
New Sparseness Results on Graph Spanners

Barun Chandra* Gautam Dast Giri Narasimhant Josk Soares$

March 13, 1992

Abstract

Let G = (V, E) be an n-vertex connected graph with

positive edge weights. A subgraph G’ = (V, E’) is a t-

spanner of G if for all u, v E V, the weighted distance

between u and v in G’ is at most t times the weighted

distance between u and v in G. We consider the problem

of constructing sparse spanners. Sparseness of spanners

is measured by two criteria, the size, defined as the num-

ber of edges in the spanner, and the weight, defined as

the sum of the edge weights in the spanner. In this pa-

per, we concentrate on constructing spanners of small

weight.

For an arbitrary positive edge-weighted graph G, for

any t > 1, and any c >0, we show that a t-spanner of G

with weight O(n*) . wt(MST) can be constructed in

polynomial time. We also show that (logz n)-spanners

of weight O(1) . wt(MST) can be constructed.

We then consider spanners for complete graphs in-
duced by a set of points in d-dimensional real normed

space. The weight of an edge Zy is the norm of the ~y

vector. We show that for these graphs, t-spanners with

total weight O(log n) . wt(MST) can be constructed in

polynomial time.

1 Introduction

Let G = (V, E) be an n-vertex connected graph with

positive edge weights. The distance in G between two
vertices u, v c V is the length of the shortest weighted

path between u and v and it is denoted by d~(u, v). A

subgraph G1 = (V, E’) is a t-spanner of G if for every

u, v e V, dG/(u, v) ~ t .dG(u, v). The value oft is called

*Dept. of Computer Science, University of Chicago, Chicago,IL
60637.

t M&hematica,l %ience.s Dept. , Memphis State Uniw==ity
$university of Chicago, and Universidade de Siio Paulo, Brazil.

Supported by CNPq proc 203039 /87.4 (Brazil), and NSF grant
CW3?-9014562.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

the stretch factor of G’.

Sparseness of spanners is measured by two criteria,

the size and the weight. The size of a graph G, size(G),

is defined as the number of edges in G and the weight of

G, wt (G), is defined as the sum of the edge weights of G.

The minimum spanning tree (MST) of G is obviously

the sparsest possible connected spanner both in terms

of size and weight, but its stretch factor can be as bad

as n – 1 [1]. The sparseness of a spanner G’ is judged

by comparing it to the size and weight of the MST.

Spanners have numerous applications. Spanners for

Euclidean graphs, are of special interest for robotics re-

searchers, and have been considered in several works [1,

7, 8, 9, 13, 20, 21, 22, 24]. Unit edged spanners appear

in distributed systems and communications network de-

sign [2, 16, 17], and in genetics [4]. A similar concept,

dilation, appears in the design of universal parallel ma-

chines [5]. In [15], spanners have been investigated for

chordal graphs and directed graphs. Recently, spanners

of graphs with arbitrary positive edge weights have been

investigated [1, 3, 8].

In all the above research, fairly tight sparseness re-

sults have been achieved in the size of spanners, but

not in the weight. This paper concentrates mainly on

the weight criterion, and presents significantly improved

results.

We first consider arbitrary positive edge-weighted

graphs. Peleg and Schaffer [15] studied this problem

for the special case of unit edge-weighted graphs. For

these graphs, the size and weight represent the same

quantity. They showed that for every t there are

infinitely many n such that there exists an n-vertex

graph with the property that every t-spanner for this

graph requires fl(n . n+) edges. For arbitrary posi-

tive edge-weighted graphs, this gives a lower bound of

fl(n.n~) = Q(n~).size(IMST) on the size of a t-spanner,

and a lower bound of Q(n+) . wt(MST) on the weight.

They also proved an upper bound of O(n . n$) on the

size of spanners of unit edge-weighted graphs. How-
ever, the techniques used to derive the upper bound for

unit edge-weighted graphs do not generalize to arbitrary
edge-weighted graphs.

Spanners for arbitrary edge-weighted graphs were

considered by Althofer et al. [1], and it was shown that a

natural greedy algorithm constructs t-spanners with size

8th Annual Computational Geomet~, 6/92, Berlin, Germany

01992 ACM 89791-518-6/92/000610192 $1.50

192

http://crossmark.crossref.org/dialog/?doi=10.1145%2F142675.142717&domain=pdf&date_stamp=1992-07-01

O(nl+~), and weight less than (1+ ~) . zot(MST).

While the size bound is optimal within a constant factor

in the exponent of n, the weight bound is suboptimal.

Recently [23], the upper bound on the weight was re-

duced to O(n~’~) . wt(MST), which is still subopti-

mal. No spanners of smaller weight were known to exist

for arbitrary edge-weighted graphs.

We are able to improve the weight bound of the

spanner constructed by the same greedy algorithm (de-

scribed in Section 2) through improved analysis. Our

results show not only the existence, but also the polyno-

mial time constructibility, of spanners which are almost

optimal in both size and weight.

Theorem 1.1 Let G be any n-vertex connected graph

with positive edge weights. Let t > 1 be any real number.

For all c >0 the greedy algorithm constructs a t-spanner

of G with weight O(n~) . wt(MST). The constant

implicit in the big O notation depends only on t and e.

The above result and the size bound of O(n”~) o

size(llST) from [1] are clearly optimal within a factor

of 2 in the exponent of n, but are likely to be optimal

even in the exponent of n; as we observe in Section 3,

any improvement in the exponent of n in the expression

above would imply a better bound for an open extremal

graph theory problem.

We next consider the problem of finding sparse span-

ners for geometric graphs. A geometric graph is a com-

plete graph induced by a set of points in d-dimensional

real normed space. The weight of an edge zy is the norm

of the @ vector. Various schemes have generated O(l)-

spanners for the cases of Euclidean (J52 metric) and

other LP metrics [1, 7, 9, 11, 12, 13, 14, 20, 21, 2:!, 24].

The primary focus of most of these papers was to clesign

efficient algorithms for spanner construction. However,

though the spanners in these results had O(n) edges

(which is optimal), they could be arbitrarily large in to-

tal edge weight. A few papers considered weight sparse-

ness of spanners of geometric graphs in two-dimermional

Euclidean space [1, 9, 14], and for this special case these

papers show that there exist 0(1)-spanners with size

O(n) and weight O(1) . wt(MST). However, the tech-

niques used cannot be extended to higher dimensions,

for which the only weight bounds known were bounds

for arbitrary edge-weighted graphs. In this paper we use

two different techniques to prove much smaller weight

bounds on spanners for geometric graphs.

For geometric graphs under any norm and in any di-

mension, we prove the existence of (and the polynomial
time constructibility of) spanners of both optimal size

and small weight. The weight result may not be optimal

since the best known lower bound is the trivial one of

Q(l) . wt(MST).

Theorem 1.2 Let G = (V, E) be any n-vertex geomet-

m“c graph, where V is a set of points in d-dimensional

space under an arbitrary norm. Let t :> 1 be any real

number. There exists a polynomial time algorithm that

constructs a t-spanner of G of size O(n) and weight

O(log n) . wt(MST). The constant implicit in the big

O notation depends on, t, d and the norm.

We show that the greedy algorithm produces the de-

sired spanner. There is a new cent ributicln here in terms

of size sparseness. Although various schemes [1, 20, 21,

24] have produced spanners with bounded average ver-

tex degree (this follows since these spanners have size

O(n)), it was not known whether bounded degree span-

ners exist for geometric graphs. We show that the span-

ners built by the greedy algorithm have bounded degree

under any norm and for any dimension. The bound on

the maximum degree depends on t, the dimension, and

the norm. Constructing bounded degree spanners has

applications in the problem of selecting the kt~ smallest

inter-distance among n points in space [21].

We obtain an alternative proof albout the con-

structibility of t-spanners with weight O(log n) .

wt (MST) for geometric graphs under an LP norm.

We present, for complete graphs from arbitrary met-

ric spaces, a transformational technique for converting

spanners of small size into spanners of small size and

small weight. Using Vaidya’s [24] or Salowe’s algorithm

[21] for O(n) size spanners, and then the transforma-

tional technique, we c)bt ain the small weight spanner.

The advantage of this method is that it is much faster

than the greedy algorithm.

One unifying aspect of this paper is that the proof

structures of most of the theorems are similar, although

additional geometric properties are exploited to give

stronger results for geometric graphs. To bound the

weight of the spanner G’, we cover the edges in G’

by a collection of artificially constructed graphs, each

of which has edges of approximately thle same weight.

The weight of any of these graphs can be bounded by

first estimating its size and scaling the size by its max-

imum edge weight. Finally we cumulate the weights of

all these graphs to obtain the desired lbound. In con-

structing these graphs, we use a technique of collapsing

clusters of original vertices into single vertices. For the

spanners constructed by the greedy algo~rithm this clus-

tering is purely for the purposes of analysis, but in the

case of the transformational technique (Lemma 4.4) we

act uall y construct the spanner using these clusters.

In Section 2 we introduce some definitions and nota-

tion, and summarizes results of previous papers which

will be used in the proofs. Section 3 deals with the proof

of Theorems 1.1. Section 4 deals with the two proofs of

Theorem 1.2. We conclude with some open problems in

Section 5.

193

2 Preliminaries

For simplicity of notation, we assume that n is a power

of 2 and omit all floor and ceiling signs; all proofs can

be repeated without this assumption with no real com-

plications, at the cost of an increase in the constants.

We begin by stating some definitions and properties

that will be used throughout the paper.

A metric space (V, d) is a set V of points and a func-

tion d : V x V ~ R, called dist ante, satisfying the

following properties for all Z, y, z E V:

(i) d(z, y) ~ O and d(z, y) = O if and only if z = y;

(ii) d(x, y) = d(y, z);

(iii) d(x, z) s d(z, y) + d(y, z).

A real normed vector space is a vector space V over Et

and a function II. II : V ~ Et, called the norm, satisfying

the the following properties for all z, y c V:

(i) 11x11z O and Ilzll = O if and only if x = O;

(ii) Ilcxll = Icl . l\z[l for every c ● ~

(iii) 11$+ VII S 11~11+ IIYII.

A real normed vector space generates a metric space

where the dist ante function is defined as d(x, y) =

II* – y[l. If the norm of a d-dimensional vector c =

(~1, ~z,..., xd) k defined as ~lzfl+ Ic;[+ . ..+ [z~[,

where p is a positive integer, then the corresponding

metric is called the LP metric. The L2 metric is called

Euclidean metm”c.

A geometric graph is a complete graph in which the

vertex set is a set of points in d-dimensional real normed

space and the edge weights are the distances between

the points, according to the metric generated by the

given norm. When the norm considered is the Euclidean

norm, the graph is called Euclidean graph.

We now summarize some useful results. Let G be an

n-vertex connected graph with positive edge weights.

We reproduce here a greedy algorithm which is de-

scribed in [1]. This is a simple generalization of

Kruskal’s algorithm to build a minimum spanning tree.

It takes as input a weighted graph G = (V, E), and a
real number t > 1. It produces as output a subgraph

G’ = (V, E’).

Greedy Algorithm

Input: a graph G = (V, E) and a real number t >1.

Output: a t-spanner G’ = (V, E’) of G’.

begin

order the edges in E in nondecreasing order of weights;
E’ * 0; G’ L (V, E’);

for each edge (z, y) g E (from the sorted

if dGl(x,y) > t . dG(Z, y) then

E’ +-E’ U {Zy};

list) do

G’+ (V, E’);
output G1;

end.

Let T be a minimum spanning tree (MST) for G

built by Kruskal’s algorithm which considers edges in

the same order as the Greedy Algorithm.

Let P be the Hamiltonian path drawn by taking the

preorder traversal of T. The weight of an edge uv in P

is defined as wi(uv) = d~(u, v). Let L = wt(P). It is

well known that L ~ 2zvt(T).

The following lemmas (proven in [1]) describe some

properties of the output graph G’.

Lemma 2.1 G’ is a t-spanner of G.

Lemma 2.2 T is a subgraph of G’.

The next is an extremal graph theoretic lemma that

is an easy consequence of a theorem proven in [6, The-

orem 3.7, Chapter III]. Define the girth of a graph as

the number of edges in its smallest cycle. This lemma

provides an upper bound on the size of a graph with a

given girth.

Lemma 2.3 Every n-vertex graph G with girth at least

H
g has at most n n~ edges.

The following facts are obvious:

Fact 2.4 For ail U,V 6 V, dp(u, v) ~ d~(u, v).

3 Graphs with Arbitrary Edge

Weights

In this section we consider graphs with positive edge
weights. We first prove a technical lemma from which

we obtain as immediate corollaries Theorem 1.1 and a

result about (log2 n)-spanners.

Lemma 3.1 Let G be any n-vertex connected graph

with positive edge weights. For every t > 1, the Greedy

Algorithm builds a t-spanner G’ = (V, E’) of G, such

that

16t
zot(G’) s (3 + —) . n= .62 wt(MST),

where t – 1 >6>0 can be chosen to be arbitrarily small.

Proof: From Lemma 2.1, G’ is a t-spanner of G so we

only need to bound the weight of G’.

The basic method used here is the partition of the

edges added by the Greedy Algorithm into phases; in

each phase we consider edges of approximately the same

weight. We will show that the phases in which the large

weight edges are added have only a few edges.

194

Let T, P, and L be as defined in Section 2. Let E(T)

denote the set of edges of T.

Partition the interval [0, L] into log n + 1 subintervals:

10 = [0,+]
1j=(2j-1. #,2j. *] fOrj=l,logn.

Let Ej = {e ● E’ \ E(T)] wt(e) c Ij}. We are going

to estimate the weight of .Ej for j = O,1, log n.

Lemma 3.2 zvt(Eo) < 2n* owt(MST).

Proof : Let C be a cycle containing only edges in EO.

Let the weight of the edges in C in nondecreasirlg or-

der be wl, wz,wg. Since the last edge with weight

Wg was added to the spanner by the greedy algorithm,

~~~~ ‘wi > t “ Wg. Since Wg > ‘Wi, for all i < ,g, we

have that g > t + 1. Hence, the girth of the sub-

graph with edges only from E. is greater than ~! + 1,

and by Lemma 2.3 the number of edges in E. is at most

n 1+*. Since the weight of each edge in EO is at most

L/n ~ 2wt(MST)/n, we are done. •1

Fix j ~ 1 and consider E3. Let Gj _ I be the graph

with edges E(T) UEO U.. .UE1–l. Let a = 2j-1#, so

lj = (a, 2a]. Thus, in this phase, each edge added by

the Greedy Algorithm has weight between ~ and ‘ta.

Let c’ = 2/6. Divide the path P into $ adjacent

intervals (or “clusters” ), each of size a/c’. Let nj be the

number of cluster containing at least one vertex from

V. Then nj s c’L/a = c’n/2j-1. Call an edge w an

intercluster edge if u and v lie in different clusters,.

Lemma 3.3 Every edge uv c Ej as an intercluster

edge.

Proof : By definition of Ej, uv @ E(T). Consider

the path Q in T connecting u to v. By Lemma 2.2

every edge in Q is added to the spanner. The fac~ that

T is a minimum spanning tree of G implies that uv

has weight larger than or equal to the weight of each

edge in Q. Since the edges are added by the Greedy

Algorithm in nondecreasing order of weight, when the

edge uv is added to the spanner, each edge in Q had

already been added. Since the edge uv did get iidded

to the spanner, we have that wt(Q) > t . wt(uv). Since

cl = 2/6 and 6 < t– 1, we have that t > 1 +2/c’. By

Fact 2.4, CJP(U, v) ~ d~(u, v) = wt(Q). By the definition

of Ej, W~(uV) > a. Combining the inequalities abcwe we

obtain

dp(u, v) > t . wt(uv) ~ (1+ 2/c’) wt(uv) > 2a/c’.

Since the distance in P between two points in the

same cluster

clusters.

Lemma 3.4

is at most a/c’, u and v lie in different

❑

min{2,1+*}
lEjl < nj

Proof : Since lEj I is obviously less than n;, we just

have to consider the other term.

Consider the graph H (possibly a Multigraph) where

all the vertices from V in a single cluster are merged

into a single vertex, and the edge-set Olf H is Ej. BY

Lemma 3.3 every edge in Ej is an edge in H. Let C be

an arbitrary cycle in H with g edges. We will show that

9>*.

Let the weights of the edges in C nondlecreasing order

bewl, . . ..wg. Before the last (and heaviest) edge was

added, there was a path of weight < g” (a/c’)+ ~~~~ wi

(the first term comes from the maximum distance trav-

eled within clusters, and the second from the inter-

cluster distances). Since the last edge did get added by

the Greedy Algorithm, we have g . (a/c”) + ~f~~ wi >

w~. t. Sincewg ka, wl, ..., W9_I, we obtain g > &.

Hence, in H the girth is larger than .* = &.

We now invoke Lemma 2.3 to obtain the result. ❑

Lemma 3.5 For j = 1,. ... Iogn we have that

16.n$’j ()
t_l j-l

wt(Ej) < ~ . wt(MST) . ~ .

<2. a, sobyProof : In Ej, each edge has weight

Lemma 3.4

n]in{2,1+*}
wt(Ej) < 2.a .nj

< 2. 2j-l:! . (cln/2j-1)min{:z,l+7%%f}
n

< 2.c’2. L.n*
“@W-(j-l)

()1
j-l

< 4. C’2. wt(MST) . n= . —
4*

< 4. C’2.
()

t–1 ~-1
wt(MST) . n* . —

t“

The last inequality follows from the fact that 4* 2

1 + * for every t >1. •1

Since E’ = E(T) ~J EO U EI U . . . U El~g~, we use

Lemmas 3.2 and 3.5 to obtain

wt(G’) < wt(MST) + 2n* . wt(MST) +

< wt(MST) + 2n* . wt(MST)

+:.n* . wt(MST) . t

< 3n* . wt(MST) +

~ . n+%% . wt(MST)

< (3+:) . n= . wt(MsT)

195



This proves Lemma 3.1. ❑

Theorem 1.1 follows as immediate corollary from

Lemma 3.1:

Proof of Theorem 1.1: Setting 6 = ~ < t– 1 we

are done, since ~ = ~.

Remark: As mentioned in the Introduction, this is

optimal to within a constant factor in the exponent

of n. If we could reduce the the exponent of the n-

term i.e. ~f there always exists a t-spanner with weight

~ O(n*) . tvt(lfST), for some c’ >0, this would lead

to an improvement in a bound from extremal graph the-

ory [6], namely the bound in Lemma 2.3 would improve

to 0(7$+% ). The same observation also holds for the

size bound of O(nl+*).

Peleg and Schaffer [15] also consider the construc-

tion of O(log n)-spanners, and show that for unit edge-

weighted graphs, O(log n)-spanners exist with weight

O(1) . wt(AfST). While we are not able to prove the

same result for arbitrary edge-weighted graphs (we ob-

tain (log n)-spanners of weight O(log n). wt(MST)), we

are able to prove a weaker version as another corollary

of Lemma 3.1.

Theorem 3.6 Let G’ be any n-vertex connected graph

with positive edge weights. The greedy algorithm con-

structs a (logz n)-spanner of G with weight O(1) .

wt(MsT).

Proof: Setting t = log2 n, and 6 = log n, we have from

From Lemma 3.1

16 logz n a+l. g n

wt(G’) < (3 + ~ogz n )” n’””
.-l-log . . wt(~sq

= o(1) . wt(MsT).

•1

Implementation and time analysis: A naive imple-

mentation of the greedy algorithm maintains an all pair

shortest paths matrix for the graph G1, and updates it

(from scratch) each time a new edge is added to G’ by

the greedy algorithm. The tot al time taken is the time

taken to calculate the all pairs shortest paths for the ini-

tial graph G, and the time to do these updates. The all

pairs shortest path for G can be calculated in time O(n3)

using Dijkstra’s algorithm [10]. Let f(n, m) be the time

needed to find all pairs shortest paths in a graph with n

vertices and m edges. Let A4 be the size of the spanner

outputted by the greedy algorithm. Then the total time

for all the updates is ~#=0 $(n, m). The best known

upper bound on ~(n, m) is O(nmlog(a+mln) n) [10]. For

the case of arbitrary edge-weight graphs, we know that

M = O(nl+* ) edges [1]. Hence the total running is

0(n3+?+i).

4 Geometric Graphs

We look at two different techniques which produce t-

spanners for geometric graphs, the Greedy Algorithm

and the transformational met hod. Both spanners have

O(n) edges and weight O(log n) . wt(MST). If we com-

pare the two techniques, the Greedy Algorithm is sim-

pler, produces spanners with bounded degree, and works

for all norms (the transformational method works only

for LP norms). On the other hand, the transforma-

tional method is much faster; O(n log n) as opposed to

0(n3 log n) for the Greedy Algorithm.

4.1 The Greedy Algorithm

We begin by stating a well known property about norms

and introducing a few definitions.

Consider a finite dimensional real normed vector

space with norm N. Let dN (z, y) denote the dist ante

between z and y in the metric generated by N. Let

d(z, y) denote the Euclidean distance between x and y.

It is well known that there exist kl, k2 >0 (which de-

pend on the norm N) such that for every x and y

kl . d~(z, y) < d(z, y) < kz . d~(Z, y) (1)

By geometric graph under norm N we mean a geometric

graph in which the edge-weights are the distances in the

metric generated by N.

We use in this section the concept of angles. As usual,

angles are defined by the inner product implicit in the

Euclidean norm. The angles are unoriented angles, i.e.

every angle is between O and ir radians.

For a real t >1, let @ be an angle such that tan L9=

~. Two vectors ~ and $ are said to be Similar-

directional with respect to N and t if, upon translating

@ in space such that v coincides with u, the two vec-

tors form an angle at most 19. More intuitively, Similar-

directional means that the two vectors point in almost

the same direction, since the angle 0 is small. Note that

for 6 < 7r/2 if ~ and ~ are Similar-directional then

~ and @ are not Similar-directional. The norm N

and t will be implicit when we write Similar-directional

instead of Similar-directional with respect to N and t.

Let V be a finite set of points in d-dimensional normed

space with norm N. Let G be the geometric graph in-

duced by V. Let G’ = (V, E’) be the output of the

Greedy Algorithm on input G and t. The distances

considered by the Greedy Algorithm are the distances

in the metric generated by N.

Each edge uv in E’ corresponds to a pair of vectors,

& and &. Consequently E’ corresponds to a set of

vectors E’. We now present an important technical

lemma. Intuitively, this lemma says that if there are

two Similar-directional vectors ~w and Z in 1?’, then

u and v must be separated by a distance greater than

196



x

v Y

Figure 1: Illustration for Lemma 4.1.

a constant factor times the length of the shorter of the

two vectors. Consequently the originating points c,f two

Similar-directional vectors cannot be too close to each

other. It may also be noted that as a consequence of

this lemma, if there are two vectors originating from the

same vertex then they cannot be Similar-directional.

Lemma 4.1 Let G = (V, E) be a geometric graph in

d-dimensional space under norm N, and let t > 1 be

a real number. Let G1 = (V, E’) be the t-spanner of G

produced by the Greedy Algorithm. Let kl, kz >0 Je the

* L,et ~constants defined in (1) and 0 = arctan ~,(zt+l).

and ~ be any two Similar-directional vectors in E’. If

d~(u, z) < d~(v, y) then d~(u, v) > r . d~(u, z), where
T=i=l

6t “

Proof : Let y be the angle formed by vectors =? and

~ upon translating ~ in space such that v coincides

with u. To prove the lemma we assume that

d~(u, z) < d~(v, y) and d~(u, V) < r - d~(u, z:) (2)

and we prove that under these assumptions ~ and ~

are not Similar-directional, i. e. -y >0.

Consider the configuration obtained by translating@

in space such that v coincides with u. Let v [y] be the

point corresponding to the translation of v [y]. This is a

planar configuration in which the plane is defined by the

points u s Z, z, and y. This configuration is illustrated

by Figures 1 and 2.

Note that tan 0 = ~j < 1. So, if ~ ~ T/4 the

vectors iE$ and @ are not Similar-directional. Thus, we

may assume that 7< r/4.

Throughout this proof we use primed lower case let-

ters, at, bt, c’, . . .. to denote distances in the N metric,

while non-primed lower case letters denote distances in

the Euclidean metric. For example, if a’ = djv(x, y),

then a = d(z, y), and vice-versa.

Let a’ = djv(v, y), b’ = dN(U, X), c’ = drr(x, ~), and

g’ = dN(z, y). (a = d(v, y), b = d(u, %), c = d(m, j), and

g = d(z, y) are the corresponding Euclidean distances.)

v u

Figure 2: Illustration for Lemma 4.1.

Using this notation, (2) becomes

b’ < a’ and dN(?J, v) < rb’. (3)

We consider two cases: g’ z a’ and g’ < a’. Each one

of these cases is subdivided into two subcases: a > b

and a < b.

The case in which a ~ b is illustrated in Figure 1,

where z is the orthogonal projection of x in the segment

@g, d’ = dN(Z,.Z), e’ = div(ti, z), and f’ = dN(z, @.

Since y < z/4 and a ~ b, z does belong to the segment

Gg.

The case in which a < b is illustrated in Figure 2,

where z is the orthogonal projection of ~ in the segment

UZ, d’ = d~(y) z), e’ = d~(u, z), and f’ = d~(z, z).

Since y < 7r/4 and a < b, z does belong to the segment

UX.

Case 1: g’ ~ a’.

Note that by the triangle inequality we have that g’ ~

c’+d~(u, v). The term dN(~, v) = dN(y, ~) corresponds

to the translation of y,

Sub case 1.1: a ~ b (a and b are Euclidean distances).

See Figure 1.

Using (3) and (several times) the triangle inequality,

we obtain

g’<c’+dN(u, v)<c’+rb’<d’+f’ +rb’

implying

d’ > gt–rb’– ft>a’–rb–rb’
—

= e! – rbt > e) – r(d’ + e’)

implying

d’(1 + r) z e’(1 – r).

Using (1) we have that

l–r 0?’ kzd
—~--<—. stany,
l+r e’ — kle kl

197



implying Using (1) we have that

tan y ~
kl(l – r) k1(5t + 1)

kz(l + r) = k2(7t – 1)

kl(t – 1) = ~and

> k2(2t + 1) “

Since tan y > tan 6, we have that -y >0, as desired.

Subcasel.2: a< b(aandb are Euclidean distances).

See Figure 2.

Using (3) and (several times) the triangle inequality,

we obtain

g’<c’+dN(u, v)~c’+rb’~d’+f’ +rb’

implying

d’ > g’–rb’– >b>_f__rbrb’—

= e)–rbt~et –ra’~e)–r(d~+e’)

implying

d’(1 + r) z e’(1 – r).

Similarly to Sub case 1.1, we obtain -y >0.

Case 2: g’ < a’.

Among the four edges of G, UV, UX, vy, and zy, the edge

vy is the largest (under norm N), and consequently will

be examined by the algorithm last. In the spanner being

built by the Greedy Algorithm there are paths P(u, v)

and P(z, y) such that the lengths of P(u, v) and P(z, y)

are at most t. d~(u, v) and t. d~(z, y) respectively. This

means that when (v, y) is being examined, there exists

a path from v to y (via P(u, u), (u, z), and P(z, y)). Let

P(u, y) refer to this path. Since the edge vy was added

to the spanner by the algorkhm, we have that

ta’ < wt(P(v, y))

= wt(qv, u))+ Wt(wz) + ?.vt(qz, y))

< t .dN(v, u)+ b’+tg’

~ t od~(v, u) + b’ +t(C’ + dN(V, U))

= % .dN(V, u) + b’+ tc’

< 2trb’ + bt + tc)

implying

b’(1 + 2tr) > t(a’ – c’).

We again inspect two sub cases:

Subcase 2.1: a ~ b. See Figure 1.

(4)

Using the triangle inequality, we obtain from (4) that

(e’ + d’)(1 + 2tr) ~ b’(1 + 2t?-)

> t(a’ – c’) z t(a’ – d’ – f’) = t(e’ – d’)

or
d’ t(l – 2r) – 1
~>

t(l+2r)+l”

t(l– 2r) – 1 d’ kzd kz

t(l + 2r) + 1
<—< —= —tall~,

e’ — kle kl

implying

kl(t(l – 2r) – 1) = tan O

‘an7 > kz(t(l + 2r) + 1) “

Since tan v > tan 0, we have that y >6, as desired.

Subcase 2.2: a < b. See Figure 2.

Using the triangle inequality, we obtain from(3)

and (4) that

a’(1 + 2tr) ~ b’(1 + 2tr) > t(a’ – c’) ~ t(b’ – c’)

= t(e’ + f’ – c’) ~ t(e’ + f’ – f’ – d’)= t(e’ – d’),

implying

td’ > te’ – a’(1 + 2tr) ~ te’ – (d’+ e’)(1 + 2tr)

implying
d’ t(l – 2r) – 1
~>

t(l+2r)+l”

Similarly to Sub case 2,1, we obtain -y >0.

This completes the proof of Lemma 4.1. •1

As a consequence of Lemma 4.1, if there are two vec-

tors originating from the same vertex then they cannot

be Similar-directional: the angle formed by these vec-

tor is at least 6 = arctan
M

Let A(d, 8) be the

maximum number of rays (half-lines) from a point in

d-dimensional Euclidean space such that each pair of

rays forms an angle at least 0. It follows that A(d, 19) is

a bound on the degree of the t-spanner constructed by

the Greedy Algorithm. This generalizes an observation

made in [22] that the greedy algorithm builds bounded

degree spanners for the special case of Euclidean graphs.

Let ud denote the unit sphere with center v in IRd. A

finite set of points on ud is called a spherical code. It

is easy to see that A(d, 6) is the maximum cardinality

of a spherical code V such that the Lxvy z 0 for each

x # y E V. This packing problem haa been extensively

studied. We mention the following upper bound due to

Rankin [18]:

A(d, 6) = 0(d3t2(fisin(0/2 ))-d. (5)

The following theorem follows from the above observa-

tions:

Theorem 4.2 Let G = (V, E) be an n-vertex geomet-

ric graph in d-dimensional space under norm N. For

every t > 1, the t-spanner of G produced by the Greedy

Algorithm has maximum degree bounded by a constant

that depends on d, t, and N.

198



As a corollary, this shows that if d, t, and N are fixed,

t-spanners of geometric graphs produced by the Greedy

Algorithm have only O(n) edges. We now analyze the

weight of the t-spanners.

Fix an angle L9>0. Consider a cover of JRd by B(d, 0)

circular (overlapping) cones, all having the same focus,

such that two points in the same cone form an angle at

most 0. We use in Theorem 4.3 the well known fact that

B(d, L9) is finite for every 6>0 and every d. This cover-

ing problem, related to the packing problem mentioned

above, has also been extensive y studied. We mention

the following upper bound due to Rogers [19]:

B(d, 6) = 0(d3i2 log
d

sin-d(f?/2)),
sin(d/2)

Theorem 4.3 Let G = (V, E) be an n-vertex geometric

graph in d-dimensional space under norm N. Let G’ =

(V, E’) be the t-spanner of G produced by the Greedy

Algorithm. Then the weight of the spanner is at most

O(log n) . wt (MST). The constant implicit in the big O

depends on d, t, and N.

Proof : Let $ = arctan ~’(~t~l~ , where the constants

ICI, k2 > 0 are according to (1). At some arbitrary d-

dimensional point, we cover the space by a constimt

number of circular cones Cl, C’2, . . . . ck, such that every

two lines incident on that point and lying within the

same cone subtend an angle at most 6. As noted, k

depends only on d and 0.

Call these the original cones. One could imagine sim-

ilar k cones around each of the n vertices. The cones

around each of the n vertices could be obtained by mak-

ing copies of the original cones and then translating

them to each of the vertices. Hence each vertex has

exactly one cone corresponding to each of the original

cones Cl, cz, . . .,Ck.

Let E’ be the set of vector corresponding to E’. Let

E; be the set of vectors in E’ that appears in the cones

corresponding to the same cone C~. We claim that the

sum of the weights of the vectors in E; is bounded by

O(log n) .wt(MST), for 1< i s k. It maybe noted that

since the sets J2; cover the set E’, proving this claim is

enough to prove the lemma.

Clearly all the vectors in E; are Similar-directional.

Hence by Lemma 4.1, if ~ and w are two vectors

in E;, and if the former vector is shorter, then wt (U I UZ)

must be larger than r . wt (ulvl ), where r = ~.

At this stage we can use the same proof technique as

before; partition the edges of the spanner into sets of

edges of roughly the same weight and then analyse each

of these separately. However, it turns out that for the

geometric case, there is a much simpler proof.

Consider an optimal traveling salesman circuit, TSC,

of the n points. Let L = wt(TSC). It is well known

that L ~ 2wt (MST). We are now going to account

for the length of the vectors in E: using the length of

the edges in the TSC. Imagine a walk along the circuit

TSC starting from some vertex v. As we walk along

the circuit we encounter the originating points of the

vectors in E:. Let the order of the vectors encountered

from E~be3,..., ~.

We claim that there exist lq/2J vectors in E: with to-

t al length at most L/r. Consider a pair of consecutive

vectors ej, ej+l, By Lemma 4.1, the distance between

the originating points of ~ and ~ is longer than r

times the length of the shorter of the two vectors. Hence

the distance along TSC between the originating points

of ~ and ~ is also lcmger than r times the length

of the shorter vector. We may charge the length of the

shorter vector to the length of the path between the

originating points along TSC. The charge is at most

l/r times the length of the path. Taking tlhe lq/2] dis-

joint consecutive pair of vectors, {~, ~}, {~, z}, . . ..

and charging the shorter vector of each pair to the corre-

spondent path in TSC between the originating points,

each segment of the circuit TSC is charged at most

once. Thus, the total length of the shorter vectors of

the chosen pairs is at most L/r.

Now we consider only edges in E; tlhat have no

been charged yet, and repeat the same process. After

O(log n) steps, each edge in 11~ is charged, giving the

bound of O(log n . L) for the total weight of the edges

in E:.

Since k is constant (dependent only on d, t, and N),

we conclude that wt(E’) is bounded by O(log n . L) =

O(log n) . wt(MST). •1

Remark: The bound on the maximum degree that can

be obtained from Theorem 4.2 is not tight in the follow-

ing sense. Since the larger the angle 0 the smaller the

bound on the degree, we want a large angle to be used

in (5). For the purpose of obtaining a better bound

on the degree, we can redo Lemma 4.1 using r = O.

(This value of r is not convenient in Theorem 4.3.)

We would obtain 0 equal to arctan kl&$ instead of

warctan k2 Zt+l

Implementation and time analysis: For the case of

geometric graphs, by Theorem 1.2 the number of edges

added by the Greedy Algorithm is O(n). Doing the

same type of analysis as for arbitrary graphs, we get a

total running time of 0(n3 log n).

4.2 The Transformational Method

The following lemma presents, for complete graphs from

an arbitrary metric space, a general technique for con-

verting spanners of small size and arbitrary weight into

spanners of small size and small weight.

199



Lemma 4.4 Let 114 be a metric space such that for ev-

ery n-vertex complete graph G on this metric space,

1.

2.

there exists an O(g(n)) time algorithm d which

btiilds a t-spanner for G with O(f (n)) edges, where

f and g are functions such that for every m ~ 1,

~(m)/2 ~ f(lm/2J), and g(m)/~ z g([m/2J).-

there exists an O(h(n)) time algorithm f? which

builds a spanning tree T for G, such that wt(T) =

O(1) . wt(MST).

Then there exists an O(max{g(n), h(n), n log n}) time

algorithm A’ which builds, for every complete graph in

M, for every ~ >0, a (t+c)-spanner with O(f(n)) edges

(
and weight O ~ log n ) wt(MW

The algorithm A’: The algorithm A’ works as follows.

Let G = (V, E) be an n-vertex graph on M. Let T be

a spanning tree for G built by algorithm B. Consider

the Hamiltonian path P built from T, w is done in

Section 2. Let L = wt(P). Note that L s 2. wt(T) =

O(zot(MST)).

Let Vo=V, and forj=l, . . ..logn. define VCVas
.1 Cnfollows: Let a = 2j -1 ~. Divide L into nj = ~ = ~

intervals of length a/c each, where c = ~, These

intervals induce a partition of the vertices in P. Define

~ to be a set containing exactly one vertex arbitrarily

chosen from each non-empty set of the partition. Call

the vertex chosen the representative of the vertices in

the set. Note that the distance in P (and hence in T)

between every two vertices in the same set of the parti-

tion is at most a/c. Let Gj be the induced subgraph on

y.

A’ construct the (t+ c)-spanner in phases. For j =

0,1,..., log n, consider the t-spanner for Gj built by A,

and call this G; = (U, E;). Note that, by hypothesis,

lE~l is 0(~(1~1)). Forj = 0,1,...,logn, let E;= {e G

E~[wt(e) <2j~. t.(l+ ~)}. Let E“=TUE#UEfU

. . . U E(& ~ and let G“ = (V, E“).

Claim 4.5 G“ is a spanner for G with the desired prop-

erties.

Proof : Omitted from this version.

Lemma 4.6 A’ takes O(max{g(n), h(n), n Iogn})

time.

Proof : The spanning tree T can be built in time

O(h(n)). The Hamiltonian path P can be obtained from

T in time O(n). Each of the sets Vj can be built in time

O(n) by following edges in P, so the time required to

get all the ~‘s is O(n logn).

The time required to obtain all the t-spanners, using

algorithm A repeatedly is

log n

= O(lvl) + 0(9(11401)) + ~ 0(9( IV I))
jzl

log n

= O(g(rt)) + ~ W9(&))
jzl

= O(g(n)).

We have used g(rn)/2 ~ g( lm/2~ ) to obtain the last

inequality.

Finally, since there are a total of 0(.f(n)) edges and

f(n) is clearly no bigger than g(n), the total time to do

the union of the spanning tree and all the spanners to

obtain E“ is O(g(n)). ❑

This completes the proof of Lemma 4.4. ❑

Applying the transformation method to geomet-

ric graphs: Let G be an n-vertex geometric graph in

Etd under norm LP. There are known O(n log n) time

algorithms for constructing t-spanners for G (for t > 1)

with O(n) edges [21, 24]. Also, using O(n log n) time al-

gorithms from [21, 25], we can construct spanning trees

whose weight is within a factor of 2 of the optimal. Us-

ing lemma 4.4 and choosing an appropriately small c,

we see that in time O(n log n) we can build t-spanners

for geometric graphs under an LP norm, which satisfy

the conditions of Theorem 1.2.

5

1.

2.

3.

4.

Open Problems

Can the gap between the upper and lower bounds

for geometric graphs (a factor of O(log n)) be im-

proved? Does the Greedy Algorithm produce t-

spanners with weight fl(log n) . wt (MST) for some

family of geometric graphs, or can the upper bound

be improved by tighter analysis ?

For arbitrary graphs, do there always exist (log n)-

spanners with weight O(wt(MST)) i.e. can we

generalize the result for unit edge-weighted graphs

from [15].

Is there a more efficient implementation of the

greedy algorithm, both for arbitrary graphs and for

geometric graphs?

Find a polynomial time algorithm A to build t-

spanners such that A has ‘(performance guaran-

tees,” i.e., for every graph G and every t,A builds

a t-spanner G1 of G such that size(G’) ~ c “ eopt,

[wt(G’) ~ c . wtop,] where c is a constant and cop,

[wtopt]is the minimum number of edges [minimum

weight ] over all t-spanners of G.

200



5. What is the complexity of the following problem:

Instance: A geometric graph G, t,m >1.

Question: Does G have a t-spanner with at most

m edges?

This is an open problem even if G is a 2-dimensional

Euclidean graph. We observe that Peleg and

Schaffer [15] have proved that this problem is lVP-

complete in the case that G is a unit edge-weighted

graph.

Acknowledgement: The first and fourth authors

would like to thank Laci Babai for his constant encour-

agement and helpful suggestions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Althofer, I.; Das, G.; Dobkin, D; Joseph, D.;

Soares, J., Generating sparse spanners for weighted

graphs, Discrete and Cornp. Geometry, to appear.

Awerbuch, B., Complexity of network synchroniza-

tion, JACM (1985), 804-823.

Awerbuch, B.; Peleg, D., Sparse partitions, FOG’S

(1990), 503-513.

Bendelt, H.; Dress, A., Reconstructing the shape of

a tree from observed dissimilarity data, Advances

in Appl. Math., 7 (1986), 309-343.

Bhatt, S.; Chung, F; Leighton, F.; Rosenberg, A.,

Optimal simulations of tree machines, ,27th IEEE

Symposium on the Foundations of Computer ScZ-

ence, Toronto (1986) 274-282.

Bollob&, B., Extremal graph theory, Academic

Press, London, 1978.

Chew, P., There is a planar graph almost as good

as the complete graph, ACM Symposium on Comp-

utational Geometry (1986), 169-177.

Das, G., Approximation schemes in computa-

tional geometry, PhD Thesis, CS Dept, Univ of

Wisconsin-Madison, 1990.

Das, G.; Joseph, D., Which triangulations approx-

imate the complete graph? International Sym-

posium on Optimal Algorithms (1989), (LNCS,

Springer-Verlag).

Dijkstra, E. W., A note on two problems in con-

nection with graphs, Numerische Mathematik, 1

(1959), 269-271.

Dobkin, P. D.; Friedman, S. J.; Supowit, K. J., De-

launay graphs are almost as good as complete

Graphs, Discrete Comp. Geom., 5 (1990), 399-407.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Keil, J .M., Approximating the compllete Euclidean

graph, SWAT (1988), (LNCS, Springer-Verlag).

Keil, J .M.; Gutwin, C. A., Classes of graphs which

approximate the complete Euclidean graph, Dzs-

crete Comp. Geom, 7, (1992), 13-28.

Levcopoulos, C.; Lingas, A., There are planar

graphs almost as good as the complete graphs and

as short as the minimum spanning trees, Sympo-

sium on Optimal Algorithms (1989), 9-13, (LNCS,

Springer-Verlag).

Peleg, D.; Schaffer. A., Graph spanners, Journal of

Graph Theory, 13 (1989), 99-116

Peleg, D.; Unman, J., An optimal synchronizer for

the hypercube, SIAM J. Comp., 18 (1989), 740-

747.

Peleg, D.; Upfal, E., A tradeoff between space and

efficiency for routing tables, STOC (1988), 43-52.

Rankin, R. A., The closest packing of spherical caps

in n dimensions, .Proc. Glasgow Math. Assoc. 2

(1955), 139-144.

Rogers, C. A., Covering a sphere with spheres,

Mathematika 10 (1963), 157-164.

Ruppert, J.; Seidel, R., Approximating the d-

dimensional complete Euclidean graph, Canadian

Conference on Computational geometry (1991),

207-210.

Salowe, J .S., Construction of multidimensional

spanner graphs with applications to minimum

spanning trees, ACM Symposium on Comput a-

tional Geometry (1991), 256-261.

Soares, J., Approximating Euclidean distances by

small degree graphs, Technical Report 92-05, Uni-

versity of Chicago, (1992).

Soares, J., Spanners, Unpublished Manuscript,

1991.

Vaidya, P. M., A sparse graph almost as good as the

complete graph on points in K dinnensions, Dis-

crete and Comp. Geom. 6, (1991), 369-381.

Vaidya, P. M., Minimum spanning trees in k-

dimensional space, SIAM J. Cornput. 17 (1988),

572-582.

201


