TOURING MACHINE:
A Software Infrastructure to Support Multimedia Communications
v
Check for Mauricio Arango, Peter Bates, Gita Gopal, Nancy Griffeth, Gary Herman, Takako Hickey,
Will Leland, Victor Mak, Lillian Ruston, Mark Segal, Mario Vecchi, Abel Weinrib, Sze-Ying Wuu
Bellcore, 445 South St., Morristown, NJ 07962-1910

The Touring Machine project comprises a series of systems experiments that address key technical
questions important to realizing a public communications infrastructure in support of multimedia
applications. One of the major design objectives is to create a software infrastructure that
investigates potential uses of modern distributed-computing paradigms to cope with the increasing
complexities of large-scale telecommunications software. Another goal is to develop and study a
fiexible Application Programming Interface (API) that supports rapid deployment of new multimedia
services for a variety of wide area networks. The current version of Touring Machine, representing
the second iteration of system design, includes desk-top video and audio devices connected through a
network of multiple switches and other specialized hardware resources. The control software for this
system can support a variety of applications to run on users’ workstations. The system is used daily as
a working prototype for facilitating research collaboration among several dozen users.

While hardware and network support for muitimedia communications is an important and lively field
of research, less work is being done on the software structure required to enable widespread
development and use of multimedia communications applications in a public network environment.
Traditional telecommunications call processing software, which implements communications services
in the public telephone network today, has been found to be extraordinarily difficult to design,
implement, maintain, and modify. In addition to anticipating the needs of emerging multimedia
applications, the Touring Machine project is confronting the historical sources of complexity in
communications control software. We are investigating new ways to structure software that provides
flexible "connection management”, "session control", and other functionality that facilitate better
design and operation of communications applications. Qur design considers many of the issues that
are crucial if the system is to be used ubiquitously, such as fault tolerance, scalability, multiple
administrative domains, and heterogeneity.

In contrast to other research projects in the area of multimedia communications systems, our primary
interest is in providing the infrastructure, not in developing the applications themselves. Touring
Machine provides a general Applications Programming Interface to the applications developer. This
API supports a rich set of abstract capabilities of the system. The API has been designed in close
collaboration with applications developers from the CRUISER™ and RENDEZVOUS™ projects
within Bellcore, and has incorporated many concepts from work on BISDN signaling from the
EXPANSE project. An important design objective in defining the API has been to impose a strict
separation of mechanism f{rom policy. Touring Machine does not impose a priori policies on
applications; rather, the APl provides mechanisms that can be used to realize the various policies
required by different applications.

The Touring Machine API provides an abstract model of the capabilities of the svstem. The abstract
model allows the application developer to concentrate on the logical specification of the application
itself, instead of worryving about the physical realization of the communication service, such as routing
across multiple switches and bridging for multi-party calls. The model also allows the application to
have flexible and separate control of different transport media: audio, video, and data.

The abstractions supported by the API include client, session, connector, endpoint, port, and

mapping. A client is application software that acts as an agent for a user of the svstem. A session

"™ CRUISER i1s a TRADEMARK and SERVICE MARK of Belicore. RENDEZVOUS is a TRADEMARK of Bellcore.

ACM SIGCOMM —53- Computer Communication Review


http://crossmark.crossref.org/dialog/?doi=10.1145%2F142267.142301&domain=pdf&date_stamp=1992-07-01

manages the communications interaction among multiple clients, representing the control relationship
among them. The session provides mechanisms to enforce different policies (such as privacy) that are
specified and agreed to by the clients on a per-session basis. The transport topology of a session is
specified logically as a set of typed connectors: abstract multiway transport connections between
logical ports (endpoints). A session may have one or more connectors per medium, with source and
sink endpoints from participating clients. Fach client specifies the physical port (the network-access
resource) to which each of its logical endpoints is assigned, and may then map and unmap the
endpoint to the port to share the port among multiple concurrent active sessions.

The API defines a set of messages that are passed between an application and Touring Machine. The
functionality of the API can be divided into five categories, with their related messages. A more
complete discussion and definition of the current Touring Machine API will be available in another
paper. The five categories of API messages are: client registration, session establishment and
modification, network-access control, name server query, and inter-client messaging.

The Touring Machine software is a distributed platform that realizes the API while attempting to
incorporate the design objectives, such as scalability, mentioned above. The software consists of
seven classes of objects which communicate by exchanging messages. The objects encapsulate
various capabilities and system state. In our current implementation, the objects are realized as
separate (heavyweight) UNIX™ processes.

Each of the objects is defined by the interface it supports—the set of messages that it exchanges with
other objects to cooperatively realize the requests that clients submit using the API. The objects are:
the station manager, which implements various policies, such as those for sharing of local resources
among multiple clients registered at the same station, and policies for screening session origination
and acceptance; the station object, which provides the interface that clients use to communicate with
Touring Machine, using the API, and which manages the ports associated with a station; the resource
manager, which coordinates the allocation and deallocation the resources of the system; various
resource objects, which control the actual physical devices that realize the clients requests; the
session object, which is dynamically created to coordinate negotiation among clients and maintains
the logical state of the session; the transport object, which maintains the logical-to-physical mapping
for the session; and the name server, which is the repository for static and dynamic system
information.

The system is currently operational, supporting several applications that provide a basic audio/video
communication service and a variety of simple data services to users. Other projects within Bellcore
are creating more sophisticated applications which will soon be available. There are currently about
40 users of the system, with an expected growth to 120 users across multiple connected sites within
Bellcore by early 1992. A number of other institutions are also in the process of installing Touring
Machine as part of research collaborations with our organization.

Now that some of the basic software infrastructure has been created, we are turning to the many
open research problems that remain. These problems include, among others: adequacy of the API
as we and others gain experience writing application for Touring Machine; systems issues such as
scalability, fault tolerance, and support for multiple administrative domains; methods to ensure
security for the system and privacy for its users; and mechanisms for controlling interaction between
different applications.

Rich Clayton, Rob Fish, Carlyn Lowery, Steve Minzer, and John Patterson collaborated with us in
defining the Touring Machine API, and continue to provide valuable insight on applications-related
and other issues. We thank Jane Cameron, Brian Coan, Dave Cohrs, Alex Gelman, Bob Kraut,
Yow-Jian Lin, John Unger, and Doris Woods for numerous valuable discussions and other assistance.

T

UNIX is a registered trademark of UNIX Systems Lab. Inc.

ACM SIGCOMM ~54~ Computer Communication Review



