Check for
Updates

SOME VIRTUES AND LIMITATIONS OF ACTION
INFERRING INTERFACES

Edwin Bos

Nijmegen Institute for Cognition and Information (NICI)
University of Nijmegen
PO Box 9104, 6500 HE Nijmegen
The Netherlands
E-Mail: bos@nici.kun.nl

ABSTRACT

An action inferring facility for a multimodal interface called
Edward is described. Based on the actions the user performs,
Edward anticipates future actions and offers to perform them
automatically. The system uses inductive inference to
anticipate actions. It generalizes over arguments and results,
and detects patterns on the basis of a small sequence of user
actions, e.g. "copy a lisp file; change extension of original
file into .org; put the copy in the backup folder".
Multimodality (particularly the combination of natural
language and simulated pointing gestures) and the reuse of
patterns are important new features. Some possibilities and
problems of action inferring interfaces in general are
addressed. Action inferring interfaces are particularly useful
for professional users of general-purpose applications. Such
users are unable to program repetitive patterns because either
the applications do not provide the facilities or the users lack
the capabilities.

KEYWORDS: programming by example, demonstrational
interfaces, multimodal interfaces.

1 INTRODUCTION

A recent development in human-computer interaction
concerns the creation of demonstrational interfaces (e.g.,
{17)). "Demonstrational interfaces allow the user to create
parameterized procedures and other high-level abstractions
without requiring the user to learn a programming language.
The key feature of a demonstrational interface is that the user
performs actions on concrete example objects (often, by
direct manipulation), but a more general-purpose procedure is
created. The term 'demonstrational’ is used because the user is
demonstrating the desired result using example values” [16,
page 11].

Demonstrational interfaces meet the needs of professional
users of general-purpose applications such as word processors
and drawing programs. These systems do not provide their
users ways to express their user-specific high-level tasks, so
the users have to decompose them into many atomic actions.
Repetition of such high-level tasks thus results in a series of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission,

© 1992 ACM 0-89791-550-X/92/0011/0079...$1.50

repetitive routine actions, obviously causing a feeling of
discontent. In principle, the programming facilities that
some applications offer could prevent discontent. By means
of writing parameterized macros or simple computer
programs the user could compile the atomic actions into a
single compound action. Unfortunately, most users lack the
capabilities or time required to learn to construct such
programs. Dealing with typed variables, control structures,
etc. requires abstraction in a field unknown to them. The
solution lies in the idea of having the system instead of the
user deal with abstraction: programming by example, the
first name for demonstrational interfaces.

Myers [16] provides a solid framework of most of the
demonstrational interfaces known to date. He reviews all
possible types of demonstrational interfaces, from the
simplest (e.g., Emacs' keyboard macros [19], in which the
user can enter macro recording mode, perform actions as
usual, stop macro recording mode, and invoke the macro
recorded), to the non-intelligent programmable ones (e.g.,
Smallstar [12], in which the user can edit a mixed text-and
graphics representation of a recorded script of actions and add
generalizations), on to the more intelligent, programmable
ones that infer generalizations from actions (e.g., Peridot
[15]; Metamouse [14]; and Eager [8], an interface that
automates repetitive tasks in the HyperCard environment and
does not require the user to go into a special recording mode).
Use of inductive inference distinguishes intelligent from
simple interfaces. If inductive inference is used, the system
infers from previous actions (the examples) which actions
shall probably be executed next.

This paper focuses on demonstrational interfaces with
inductive inference capabilities. Since in those interfaces the
user need not know nor even be aware of the programming-
by-example facilities, I prefer to use the name action
inferring interfaces. This name reveals the key issue better
than programming by example and demonstrational
interfaces. These terms suggest a conscious activity
(programming, providing examples) and the involvement of
dummies (viz. the examples), which is not the case in
inductive inference interfaces.

The goal of this paper is to examine some virtues and
limitations of action inferring interfaces. In order to be able
to do so, I developed (inspired by Allen Cypher's Eager) an
action inferring facility for the multimodal interaction

November 15-18, 1992

UIST92 79

http://crossmark.crossref.org/dialog/?doi=10.1145%2F142621.142631&domain=pdf&date_stamp=1992-12-01

module Edward [2]. I was particularly interested in exploring
action inference in a multimodal environment. So far, action
inference has only been applied in unimodal environments.
Edward, written in Allegro Common Lisp and running on a
DECstation, combines the positive features of the two
modalities of interaction, the language and the action
modality [4]. Edward integrates a graph-editor called Gr* [1]
and a Dutch natural language dialogue system called
DoNaLD [6], coupled by an interaction manager. One of
Edward's application domains involves a file system
environment with directories, several types of files, authors,
a garbage container and so forth. The user can interact with
Edward by manipulating the graphical representation of the
file system (a directed graph), by menus, by typed,
handwritten, or spoken natural language (NL) or command
language, or by combinations of these. Edward's output
comprises graphics and natural language (written and
spoken). Edward's knowledge sources include a semantic
network for type information (representing, e.g., that email
messages are files, which are computer concepts, which are
entities), a database for token information (representing, e.g.,
that <directory#2> contains <email#7>), and a context model
for salience information (representing, e.g., that
<directory#2> has just been mentioned and thus can be

2.1 Example I

]
- |
huls aagsen

SN
B o0 {5

framework dnld generation

el

referred to by "it"). The action inference facility I developed
has been incorporated in Edward's interaction manager.

The paper is structured as follows. First I will provide a
thorough view on Edward's inductive inference capabilities
(functionality and user interface). Next, I will describe in
some detail the resources and algorithms Edward uses to
anticipate future actions. Then, in order to stimulate
discussion and further research, some virtues and limitations
of action inferring interfaces in general are given.

2 ACTION INFERENCE IN EDWARD

1 start the description of action inference in Edward with an
extensive example. Figure 1 shows a file system interface,
with labeled bookcase icons for directories (e.g., huls and the
empty itk-dir), envelope icons for email messages, labeled
report icons (generation and gr2), slightly different report
icons for a special kind of report called spin-report (e.g.,
framework and dnld), and a bear icon representing the system,
In this example, the user puts copies of all reports into itk-
dir. In the rest of this section I will describe three different
aspects of action inferring interfaces, viz. inference,
execution, and management.

itk-dir

@

=
2 pooh gbgc

gr

™

invoer : copieer deze file,

Action patterns

Fig. 1a. Suppose the first action the user performs is entering the NL command "copy this file" (in the Dialogue window on the

lower left) after having selected the spin-report framework (Action

1).

80

uIST'92

Monterey, California

huls

BIEIE‘E

framework .- dnld generation gr2 pooh ghge (b)

copy'of_f“ramework

& Q@ W

invoer : copieer deze file. . l

Uitvoer; Ok

Invoer :

Fig. 1b. Next, the user moves the copy copy_of framework 1o itk-dir by redirecting the arc from huls to itk-dir (Action 2).

itk-dir

©

V.
4

copy_of _framework copy_of_dnid s/

[MIEIRTTITS Action palterns: copicer een spinrapport patroon {p#1}

HERHAAL: copieer een spinrapport; verplaats de copie naar itk~dir; |
TOTDAT alle spinrapporten 2ijn geweest.

Invoer : copieer deze file.

Uitvoer: Ok.

Invoer :

Fig. Ic. By selecting a menu option, another copy command is applied by the user, this time to the spin-report dnld (Action 3);
and the copy is redirected to itk-dir (Action 4). Upon completion, the system detects a pattern. The next action anticipated is
suggested, being the selection of the spin-report pooh, and the detected pattern is described in NL in the Action patterns window,
saying "REPEAT: copy a spin-report; move the copy to itk-dir; UNTIL all spin-reports have been handled".

November 15-18, 1992 UIST'92 81

claassen

copy_of _framework copy_of_dnld copy_of _generation

pos

N

2 Diatoguie 2%
nvoer . copleer de2e tile.

TOTDAT alle rapporten zijn geweest.
Uitvoer: Ok

Invoer : herhaal dit patroon.ll

HERHAAL: copieer een rapport; verplaats de copie haar itk-dir;

@

Fig. 1d. The user, however, selects another icon than anticipated, viz. the report generation (not a spin-report), and copies it
(Action 5). Now the system anticipates a different pattern, this time concerning reports in general instead of just spin-reports,
and suggests a graphical redirect of copy_of generation to itk-dir. Having seen this pattern description, the user commands

Edward to "repeat this pattern” (in the Dialogue window).

itk=dir

7

copy_»of;framewor k copy_of_dnld copy_of_generationcopy_of_gr2 mpy_&fﬁoh copy_of _gbge

&

FLTs

***Dialogue

Uitvoer: Ok.
Invoer : Il

Action patterns: copieer-eentrapport-patroon (p#2) -

HERHAAL: copieer een rapport, verplasts de copie naar itk-dir; Bk
TOTDAT alle rapporten zijn geweest.

©

@ W

Fig. Ie. Upon the command "Repeat this pattern.” (Action 6), all anticipated actions are executed automatically, resulting in six

copies of reports in itk-dir.

82 UIST'92

Monterey, California

2.2 Inference

Edward constantly monitors the user's actions and signals
when it finds a repetition of actions. After 4 actions in
Example 1, the iterative pattern "copy a spin-report; move
the copy to itk-dir" is detected. To indicate its detection ot a
pattern, Edward does three things: First of all, to show that
Edward ‘knows’ what's going on, an idea icon appears above
the system icon. Secondly, Edward generates a (visual and,
optionally, audio) NL description of the pattern detected (see
the window in the lower right corner of Fig. 1c). Thirdly,
Edward suggests the action it expects the user to execute
next. If that action is the selection of an object, the system
points at that particular object and the object is marked by
small arrows (see pooh in Fig. 1c). To simulate the pointing
gesture, an arrow grows from the system icon to the icon of
the object. This pointing gesture simulation is also used if
Edward generates multimodal referring expressions in
answers to user questions. E.g., "Stuurde Alice deze email?"
"Nee, deze -~ email stuurde zij." ("Did Alice send this
email?" "No, she sent this » email."), where ~ stands for
a pointing gesture to the visual representation of the referent
of the concurrent phrase. The object pointed at by Edward
remains marked by small arrows as long as the user does not
act. If the argument of the next action has already been
selected, the anticipated command is suggested, in the same
modality as it was given previously. If the previous
command was given by menu option selection, the menu
automatically pops up and the option corresponding to the
command is preselected. If the previous command was given
in the action modality, which, for example, is the case in
dragging icons and redirecting arcs, a simulated pointing
gesture is used. For example, an arrow growing from the
current icon position to the expected position, where the icon
subsequently is depicted by contours only; or an arrow
growing to the expected new start or end node for an arc (see
Fig. 1d). If the previous command was given in natural or
command language, the expected next action is also described
in that modality, e.g., "Verplaats gbgc naar claassen.”
("Move gbgc to claassen.”) or "cl itk-dir". This description is
displayed after the user's input prompt in the Dialogue
window.

All these indications of Edward's detection of an action
pattern follow the same design goal as was set for Eager:
minimal intrusion of the user's actions. And as in Eager,
executing an action that matches the anticipation is
implicitly confirming; performing any other action is
implicitly rejecting.1 The start and end of action sequences
do not need to be explicitly stated.

It will be obvious that two similar actions will quite often
be insufficient to exhibit the user's true intentions. In
Example I, for instance, Action 5 reveals that not just spin-
reporis should be moved to ifk-dir. Hence, based on the last 5
actions, Edward composes the iterative pattern "copy a
report; move the copy to itk-dir". It anticipates the selection
of the arc representing the contain-relation of

1mn the language mode, any other key than Enfer erases the
anticipated action description.

copy_of_generation, followed by a redirect command. In
Edward's Flags window a variable named 'reliability’ is
available for user adaptation. It controls the number of
iterations that must have been performed by the user before
Edward starts anticipating. It defaults to 2; there are two
cases for which 1 additional iteration is required: singular
patterns (i.e., patterns consisting of one action only), and
patterns with actions expressed in natural or command
language only (because, unlike other modalities, in language
the user can express abstraction explicitly).

2.3 Execution

Once Edward has detected a repetitive pattern and has shown
this by providing anticipation feedback, the user can tell it to
automatically execute the inferred actions. The user can give
the command to execute inferred actions in three different
ways. First the user can click on the system icon. This icon
has been dynamically attributed with an idea icon upon
pattern detection, and simulated pointing gestures have
originated from it, so it is likely to be associated with
automatic action execution. The second option is selecting
the "repeat pattern”-option from the main menu. The third
option is giving a command in the Dialogue window, either
in natural language (e.g., "Voltooi de iteratie." ("Complete
the loop."); "Herhaal dit patroon!" ("Repeat this pattern!")) or
command language ("“rp"). In addition, a "next action" and a
"next step” command are available, for respectively
automatic execution of the next action and the next actions
in the current iteration only.

During execution, anticipation feedback is withheld. Action
feedback, however, is not withheld: The graphical
representation is updated after each action (e.g., by creating a
new icon after a copy action). In this way the world changes
gradually instead of at once, which makes it easier for the
user to update her mental model of the state the system is in.

It is of course of great importance that the user feels
confident about Edward's inductive inference capabilities.
Confidence is mainly gained by instantiation of the next user
actions anticipated by the system and the NL description of
the pattern detected. Additional confidence is gained by
successful inference in the past (if Edward anticipated a
couple of actions correctly, it will anticipate them all). The
presupposition that users themselves apply induction was
found a valid one in Eager's small user study [8]. However, if
recovery from an unsuccessful automatic action execution
requires a lot of effort, even confident users will hesitate to
have Edward complete the loop. So ease of recovery is
crucial. In Edward, the user can give the undo command to
return to the situation previous to the execution command.
Going back one by one (either per single action or per set of
actions in an iteration) through the states that resulted from
the automatically executed actions is also possible.

2.4 Management

On some occasions the repetitive pattern of actions might be
needed again. Suppose the user of Example I wants to copy
some new reports and redirect them to itk-dir later on in her
session. Of course, she can copy again, resulting in the
creation of a new pattern. However, Edward (unlike Eager)
also provides her access to the pattern once constructed. Each

November 15-18, 1992

uUIST'92 83

pattern is automatically named by Edward. Since automatic
naming is a research subject in itself, no effort has been
spent to have Edward summarize a pattern into a proper
name. Instead the first action is used (e.g., for the first
pattern detected in Example I "copy-a-spin-report-pattern”).
Shorter aliases are generated as well (e.g., "p#1"). If the user
does not like an automatically generated name, she can
change it. Pattern names and aliases are communicated to the
user in the title bar of the Action patterns window (see Fig.
1c, lower right). Generally, the user will first want to view a
pattern inferred in the past, before using it again. This can be
achieved by giving commands like "Beschrijf p#1."
("Describe p#1."), upon which Edward displays a NL
description of that particular pattern. If its description
matches the user's needs, the pattern can be executed again,
e.g. by "Herhaal het." ("Repeat it.").

Instead of simple reuse, the user might want to perform a
slightly different pattern, e.g., instead of moving copies to
itk-dir, moving them to claassen. Therefore, the user can edit
existing patterns. Upon the edit-pattern command, Edward
displays a form on which for each action the command,
arguments and results are listed (on separate lines). The user
can edit these NL descriptions. E.g., changing a constant
result such as "itk-dir" into "claassen", or a variable
argument such as "spin-reports” into "emails". Changing a
constant into variable or vice versa, changing a command
into another, erasing an entire action, and other pattern
structure editing is not (yet) supported. After a pattern has
been edited, both the original and the edited pattern are
available for use.

3 EDWARD'S RESOURCES AND ALGORITHMS

3.1 How the actions are inferred

Edward stacks descriptions of all so-called core actions the
user performs. Edward's undo mechanism makes use of this
action description stack. Currently, in the file system
domain, the core actions are copy, delete, redirect, move,
close, open, format, create, and rename commands. The
number of core actions has no effect on the quality of the
inductive inference. Note that selection is not stacked, nor are
information requests, menu calls, scroll actions, and actions
involving patterns (complete, repeat, edit). Hence, such
commands do not mess up patiern construction.

Of each core action just completed, a description is pushed
onto the stack. Descriptions list the command of the core
action, the argument to which the action was applied, the
result of the action, if any, and the modality the action was
performed in. Upon stacking, Edward tries to detect an action
pattern. The modality the actions are performed in is
irrelevant to the pattern recognition system. Edward
examines the stack and looks for a similar action description.
Actions are considered similar if and only if 1) the commands
are the same, and 2) the arguments are either of the same
type or of the same supertype within a certain semantic
distance (semantic distance between concept A and B is
defined as the number of arcs in the shortest path from A to
B in the semantic network). The distance restriction is
necessary since all arguments are of supertype <concept>.
Hence, because spin-reports and women, for instance, are

semantically too remote, renaming dnld and renaming Alice
are not considered similar actions.

If a similar action has been found on the stack, that point in
the stack is marked. If new actions pushed onto the stack
match the actions following the marked one, the user is
assumed to perform the actions of the second iteration of the
loop. As soon as enough (i.e. 'reliability’ number of)
consecutive similar actions have been encountered, Edward
announces that it has detected a repetitive pattern. As soon as
a new action does not match the pattern (e.g., Action 5 for
p#l in Example I), the stack mark is removed and the pattern
is discarded. As Example I shows, the very same action may
trigger the immediate creation of a new pattern. This new
pattern is created entirely independent from the previous one,
i.e., it is not an expansion of its fairly similar predecessor.

Edward generalizes over the arguments of similar actions. It
tries to find an assertion valid for all arguments, by
following a combination of two rules of induction: the
method of agreement and the method of difference. These
rules of induction are the two most commonly used and were
formulated by John Stuart Mill (in [10]). Examples of
generalizations inferred by Edward are: all arguments are the
same (e.g., <directory#2>); all arguments have a direct
relationship to the preceding action (e.g., the result of it); all
arguments are of the same type (e.g., all spin-reports); all
arguments are of the same type and have certain features in
common (e.g., all empty directories, all closed directories, all
leaves in the directory tree, i.e. not containing
subdirectories); all arguments are of the same type and have a
particular relation token filler in common (e.g., all persons
with a live-in relation with place filler <town#7>); all
arguments are of the same supertype within a certain
semantic distance (e.g., <email#9>, <spin-report#12>, and
<dissertation#2> are all files). The order in which assertions
are tested for validity is fixed, and works from specific
(identical) to general (same supertype). This order yields
conservatism in the patterns generated.

When a pattern has been detected, a program is constructed.
Its body consists of statements, each describing a set of
similar actions. The statement describing the similar actions
1 and 3 of Example 1 is (copy (a spin-report}), where (a spin-
report) denotes the variable argument. Apart from a command
and argument, statements can also contain a result. Move
action statements, for example, contain a result describing
the positions where to move to. This can be a constant, i.e.,
a fixed position such as <screen-position#6>, but also a
variable, a so-called position pattern. Edward generalizes over
positions by laying a grid over the graphical display. Like
Eager, Edward recognizes sequences of numeric data with a
given tolerance, which in Edward's case depends on the icon
width and height. For example, (50,100), (93,-49), (127.-
205) is generalized as (50+ix40,100-ix150) with a tolerance
of 5. If Edward fails to find an absolute pattern, it tries to
find a relative position pattern, for instance, a shift of 40
towards the left. If no position pattern can be found,
inference fails.

Each statement within the body of the program is associated
with a stop condition. The body of the loop is executed until

84

UIST'92

Monterey, California

one of the stop conditions is satisfied. The stop condition of
the statements describing similar actions 1, 3 and 5 of p#2 of
Example I is "all reports that are not the result of any copy
action within the loop have been copied". The copies
themselves are excluded from the loop because otherwise an
eternal loop would be created (they would be copied too,
etc.). Resulis of actions must always be excluded. Other
cases of exclusion concern action sequences in which the user
aligns icons next to a 'base icon'. Suppose, in Fig. 1a, the
user would, instead of copying framework, want to align all
other spin-report icons under framework (the base icon).
Clearly, she does not want to move framework, that icon is
already aligned without any action. In order to prevent
automatic movement of framework towards the end of the
column of aligned icons, framework must be excluded from
the set of arguments of the move action statement of the
loop. Exclusion is achieved by matching all icons with the
position pattern specified in the move action statement. E.g.,
if framework is at (150,100) and the position pattern is
(150,75-ix25), framework is excluded because its position
matches the position pattern for i=-1.

Apart from a stop condition, an argument order function is
also associated with each statement. Examples of argument
order functions are "declining x-position"” and "alphabetical
descending of label". The argument order will be used in
execution to determine which of the possible candidate
arguments should be selected first (e.g., in Fig. 1c, pooh is
assumed to be selected next and not gbgc). Sometimes no
order can be determined by Edward; perhaps the user chose
the arguments randomly, but it is more likely that the user
applied an ordering criterion unknown to Edward.

3.2 Instantiation and execution

If a pattern has been detected, the next action anticipated is
instantiated (e.g., redirect in Fig, 1d). Instantiation is
effective because it communicates the pattern in terms of the
interface language. The Eager user study showed that users
have no difficulties with instantiation. The argument of the
next action is determined by its statement, the argument
order function associated with it, and all the corresponding
arguments already on the action stack. First all possible
arguments described by the statement are compiled (e.g.,
<directory#2>; all reports). Then, in case the statement
contains variables, the corresponding arguments and results
already on the action stack are omitted, as are base icons, and
the argument order function is called. This function selects
the first one in the set of candidates. For instance, the
declining x-position function yields the first file icon next to
the previous one. When no argument order function is
specified, a random object is taken from the set. Sometimes
the user selects another object than is anticipated by Edward.
If this object is a member of the set of possible candidates,
Edward simply anticipates the next action for that particular
argument. The pattern is not discarded until the user performs
an action dissimilar to the actions in the pattern.

Whenever a pattern is detected, Edward creates a patern token
(e.g., <pattern#5>), and brings it into the context model. As
long as the pattern can be repeated, it remains in the context.
If the user diverges from the pattern, the token is deleted.
Using the context model, Edward is able to understand

expressions like "Repeat it." and "Complete the loop." in
exactly the same way as other referring expressions are
understood (a detailed description of referent resolution in
Edward is in preparation [5]).

If Edward is requested to execute the program it constructed
from the repetitive pattern, it consecutively anticipates the
next action, performs it, and stacks it, until a stop condition
is satisfied. Before execution, the program is compiled in
order to prevent endless loops. Edward checks the body of the
program on constants. If all statements concern constants
only (e.g., close <directory#2>, and open <directory#2>), the
user is prompted for the number of iterations.

The natural language description of the program to be
executed is derived from the action pattern. If constants are
involved, Edward generates an unambiguous referring
expression. Usually this yields the name of the constant
(e.g., "itk-dir"), but nameless objects can be described as well
(e.g., "Gerard's email™). For a description of the algorithm
and resources used to generate referring expressions by
Edward, 1 refer to [3]. If variables are involved, Edward uses
the type information stored in the lexicon (particularly the
gender information of the lemma associated with the type:
"copie” ("copy"), €.g., is a male noun and must be referred to
with, e.g., "hem" ("him") or "zijn" ("his")). If position
formulae are involved, LISP expressions are used for the
description (e.g., (+ (* i 20) 30)).

The NL description is not stored but is generated each time
when required (e.g., when the user wants to view a pattern
before reusing it). This is done in order to be able 10 include
new information such as names for previously nameless
objects, and to deal with possible ambiguities in the new
context. For example, another email from Gerard could have
come in, making "Gerard's email" ambiguous. Edward will
generate a new unambiguous expression, e.g., "Gerard's
email about parsing".

NL descriptions are also generated for the form that is
displayed if the user wants to edit an existing pattern. For
arguments and results, these descriptions are noun phrases,
e.g., proper noun phrases such as "itk-dir", or indefinite
descriptions such as "een spinrapport" ("a spin-report"). The
descriptions edited by the user are interpreted by Edward's NL
analysis component. If any ambiguities remain after
analysis, Edward will ask the user for further clarification.
E.g., "does 'Gerard's email’ refer to 'Gerard's email about
parsing'?”. The interface style form-fill in is preferred over
free editing of the NL description in the Action patterns
window in order to prevent modifications that are not
supported by either the action inferring facility or the NL
component.

An editable LISP program, displayed at the user's request, is
also directly derived from the pattern. This LISP-notation is
provided in order to offer, in the future, possibilities to alter
the control structure of the loop, which is not possible in the
NL description. Currently, however, only the editing of
variables and constants is supported; adding conditionals is
not yet supported, though implementation seems feasible.
Eventually, a scripting language should replace LISP.

November 15-18, 1992

UIST'92 85

4 SOME VIRTUES OF ACTION INFERENCE

The most important virtue of action inferring interfaces such
as Edward is that they can reduce user effort and prevent
annoyance caused by tedious manual effort. To get a better
understanding of how inductive inference works, let us take a
look at Norman's Theory of Action [18]. His model
distinguishes seven stages in the user's task performance.
"The primary, central stage is the establishment of the goal.
Then to carry out an action requires three stages: forming the
intention, specifying the action sequence, and executing the
action. To assess the effect of the action also requires three
stages [..]: perceiving the system state, interpreting the state,
and evaluating the interpreted state with respect to the
original goals and intentions" [18, page 42]. The model has
to be interpreted recursively, that is to say, intentions are
subdivided into subintentions, etc., until they are atomic and
can be dealt with in the next stage.

If we apply the model to the interactions of Example I, we
see that the user subdivides her compound? intention "copy
all reports to itk-dir" into the individual atomic intentions
“"copy framework”, "move copy", etc. The activities of the
system can be divided over the same seven stages as Norman
distinguishes for the user. In fact, all human-computer
interactions can be integrated into one model, where the
user's output at the physical level equals the system input at
that level, and where the system output is the user's input.
Moreover, both interactors maintain a model of the other
interactor's activities. In the literature these models usually
are referred to as a conceptual model (maintained by the user)
and a user model (maintained by the system). Inductive
inference means having the system construct a representation
of the user's compound intention on the basis of a sequence
of user signals. The systems' representation of the user's
compound intention is then mapped onto the system's own
compound intention, which, at user request, is subsequently
subdivided into atomic intentions, which are formulated and
executed by the system in succession.

If the 'inference’ effort, that is the sum of the effort the user
must spend to understand the inference of the system and to
command the system to automatically perform the actions
inferred, is less than the effort the user must spend to execute
the actions herself, then inductive inference is worthwhile,
This is typically the case with repetitive actions. Another
type of situation in which inductive inference can be realized
is when a sequence of actions is performed that is typical for
the domain. User studies could provide the knowledge about
ways to achieve certain goals in the domain; this knowledge
could be incorporated in the inference mechanism. If goal g
typically is achieved by intention sequence ij,...i,, this
knowledge could be incorporated and used when a particular
user has executed some actions corresponding with the start
of the sequence. Links with intelligent help facilities are
obvious: If g can also be achieved by one single intention i,
the system could suggest the use of i next time. The
incorporation of error scripts, that is, action sequence

2In fact, it need not be compound: the user could also have
formulated her intention in one single natural or formal
language expression.)

descriptions that lead to typical errors, could enable the
system to prevent the user from entering error paths too
deeply and to suggest correct paths.

5 SOME PROBLEMS OF ACTION INFERENCE

5.1 Inductive inference

It is known from philosophy that inductively derived rules
cannot be proven correct [10, page 4]. Therefore, it will
come as no surprise that there are a couple of fundamental
problems of inductive inference in the interface. First of all,
there is no guarantee that the actions that are input to the
inductive inference mechanism are part of a sequence. These
actions might be the only ones the user wants to execute,
that is, she might not want to iterate at all.

Secondly, noise can arise because deep-structure intentions
are induced from surface-level actions. Users can make errors
in the execution of an action, and in the translation of their
intentions, both resulting in another action; they also can
form inappropriate intentions (respectively called slips and
mistakes by Lewis and Norman [13]). Moreover, other
intentions which cannot be reasonably expected may exist:
the user might, for instance, not at all intend to align file
icons while dragging, but intend to make some space
available by moving the objects, which, by sheer luck or by
motoric constraints, end up in a line.

Thirdly, there is the problem of overgeneralization. For
example, a user may copy only reports of people who are
present in her room at that particular moment. Of course,
many patterns can be detected (enough to justify action
inferring interfaces in my opinion), both domain independent
ones and domain dependent ones. Perfect pattern detection
(i.e. individual user and situational independent), however, is
in principle impossible, even if systems are equipped with
additional information channels such as vision systems and
full knowledge of the world. Even then, copying the reports
of the people who were present at the user's birthday party
last night could not be detected. This problem of
overgeneralization, by the way, affects people too, "but -
unlike machines we people have a background of common
sense: expert knowledge against which the limitations of
such a potential overgeneralization can be tested” [10, page
9].

5.2 Anticipation feedback

The aim of anticipation feedback is to make clear which
actions are inferred by the system. Three options are
available, each with their own problems.

1) Instantiation

This option was invented by Cypher [8] and is adopted in
Eager and Edward. It shifts the burden of abstraction onto the
user. This causes a termination problem: Instantiation leaves
determination of when the loop terminates open to the user.
Sometimes she might determine termination wrong, so she
will end up with a prematurely terminated loop or with a
loop continuing too long. An additional problem is that in
action mode interfaces, instantiation sometimes violates the
design goal of minimal intrusion. If, for example, the next
action involves an argument outside the current viewport,
reference will be difficult.

86

uIST 92

Monterey, California

2) Generalization

This option is adopted in Edward (twice: the NL and the
LISP description). Generalization is problematic because the
information to be conveyed is abstract, while the users are
assumed to have difficulties in producing abstractions. A NL
description is a way of generalization in which abstraction is
dealt with in the user's own language (e.g., "all reports”,
"every lisp file of Gerard in the backup directory").
Readability problems arise if the patterns to be described get
more complex. First, lengthy patterns imply lengthy
descriptions, careful study of which may require even more
user effort than needed for the manual execution of the
actions. Secondly, the incorporation of conditionals reveals
the ambiguity problem of NL: Use of several different
conjunctions results in incomprehensible descriptions flooded
with ands and ors. Furthermore, NL descriptions are not
necessarily interface language expressions. Reference to non-
linguistic interface concepts such as positions and areas, for
instance, is therefore problematic. Besides, it is important to
note that a NL description requires a user model. Using the
system's internal model instead could yield incorrect
descriptions, as for instance Cypher found out in Eager
which produced "copy every other card" where "copy every
card" was appropriate {9]. Maintaining a perfect user model,
however, is still problematic.

3) Final state description

This option was chosen in a preliminary implementation of
Edward's action inferring facility. It may be seen as a
combination of the first two options: instantiation of all the
actions anticipated. When dealing with a graphical
representation, this option often results in information
overflow, especially if objects outside the current viewport
are involved. When dealing with language, complex or
lengthy iterations result in lengthy descriptions in which
missing or undesired actions are difficult to notice.

Although Edward's multimodal environment provides a
solution to some extent (by combining instantiation and
generalization), a complete solution to the anticipation
feedback problem is still far away. It is obvious that
multimodality is a required feature: language for providing
abstraction, and graphics for referring to non-linguistic
interface concepts. Multimodal interfaces with knowledge
about the way people access information, and with an
algorithm to decide which option to choose in individual
cases (depending on the type of actions, the capabilities of
the user, etc.), might provide a solution. Initial steps in this
direction have already been taken (e.g., [7]).

6 CONCLUSIONS

In this paper I have described an action inferring interface
facility for the multimodal environment Edward. The
inductive inference method used is domain-independent. The
facility has two important features, new in action inferring
interfaces. The first important feature is multimodality: the
use of NL combined with simulated pointing gestures
facilitate the user's decision in making use of the action
inference facility. NL provides a language for abstraction, it
enables the system to convey information about the
termination of the loop. The second important feature is

reuse of patterns (possibly edited). Here, too, NL plays a
major role.

To test the usefulness, a usability study is needed. However,
there are no advanced/expert users of Edward available who
are unfamiliar with the inference facility. A pilot study has
been conducted with novices, unfamiliar with both Edward
and action inferring facilities. These users quickly gave
commands for automatic action execution. However, they
never used the pattern management facilities. A full usability
study of Edward, including the action inferring facility, is
planned for the near future. I have no reasons to expect that
the outcome with respect to usefulness will be worse than
the Eager user study [8], which revealed a high degree of user
satisfaction. In fact, I expect to find an even higher degree of
satisfaction, due to the availability of NL descriptions and
pattern reuse.

Based on the experiences with Edward, I have listed several
virtues and limitations of action inferring interfaces in
general. Although these lists are by no means exhaustive but
rather tentative, I conclude that action inferring interfaces are
valuable contributions to the field of human-computer
interaction. Since the problems with inductive inference,
though fundamental, have not stopped us from using it in
daily life, I believe that the problems with action inferring
interfaces will not stop users from using them.

Acknowledgements

This research was carried out within the framework of the
research programme Human-Computer Communication
using natural language (MMC). The MMC programme is
sponsored by SPIN Stimuleringsprojectteam Informatica-
onderzoek, Digital Equipment B.V., BSO, and Sun
Microsystems B.V. Thanks to Allen Cypher for inspiring
me and for discussing several issues of action inferring
interfaces with me. Additional thanks go to Wim Claassen,
Alice Dijkstra, and Nick Terhorst for their comments on the
manuscript.

7 REFERENCES

1. Bos, E. (in press). A multimodal syntax-directed graph-
editor. In L. Neal & G. Szwillus (Eds.) Structure-based
Editors and Environments. New York: Academic Press.

2. Bos, E.,, Claassen, W., & Huls, C. (forthcoming).
Edward: a multimodal interface. SPIN/MMC research
report. Nijmegen: NICIL

3. Claassen, W. (1992). Generating referring expressions
in a multimodal environment. In: Dale, R., Hovy, E.,
Rosner, D., & Stock, O. (Eds.) Aspects of automated
natural language generation. Proceedings of the 6th
international workshop on natural language generation,
Trento, Italy, April 5-7. Berlin: Springer, pp. 247-262.

4. Claassen, W., Bos, E., & Huls, C. (1990). The Pooh
Way in human-computer interaction: towards
multimodal interfaces. SPIN/MMC Research report #5.
Nijmegen: NICL

5. Claassen, W., Bos, E., & Huls, C. (submitted).
Automatic referent resolution in deictic and anaphoric
expressions. Submitted to Computational Linguistics.

November 15-18, 1992

UIST'92 87

10.

11.

12.

13.

Claassen, W. & Huls, C. (1991). DoNaLD: A Duitch
Natural Language Dialogue system. SPIN/MMC
research report #11. Nijmegen: NICI.

Conati, C. & Slack, J. (1992). Accessing information
through graphics. ECAI'92 Conference proceedings,
Vienna, August 3-7.

Cypher, A. (1991). Eager: programming repetitive tasks
by example. In: Robertson, S.P., Olson, G.M. &
Olson, 1.S. (Eds.) Reaching through technology.
CHI'91 Conference proceedings, pp. 33-39.

Cypher, A. (1992). Personal communication.

Forsyth, R. (Ed.) (1989). Machine learning. London:
Chapman and Hall.

Frohlich, D.M. (1991) The design space of interfaces.
In: Kjelldahl, L. (Ed.) Multimedia: principles, systems
and applications. Berlin: Springer-Verlag.

Halbert, D.C. (1981). Programming By Example. PhD
Thesis. Computer Science Division, Dept. of EE&CS,
University of California.

Lewis, C. & Norman, D. (1986). Designing for error.
In: Norman, D.A. & Draper, S.W. (Eds.) User centered
system design: new perspectives on human-computer
interaction. Hillsdale, NJ: Lawrence Erlbaum
Associates.

14.

15.

16.

17.

18.

19.

Maulsby, D.L., Witten, LH., & Kittlitz, K.A. (1989).
Metamouse: specifying graphical procedures by
example. Proceedings of the SIGGRAPH'89, July
1989, Boston, MA.

Myers, B.A. (1988). Creating user interfaces by
demonstration. Boston, MA: Academic Press.

Myers, B.A. (1990). Demonstrational interfaces: a step
beyond direct manipulation. In: Diaper, D. &
Hammond, N. (Eds.) People and computers VI.
Cambridge: Cambridge University Press.

Myers, B.A. (Ed.) (1991). Demonstrational interfaces:
coming soon? In: Robertson, S.P., Olson, G.M. &
Olson, JI.S. (Eds.) Reaching through technology.
CHI'91 Conference proceedings, pp. 393-397.

Norman, D.A. (1986). Cognitive engineering. In:
Norman, D.A. & Draper, S.W. (Eds.) User centered
system design: new perspectives on human-computer
interaction. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Stallman, R.M. (1979). Emacs: the extensible,
customizable, self-documenting display editor.
Technical report #519. Cambridge, MA: MIT Al Lab.

88

UiST'92

Monterey, California

