
Multimedia Synchronization Techniques :
Experiences used on Different System Structures

Ralf Steinmetz' , Thomas Meyer 2

Introduction
"Multimedia synchronization" is needed to ensure a temporal ordering of events in multimedi a
systems . There are two parts to this problem : the definition of temporal relationships among audio ,
video, and other data ; and the delivery of the data in accordance with these relationships . It i s
important to distinguish between live- and synthetic-synchronization . Live-synch, deals with th e
presentation of information in the same order as it was originally collected . For synthetic-synch .
various pieces of information must be properly ordered and synchronized in time . Based on th e
experiences in DiME and HeiTS, we document the implications of using a hybrid or a unified syste m
structures on the required techniques for implementing synchronization .

Synchronization in Hybrid Distributed Multimedia System s
The DiME (Distributed Multimedia Environment) project, carried out at the IBM European Net -
working Center in Heidelberg, was based on a hybrid system structure . Continuous media (i .e . ,
audio and video) were routed over separate, dedicated channels using off-the-shelf hardware
technology . Continuous and discrete media were integrated by connecting the CM equipment (e . g
VCRs) to a computer via an RS-232C interface . Most real-time processing is kept out of the mai n
CPU and operating system .

Live-synch . between various CM streams is directly performed by the dedicated processing de -
vices . Correlation between various DM streams, objects or information units in the live-synch .
mode occurs very rarely in such an environment . A rough implementation can be achieved b y
time-stamping DM objects and delivering them on cue from timer events at the remote workstation .
In hybrid structures, it is very difficult to achieve tight synchronization between DM and CM . D M
and CM data are transmitted over different networks, through processing nodes having differen t
end-to-end delay characteristics . End-to-end delay over CM paths is typically lower than that fo r
DM . As it turns out, it is difficult and expensive to delay CM data delivered from devices like cam -
eras or microphones If DM is faster than CM, buffering and time stamping as described abov e
could be used to slow down the data stream .
In synthetic-synch ., where data is retrieved from external storage devices, one must contend wit h
another type of delay, that of the control signals to the storage devices . Between the issuing of a
"start" command by a workstation application until the commencement of physical delivery of a
video sequence . we experienced a maximal delay of about 500 msec (if positioning must be don e
by, say a VCR, this could take considerably longer) . The main reasons for this delay are .

• The system software is in principle not designed to cope with the real-time demands of
physical interfaces such as the RS-232 .

• The same device driver is often used for controlling many devices at the same time A share d
RS-232 C interface may introduce access conflicts between the various devices .

• Most of the external devices process queued work requests in an "as fast as possible" mod e
The control interfaces do not include options to specify when information is to be presente d

Decoupling the seek time and the playback delay allows for a nearly deterministic behavior of th e
whole system More interesting is the decomposition of the end-to-end delay d,,,, into a fixed com-
ponent d,,, and a variable part dal : d,a ,= d,, r -I- d,e , . The variable part with its distribution come s
from the above mentioned phenomena and/or the underlying API Fortunately, the variance is no t
considerable and we can assume system- and device-specific values for d,,, to deriv e

I IBM European Networking Center, Tiergartenstr, 8, 6000 Heirleltterg, P .O_'3CX 10 30 68 . German y
e-mail : STEINMET or MEY at DHDIBM1 .BITNE T

2 University of Mannheim, Lehrsluhl fur Praktische Informarib IV, Seminarg .,.h . A5, 6800 Mannh e im . German y

ACM SIGCOMM

	

-90---

	

Computer Communication Review

http://crossmark.crossref.org/dialog/?doi=10.1145%2F142267.142336&domain=pdf&date_stamp=1992-07-01


Synchronization in Unified Digital Distributed Multimedia System s
Achieving live-synch . between CM streams is generally fnore challenging in a "unified" syste m
structure like in our follow-on project, the Heidelberg High-Speed Transport System (HeiTS), wher e
all discrete as well as continuous media are routed through the workstation . Scheduling can eithe r
be done using dedicated hardware, such as the ActionMedia II (DVI), or exclusively in software .
Either solution requires real-time scheduling techniques in a time-sharing environment . In both D M
and CM processing environments scheduling and reservation can be performed by an operatin g
system that provides a RTE (real-time environment) . Processes running in such an environmen t
are, in general scheduled according to real-time scheduling techniques . With this approach we ca n
hide time constraints from the user .

In a distributed multimedia system where multiple, related streams originate in the same work -
station, a very common and straight-forward approach is to interleave different streams into on e
composite stream. Such a stream consists of a sequence of logical data units (LDU), each time -
stamped at the source and separated at the sink for presentation according to the time stamp . Thi s
technique is easy to implement and is used to guarantee lip synchronization in our current HeiT S
prototype, which was demonstrated at the CeBIT'92 fair in Hannover, Germany .
We found that any audio glitch is perceived immediately and can not be tolerated, whereas a smal l
variance in the video rate leading to, e .g ., display of same picture twice, is difficult to perceive . I n
general, audio imposes more stringent requirements than video does In the design of HeiTS an d
subsequent prototypes we take this into account as follows :

1. We define different quality of service (QOS) at connection set-up for audio, video and othe r
CM streams . and choose the QOS parameters to ensure that there are no audio faults an d
either no or very few video glitches . We can thus assure that whenever a shortage of re -
sources occurs, it will first affect the video connection s

2.

	

We use resource management during call establishment to help prevent glitches .

The evolving HeiTS prototype has the ability to either (1) combine audio and video, or (2) use
separate connections for different CM (or DM) streams . By imposing the same end-to-end dela y
on related CM streams (by choosing an absolute end-to-end delay and limiting the jitter of th e
LDUs to 0 msec), live synchronization can be guaranteed . In practice, it is neither possible no r
necessary to guarantee service with such tight tolerances . Audio can be played ahead of video fo r
about 120 msec, and video can be displayed ahead of audio for about 240 msec .
Another implementation of live-synch . allows these effects to be used to advantage and eve n
guarantees synchronization between different sources A logical time system (LTS) is introduced .
Presentation of the data is performed based on a comparison of the LTS with the real-time cloc k
of the sink workstation . Sinks and sources interacting in a logical group are tied to the same LT E
The RTE provides for the presentation of LDUs according to the LTS and the current real tim e
Scheduling techniques are capable of providing this in-time playback For synthetic-synch , th e
application defines an interaction time and an event to happen . From the implementation point o f
view, application code can be linked into the RTE, or time-sharing code can be called from the RT E
(upcall) .
Although the goal is to have isochronous data streams at the sink devices . it is not necessary t o
have isochronous communication in all of the components in a communication path . For instance .
it is sufficient to have upper bounds on delay for each individual component . With this assumption .
buffering can be used to achieve isochronism, but this can lead to a waste of storage, especiall y
for video . Restricting jitter ("jitter control") at intermediate gateways drastically reduces total buffe r
requirements . Ferrari's approach can also be applied to system components in the end-system s
leading to what we call "weak isochronous" behavio r

Conclusion
Our work on synchronization is being performed as part of the HeiTS project . All the experienc e
to date indicates that synchronization requirements should not he viewed as an isolated issue The
system structure, the hardware capabilities, the operating system capabilities . the communicatio n
subsystem and its protocols, the kind of media, the coding techniques, and even the envisage d
types of applications . all influence the best synchronization techniques to use, a system-wide sol-
ution should be attempted .

ACM SIGCOMM

	

-91 –

	

Computer Communication Review


