
A Forxnalism for Real-Time 

Concurrent Object-Oriented Computing 

Ichiro Satoh Mario Tokoro * 
satoh&nt.cs.keio.ac.jp rnario@mt.cs.keio.ac.jp 

Department of Computer Science, Keio University 

3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, Japan 

Tel:+81-45-560-1150 

Abstract 

We investigate a formal model for reasoning 

about real-time object-oriented computations. The 

model is an extension of CCS with the notion of 

time, called RtCCS(Real-time Calculus of Commu- 
nication Systems). It can naturally model real-time 

concurrent objects as communicating processes and 
represent the timed properties of objects. We de- 

fine two timed equivalences based on CCS’s bisimu- 

lation and derive algebraic laws for reasoning about 

real-time processes. The equivalences provide a for- 

mal framework for analyzing the behavior and tim- 

ing of real-time computations. Also, we define a 

sound and complete equational proof system for fi- 

nite processes. Some examples in RtCCS are shown 
in order to demonstrate its usefulness. 

1 Introduction 

Real-time systems are increasingly being used in 

various areas such as factory automation, robotics, 

and multi-media systems. These systems have to 

interact and cooperate with many external ele- 
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ments which run in parallel, such as other com- 

puters, sensors, and actuators. The notion of con- 

current object-oriented computing [24] is consid- 

ered as a powerful method to design and to develop 

such real-time systems. This is because concurrent 

object-oriented systems consist of objects which are 

logically self-contained active entities that cooper- 

ate with each other. Concurrent objects can natu- 

rally model such active elements directly. Recently, 

some real-time systems and languages use this con- 

cept as their basis [9, 211. 

Real-time systems have certain time constraints 

which must be satisfied. The correctness of a real- 

time system depends not only on the logical results 

of computation, but also on the time at which the 

results are produced. Therefore, the construction 

and debugging of real-time programs is far more 

complex and difficult than those of ordinary con- 

current programs. We need the support of formal 

verification methods for reasoning about real-time 

programs. In the past few years several researchers 

have proposed such methods based on timed Petri 

nets, first order logics, and temporal logics. How- 

ever, these frameworks are not always fit for con- 

current object-oriented computing. The goal of 

this paper is to investigate a formal model to reason 

about real-time object-oriented computations. 

Various formal models for concurrent object- 

oriented computation have previously been de- 

vised, Among these, process calculus [2, 11, 131 is 

a well-defined theory that can model naturally and 

easily concurrent objects as communicating pro- 
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cesses which may change their states when com- 

municating with another agent. Also, process cal- 

culi have equivalence relations over processes which 

provide theoretical frameworks for analyzing the 

behavior of objects and for substituting objects. 

In this paper we develop a process calculus which 

permits expressing and analyzing time constraints 

in real-time object-oriented computations. To do 

this, we extend an existing process calculus with 

the notion of time and introduce a timed process 

calculus called RtCCS( Real-time Culculus of Com- 
munication Systems). It is an extension of Milner’s 

CCS [ll] with a minimal set of notions for time: a 

tick action and a timeout operator. The execu- 

tion of tick actions corresponds to the passage of 

time; the timeout operator represents a behavior 

dependent on the passage of time. Furthermore, 

we develop theoretical equivalences over processes 

with time properties. In RtCCS, time independent 

properties of processes can be treated as usual CCS 

while the time dependent properties can be treated 

with the timed extensions. In order to demonstrate 

its effectiveness in a simpler form, our timed ex- 

tension is developed for CCS. However, the same 

extension can be naturally adopted into x-calculus 

[13] which has more powerful mechanisms for mod- 

eling object-oriented computing. 

In the next section, we discuss some of the re- 

lated works. In Section 3, we define the syntax and 

the operational semantics of RtCCS. Section 4 de- 

fines two equivalence relations called timed strong 

equivalence and timed observation equivalence re- 

spectively, and studies their basic properties. In 

Section 5, we present some examples that demon- 

strate the usefulness of RtCCS. The final section 

contains some concluding remarks. In Appendix 

A, we define an equational proof system based on 

timed strong equivalence. 

2 Related Research 

Recently, many theoretical models for concurrent 

object-oriented computations have been explored 

in process calculi, such as CCS [ll], n-calculus [13], 

and ACP [2]. In the process calculus paradigm, 

objects can be viewed as processes, interactions 

among objects can be seen as communications, and 

encapsulation can be modeled by the restriction 

of visible communications. In [8] a formal system 

based on the notion of actor-like object with asyn- 

chronous communication was investigated, and in 

[17] an executable notation for specifying concur- 

rent object-oriented languages in a process calculus 

was explored. In [18] some requirements for a cal- 

culus suitable for concurrent objects is presented. 

In [15] the author presents a language based on a 

process calculus and analyzes the essential features 

of object-based concurrency. In [22] a semantics 

for POOL [l] is defined by the translation of the 

language constructs into n-calculus [13]. 

Many theoretical models for real-time computa- 

tions have been explored in temporal logic, timed 

Petri nets, and denotational semantics frameworks 

based on linear history semantics. More recently, 

several studies developed temporal models based 

on process calculi such as CCS, ACP, and CSP 

[6, 5, 10, 16, 14, 231. 

Milner’s SCCS [lo] is a calculus for synchronous 

processes based on the idea that each atomic ac- 

tion takes one unit of time. The concurrent agents 

of SCCS essentially proceed in lockstep and at ev- 

ery instant perform a single action; there is also 

an asynchronous operator. Since each object in 

an object-oriented computation proceeds at inde- 

terminate relative speeds, SCCS does not fit our 

purposes. 

TPA [6], timed CCS [23], and Temporal CCS 

[14] introduce delay operators into CCS. The delay 

operators represent the suspension of execution for 

a specified time, similarly to the delay command 

in Ada. In TPA and timed CCS, like in RtCCS, 

there are two assumptions: time advances only 

when communications are not possible and that ac- 

tions are instantaneous. Once an action is enabled, 

it cannot be disabled. Therefore, they cannot ex- 

press timeout behavior. On the other hand, Tem- 

poral CCS can represent timeout behavior but has 

no equivalent relation over processes based on ob- 

servation of their behaviors. PTCCS [5] and ATP 

[16], like ours, have a timeout operator. PTCCS is 
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an extension of CCS with discrete time and prob- 

ability. PTCCS is similar to our RtCCS. However, 

unlike ours, time stops inside the timeout opera- 

tor of PTCCS. Therefore, the timeout operator of 

PTCCS cannot apply to a process with timed prop- 

erties, and PTCCS cannot describe a timeout ex- 

ception for such a process. The timeout operator 

of ATP is similar to ours. However, ATP has no 

notion of observation equivalence because ATP has 

no T action, since it is not based on CCS. 

3 RtCCS 

In this section, we present the basic idea of RtCCS 

and provide its formal definition. 

3.1 Time Extensions 

We assume a conceptual global clock: time passes 

as the global clock performs tick actions. The tick 

action is a synchronous broadcast message over all 

processes. It is described as J. The advance of time 

can be represented as a sequence of tick actions and 

is viewed as discrete time. Also, we assume that 

all communications and internal actions take no 

time, and that complementary actions and inter- 

nal actions are performed as soon as they become 

possible. Therefore, a process having a communi- 

cation action ready must wait until other process 

becomes ready to communicate with it. Once both 

the partners of a communication are ready, they 

must perform the communication actions immedi- 

ately, before the next tick J. 

As mentioned previously, many real-time pro- 

gramming languages have timed operations such as 

delay and timeout. In order to be used as a frame- 

work for formal semantics of languages, RtCCS 

needs to represent behaviors dependent on the ad- 

vancing of time. We introduce a special binary op- 

erator: ( , )t, called a timeout operator. As shown 

in Figure 1, (P,Q)t d enotes a process that after 

t time units becomes Q, unless P performs any 

actions prior to that. Intuitively (P, Q)t behaves 

as process P if P can execute an initial transition 

within t units of time, whereas (P,Q)t behaves as 

process Q if P does not perform any action within 

t units of time. That is to say, P and Q correspond 

to ordinary and timeout processes respectively, in 

practical programming. 

if t>l 

(P”, Q)t-1 

if t=l 

P’ Q 

Figure 1: The behavior of the timeout operator 

3.2 The RtCCS Language 

In this subsection, we present the syntax and the 

operational semantics of RtCCS. 

3.2.1 Notation and Syntax of RtCCS 

We presuppose that A is a set of communication 

action names and 2 the set of co-names. Let a&,. . . 

range over A and X,6,. . . over 2. An action 7i is 

the complementary action of a, and Z E a. Let 

T denote an internal action, and J a tick action. 

Finally let Act E du3iu{r} ranged over by cr,p,. . ., 

and Act7 E Act U {J} ranged over by p, v,. . . . 

Definition 1 The set I of RtCCS expressions 

ranged over by E, El, EZ, F,. . . is defined recur- 

sively by the following abstract syntax. 

E ..- ..- 0 (Deadlock Process) 
X (Process Variable) 

CX.E (Action Prefix) 

El t E2 (Summation) 

EllEz 

-WI 

CcpRmf~iElonpi 
ea em 

E\L (Restriction) 
recX : E (Recursion) 

(El, Ez)t (Timeout) 
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where t is a natural number, f E Act + Act and 

L G Act. We assume that f(r) = 7, f(\/) = J, and 

that X is always guarded r [ll]. 

We denote the set of closed expressions by P(c 

E), ranged over P, Q, . . . . I 

The syntax of RtCCS is essentially the same as 

that of CCS, except for the newly introduced tick 

action J and timeout operator. Intuitively, the 

meaning of process constructions are as follows: 

0 represents a deadlocked or terminated process; 

a.E performs an action (Y and then behaves like E; 
El + Ez is the process which may behave as El or 

Ez; El IE2 represents processes El and E2 execut- 

ing concurrently; E[f] behaves like E but with the 

actions relabeled by function f; E \ L behaves like 

E but with actions in L U z prohibited; recX : E 
binds the free occurrences of X in E but we shall 

often use the more readable notation X dgf E in- 

stead. 

3.2.2 Operational Semantics of RtCCS 

RtCCS is a labeled transition system ( E, AC&~, 

P+ I P E Acb I > w h ere -5 is a transition re- 

lation (AC & x E). The transition relation -5 is 

defined by structural induction and is the smallest 

relation given by the rules in Figure 2. 

The -+ relation does not distinguish between 

observable and unobservable actions. In order to 

reflect that r is not visible, we define two transition 

relations due to the unobservability of 7. 

Definition 2 

(i) P -141 Q d&f P(L)* -% (&)*Q 

(ii) P s Q dgf P(Z)* -5 (&)*Q if p # T 

and otherwise P(A)*Q. I 

Also, we define an operation to denote a process 

capable of infinite internal computation. 

Definition 3 E r if 3E’: E(-L)“‘E’ I 

‘X is guarded in E if each occurrence of X is only within 
some subexpressions cr.E’ in E; c.f. unguarded expressions, 
e.g. recX: X or recX : X+ E. 

ACT0 : 

ACT1 : 

ACT2 : 

SUM0 : 

SUMI : 

SUM2 : 

COMo : 

COMl : 

COM2 : 

COM3 : 

RESo : 

RESl : 

REL : 

REC : 

TIME0 : 

TIME1 : 

TIME2 : 

- 

a.E s E 

a.E -‘+ a.E 

0 -2 0 

E a E’ 
E $ F -% E’ 

F.&F’ 
E-j-F %F’ 

E -5 E’, F -5 F’ 

E+F -f+E’tF’ 

E 5 E’ 
EIF z E’IF 

F Q F’ 
EIF I< EIF’ 

E -% E’ F --% F’ 
EIF & E’IF’ - 

E -J, E’, F * F’, E F 

EIF L E’IF’ 

E -“-, E’, a,& 4 L 
E\LaE’\L 

E -1J-, E’ 
E\L-5Et\L 

E --% E’ 

E[f] 9 E’[f] 

E{recX : E/X} -f+ E’ 

recX : E/X 2 E’ 

E 5 E’ , t > 0 
(E, F)t 5 E’ 

E -c E’ , t > 0 

(E, F>t A (E’, %I 

F -‘+ F’ 

(E, F)r, -% F’ 

Figure 2: Inference Rules of RtCCS 
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Example 1 Here we give some simple examples of 

RtCCS expressions. 

(1) u.(~.P,O)~ After performing an input action 

a, it behaves as P if an output action b is exe- 

cuted within t units of time, otherwise termi- 

nates. 

(2) u.(O,~J.P)~ After performing a, it is idle for t 

time units and then behaves as &.P. 

(3) u.((O,b.O)~~P) After performing a, it be- 

haves as P but 6 becomes available after d 
time units. Note that (0, b.O)dl P represents 

a process which behaves as P and sends 6 as 

an asynchronous output communication with 

transmission delay d time units. 

Remarks 

1. The fundamental aspects of concurrent object- 

oriented computing are modeled as the primi- 

tive constructions of RtCCS as follows: 

l Objects as processes. 

l Concurrency among objects as parallel 

composition. 

l Message passing as communication be- 

tween processes. 

a Encapsulation in objects as restriction 

and relabeling. 

Also, we capture the fundamental aspects of 

real-time computing delayed processing and 

timeout handling, through the timeout opera- 

tor of RtCCS. 

2. An external action cannot be performed before 

its partner action in another process is ready 

to communicate. While a process having an 

external action is waiting for its partner ac- 

tion, it must perform J actions. If a process 

has an executable communication (including 

r), it must perform the communication imme- 

diately, instead of idling. 

4 , Timed Bisimilarity 

In this section we present two equivalences over 

processes, which are extensions of CCS’s bisimu- 

lation with the notion of time. The equivalences 

provide a formal framework for analyzing the be- 

havior and timing of real-time object-oriented com- 

putations. 

4.1 Timed Strong Equivalence 

Definition 4 A binary relation S 2 P x P is a 

timed strong bisimulation if (P, Q) E S implies, for 

all p E A&, 

(i) VP’: P z P’ 1 ZIQ’: Q 2 Q’ A (P’,Q’) E S. 

(ii) VQ’: Q -% Q’ > 3 P’: P -% P’ A (P’, Q’) E S. 

We let “w+’ denote the largest timed strong bisim- 

ulation, and call P and Q timed strongly equivalent 
if P ~7 Q. I 

Intuitively, if P and Q are timed strongly equiva- 

lent, they seem indistinguishable from one another 

in behavior and timing. We show some algebraic 

properties of the equivalence: 

Proposition 1 

l.PtQ--/QtP 
2. Pt(QtR)N7(PtQ)t~ 
3. PtP-TP 

4. P+OyP 

Proposition 2 

1. PIQ -7 QIP 
2. PICQIW NT (PIQP 
3. P(0 NT P 

4. (PtQ)\LNd'\UQ\L 

5* (o*‘) \ L N7 1 z P \ L 
ifcrcLUL 
otherwise 

6. P t Q)Vl NT- &I + QVI 
7. wwl +T fWJv1 

Proposition 3 

1. (a.P,aP)t N?- cu.P 
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2. (cr.& (a.& Q>t>s “7 W, Qh+t 
3. (p.P + Q,R)t -7 TJ t Q (t > 0) 
4. (f’,Q>t \ L ~7 (f’ \ L,Q \ L>t 
5. (P, QWI NT Wl, Q[fl>t 
6. (P, Q t R)t -7 (f’v Q>t + (P, R>t 
7. (P + Q, R>t ~7 (P, R>t + (9, R>t 

8. 

Proof. All the laws may be proved by exhibiting 

appropriate timed strong bisimulations. The hard- 

est is (8) of Proposition 3 in the case of (s < t) 
which we prove as follows: 

We need to show that S is a timed 

strong bisimulation, where { ( ((PI, J’z)~, f’dt, 

(pl,(p2,~3)1-8)s) 10 < s < t, pl, p2, p3 E p}. 

So let ((P~,P2)s,P3), -% Qr; it is enough to 

find Q2 such that (PI, (P2, P3)t-s)s -2 Q2 and 

(Qr,Q2) E S. There are two cases: 

Case 1 p E Act and PI -% P;. By TIMEo, 

Qr E PI, and Q2 E Pi, and we know Qr = Q2. 

Case 2 p = J. 

Case 2.1 s = 0. We assume that P2 -L Pi. 
By TIME2, Qr 3 (P&P3),-1 and Q2 G 

(Pi, P&-I, hence QI = Q2. 

Case 2.2 s > 0. We assume that Pl-f+Pi. 

BY TIM&, QI - ((P;,P2)s-l,P3)t-l, 

and Q2 E (Pi, (p2, P3)t-s)s--1, and 

clearly (QI,Qz.) E S. 

By a symmetric argument, we complete the proof. 

I 

RtCCS, like CCS, is based on the concept of in- 

terleaving and can reduce concurrent processes to 

sequential processes in terms of nondeterminism, 

for example, a.O]/?.O ~7 a./?.0 + p.ci.0. 

Corollary 1 The Expansion Laws 

1. Let P 5 CiCI oi.Pi and Q E CjeJ pj.Qj ; 

PIQ ~7 I&I Q~WIQ) + &J PjV’lQj) 
+ Cai=~, r*(P;IQj) 

2. Let P E (CieI ai.Pi, P’)l and Q E CjeJ@j.Qj ; 

PIQ ~7 (Cic~ w*(EIQ) + CjEJ Pj*(PIQj) 
t Cai=pl T.(P;IQj), P’IQ)l 

3. Let P E (CieICri.PijP’)l and Q E 

(cje, Pj.Qjy Q’)l ; 

PIQ ~7 (Cic~ ai*(PilQ) + CjEJ Pj*(PIQj) 
+ IL,+, r*(P;IQj) 7 P’IQ’h 

From the laws in Proposition 1, 2, 3, and Corol- 

lary 1, we can develop an equational proof system 

based on timed strong equivalence. The system is 

given in appendix A. 

Proposition 4 (Congruence) 

Timed strong equivalence ~7 is preserved by all 

operators. 

Proof. We show a proof only for the timeout oper- 

ator; the proofs for the other operations are sim- 

ilar to the proofs of [ll]. We will prove that 

(Pl,Q)t Y- (&,Q)t where Pl,hQ E P and 
Pl N7 p2. It is enough to show that S = 

{((hQ)t,(P2,Q)t) : PI ~7 P2, t 2 0) is a timed 

strong bisimulation. We assume (PI, Q)t A R. 
There are two cases: 

Case 1 p E Act and PI -!f+ Pi. Then be- 

cause PI “7 P2, we have 3P.j : P2 -p+ P.j 
with Pi -7 Pi. Hence (PI, Q)t -5 Pi, 
(P2,Q)r -5 Pi, and clearly Pi ~7 Pi. 

Case 2 p = J. 

Case 2.1 t = 0. Obvious. 

Case 2.2 t > 0, PI -5 Pi, and (Pl,Q), -% 

(Pi, Q>t-1. Then because PI ~7 P2, 

we have 3Pi : Pz -5 Pi with Pi ~7 

Pi. Hence (P2,Q)t -2 (Pi,Q)t-1 and 

((P:,Q)t-I, (Pi, Q>H) E S. 

By a symmetric argument, we complete the proof. 

The proof for the other case of the timeout oper- 

ator, i.e. (Q, PI>, ~7 (Q,P2)t where PI y- P2, is 

similar. I 

By this proposition we guarantee that if two ob- 

jects are timed strongly equivalent, the objects are 

substitutable for each other. 
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4.2 Timed Observation Equivalence 

The timed strong equivalence has several useful al- 

gebraic properties but gives no special status to 

the internal action r which indeed should not be 

observed. We present a weaker equivalence which 

reflects the observation of behaviors and timing in 

the computation. 

Definition 5 A binary relation S & P x P is a 

timed weak &simulation if (P, Q) E S implies, for 

au p E A+, 

(i) VP’: P & P’ 3 3Q’: Q =% Q’ A (P’, Q’) E S. 

(ii) VQ’: Q =% Q’ 3 3 P’: P =% P’ A (P’, Q’) E S. 

Let "M7" denote the largest timed weak bisimula- 

tion, and call P and Q timed observation equivalent 
ifPz7Q. I 

Intuitively, if P and Q are timed observation 

equivalent, each action of P must be matched by a 

sequence of actions of Q with the same visible con- 

tents and timing, and conversely. The equivalence 

can equate objects that are not distinguishable by 

the observable behavior and the timing in the com- 

putations. 

Proposition 5 

1. 7.P q- P 

2. a.7.P x7 a.P 

3. r.P + P x7 r.P 
4. a.(r.P t Q) ~7 o+.P t Q) t 0-Q 
5. (cP,Q)t x7 P (t > 0) 

6. (O.Q)t ~7 (P,Q)t 
7. (cY.P,T.(cx.P,Q),)~ ~7 (~.p,Q),+t 

Proof. Easy application of Definition 5. I Proof. Same as Proposition 4. I 

Like a weak equivalence in CCS, z;7 is not a con- =7 is a congruence relation and very close to 
gruence relation. However, we can define a timed 

observation congruence relation based on the timed 

observation equivalence. 

timed observation equivalence. We grantee that if 

two objects are timed observation congruent, they 

are substitutable for each other even though their 

internal implementations are different. 
Definition 6 P and Q are timed observation con- 

gruent if for all p E ActT 

(i) VP': P =% P’ 3 3Q’: Q =% Q’ A P’ x7 Q’. 

(ii) VQ’: Q A Q’ 3 3P’: P a P’ A P’ ~7 Q’. 

(iii) P t iff Q t. 

We write P =7 Q if P and Q are timed observation 

congruent. I 

Proposition 6 If P ~7 Q and both processes are 

stable 2 , then P =7 Q. 

Proof. Direct from Definition 5 and 6. I 

Proposition 7 For all P,Q E P, if P ~7 Q then 

P =7 Q, and if P =7 Q then P "7 Q. 

Proof. By Definition 4 to 6, clearly =7 lies between 

-7 and ~7. I 

Intuitively, if P x7 Q and both have no r- 

derivative, then P =7 Q. Therefore, we can easily 

prove the following properties. 

Proposition 8 

1. a.r.P =7 c2.P 

2. r.P + P =T r.P 

3. a.(r.~ t Q) =I c&P t Q) t 0-Q 

4. (P,nQ)t =7 (P,Q)t (t > 0) 

5. (a.P, r.(cu.P,Q)s)t =7 (a.PvQ)s+t 

Proof. Use Proposition 5 and 6. I 

Proposition 9 (Congruence) 

Timed observation congruence =T is preserved by 

all operators. 

2P is stable if P A P' is impossible for all P’ 
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Remarks 

It seems that we can always assume that if P N Q 
(or P x Q) holds in CCS, then P -7 Q (or 

P ZT Q) holds in RtCCS. There is however a 

counterexample: unguarded recursion expressions, 

e.g., ret X : X expression. This is because in 

RtCCS such expressions are not allowed. However, 

we think that such expressions are unrealizable in 

object-oriented computing. 

5 Examples 

In this section we present two examples which il- 

lustrate the expressiveness and utility of RtCCS. 

Example 2 A Timer Object 
We describe a timer object T in RtCCS as fol- 

lows: 

T dGf start.(stop.T, timeout.T)t 

Upon reception of a request start to start the 

timer, it receives the amount t of .J and then sends 

timeout. If it accepts a request stop, the timer goes 

back to its initial state T. 

Example 3 Verification of Timed Systems 
In order to illustrate how to describe and ver- 

ify systems in RtCCS we describe the Alternating 

Bit Protocol for OS1 data link layer. There are 

five components: the sender, the receiver, the two 

unreliable channels, and the timer. To find out 

duplicate messages or acknowledgments, messages 

and acknowledgements are sent tagged with bits 0 

and 1 alternately. 

l Upon reception of a request to send a mes- 

sage (accept), the sender sends it tagged with 

an appropriate bit b (sendS,b) to the channel. 

It then waits for an appropriate acknowledge- 

ment (ackR,b). If the acknowledgement cannot 

be received within a specified period of time, 

the sender retransmits the message. 

a The two channels are unreliable. They may 

occasionally lose a message or an acknowledge- 

ment. 

l The receiver waits for a message (sendR,a or 

sendRi;’ where % is the complement of 6) and 

then id sends an acknowledgement to the chan- 
-- 

nel (ackR,b or aclcRii;). If it accepts a message 

tagged with an appropriate bit, it sends the 

message to the environment (deIiver). 

The sender S has the following definition. 

accept.SL 
-- 
sendS,b .StaTt .Sr 

aCks,b.G.% + acks$f + time0ut.S; 
> 

accept.+ 
-- 
sendsi;.start.S; 

acksi;.stop.Sb -I- acks,b.?$ i- timeOUt.% 
I 

The timer T has the following definition, where t 

is the timeout time. 

T dgf start.(stop.T, timeout.T)t 

The channel Cr has the following definition, where 

s is the transmission time for a message. 

Cl dgf sendg,b.(o, Send&?1 + %C& 

+ sends;.(O, sendRpC1 + T.C~)~ 

The channel (2’2 has the following definition, where 

a is the transmission time for an acknowledgement. 

c2 dgf aCkjq,b.(o, UCks,b.C2 + %CZ)~ 

t ackR,$=(O, ack,,TG t 7.&)a 

The receiver R has the following definition. 

Rb 
d!f sendRIb .deliver.ackR,t, .R$ 

+ sendRx.ack +Rb Rb 

R% ef sendRT.deliver.ackR#, 

+ Ser;dR,b.ackR,b.R;’ 

We present the behavior of the whole protocol 

under the assumption that s + a < t. The pro- 

tocol is constructed by the parallel composition of 
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the sender, the receiver, the two channels, and the 

timer, as follows: 

(&$‘IC&‘2IRb) \ L 

where L fiif (sendqb, sendSp sendR,b, sendR;, 

UCks,b, acksi;, ackR,b, ackRi;, start, Stop, h2eOUt) 
1 

By using timed bisimilarity, we transform 

(SblTIClICzlRb)\L t in o a timed observation equiv- 

alent expression ABP, which is a sequential pro- 

cess: 

(sblTlcl\c2jRb) \ L +- ABP where 

ABP dGf accept.ABP’ 

ABP’ d= r.(O,deliver. x(0, ABP);,t+,), 
i>O 

t ~(0, ABP’)t 

We present the proof of this transformation in Ap- 

pendix B. 

By using the simpler expression, we can not only 

investigate the behavior of the protocol but, also 

temporal properties, such as the minimal and max- 

imal delay for delivering a message. With specifica- 

tions based on Rt CCS, we can derive the behavior 

and timing of whole systems from the description 

of its components. Timed bisimilarities allows us 

to analyze systems through timed and behaviorally 

equivalent processes which may have substantially 

less complexity in their structure. 

6 Conclusion 

We have defined a formal model called RtCCS for 

real-time object-oriented computations. RtCCS is 

an extension of Milner’s CCS by introducing a tick 

action and a timeout operator. It can formally 

describe the aspects of time dependence in real- 

time systems and enjoy many pleasant properties of 

CCS. We have introduced two timed equivalences 

based on CCS’s bisimulation: timed strong equiv- 

alence and timed observation equivalence. The 

equivalences provide a formal framework for an- 

alyzing the behavior and timing of real-time com- 

putations. 

We have presented examples that demonstrate 

the expressiveness and the proof method of RtCCS. 

Furthermore, we have given a sound and complete 

equational proof system based on timed strong 

equivalence in appendix. 

As an application of RtCCS, we are presently 

developing on the semantics of real-time object- 

oriented languages, such as DROL [21]. The se- 

mantics is defined by translation rules from the syn- 

tactical constructions of the languages into RtCCS 

process expressions, also used as a static verifica- 

tion model for real-time programs. Details are pre- 

sented in [19]. 

We are also interested in investigating whether 

an axiomatization based on observation congruence 

[12] can be applied to RtCCS, and whether other 

process equivalences such as distributed bisimula- 

tion [3] and testing equivalence [4] can be adopted 

by RtCCS. 
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Appendix A 

In this appendix, we develop a sound and complete 

equational proof system based on timed strong 

equivalence. We first restrict our attention to the 

non-recursive finite process expressions. The equa- 

tional system for RtCCS is defined in Figure 3. We 

shall use “=” to denote derivability in our equa- 

tional system, and “E” to denote syntactical iden- 

tity. 

It can be easily shown that the equational pro- 

cesses in Figure 3 are timed strongly equivalent. 

Therefore, we get the following result. 

Theorem 1 (Soundness) If P = Q where 

P,Q E P, then P NT Q. 

Proof. Obvious according to the propositions 1 to 

3, and Corollary 1. I 

Next, we want to show 

plete. We can accomplish 

ing normal forms. 

that the system is com- 

this by using the follow- 

Definition 7 A normal form (NF) 
ductively by: 

(i> 

(ii) 

(iii) 

A process is in normal form if it 

N30* 
A process is in N3’c if it is 

is defined in- 

is in N3, or 

of the form 

co<i<7l ai.P; where each P; is in N’3. 

A process is in nl3() if it is of the form (P, Q)I 
where P is in ~V3c and Q is in N3. I 
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P+Q = Q+P P+(Q+R) = (P+Q)tR 
P-j-P = P P-+0 = P 

(PtQ)\L = P\LtQ\L (~JY\L = Ip,L &,;w;syi 
{ . 

(P+ Q>[fl = p[fl+ Q[fl W)[fl = f kw[fl 
(“.P,cY.P)t = cr.P (r.P t Q,R)t = 7.P t Q (t > 0) 

U',Q)o = Q W-',Qh, R)t = 
{ 

(P, R>t (s 2 t) 

(f’, (Q,R)t-a), (s < t) 

(f’,Q t R>t = (P, Q>t t (P, R>t (P-tQ,R)t = (P, R)t t (9, R>t 

V’,Q)t[fl = V-‘[fl,Q[fl)t (P,R)t\L = (P\LQ\L)t 

PIQ = QIP PKQIR) = P’IQ)IR 
PI0 = P 

PIQ = Cai=P; r.(P;IQj) + Ci~l wPilQ) + CjJiWQj) 
where P E CicI ai.Pi and Q E CjEJ /3j.&j 

PIQ = (Cmi=p, r*(P;IQj) + &I ai*(filQ> + CjcJ Pj*(PIQj) 7 P/IQ)1 
where P E (CiEr (Ui.Pi, P’)l and Q s CjEJ pj .Qj 

PIQ = (Ccx,=bJ r*(P;IQj) + Cicl ai*(P;IQ) + CjEJ Pj-(PIQj) 7 P/IQ’)1 
where P E (CiEr ~i.fitP’)l and Q - (Cj,JPj*Qj,Q’)l 

Figure 3: Equational Proof System based on ~7 

Proposition 10 For each P E P, there exists a 
normal form P’ such P = P’. 

Proof. By structural induction on P. 

Lemma 1 

I 

1. IfP NT Q where P is in N3c and Q is in 

N3, then Q is in M3c. 

2. If P WI-( Q where P is in N30 and Q is in 

N3, then Q is in N’30. 

Proof. The structure of N3c processes cannot be 

transformed by J and any N30 process transforms 

its structure by J. I 

Theorem 2 (Completeness) If P yr Q where 

P,Q E P, then P = Q. 

Proof. Assume that P ~7 Q. By proposition 10, 

we can find normal form processes P’ and Q’ where 
P = P’ and Q = Q’. By lemma 1, both P’ and Q’ 

must be in N3c or both P’ and Q’ must be in 

N30. Hence we have that P = Q. I 

Appendix B 

In this appendix we present a rather detailed de- 

scription of the behavior and timing of the Alter- 

nating Bit Protocol as given in section 5 under the 

assumption that s + a < t. The whole protocol 
is represented as a parallel composition of the five 

component as follows: 

(SblTICl IC2IRb) \ L 
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(Sb(TIClICzlRb) \ L 

-7 accept .A \ L where 

A %if (s#lcllczlRb) 
-- 

-7 7.(send~,$.start.S~ITIC~ICzlRb) 

SendR,b.Cl + r.Cl)a IczlRb) 

-7 7.T.7.(R~l(StOp.T,timeozlt.T)~I(0,SendR,b.C~ + T.cl)Sjczlfi!b) 

a7 T.T.(o, (S~l(stop.T,~.T)t-s)sendR,b.Cl + T.c#2l&,))~ 

x7 (0, r.B + TC), 

B er (sg(stop.T,t’ zmeout.T)t-, ICI I&ldeliver.ackR,b.R;;) 

e7 deliver.D 

C ef (S;I(stop.T,1’ zmeout .T)t-, ICI ICzIRb) 

-7 (0, (acks,b.stop.Si; + acks;; .Sr + timeout.S~ltilneout.TICI IC2lRb))t+ , 

=7 (0, Ah--, 

D dzf (S;ll(stop.T,t’ zmeout.T)t-,lCl ICzlackR,b.Rb) 

-7 r.(S~((stop.T,Zimeout.T)t-sIC11(0,ack~,b.C2 + r.C2)alRi;) 

-7 ~.(O,(S~l(stop.T,tilneout.T)~--(~+~)ICllack~,b.C* + ~.CZ(R;)), 
x7 (0,T.E + r.F), 

E ‘-kf (S~((stop.T,t’ ~meO~d.T)t-(~+,I)(CllaCkR,b.C2(R;;) 

-7 n(stop.S$(stop.T, timeoul.T)t++,)(C1 IC,lRi;) 

~7 ~ITIG IC2lRi; 

F dsf (S~J(stop.T,timeozlt.T),++,~IC11C21R~) 

a7 (0, G)t-(,+a) 

G dgf (S;ITIC,lCzlRi;) 

=7 (0, T.(O, r.E + r.F)a + T.(O,G),-,), 

Figure 4: Expansion of (SbjTIC1jC2\&,) \ L 

where L dgf {sendS,b, sendR,b, sendSi;, sendR;, P dgf accept.A 

ackg,b, ackR,b, acksi;, ackR;, start, stop, timeout}. 

Using the timed’ strong’ equivalence and timed 

observation equivalence, we derive an expansion of 

ww1lC2l~b) \ L as shown in Figure 4. Ex- 

pression A follows directly from Corollary 1, while 

A x-/ (0, r.B + r.C), is derived from Proposition 

5. Derivations of expressions B to G are similar 

to that of A. From Figure 4, we ca.n transform 

(&Jl~lGlC2l&)\~ * t In o a timed observation equiv- 

alent expression P as follows: 

A dGf (O,~.deliver.(O, r.P + r.(O,G)t++oj)a 

t Q4 A)t--s), 

G dgf (0, r.(O, 7.A t ~(0, G),-(,+,)), 

+ -r.(o, G)t-s), 

Furthermore, since it can be easily shown that 

P Z:IT ABP as given in section 5, we can con- 

clude that ABP is timed observation equivalent to 

(&(T(C$2(Rb) \ L- 

(.!$,~TICIIC~(&,) \ L XT P where 
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