
A Forxnalism for Real-Time

Concurrent Object-Oriented Computing

Ichiro Satoh Mario Tokoro *
satoh&nt.cs.keio.ac.jp rnario@mt.cs.keio.ac.jp

Department of Computer Science, Keio University

3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Tel:+81-45-560-1150

Abstract

We investigate a formal model for reasoning

about real-time object-oriented computations. The

model is an extension of CCS with the notion of

time, called RtCCS(Real-time Calculus of Commu-
nication Systems). It can naturally model real-time

concurrent objects as communicating processes and
represent the timed properties of objects. We de-

fine two timed equivalences based on CCS’s bisimu-

lation and derive algebraic laws for reasoning about

real-time processes. The equivalences provide a for-

mal framework for analyzing the behavior and tim-

ing of real-time computations. Also, we define a

sound and complete equational proof system for fi-

nite processes. Some examples in RtCCS are shown
in order to demonstrate its usefulness.

1 Introduction

Real-time systems are increasingly being used in

various areas such as factory automation, robotics,

and multi-media systems. These systems have to

interact and cooperate with many external ele-

*Also with Sony Computer Science Laboratory Inc. 3-
14-13 Higashi-Gotanda, Shinagawa-ku, Tokyo, 141, Japan.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1992 ACM 0-89791-539-9/92/0010/0315...$1.50

Fax:+Sl-45-560-1151

ments which run in parallel, such as other com-

puters, sensors, and actuators. The notion of con-

current object-oriented computing [24] is consid-

ered as a powerful method to design and to develop

such real-time systems. This is because concurrent

object-oriented systems consist of objects which are

logically self-contained active entities that cooper-

ate with each other. Concurrent objects can natu-

rally model such active elements directly. Recently,

some real-time systems and languages use this con-

cept as their basis [9, 211.

Real-time systems have certain time constraints

which must be satisfied. The correctness of a real-

time system depends not only on the logical results

of computation, but also on the time at which the

results are produced. Therefore, the construction

and debugging of real-time programs is far more

complex and difficult than those of ordinary con-

current programs. We need the support of formal

verification methods for reasoning about real-time

programs. In the past few years several researchers

have proposed such methods based on timed Petri

nets, first order logics, and temporal logics. How-

ever, these frameworks are not always fit for con-

current object-oriented computing. The goal of

this paper is to investigate a formal model to reason

about real-time object-oriented computations.

Various formal models for concurrent object-

oriented computation have previously been de-

vised, Among these, process calculus [2, 11, 131 is

a well-defined theory that can model naturally and

easily concurrent objects as communicating pro-

OOPSLA’92, pp. 315-326

315

http://crossmark.crossref.org/dialog/?doi=10.1145%2F141936.141963&domain=pdf&date_stamp=1992-10-31

cesses which may change their states when com-

municating with another agent. Also, process cal-

culi have equivalence relations over processes which

provide theoretical frameworks for analyzing the

behavior of objects and for substituting objects.

In this paper we develop a process calculus which

permits expressing and analyzing time constraints

in real-time object-oriented computations. To do

this, we extend an existing process calculus with

the notion of time and introduce a timed process

calculus called RtCCS(Real-time Culculus of Com-
munication Systems). It is an extension of Milner’s

CCS [ll] with a minimal set of notions for time: a

tick action and a timeout operator. The execu-

tion of tick actions corresponds to the passage of

time; the timeout operator represents a behavior

dependent on the passage of time. Furthermore,

we develop theoretical equivalences over processes

with time properties. In RtCCS, time independent

properties of processes can be treated as usual CCS

while the time dependent properties can be treated

with the timed extensions. In order to demonstrate

its effectiveness in a simpler form, our timed ex-

tension is developed for CCS. However, the same

extension can be naturally adopted into x-calculus

[13] which has more powerful mechanisms for mod-

eling object-oriented computing.

In the next section, we discuss some of the re-

lated works. In Section 3, we define the syntax and

the operational semantics of RtCCS. Section 4 de-

fines two equivalence relations called timed strong

equivalence and timed observation equivalence re-

spectively, and studies their basic properties. In

Section 5, we present some examples that demon-

strate the usefulness of RtCCS. The final section

contains some concluding remarks. In Appendix

A, we define an equational proof system based on

timed strong equivalence.

2 Related Research

Recently, many theoretical models for concurrent

object-oriented computations have been explored

in process calculi, such as CCS [ll], n-calculus [13],

and ACP [2]. In the process calculus paradigm,

objects can be viewed as processes, interactions

among objects can be seen as communications, and

encapsulation can be modeled by the restriction

of visible communications. In [8] a formal system

based on the notion of actor-like object with asyn-

chronous communication was investigated, and in

[17] an executable notation for specifying concur-

rent object-oriented languages in a process calculus

was explored. In [18] some requirements for a cal-

culus suitable for concurrent objects is presented.

In [15] the author presents a language based on a

process calculus and analyzes the essential features

of object-based concurrency. In [22] a semantics

for POOL [l] is defined by the translation of the

language constructs into n-calculus [13].

Many theoretical models for real-time computa-

tions have been explored in temporal logic, timed

Petri nets, and denotational semantics frameworks

based on linear history semantics. More recently,

several studies developed temporal models based

on process calculi such as CCS, ACP, and CSP

[6, 5, 10, 16, 14, 231.

Milner’s SCCS [lo] is a calculus for synchronous

processes based on the idea that each atomic ac-

tion takes one unit of time. The concurrent agents

of SCCS essentially proceed in lockstep and at ev-

ery instant perform a single action; there is also

an asynchronous operator. Since each object in

an object-oriented computation proceeds at inde-

terminate relative speeds, SCCS does not fit our

purposes.

TPA [6], timed CCS [23], and Temporal CCS

[14] introduce delay operators into CCS. The delay

operators represent the suspension of execution for

a specified time, similarly to the delay command

in Ada. In TPA and timed CCS, like in RtCCS,

there are two assumptions: time advances only

when communications are not possible and that ac-

tions are instantaneous. Once an action is enabled,

it cannot be disabled. Therefore, they cannot ex-

press timeout behavior. On the other hand, Tem-

poral CCS can represent timeout behavior but has

no equivalent relation over processes based on ob-

servation of their behaviors. PTCCS [5] and ATP

[16], like ours, have a timeout operator. PTCCS is

316

an extension of CCS with discrete time and prob-

ability. PTCCS is similar to our RtCCS. However,

unlike ours, time stops inside the timeout opera-

tor of PTCCS. Therefore, the timeout operator of

PTCCS cannot apply to a process with timed prop-

erties, and PTCCS cannot describe a timeout ex-

ception for such a process. The timeout operator

of ATP is similar to ours. However, ATP has no

notion of observation equivalence because ATP has

no T action, since it is not based on CCS.

3 RtCCS

In this section, we present the basic idea of RtCCS

and provide its formal definition.

3.1 Time Extensions

We assume a conceptual global clock: time passes

as the global clock performs tick actions. The tick

action is a synchronous broadcast message over all

processes. It is described as J. The advance of time

can be represented as a sequence of tick actions and

is viewed as discrete time. Also, we assume that

all communications and internal actions take no

time, and that complementary actions and inter-

nal actions are performed as soon as they become

possible. Therefore, a process having a communi-

cation action ready must wait until other process

becomes ready to communicate with it. Once both

the partners of a communication are ready, they

must perform the communication actions immedi-

ately, before the next tick J.

As mentioned previously, many real-time pro-

gramming languages have timed operations such as

delay and timeout. In order to be used as a frame-

work for formal semantics of languages, RtCCS

needs to represent behaviors dependent on the ad-

vancing of time. We introduce a special binary op-

erator: (,)t, called a timeout operator. As shown

in Figure 1, (P,Q)t d enotes a process that after

t time units becomes Q, unless P performs any

actions prior to that. Intuitively (P, Q)t behaves

as process P if P can execute an initial transition

within t units of time, whereas (P,Q)t behaves as

process Q if P does not perform any action within

t units of time. That is to say, P and Q correspond

to ordinary and timeout processes respectively, in

practical programming.

if t>l

(P”, Q)t-1

if t=l

P’ Q

Figure 1: The behavior of the timeout operator

3.2 The RtCCS Language

In this subsection, we present the syntax and the

operational semantics of RtCCS.

3.2.1 Notation and Syntax of RtCCS

We presuppose that A is a set of communication

action names and 2 the set of co-names. Let a&,. . .

range over A and X,6,. . . over 2. An action 7i is

the complementary action of a, and Z E a. Let

T denote an internal action, and J a tick action.

Finally let Act E du3iu{r} ranged over by cr,p,. . .,

and Act7 E Act U {J} ranged over by p, v,. . . .

Definition 1 The set I of RtCCS expressions

ranged over by E, El, EZ, F,. . . is defined recur-

sively by the following abstract syntax.

E ..- ..- 0 (Deadlock Process)
X (Process Variable)

CX.E (Action Prefix)

El t E2 (Summation)

EllEz

-WI

CcpRmf~iElonpi
ea em

E\L (Restriction)
recX : E (Recursion)

(El, Ez)t (Timeout)

317

where t is a natural number, f E Act + Act and

L G Act. We assume that f(r) = 7, f(\/) = J, and

that X is always guarded r [ll].

We denote the set of closed expressions by P(c

E), ranged over P, Q, I

The syntax of RtCCS is essentially the same as

that of CCS, except for the newly introduced tick

action J and timeout operator. Intuitively, the

meaning of process constructions are as follows:

0 represents a deadlocked or terminated process;

a.E performs an action (Y and then behaves like E;
El + Ez is the process which may behave as El or

Ez; El IE2 represents processes El and E2 execut-

ing concurrently; E[f] behaves like E but with the

actions relabeled by function f; E \ L behaves like

E but with actions in L U z prohibited; recX : E
binds the free occurrences of X in E but we shall

often use the more readable notation X dgf E in-

stead.

3.2.2 Operational Semantics of RtCCS

RtCCS is a labeled transition system (E, AC&~,

P+ I P E Acb I > w h ere -5 is a transition re-

lation (AC & x E). The transition relation -5 is

defined by structural induction and is the smallest

relation given by the rules in Figure 2.

The -+ relation does not distinguish between

observable and unobservable actions. In order to

reflect that r is not visible, we define two transition

relations due to the unobservability of 7.

Definition 2

(i) P -141 Q d&f P(L)* -% (&)*Q

(ii) P s Q dgf P(Z)* -5 (&)*Q if p # T

and otherwise P(A)*Q. I

Also, we define an operation to denote a process

capable of infinite internal computation.

Definition 3 E r if 3E’: E(-L)“‘E’ I

‘X is guarded in E if each occurrence of X is only within
some subexpressions cr.E’ in E; c.f. unguarded expressions,
e.g. recX: X or recX : X+ E.

ACT0 :

ACT1 :

ACT2 :

SUM0 :

SUMI :

SUM2 :

COMo :

COMl :

COM2 :

COM3 :

RESo :

RESl :

REL :

REC :

TIME0 :

TIME1 :

TIME2 :

-

a.E s E

a.E -‘+ a.E

0 -2 0

E a E’
E $ F -% E’

F.&F’
E-j-F %F’

E -5 E’, F -5 F’

E+F -f+E’tF’

E 5 E’
EIF z E’IF

F Q F’
EIF I< EIF’

E -% E’ F --% F’
EIF & E’IF’ -

E -J, E’, F * F’, E F

EIF L E’IF’

E -“-, E’, a,& 4 L
E\LaE’\L

E -1J-, E’
E\L-5Et\L

E --% E’

E[f] 9 E’[f]

E{recX : E/X} -f+ E’

recX : E/X 2 E’

E 5 E’ , t > 0
(E, F)t 5 E’

E -c E’ , t > 0

(E, F>t A (E’, %I

F -‘+ F’

(E, F)r, -% F’

Figure 2: Inference Rules of RtCCS

318

Example 1 Here we give some simple examples of

RtCCS expressions.

(1) u.(~.P,O)~ After performing an input action

a, it behaves as P if an output action b is exe-

cuted within t units of time, otherwise termi-

nates.

(2) u.(O,~J.P)~ After performing a, it is idle for t

time units and then behaves as &.P.

(3) u.((O,b.O)~~P) After performing a, it be-

haves as P but 6 becomes available after d
time units. Note that (0, b.O)dl P represents

a process which behaves as P and sends 6 as

an asynchronous output communication with

transmission delay d time units.

Remarks

1. The fundamental aspects of concurrent object-

oriented computing are modeled as the primi-

tive constructions of RtCCS as follows:

l Objects as processes.

l Concurrency among objects as parallel

composition.

l Message passing as communication be-

tween processes.

a Encapsulation in objects as restriction

and relabeling.

Also, we capture the fundamental aspects of

real-time computing delayed processing and

timeout handling, through the timeout opera-

tor of RtCCS.

2. An external action cannot be performed before

its partner action in another process is ready

to communicate. While a process having an

external action is waiting for its partner ac-

tion, it must perform J actions. If a process

has an executable communication (including

r), it must perform the communication imme-

diately, instead of idling.

4 , Timed Bisimilarity

In this section we present two equivalences over

processes, which are extensions of CCS’s bisimu-

lation with the notion of time. The equivalences

provide a formal framework for analyzing the be-

havior and timing of real-time object-oriented com-

putations.

4.1 Timed Strong Equivalence

Definition 4 A binary relation S 2 P x P is a

timed strong bisimulation if (P, Q) E S implies, for

all p E A&,

(i) VP’: P z P’ 1 ZIQ’: Q 2 Q’ A (P’,Q’) E S.

(ii) VQ’: Q -% Q’ > 3 P’: P -% P’ A (P’, Q’) E S.

We let “w+’ denote the largest timed strong bisim-

ulation, and call P and Q timed strongly equivalent
if P ~7 Q. I

Intuitively, if P and Q are timed strongly equiva-

lent, they seem indistinguishable from one another

in behavior and timing. We show some algebraic

properties of the equivalence:

Proposition 1

l.PtQ--/QtP
2. Pt(QtR)N7(PtQ)t~
3. PtP-TP

4. P+OyP

Proposition 2

1. PIQ -7 QIP
2. PICQIW NT (PIQP
3. P(0 NT P

4. (PtQ)\LNd'\UQ\L

5* (o*‘) \ L N7 1 z P \ L
ifcrcLUL
otherwise

6. P t Q)Vl NT- &I + QVI
7. wwl +T fWJv1

Proposition 3

1. (a.P,aP)t N?- cu.P

319

2. (cr.& (a.& Q>t>s “7 W, Qh+t
3. (p.P + Q,R)t -7 TJ t Q (t > 0)
4. (f’,Q>t \ L ~7 (f’ \ L,Q \ L>t
5. (P, QWI NT Wl, Q[fl>t
6. (P, Q t R)t -7 (f’v Q>t + (P, R>t
7. (P + Q, R>t ~7 (P, R>t + (9, R>t

8.

Proof. All the laws may be proved by exhibiting

appropriate timed strong bisimulations. The hard-

est is (8) of Proposition 3 in the case of (s < t)
which we prove as follows:

We need to show that S is a timed

strong bisimulation, where { (((PI, J’z)~, f’dt,

(pl,(p2,~3)1-8)s) 10 < s < t, pl, p2, p3 E p}.

So let ((P~,P2)s,P3), -% Qr; it is enough to

find Q2 such that (PI, (P2, P3)t-s)s -2 Q2 and

(Qr,Q2) E S. There are two cases:

Case 1 p E Act and PI -% P;. By TIMEo,

Qr E PI, and Q2 E Pi, and we know Qr = Q2.

Case 2 p = J.

Case 2.1 s = 0. We assume that P2 -L Pi.
By TIME2, Qr 3 (P&P3),-1 and Q2 G

(Pi, P&-I, hence QI = Q2.

Case 2.2 s > 0. We assume that Pl-f+Pi.

BY TIM&, QI - ((P;,P2)s-l,P3)t-l,

and Q2 E (Pi, (p2, P3)t-s)s--1, and

clearly (QI,Qz.) E S.

By a symmetric argument, we complete the proof.

I

RtCCS, like CCS, is based on the concept of in-

terleaving and can reduce concurrent processes to

sequential processes in terms of nondeterminism,

for example, a.O]/?.O ~7 a./?.0 + p.ci.0.

Corollary 1 The Expansion Laws

1. Let P 5 CiCI oi.Pi and Q E CjeJ pj.Qj ;

PIQ ~7 I&I Q~WIQ) + &J PjV’lQj)
+ Cai=~, r*(P;IQj)

2. Let P E (CieI ai.Pi, P’)l and Q E CjeJ@j.Qj ;

PIQ ~7 (Cic~ w*(EIQ) + CjEJ Pj*(PIQj)
t Cai=pl T.(P;IQj), P’IQ)l

3. Let P E (CieICri.PijP’)l and Q E

(cje, Pj.Qjy Q’)l ;

PIQ ~7 (Cic~ ai*(PilQ) + CjEJ Pj*(PIQj)
+ IL,+, r*(P;IQj) 7 P’IQ’h

From the laws in Proposition 1, 2, 3, and Corol-

lary 1, we can develop an equational proof system

based on timed strong equivalence. The system is

given in appendix A.

Proposition 4 (Congruence)

Timed strong equivalence ~7 is preserved by all

operators.

Proof. We show a proof only for the timeout oper-

ator; the proofs for the other operations are sim-

ilar to the proofs of [ll]. We will prove that

(Pl,Q)t Y- (&,Q)t where Pl,hQ E P and
Pl N7 p2. It is enough to show that S =

{((hQ)t,(P2,Q)t) : PI ~7 P2, t 2 0) is a timed

strong bisimulation. We assume (PI, Q)t A R.
There are two cases:

Case 1 p E Act and PI -!f+ Pi. Then be-

cause PI “7 P2, we have 3P.j : P2 -p+ P.j
with Pi -7 Pi. Hence (PI, Q)t -5 Pi,
(P2,Q)r -5 Pi, and clearly Pi ~7 Pi.

Case 2 p = J.

Case 2.1 t = 0. Obvious.

Case 2.2 t > 0, PI -5 Pi, and (Pl,Q), -%

(Pi, Q>t-1. Then because PI ~7 P2,

we have 3Pi : Pz -5 Pi with Pi ~7

Pi. Hence (P2,Q)t -2 (Pi,Q)t-1 and

((P:,Q)t-I, (Pi, Q>H) E S.

By a symmetric argument, we complete the proof.

The proof for the other case of the timeout oper-

ator, i.e. (Q, PI>, ~7 (Q,P2)t where PI y- P2, is

similar. I

By this proposition we guarantee that if two ob-

jects are timed strongly equivalent, the objects are

substitutable for each other.

320

4.2 Timed Observation Equivalence

The timed strong equivalence has several useful al-

gebraic properties but gives no special status to

the internal action r which indeed should not be

observed. We present a weaker equivalence which

reflects the observation of behaviors and timing in

the computation.

Definition 5 A binary relation S & P x P is a

timed weak &simulation if (P, Q) E S implies, for

au p E A+,

(i) VP’: P & P’ 3 3Q’: Q =% Q’ A (P’, Q’) E S.

(ii) VQ’: Q =% Q’ 3 3 P’: P =% P’ A (P’, Q’) E S.

Let "M7" denote the largest timed weak bisimula-

tion, and call P and Q timed observation equivalent
ifPz7Q. I

Intuitively, if P and Q are timed observation

equivalent, each action of P must be matched by a

sequence of actions of Q with the same visible con-

tents and timing, and conversely. The equivalence

can equate objects that are not distinguishable by

the observable behavior and the timing in the com-

putations.

Proposition 5

1. 7.P q- P

2. a.7.P x7 a.P

3. r.P + P x7 r.P
4. a.(r.P t Q) ~7 o+.P t Q) t 0-Q
5. (cP,Q)t x7 P (t > 0)

6. (O.Q)t ~7 (P,Q)t
7. (cY.P,T.(cx.P,Q),)~ ~7 (~.p,Q),+t

Proof. Easy application of Definition 5. I Proof. Same as Proposition 4. I

Like a weak equivalence in CCS, z;7 is not a con- =7 is a congruence relation and very close to
gruence relation. However, we can define a timed

observation congruence relation based on the timed

observation equivalence.

timed observation equivalence. We grantee that if

two objects are timed observation congruent, they

are substitutable for each other even though their

internal implementations are different.
Definition 6 P and Q are timed observation con-

gruent if for all p E ActT

(i) VP': P =% P’ 3 3Q’: Q =% Q’ A P’ x7 Q’.

(ii) VQ’: Q A Q’ 3 3P’: P a P’ A P’ ~7 Q’.

(iii) P t iff Q t.

We write P =7 Q if P and Q are timed observation

congruent. I

Proposition 6 If P ~7 Q and both processes are

stable 2 , then P =7 Q.

Proof. Direct from Definition 5 and 6. I

Proposition 7 For all P,Q E P, if P ~7 Q then

P =7 Q, and if P =7 Q then P "7 Q.

Proof. By Definition 4 to 6, clearly =7 lies between

-7 and ~7. I

Intuitively, if P x7 Q and both have no r-

derivative, then P =7 Q. Therefore, we can easily

prove the following properties.

Proposition 8

1. a.r.P =7 c2.P

2. r.P + P =T r.P

3. a.(r.~ t Q) =I c&P t Q) t 0-Q

4. (P,nQ)t =7 (P,Q)t (t > 0)

5. (a.P, r.(cu.P,Q)s)t =7 (a.PvQ)s+t

Proof. Use Proposition 5 and 6. I

Proposition 9 (Congruence)

Timed observation congruence =T is preserved by

all operators.

2P is stable if P A P' is impossible for all P’

321

Remarks

It seems that we can always assume that if P N Q
(or P x Q) holds in CCS, then P -7 Q (or

P ZT Q) holds in RtCCS. There is however a

counterexample: unguarded recursion expressions,

e.g., ret X : X expression. This is because in

RtCCS such expressions are not allowed. However,

we think that such expressions are unrealizable in

object-oriented computing.

5 Examples

In this section we present two examples which il-

lustrate the expressiveness and utility of RtCCS.

Example 2 A Timer Object
We describe a timer object T in RtCCS as fol-

lows:

T dGf start.(stop.T, timeout.T)t

Upon reception of a request start to start the

timer, it receives the amount t of .J and then sends

timeout. If it accepts a request stop, the timer goes

back to its initial state T.

Example 3 Verification of Timed Systems
In order to illustrate how to describe and ver-

ify systems in RtCCS we describe the Alternating

Bit Protocol for OS1 data link layer. There are

five components: the sender, the receiver, the two

unreliable channels, and the timer. To find out

duplicate messages or acknowledgments, messages

and acknowledgements are sent tagged with bits 0

and 1 alternately.

l Upon reception of a request to send a mes-

sage (accept), the sender sends it tagged with

an appropriate bit b (sendS,b) to the channel.

It then waits for an appropriate acknowledge-

ment (ackR,b). If the acknowledgement cannot

be received within a specified period of time,

the sender retransmits the message.

a The two channels are unreliable. They may

occasionally lose a message or an acknowledge-

ment.

l The receiver waits for a message (sendR,a or

sendRi;’ where % is the complement of 6) and

then id sends an acknowledgement to the chan-
--

nel (ackR,b or aclcRii;). If it accepts a message

tagged with an appropriate bit, it sends the

message to the environment (deIiver).

The sender S has the following definition.

accept.SL
--
sendS,b .StaTt .Sr

aCks,b.G.% + acks$f + time0ut.S;
>

accept.+
--
sendsi;.start.S;

acksi;.stop.Sb -I- acks,b.?$ i- timeOUt.%
I

The timer T has the following definition, where t

is the timeout time.

T dgf start.(stop.T, timeout.T)t

The channel Cr has the following definition, where

s is the transmission time for a message.

Cl dgf sendg,b.(o, Send&?1 + %C&

+ sends;.(O, sendRpC1 + T.C~)~

The channel (2’2 has the following definition, where

a is the transmission time for an acknowledgement.

c2 dgf aCkjq,b.(o, UCks,b.C2 + %CZ)~

t ackR,$=(O, ack,,TG t 7.&)a

The receiver R has the following definition.

Rb
d!f sendRIb .deliver.ackR,t, .R$

+ sendRx.ack +Rb Rb

R% ef sendRT.deliver.ackR#,

+ Ser;dR,b.ackR,b.R;’

We present the behavior of the whole protocol

under the assumption that s + a < t. The pro-

tocol is constructed by the parallel composition of

322

the sender, the receiver, the two channels, and the

timer, as follows:

(&$‘IC&‘2IRb) \ L

where L fiif (sendqb, sendSp sendR,b, sendR;,

UCks,b, acksi;, ackR,b, ackRi;, start, Stop, h2eOUt)
1

By using timed bisimilarity, we transform

(SblTIClICzlRb)\L t in o a timed observation equiv-

alent expression ABP, which is a sequential pro-

cess:

(sblTlcl\c2jRb) \ L +- ABP where

ABP dGf accept.ABP’

ABP’ d= r.(O,deliver. x(0, ABP);,t+,),
i>O

t ~(0, ABP’)t

We present the proof of this transformation in Ap-

pendix B.

By using the simpler expression, we can not only

investigate the behavior of the protocol but, also

temporal properties, such as the minimal and max-

imal delay for delivering a message. With specifica-

tions based on Rt CCS, we can derive the behavior

and timing of whole systems from the description

of its components. Timed bisimilarities allows us

to analyze systems through timed and behaviorally

equivalent processes which may have substantially

less complexity in their structure.

6 Conclusion

We have defined a formal model called RtCCS for

real-time object-oriented computations. RtCCS is

an extension of Milner’s CCS by introducing a tick

action and a timeout operator. It can formally

describe the aspects of time dependence in real-

time systems and enjoy many pleasant properties of

CCS. We have introduced two timed equivalences

based on CCS’s bisimulation: timed strong equiv-

alence and timed observation equivalence. The

equivalences provide a formal framework for an-

alyzing the behavior and timing of real-time com-

putations.

We have presented examples that demonstrate

the expressiveness and the proof method of RtCCS.

Furthermore, we have given a sound and complete

equational proof system based on timed strong

equivalence in appendix.

As an application of RtCCS, we are presently

developing on the semantics of real-time object-

oriented languages, such as DROL [21]. The se-

mantics is defined by translation rules from the syn-

tactical constructions of the languages into RtCCS

process expressions, also used as a static verifica-

tion model for real-time programs. Details are pre-

sented in [19].

We are also interested in investigating whether

an axiomatization based on observation congruence

[12] can be applied to RtCCS, and whether other

process equivalences such as distributed bisimula-

tion [3] and testing equivalence [4] can be adopted

by RtCCS.

Acknowledgements

We are grateful to P. Wegner, and K. Takashio

for useful discussions. We would like to thank

A. Togashi, and B. Jonnson for suggestions at the

early stage of this work. We thank V. Vasconcelos,

T. Minohara, and K. Honda for comments on an

earlier version of this paper.

References

[l] America, P., deBakker, J., Kok, J., and Rut-
ten, J., Operahonal Semantics of a Parallel Object-
Oriented Language, In proceedings of ACM POPL,
1987.

[2] Beaten, J. C. M, and Bergstra, J. A, Process Alge-
bra, Cambridge University Press 1990.

[3] Castellani, H., Hennessy, M., Dislribu2ed Bisimu-
IaGou, Journal of ACM, Vo1.36, No.4, 1989.

[4] de Nicola, R. and Hennessy, M., Testing equiva-
lence for processes, Theoretical Computer Science,
vo1.34, 1984.

[5] Hansson, H. and Jonsson, B., A Calculus of Com-
municaiing Systems with Time and Probabilihes,

323

PI

VI

PI

PI

PO1

WI

P21

1131

WI

P51

PI

P71

k31

PI

PO1

In proceedings of the 11th IEEE Real-Time Sys-
tems Symposium, 1990.

Hennessy, M. and Regan, T., A Temporal Process
Algebra, Technical Report 2/90, University of Sus-
sex, 1990

Hoare, C. A. R., Communicating Sequential Pro-
cesses, Prentice Hall, 1985.

Honda, K., and Tokoro, M., An Object Calculus
for Asynchronous Communication, In proceedings
of ECOOP’91, LNCS 512, 1991.

Ishikawa, Y., Tokuda, H., and Mer-
cer, C. W., Object-Oriented Real-Time Language
Design: Construction for Timing Constraints, In
proceedings of ECOOP/OOPSLA’90, 1990.

Milner, R., Calculi for Synchrony and Asynchrony,
Theoretical Computer Science, Vo1.25, 1983.

Mimer, R., Communication and Concurrency,
Prentice Hall, 1989.

Mimer, R., A Complete Axiomatization for Obser-
vational Congruence of Finite Behavior, Informa-
tion and Computation, Vo1.81, 1989.

Milner, R., Parrow, J., and Walker, D., A Calculus
of Mobile Processes Part 1 & 2, Technica. report
ECS-LFCS-89-85 & 86, University of Edinburgh,
1989.

Moller, F., and Tofts, C., A Temporal Calculus of
Communicating Systems, In proceedings of CON-
CUR’SO, LNCS 458, 1990.

Najm, E., and Stefani, J. B., Object-Based Concur-
rency: A Process Calculus Analysis, In proceedings
of TAPSOFT’Sl, LNCS 493, 1991.

Nicollin, X., and Sifakis, J., The Algebra of Timed
Process ATP: Theory and Applications, IMAG
Technical Report, RT-C26, 1990.

Nierstrasz, 0. M., and Papathomas, M., Viewing
Objects as Patterns of Communicating Agents, In
proceedings of ECOOP/OOPSLA’90, 1990.

Nierstrasz, 0. M., Towards an Object Calculus, In
proceedings of ECOOP’91 Workshop on Concur-
rent Object-Based Concurrent Computing, LNCS
612, 1992.

Satoh, I., and Tokoro, M., A Formal Descrip-
tion and Verification for Parallel Computing with
Timed Constraints, In proceeding of Joint Sym-
posium Parallel Processing’92, June, 1992. (in
Japanese)

Satoh, I., and Tokoro, M., Timed Process Calculus
Semantics for A Real-Timed Concurrent Object-
Oriented Language, Technical Report, Dept. Com-
puter Science, Keio University, February, 1992.

PI

PI

VI

P41

Takashio, K., and Tokoro, M., DROL: An Object-
Orinted Programming Language for Distributed
Real-time Systems, In proceedings of ACM OOP-
SLA’92, October, 1992.

Walker, D., n-Calculus Semantics of Object-
Oriented Programming Languages, In proceedings
of Theoretical Aspects of Computer Software,
LNCS 526, 1991.

Yi, W., CCS + Time = an Interleaving Model for
Real Time Systems, In proceedings of Automata,
Languages and Programming’Sl, LNCS 510, 1991.

Yonezawa, A., and Tokoro, M., editors, Object-
Oriented Concurrent Programming, MIT Press,
1987.

Appendix A

In this appendix, we develop a sound and complete

equational proof system based on timed strong

equivalence. We first restrict our attention to the

non-recursive finite process expressions. The equa-

tional system for RtCCS is defined in Figure 3. We

shall use “=” to denote derivability in our equa-

tional system, and “E” to denote syntactical iden-

tity.

It can be easily shown that the equational pro-

cesses in Figure 3 are timed strongly equivalent.

Therefore, we get the following result.

Theorem 1 (Soundness) If P = Q where

P,Q E P, then P NT Q.

Proof. Obvious according to the propositions 1 to

3, and Corollary 1. I

Next, we want to show

plete. We can accomplish

ing normal forms.

that the system is com-

this by using the follow-

Definition 7 A normal form (NF)
ductively by:

(i>

(ii)

(iii)

A process is in normal form if it

N30*
A process is in N3’c if it is

is defined in-

is in N3, or

of the form

co<i<7l ai.P; where each P; is in N’3.

A process is in nl3() if it is of the form (P, Q)I
where P is in ~V3c and Q is in N3. I

324

P+Q = Q+P P+(Q+R) = (P+Q)tR
P-j-P = P P-+0 = P

(PtQ)\L = P\LtQ\L (~JY\L = Ip,L &,;w;syi
{ .

(P+ Q>[fl = p[fl+ Q[fl W)[fl = f kw[fl
(“.P,cY.P)t = cr.P (r.P t Q,R)t = 7.P t Q (t > 0)

U',Q)o = Q W-',Qh, R)t =
{

(P, R>t (s 2 t)

(f’, (Q,R)t-a), (s < t)

(f’,Q t R>t = (P, Q>t t (P, R>t (P-tQ,R)t = (P, R)t t (9, R>t

V’,Q)t[fl = V-‘[fl,Q[fl)t (P,R)t\L = (P\LQ\L)t

PIQ = QIP PKQIR) = P’IQ)IR
PI0 = P

PIQ = Cai=P; r.(P;IQj) + Ci~l wPilQ) + CjJiWQj)
where P E CicI ai.Pi and Q E CjEJ /3j.&j

PIQ = (Cmi=p, r*(P;IQj) + &I ai*(filQ> + CjcJ Pj*(PIQj) 7 P/IQ)1
where P E (CiEr (Ui.Pi, P’)l and Q s CjEJ pj .Qj

PIQ = (Ccx,=bJ r*(P;IQj) + Cicl ai*(P;IQ) + CjEJ Pj-(PIQj) 7 P/IQ’)1
where P E (CiEr ~i.fitP’)l and Q - (Cj,JPj*Qj,Q’)l

Figure 3: Equational Proof System based on ~7

Proposition 10 For each P E P, there exists a
normal form P’ such P = P’.

Proof. By structural induction on P.

Lemma 1

I

1. IfP NT Q where P is in N3c and Q is in

N3, then Q is in M3c.

2. If P WI-(Q where P is in N30 and Q is in

N3, then Q is in N’30.

Proof. The structure of N3c processes cannot be

transformed by J and any N30 process transforms

its structure by J. I

Theorem 2 (Completeness) If P yr Q where

P,Q E P, then P = Q.

Proof. Assume that P ~7 Q. By proposition 10,

we can find normal form processes P’ and Q’ where
P = P’ and Q = Q’. By lemma 1, both P’ and Q’

must be in N3c or both P’ and Q’ must be in

N30. Hence we have that P = Q. I

Appendix B

In this appendix we present a rather detailed de-

scription of the behavior and timing of the Alter-

nating Bit Protocol as given in section 5 under the

assumption that s + a < t. The whole protocol
is represented as a parallel composition of the five

component as follows:

(SblTICl IC2IRb) \ L

325

(Sb(TIClICzlRb) \ L

-7 accept .A \ L where

A %if (s#lcllczlRb)
--

-7 7.(send~,$.start.S~ITIC~ICzlRb)

SendR,b.Cl + r.Cl)a IczlRb)

-7 7.T.7.(R~l(StOp.T,timeozlt.T)~I(0,SendR,b.C~ + T.cl)Sjczlfi!b)

a7 T.T.(o, (S~l(stop.T,~.T)t-s)sendR,b.Cl + T.c#2l&,))~

x7 (0, r.B + TC),

B er (sg(stop.T,t’ zmeout.T)t-, ICI I&ldeliver.ackR,b.R;;)

e7 deliver.D

C ef (S;I(stop.T,1’ zmeout .T)t-, ICI ICzIRb)

-7 (0, (acks,b.stop.Si; + acks;; .Sr + timeout.S~ltilneout.TICI IC2lRb))t+ ,

=7 (0, Ah--,

D dzf (S;ll(stop.T,t’ zmeout.T)t-,lCl ICzlackR,b.Rb)

-7 r.(S~((stop.T,Zimeout.T)t-sIC11(0,ack~,b.C2 + r.C2)alRi;)

-7 ~.(O,(S~l(stop.T,tilneout.T)~--(~+~)ICllack~,b.C* + ~.CZ(R;)),
x7 (0,T.E + r.F),

E ‘-kf (S~((stop.T,t’ ~meO~d.T)t-(~+,I)(CllaCkR,b.C2(R;;)

-7 n(stop.S$(stop.T, timeoul.T)t++,)(C1 IC,lRi;)

~7 ~ITIG IC2lRi;

F dsf (S~J(stop.T,timeozlt.T),++,~IC11C21R~)

a7 (0, G)t-(,+a)

G dgf (S;ITIC,lCzlRi;)

=7 (0, T.(O, r.E + r.F)a + T.(O,G),-,),

Figure 4: Expansion of (SbjTIC1jC2\&,) \ L

where L dgf {sendS,b, sendR,b, sendSi;, sendR;, P dgf accept.A

ackg,b, ackR,b, acksi;, ackR;, start, stop, timeout}.

Using the timed’ strong’ equivalence and timed

observation equivalence, we derive an expansion of

ww1lC2l~b) \ L as shown in Figure 4. Ex-

pression A follows directly from Corollary 1, while

A x-/ (0, r.B + r.C), is derived from Proposition

5. Derivations of expressions B to G are similar

to that of A. From Figure 4, we ca.n transform

(&Jl~lGlC2l&)\~ * t In o a timed observation equiv-

alent expression P as follows:

A dGf (O,~.deliver.(O, r.P + r.(O,G)t++oj)a

t Q4 A)t--s),

G dgf (0, r.(O, 7.A t ~(0, G),-(,+,)),

+ -r.(o, G)t-s),

Furthermore, since it can be easily shown that

P Z:IT ABP as given in section 5, we can con-

clude that ABP is timed observation equivalent to

(&(T(C$2(Rb) \ L-

(.!$,~TICIIC~(&,) \ L XT P where

326

