
TOURING MACHINE :
A Software Infrastructure to Support Multimedia Communications

Mauricio Arango, Peter Bates, Gita Gopal, Nancy Griffeth, Gary Herman, Takako Hickey ,
Will Leland, Victor Mak, Lillian Ruston, Mark Segal, Mario Vecchi, Abel Weinrib, Sze-Ying Wu u

Bellcore, 445 South St ., Morristown, NJ 07962-191 0

The Touring Machine project comprises a series of systems experiments that address key technica l
questions important to realizing a public communications infrastructure in support of multimedi a
applications . One of the major design objectives is to create a software infrastructure tha t
investigates potential uses of modern distributed-computing paradigms to cope with the increasin g
complexities of large-scale telecommunications software . Another goal is to develop and study a
flexible Application Programming Interface (API) that supports rapid deployment of new multimedi a
services for a variety of wide area networks . The current version of Touring Machine, representin g
the second iteration of system design, includes desk-top video and audio devices connected through a
network of multiple switches and other specialized hardware resources . The control software for thi s
system can support a variety of applications to run on users' workstations . The system is used daily a s
a working prototype for facilitating research collaboration among several dozen users .

While hardware and network support for multimedia communications is an important and lively field
of research, less work is being done on the software structure required to enable widesprea d
development and use of multimedia communications applications in a public network environment .
Traditional telecommunications call processing software, which implements communications service s
in the public telephone network today, has been found to be extraordinarily difficult to design ,
implement, maintain, and modify . In addition to anticipating the needs of emerging multimedi a
applications, the Touring Machine project is confronting the historical sources of complexity i n
communications control software . We are investigating new ways to structure software that provide s
flexible "connection management", "session control", and other functionality that facilitate bette r
design and operation of communications applications . Our design considers many of the issues tha t
are crucial if the system is to be used ubiquitously, such as fault tolerance, scalability, multipl e
administrative domains, and heterogeneity .

In contrast to other research projects in the area of multimedia communications systems, our primar y
interest is in providing the infrastructure, not in developing the applications themselves . Touring
Machine provides a general Applications Programming Interface to the applications developer . Thi s
API supports a rich set of abstract capabilities of the system . The API has been designed in clos e
collaboration with applications developers from the CRUISER" and RENDEZVOUS" project s
within Bellcore, and has incorporated many concepts from work on BISDN signaling from th e
EXPANSE project . An important design objective in defining the API has been to impose a stric t
separation of mechanism from policy . Touring Machine does not impose a priori policies on
applications ; rather, the API provides mechanisms that can be used to realize the various policie s
required by different applications .

The Touring Machine API provides an abstract model of the capabilities of the system . The abstrac t
model allows the application developer to concentrate on the logical specification of the applicatio n
itself, instead of worrying about the physical realization of the communication service, such as routin g
across multiple switches and bridging for multi-party calls . The model also allows the application t o
have flexible and separate control of different transport media : audio, video, and data .

The abstractions supported by the API include client, session, connector, endpoint, port, an d
mapping . A client is application software that acts as an agent for a user of the system . A .sessio n

" CRUISER is a TRADEMARK and SERVICE MARK of Bellcore . RENDEZVOUS is a TRADEMARK of Bellcore _

ACM SIGCOMM

	

-53--

	

Computer Communication Review

http://crossmark.crossref.org/dialog/?doi=10.1145%2F142267.142301&domain=pdf&date_stamp=1992-07-01


manages the communications interaction among multiple clients, representing the control relationshi p
among them . The session provides mechanisms to enforce different policies (such as privacy) that ar e
specified and agreed to by the clients on a per-session basis . The transport topology of a session i s
specified logically as a set of typed connectors : abstract multiway transport connections betwee n
logical ports (endpoints) . A session may have one or more connectors per medium, with source an d
sink endpoints from participating clients . Each client specifies the physical port (the network-acces s
resource) to which each of its logical endpoints is assigned, and may then map and unmap th e
endpoint to the port to share the port among multiple concurrent active sessions .

The API defines a set of messages that are passed between an application and Touring Machine . The
functionality of the API can be divided into five categories, with their related messages . A more
complete discussion and definition of the current Touring Machine API will be available in another
paper. The five categories of API messages are : client registration, session establishment an d
modification, network-access control, name server query, and inter-client messaging .

The Touring Machine software is a distributed platform that realizes the API while attempting t o
incorporate the design objectives, such as scalability, mentioned above . The software consists o f
seven classes of objects which communicate by exchanging messages . The objects encapsulat e
various capabilities and system state . In our current implementation, the objects are realized a s
separate (heavyweight) UNIX" processes .

Each of the objects is defined by the interface it supports–the set of messages that it exchanges wit h
other objects to cooperatively realize the requests that clients submit using the API . The objects are :
the station manager, which implements various policies, such as those for sharing of local resource s
among multiple clients registered at the same station, and policies for screening session originatio n
and acceptance ; the station object, which provides the interface that clients use to communicate wit h
Touring Machine, using the API, and which manages the ports associated with a station ; the resource
manager, which coordinates the allocation and deallocation the resources of the system ; variou s
resource objects, which control the actual physical devices that realize the clients requests ; the
session object, which is dynamically created to coordinate negotiation among clients and maintain s
the logical state of the session ; the transport object, which maintains the logical-to-physical mappin g
for the session ; and the name server, which is the repository for static and dynamic syste m
information .

The system is currently operational, supporting several applications that provide a basic audio/vide o
communication service and a variety of simple data services to users . Other projects within Bellcor e
are creating more sophisticated applications which will soon be available . There are currently abou t
40 users of the system, with an expected growth to 120 users across multiple connected sites within
Bellcore by early 1992. A number of other institutions are also in the process of installing Tourin g
Machine as part of research collaborations with our organization .

Now that some of the basic software infrastructure has been created, we are turning to the man y
open research problems that remain . These problems include, among others : adequacy of the AP I
as we and others gain experience writing application for Touring Machine ; systems issues such as
scalabilitv', fault tolerance, and support for multiple administrative domains ; methods to ensur e
security for the system and privacy for its users ; and mechanisms for controlling interaction betwee n
different applications .

Rich Clayton, Rob Fish, Carlyn Lowery, Steve Minzer, and John Patterson collaborated with us i n
defining the Touring Machine API, and continue to provide valuable insight on applications-relate d
and other issues . We thank Jane Cameron, Brian Coan, Dave Cohrs, Alex Gelman, Bob Kraut ,
Yow-Jian Lin, John Unger, and Doris Woods for numerous valuable discussions and other assistance .

UNIX is a registered trademark of UNIX Systems Lab . Inc .

ACM SIGCOMM

	

-54--

	

Computer Communication Review


