collec- 
tions or instances of given classes. Roles are usually 
given global names, and instances of more than one 
concept may have roles with the same name. 

As an example of role-definition, imagine that in 
modeling some part of a communication network, we 
decide to declare a primitive role Circuits, intended to 
record the connections available to a given element of 
the network.’ We could do this by evaluating the fol- 
lowing expression: 

PrimitiveRole name: #Circuits 
category: ‘Elements-Roles’ * 

Next, assuming that the concept LiveConnection de- 

scribes objects representing viable connections in a 
network, and that the role TrunkConnections holds all 
of the trunk connections of a network element, we can 
declare a defined role which contains all those circuits 

1. The actual definitions of network entities used in this report are 
purely illustrative, and not intended to represent elements of a real- 
istic network model. 

2. The specification of acategory is used to determine how therole 
is displayed by system browsers; we will omit categories in future 
declarations. 

of a network element which are also live trunk con- 
nections: 

DefinedRole name: #LiveTrunkCircuits 
subroleof: Circuits, TrunkConnections 
restrictions: LiveElement 

Role Restrictions 

Theexperimental classifier recognizes role restrictions 
of two sorts: 

l Cardinality restrictions limit the size of an ob- 
ject’s roles. 

l Value restrictions constrain the types of object 
which may occur in the roles of an object. 

Cardinality restrictions restrict the size of a role by 
imposing a lower- and/or an upper-bound on it. For 
example, an object with at least thirty circuits would 
satisfy the restriction: 

Circuits atleast: 30 

One with at most forty circuits would satisfy: 

Circuits atmost: 40 

Value restrictions compel the objects in a role to be 
instances of a given Smalltalk class (or one of its sub- 
classes), instances of a concept (or one of its subclass- 
es), ormembersof aSmalltalkCollection. Forexample, 
assuming that an object has a role State, we might wish 
to have its state described by the tokens #operational 
and #nonoperational: 

State all: (Set 
with: #operational 
with: #nonOperational) 

For the user’s convenience, there is provision for de- 
claring a given Smalltalk collection as an AttributeSet, 

so that it can be referred to by name. For example, we 
might declare: 

AttributeSet name: #OperationalState 
elements: (Set 

with: #operational 
with: #nonoperational) 

-so that the role restriction above could be ex- 
pressed: 

State all: OperationalState 

Alternatively, we might want a rather broader de- 
scription of state which could be any Smalltalk String: 
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State all: String 

We could also specify that all circuits of an object 
are members of the concept LiveElement (or one of its 
subclasses): 

Circuits all: LiveElement 

Compound Role Restrictions 

Role restrictions are combined by conjoining them 
with the ‘,’ (comma) operator. Thus an object with be- 
tween 30 and 40 circuits, all of which were live, would 
satisfy the conjunction: 

(Circuits atleast: 30), 
(Circuits atmost: 40), 
(Circuits all: LiveElement) 

The system provides a simple “macro” facility to 
allow restrictions to be combined conveniently. For 
example, one could define: 

rbetween: land: u = (ratleast: I), (ratmost: u) 

f exactly: n E rbetween: n and: n 

r= e E (fall: (Set with: e)), 
(f exactly: 1) 

f memberOf: c E (rexactly: i), (fall: c) 

Concepts 

A concept is defined by giving a set of classes which 
must be among its superclasses and a set of restrictions 
which its instances must satisfy. By consolidating its 
restrictions with the descriptions of its explicitly-spec- 
ified superclasses, the classifier arrives at a compre- 
hensive description of the concept’s instances which 
can then be used to find other superclasses and sub- 
classes. As with roles, the classifierdistinguishesprim- 
itive and defined concepts. 

Primitive concepts give a description of their in- 
stances which is accurate but not necessarily exhaus- 
tive. That is to say that while every instance of a 
primitive concept must satisfy its description, not eve- 
ry object which satisfies its description is necessarily 
one of its instances. One implication of this is that while 
the system can automatically determine the superclass- 
es of a primitive concept, it must be told explicitly if 
a concept is to be a subclass of a primitive concept. 
Another implication is that the system must also be 
expressly informed if a primitive concept is to be one 

of the classes of an object or a superclass of one of 
those classes.’ In our system, primitive concepts may 
define instance-variables for their instances, just like 
Smalltalk classes. As an example, a declaration of the 
primitive concept NetworkElement is given below; it 
is a subclass of Object, and each of its instances has a 
single Integer Identifier, a single State which is amem- 
berof OperationalState, and a private instance variable 
named “comment”: 

PrimitiveConcept name: #NetworkElement 
subclassOf: Object 
restrictions: (Identifier memberof: Integer), 

(State memberof: OperationalState) 
instanceVariableNames: ‘comment’ 

In contrast to primitive concepts, the descriptions of 
defined concepts describe their instances precisely; 
every instance of a defined concept must satisfy its 
description, and every object which satisfies its de- 
scription is an instance of it. This means that the system 
is able to deduce both the sub- and superclasses of a 
defined concept, and is able to conclude that a given 
object is one of its instances without being told so ex- 
pressly. The experimental classifier does not permit a 
defined concept to declare any additional variables for 
its instances; all must be inherited from its superclass- 
es.2 The concept LiveElement referred to above might 
be defined simply as a subclass of NetworkElement, 

all of whose instances have a State which is #opera- 

tional: 

DefinedConcept name: #LiveElement 
subclassOf: NetworkElement 
restrictions: (State = #operational) 

3.2 Using Objects with the Classifier 

Next, we examine how the classification system may 
be used to create objects and monitor changes in their 
state. 

Creating Objects 

Instances of concepts are created-just like instances 

1. Henceforth, we abbreviate “superclass of a class of an object” 
to “superclass of an object”. 

2. In conjunction with the restrictions on class changes described 
below, this stricture obviates the need to restructure an object each 
time its set of classes is altered. 
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of any other Smalltalk class-by sending a message 
(generally new) to the concept in questi0n.l Compli- 
cations arise from the dependence of anobject’s classes 
on its state. For example, it is possible that some over- 
sight by the programmer might lead to objects newly 
created by the defined concept LiveElement declared 
above having a State which was not equal to #opera- 

tional and thus did not satisfy the instance description 
of the concept. This might lead to class LiveElement 

somewhat paradoxically producing new objects which 
were not legally its instances. At the moment, the de- 
fault implementation of the message new in concepts 
takes steps to detect such anomalies by sending the 
message initialize to newly created objects (the method 
for initialize is supplied by the creator of the concept), 
and then finding their classes on the basis of their re- 
sulting state. Should the concept not be amongst the 
classes of a new object after this initial classification, 
an exception is raised. 

Changing the Classes of an Object 

Once an instance of a concept has been created, there 
are constraints on the way in which its set of classes 
may change throughout its life. Recall from the dis- 
cussion in the previous section that the description 
which a primitive concept gives for its instances is not 
complete. We noted that this implied that the classifier 
had to be told explicitly if a primitive concept was to 
be one of the classes (or superclasses) of an object. In 
the actual system, there is no way of explicitly chang- 
ing the classes of an object once created-all class 
changes must occur as a side-effect of changes in the 
object’s state. Thus a primitive concept can only be 
made a (super-)class of an object by creating the object 
as an instance of it (or one of its subclasses) in the first 
place. 

The classification system also enforces the obverse 
of this restriction: once a primitive concept has been 
made a class or superclass of an object, it must remain 
amongst that object’s classes or superclasses through- 
out its lifetime. If the object changes so that it no longer 
satisfies the instance description of the primitive con- 
cept, the system raises an exception. This allows the 

1. Recall that as their state changes, objects may later be found to 
be instances of classes other than their creator. 

restrictions in the description of a primitive concept to 
be used as integrity constraints for its instances. If, for 
example, an instance of the primitive concept Networ- 

kElement defined in the previous section were to try 
to record a State which was not an element of Opera- 

tionalstate, then it would cease satisfying the restric- 
tions imposed by that concept’s description. Since the 
system cannot remove NetworkElement from the ob- 
ject’s classes, it raises an exception instead, indicating 
a violation of the constraint. The classifier can be used 
in this way as a form of run-time type system for ob- 
jects, as described in [BSSS]. 

Modifying Objects 

As far as the classifier is concerned, all modifications 
of objects occur as a result of altering the contents of 
roles (changes to instance variables go unnoticed). 
Roles implement the protocol of Smalltalk’s abstract 
class Collection, so their contents may be altered using 
standard messages, such as add: or remove:. A role is 
retrieved simply by sending its owner a message con- 
sisting of its name with the initial letter in lower case 
(thus: aNetworkElement state). Classification of an 
object (that is, adjusting its classes to reflect its current 
state) is invoked explicitly by sending it the message 
classify. This permits complex role modifications to 
take place without incurring the overhead of classifi- 
cation at each step, and also allows an object to tem- 
porarily violate integrity constraints between 
ciassifications. 

The system automatically maintains the relation- 
ships between an object’s primitive and defined roles 
determined by their definitions. For example, recall the 
definition of the defined role LiveTrunkCircuits: 

DefinedRole name: #LiveTrunkCircuits 
subroleOf: Circuits, TrunkConnections 
restrictions: LiveElement 

Executing the statement “anExchange IiveTrunkCir- 

cuits add: acircuit”, the system will first verify that the 
element added to the role (acircuit) is actually live (i.e. 
that its LiveElement is one of its classes or superclass- 
es)---if not, an exception will be raised. The element 
is then added to role LiveTrunkCircuits, and since the 
latter is defined as the intersection of Circuits and 
TrunkConnections, the element is added to these roles 
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too. Conversely, if a LiveElement is removed from Cir- 

cuits or TrunkConnections, the system ensures that it 
is also removed from LiveTrunkCircuits. 

Automatic Classification 

It is possible foranobject to be classified automatically 
by the system, as a result of the classification of ele- 
ments of its roles. To see how this might come about, 
consider the following definitions, which supplement 
the declarations of NetworkElement, Circuits and 
LiveCircuits given above: 

DefinedConcept name: #DeadElement 
subclassOf: NetworkElement 
restrictions: (State = #nonoperational) 

DefinedRole name: #DeadCircuits 
subclassOf: Circuits 
restrictions: DeadElement 

PrimitiveConcept name: #Exchange 
subclassOf: NetworkElement 
restrictions: (Circuits all: NetworkElement) 
instanceVariableNames: “ 

DefinedConcept name: #OperationalExchange 
subclassOf: Exchange 
restrictions: (Circuits all: LiveElement) 

DefinedConcept 
name: #PattiallyOperationalExchange 
subclassOf: Exchange 
restrictions: (DeadCircuits atleast: 1) 

These declarations introduce the concept of an Ex- 

change (anobject with Circuits which are NetworkEle- 

ments), with subclasses OperationalExchange (all of 
whose Circuits are in an operational state) and Partial- 

IyOperationalExchange (with at least one non-opera- 
tional circuit). 

Imagine the situation depicted in figure 1. Here we 
have an OperationalExchange object with one cir- 
cuit-a LiveElement whose State is #operational. Now 
change the State of the LiveElement to #nonOpera- 

tional and reclassify. This changes the class of the el- 
ement to DeadElement. At this point, the system 
observes that the exchange object no longer qualifies 
as an OperationalExchange; on the contrary, it is now 
a PartiallyOperationalExchange. The system alters its 
class accordingly, with the result illustrated in figure 2. 

Since the change in the class of the exchange is car- 
ried out at the instigation of the system, and not of the 
programmer, the object is notified of its re-classifica- 
tion. At present, this involves sending it the message 
classifiedDueTo: after re-classification, the single pa- 
rameter being the element whose modification caused 
the reclassification. By supplying suitable methods 
for this message in concepts, a form of “data-driven” 
or “forward-chaining” inference [MS81 can be imple- 
mented, with the consequences of modifications to ob- 
jects being propagated through the system 
automatically. 

4. Implementation 
This section briefly sketches the implementation of our 

Figure I : Initial Configuration 
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Figure 2: After Re-classification 

experimental classifier by looking at the process of 
constructing and using concepts and their instances. 
This process can be divided roughly into five phases. 
In the first phase, entities such as roles, attribute sets 
and concepts are defined. During the second phase, 
these entities are classified to create hierarchies reflect- 
ing relationships between them-the most important 
of these is the hierarchy of concepts, which encodes 
subsumption relationships in the form of sub- and su- 
perclass references. Next, the concept hierarchy is ex- 
tended by adding extra information to improve run- 
time performance. Inheritance information is then 
computed. Finally, in the “run-time phase”, instances 
of concepts may be instantiated and modified. We will 
expand on each of these phases in turn below. (In most 
of the phases, concepts, roles and attribute sets are all 
subject to very similar processes; for convenience’s 
sake we will often use the term “concept” to stand for 
all three types of entity.) 

Definition 

The mechanics of this phase am fairly straightforward. 
Since, as we declared at the outset, we wanted to inte- 
grate the classification system as closely as possible 
with Smalltalk, we took great pains to express the def- 
initions of roles, concepts, etc. in standard Smalltalk 
syntax, avoiding any specialized extensions. Thus- 
as is the case with conventional Smalltalk classes- 
defining them is merely a matter of dispatching the 

appropriate messages. Even the restrictions used in the 
instance descriptions of concepts are produced by or- 
dinary message sends.’ 

Classification 

The next phase of the construction process involves 
classifying the definitions supplied by the user. Before 
this can take place, the definitions must be reduced to 
a canonical format or normal form. Such reduction is 
fairly standard in classification systems (an example 
is described in [PSKQ89]). Classification involves tak- 
ing the normal form expression of a concept and com- 
paring it with the normal forms of concepts already 
defined to determine all of its sub- and superclasses. 
Lack of space forbids a full description of the algo- 
rithms we use for classifying concepts-in any case, 
they are for the most part standard, and combine 
(amongst others) ideas from [M83], [PSKQ89], [N90] 
and [W91]. 

The classification algorithms are fairly efficient, typ- 
ically examining only a small proportion the concepts 
in the system, and testing for subsumption with even 
fewer. This means that they can be used at run-time, 
for example, to conduct queries in the manner de- 
scribed in section 3. They are not, however, sufficiently 

1. The ability to producerestrictions in this way allows the macros 
illustrated in section 3 to be implemented simply as methods in the 
appropriate classes. 
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fast that they can be used directly to manage the clas- 
sification of objects (as has also been observed in 
[M88]). To do the latter efficiently, we first need to 
supplement the hierarchy of concepts with additional 
information, described next. 

Augmenting the Concept Hierarchy 

The processing in this phase attempts to eliminate two 
sources of run-time inefficiency: 

l The need to compute the method-bindings of ob- 
jects with changing classes. 

l Searching for the new classes of objects during 
classification. 

The strategy we use (which is fore-shadowed in 
[WSl]) involves computing the conjunctions of pro- 
grammer-defined concepts and then adding them to the 
hierarchy. The conjunction of a set of concepts is sim- 
ply a defined concept which specializes all of the con- 
cepts in the set, without imposing any additional 
restrictions of its own. Essentially, the conjunctions 
added to the concept hierarchy represent the possible 
sets of classes which instances of concepts might pos- 
sess. Thus at run-time, all of an object’s classes may 
be represented by a single concept. By computing in- 
heritance information for conjunctions, we eliminate 
the need to determine the method-bindings for objects 
at run-time. And adding the conjunctions to the hier- 
archy also means that once we know that an object is 
an instance of a given class, all of its other classes may 
be found simply by examining the subclasses of that 
class.’ 

Of course in theory, adding all possible conjunctions 
to the concept hierarchy may increase its size expo- 
nentially. In practice, however, the degree of expansion 
is considerably limited a number of factors, most of 
which ensue from the restrictions on the changes in 
objects’ classes described in section 3.2: 

a No concept needs to be conjoined with one of its 
sub- or superclasses.2 

1. For we know that if object o is an instance of class C (which we 
write “o E C”), then for all other classes D, if o E D, then by def- 
inition, o E CAD, whereChD represents the conjunctionof classes 
C and D. However, by definition, we also know thatCAD must be 
a subclass of C. 

2. Since if for all objects o, o E C j o E D, then for all objects o, 
OE CADooE c. 

l Let the primitive set of a concept C be the com- 
prising C’s primitive superclasses and C itself, 
should it be primitive. It is not difficult to show 
that each conjunction formed must have a primi- 
tive set equal to that of at least one of its compo- 
nents.3 

l All incoherent conjunctions which cannot logical- 
ly describe any real object (such as the conjunc- 
tion of LiveElement and DeadElement as they are 
defined above) can be rejected. 

Computing Inheritance Information 

Once the concept hierarchy has been expanded as de- 
scribed above, computing the information (instance 
variables and method bindings) inherited by concepts 
follows much the same lines as are followed in many 
other object-oriented programming environments with 
multiple inheritance, such as Trellis/OWL [SCB- 
KW86], Extended Smalltalk [BI82] or CLOS [K89]. 
Some of these environments resolve possible inherit- 
ance conflicts using heuristics based upon the order in 
which the programmer declares the superclasses of 
classes. Unfortunately, the classifier computes the su- 
perclasses of a concept automatically, largely depriv- 
ing the programmer of the opportunity to supply this 
sort of information. One response to this might be to 
adopt the approach employed in Extended Smalltalk 
and Trellis/OWL, which requires the user to resolve 
all possible inheritance conflicts. Prior experience with 
Extended Smalltalk gave us to believe that this would 
be unduly burdensome for our users. Therefore, the 
current version of the classifier uses Touretzky’s infer- 
ential distance heuristic [T86] for conflict resolution.4 
Since this does not resolve aII inheritance conflicts, 
any which remain are signalled to the user using the 
system browser, as in Extended Smalltalk. 

We have made no attempt to address other issues, 

3. Otherwise, it would be impossible for an object whose classes 
are described by any of the components to adopt the classes rep- 
resented by the conjunction itself. This circumscription prohibits, 
for example, the conjunction of two or more primitive concepts. 

4. Roughly paraphrased, Touretzky’s heuristic states that if a class 
C might inherit conflicting attributes from superclasses A and B, 
and A is a subclass of B, then the attribute specified by A should 
be chosen for C. We believe that a similar heuristic was used to 
resolve conflicts in amultiple-inheritance system for Smalltalk- 
produced at Tektronix. 
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such as the aliasing effects which result from the 
“graph-based” implementation of multiple inheritance 
we chose to use (see [Sn91] for more details). Only 
experience with realistic applications will indicate 
whether our inheritance mechanisms are suitable, and 
we have deliberately made them “pluggable” so that 
they can be conveniently replaced if necessary. 

Run-Time 

The main activity of the classifier at run time is clas- 
sifying the instances of concepts, adjusting the classes 
of such objects in the light of modifications of their 
roles (the addition, removal or classification of ele- 
ments). As we pointed out above, adding conjunctions 
to the concept hierarchy means that all possible com- 
binations of object classes are represented by single 
concepts. Therefore, though an object may appear to 
the user to have more than one class, the implementa- 
tion represents them all with a single concept (so that 
for the rest of this section, we refer to the “class”, rather 
than “classes”, of an object). In fact by the definition 
of conjunctions, it is easy to show that run-time clas- 
sification of an object amounts to searching the (ex- 
panded) concept hierarchy for the most specific 
concept whose description the object matches. The de- 
tails of this search are described below (see figure 3 
for an illustration). 

The classifier attempts to speed the search for the 
new class of an object by relying on the “locality” of 
classification-the supposition that the object’s new 
class is fairly closely related to its old one. It exploits 
this supposed behaviour by associating a derivation 
path with each object. This is a path through the hier- 
archy, proceeding from more general to more specific 
concepts, which records the concepts examined in lo- 
cating the most recent class of an object. By arranging 
to begin the derivation path of an object at an appro- 
priate point (normally the most specific primitive su- 
perclass of the concept that created it), one may be 
guaranteed that when the classification of an object is 
invoked, it should always be possible to find a concept 
that still describes it simply by tracing backwards along 
its derivation path. We call the first such concept found 
the pivot concept. If no pivot concept can be found on 
the path, then a violation of the object’s primitive an- 
cestors’ integrity constraints is signalled. To speed up 
the search, we use an intelligent backtracking algo- 
rithm like that outlined in [MSS]-by examining 
which particular roles of an object have been modified, 
the algorithm can often “skip” several concepts along 
the derivation path, eliminating a number of possibly 
expensive tests. 

Once we have found the pivot concept, the argument 
advanced in the section above means that the new con- 
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cept can be isolated simply by examination of its sub- 
classes. This may be carried out by a simple depth-first 
(backtrack-free) descent of the concept hierarchy. As 
the search progresses, the concepts traversed are ap- 
pended to the object’s derivation path. The concept 
found at the end of this search describes the current set 
of classes for the object. (Again, in order to respect the 
restriction on changes of primitive ancestors, the 
search ignores primitive concepts and their subclass- 
es.) 

5. Conclusions 
We have described a modest extension to Smalltalk 
which we believe may be useful in expressing at least 
some kinds of complex information in a reasonably 
clear and readily-apprehended manner. Our approach 
to constructing this system has been to take ideas from 
the field of subsumption- and inheritance-based rea- 
soning, integrating carefully them with the Smalltalk 
system. We felt that this approach would afford par- 
ticular flexibility in balancing the relative efficiency of 
conventional object-oriented programming against the 
conceptual clarity offered by knowledge representa- 
tion facilities. 

Our investigations are very much on-going; users 
intend soon to begin applying the system to more am- 
bitious problems in the telecommunications domain, 
and we expect the system to change (possibly signifi- 
cantly) to accommodate their demands. There are a 
number of areas in which further development looks 
especially appealing: 

The implementation of more comprehensive gen- 
eral term classification facilities. These might in- 
clude those found in existing systems like Classic, 
or Loom,’ or less “traditional” capabilities such as 
are suggested by [DP91]. 

The implementation of “specialized reasoning 
modules”, like those described in [LD90] or 
[MB87]. 

Further examination (not touched directly in this 
report) of the completeness of the classifier used 

1. In particular, the ability to “partially describe” an object 
[BBMR89] (specifying the cardinality of a role, for example, with- 
out specifying its elements) should prove useful. 

in the system-our current classifier, while sound, 
does not discover all the subsumption relation- 
ships which might be implied by a Tarksi-style 
model of concepts (see [N90] for a full discus- 
sion). 

l Embellishments to the system’s user interface; at 
present, the interface to the classifier consists 
largely of standard Smalltalk tools, with a few mi- 
nor extensions for displaying concept hierarchies. 

Initial experience (mainly, it must be said, in fairly 
small applications) tends to suggest that on the whole, 
the classification system substantiates many of our in- 
itial hopes. This, and the fact that researchers (in [S91], 
[C91], and [W86], for instance) have previously ex- 
pressed the need for facilities in object-oriented envi- 
ronments which the classifier offers (at least to some 
degree), confirms our belief that classification systems 
like that described here might make a contribution to 
the development of object-oriented programming. 
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