Multimedia Synchronization Techhiques:
Experiences Based on Different System Structures

Check for
Updates

Rall Steinmetz' Thomas Meyer?

Introduction

“Multimedia synchronization” is needed to ensure a temporal ordering of events in multimedia
systems. There are iwo parts to this problem: the definition of temporal relationships among audio,
video, and other data; and the delivery of the data in accordance with these relationships. It is
important to distinguish between Hve- and synthetic-synchronization. Live-synch. deals with the
presentation of information in the same order as it was originally collected. For synthetic-synch.
various pieces of information must be properly ordered and synchronized in time. Based on the
experiences in DIME and HeiTS, we document the implicatlions of using a hybrid or a unified system
structures on the required techniques for implementing synchronization.

Synchronization in Hybrid Distributed Multimedia Systems

The DIME (Distributed Multimedia Environment) project, carried out at the IBM European Net-
working Center in Heidelberg, was based on a hybrid system structure. Continuous media (i.e..
audio and video) were routed over separate, dedicated channels using off-the-shelf hardware
technology. Continuous and discrete media were integrated by connecting the CM equipmeni (e.g.
VCRs) to a computer via an R8-232C interface. Most real-time processing is kept out of the main
CPU and operating system.

Live-synch. between various CM streams is directly performed by the dedicated processing de-
vices. Cotrrelation between various DM streams, objects or information units in the live-synch.
mode occurs very rarely in such an environment. A rough implementation can be achieved by
time-stamping DM objects and delivering them on cue from timer events at the remote workstation.
In hybrid structures, it is very difficult to achieve tight synchronization between DM and CM. DM
and CM data are transmilted over different networks, through processing nodes having different
end-to-end delay characteristics. End-to-end delay over CM paths is typically lower than that for
DM. As it furns out, it is difficult and expensive to delay CM data delivered from devices like cam-
eras or microphones. If DM is faster than CM, buffering and time stamping as described above
could be used to slow down the data stream.

In synthetic-synch., where data is retrieved from external storage devices, one must contend with
another type of delay, that of the control signals lo the storaye devices. Belween the issuing of a
"start” command by a workstation application uniil the commencement of physical delivery of a
video sequence. we experienced a maximal delay of about 500 msec (if positioning must be done
by, say a VCR, this could take considerably longer). The main r=2asons for this delay are:

® The system software is in principle not designed to cope with the real-time demands of
physical interfaces such as the R8-232.

e The same device driver is often used for controlling many devices at the same time. A shared
RS-232 C interface may infroduce access conflicts between the various devices.

d Most of the external devices process queued work reques!s in an “as fast as possible”™ mode.
The control interfaces do not include options lo specify whan informalion is to be presented.

Decoupling the seek time and the playback delay allows for a nearly deterministic behavior of the
whole system. More interesting is the decomposition of the end-to-end delay d. into a fixed com-
ponent d,, and a variable part d.,;0 die= di, + d.s. The variable part with its distribution comes
from the above menlioned phenomena and/or the underlying API. Fortunalely, the variance is not
considerable and we can assume system- and device-specific values for d.. to derive d....

1 IBM European Networking Center, Tiergarienstr, 8, 6200 Hetdelberg, P.O"3CX 10 30 68. Germany
e-mail: STEINMET or MEY at DHDIBRMY BITNET

Z University of Mannheim, Lehrstuhl {(ir Praktische Informativ 1V, Seminarg-=h. A5, 6800 Mannheim, Germany

ACM SIGCOMM -90- Computer Communication Review

http://crossmark.crossref.org/dialog/?doi=10.1145%2F142267.142336&domain=pdf&date_stamp=1992-07-01

Synchronization in Unified Digital Distributed Multimedia Systems

Achieving live-synch. between CM streams is generally more challenging in a "unified” system
structure like in our follow-on project, the Heidelberg High-Speed Transport System (HeiTS). where
all discrete as well as continuous media are routed through the workstation. Scheduling can either
be done using dedicated hardware, such as the ActionMedia Il (DVI), or exclusively in software.
Either solution requires real-time scheduling technigues in a time-sharing environment. In both DM
and CM processing environments scheduling and reservation can be performed by an operating
system that provides a RTE (real-time environment). Processes running in such an environment
are, in general scheduled according to real-time scheduling technigues. With this approach we can
hide time constraints from the user.

In a distributed multimedia system where multiple, related streams originate in the same work-
station, a very common and straight-forward approach is to interleave different streams into one
composite stream. Such a stream consists of a sequence of logical data units (LDU), each time-
stamped at the source and separated at the sink for presentation according to the time stamp. This
technique is easy to implement and is used to guarantee lip synchronization in our current HeiTS
prototype, which was demonstrated at the CeBIT'92 fair in Hannover, Germany.

We found that any audio glitch is perceived immediately and can not be tolerated, whereas a small
variance in the video rate leading to. e.g., display of same picture twice, is difficult to perceive. In
general, audio imposes more stringent requirements than video does. In the designh of HeiTS and
subsequent prototypes we take this into account as follows:

1. We define different quality of service (QOS) at connection set-up for audio, video and other
CM streams. and choose the QOS paramelers to ensure that there are no audio faults and
either no or very few video glitches. We can thus assure that whenever a shortage of re-
sources occurs, it will first affect the video connections.

9 We use resource management during call establishment to heip prevent glitches.

The evolving HeiTS prototype has the abilily to either (1) combine audio and video, or (2} use
separate connections for different CM (or DM) streams. By imposing the same end-to-end delay
on related CM streams (by choosing an absolute end-to-end delay and limiting the jitler of the
LDUs to 0 msec), live synchronization can be guaranteed. (n praclice, it is neither possible nor
necessary to guarantee service with such tight tolerances. Audio can be played ahead of video for
about 120 msec, and video can be displayed ahead of audio for about 240 msec.

Another implementation of live-synch. allows these effects lo be used to advantage and even
guarantees synchronization between different sources: A logical time system {LTS) is introduced.
Presentation of the data is performed based on a comparison of the LTS with the real-time clock
of the sink workstation. Sinks and sources interacting in a logical group are tied to the same LTS
The RTE provides for the presentalion of LDUs according to the LTS and the current real time
Scheduling techniques are capable of providing this in-time playback. For synthetic-synch.. the
application defines an interaction time and an event to happen. From the implementation point of
view, application code can be linked into the RTE, or time-sharing code can be called from the RTE
(upcall).

Although the goal is fo have isochronous data streams at the sink devices. it is not necessary 1o
have isochronous communication in all of the components in a communication path. For instance.
it is sufficient to have upper bounds on delay for each individual component. With this assumplion.
buffering can be used to achieve isochronism, bul this can lead to a waste of storage, especially
for video. Restricling jitter (“jitter control”) at intermediate gateways drastically reduces tolal buffer
requirements. Ferrari’s approach can also be applied to sysiem components in the end-systems
leading to what we call "weak isochronous™ behavior

Conclusion

Our work on synchronization is being performed as part of the HeiTS project. All the experience
lo date indicates that synchronization requiremenis should not he viewed as an isolated issue. The
syslem struclure, the hardware capabilities, the operaling sysiem capabilities. the communication
subsystem and its protocols, the kind of media, the coding techniques, and even the envisaged
types of applications. all inlluence the best synchronization techniques to use; a system-wide sol-
ution should be attempted.

ACM SIGCOMM -91- Computer Communication Review

