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1 Introduction

Algorithms in computational geometry often use the

real-RAM model of computation. This model as-

sumes that exact real numbers can be stored in mem-

ory and retreived in constant time, and that field op-

erations (+, –, *, /) and certain other operations,
square root, sine, and cosine for instance, are exact,

and can be applied in constant time.

These assumptions are often difficult to discharge

at implementation time. Even well-understood al-

gorithms, like line-sweep for polygon union [PS85],

present much trouble. Why? Such algorithms obtain

good combinatorial complexity bounds by exploiting

geometric orders on the input. These relations are

often implicit, so an algorithm can only probe them

pointwise with a collection of predicate functions an-

swering, e.g., “Is point p left of edge e?”. In im-

plementations, the reply must depend on arithmetic

with finitely represented numbers. The trouble orig-

inates here.

*Computer Science Division, University of California at
Berkeley, Berkeley, California 94702

t Computer Science Department, Cornell University, Ithaca,
NY 14853. This paper describes research done in the Robotics
and Vision Laboratory at Cornell University. Support for our

research is provided in part by the National Science Foundation

(NSF) under grants No. IRI-8802390, IRI-9000532 and by a

Presidential Young Investigator award to Bruce Donald, and in

part by the Air Force Office of Sponsored Research (AFOSR),

the Mathematical Sciences Institute, and AT&T Bell Labora-

tories. Initiaf discussions of this topic began at the Saratoga

Workshop on the Integration of Numerical and Symbolic Com-

puting Methods, Saratoga, NY (1990), which was funded by
the NSF and the AFOSR.

Permission to copy without fee all or part of thk material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy other-

wise, or to republish, requires a fee and/or specific permission.

In limited precision paradigms, numb(ers are re-

stricted to some maximum size by rounding. Time

for a single arithmetic operation is thus limited to

a constant, and the real-RAM tends to model per-

formance well. Unfortunately, a predicate employing

limited precision is likely to give the wrcmg answer

when important digits are rounded away, whereupon

a geometric order is misrepresented to the overlying

algorithm, and it fails. This is not a “mere engineer-

ing difficulty.” Failures arise frequently in practice,

and they cannot be fixed by using tolerances ad hoc

in numerical comparisons, which is sufficient in some

kinds of programs.

One recourse is to manage roundoff in clever ways.

Generally speaking, we have predicates say “I don’t

know,” when neither “yes” nor “no” is certain to be

correct, then restructure the overlying algorithm to

deal with this third reply. Some recent variations

on this robust approach to limited precision are in

[MN90, AFW88, HHK88, S189].

The alternate approach, which concerns this pa-

per, is to use rational arithmetic of arbitrary preci-

sion, storing all numbers exactly. Clearly, the real-

RAM can be a very poor model here if numbers be-

come long during computation. The bit-complexity

model, which considers the cost of computing each

bit (base 2 numeral) of the number representation,

is more appropriate. A natural goal is then to show

that an algorithm with real-RAM complexity O($(n))

has bit-complexity O(k . ~(n)), where k is the maxi-

mum number of bits in any input number, This says

that there is nothing asymptotically less efficient in

using precise arithmetic than in rounding. Many al-

gorithms, line-sweep for instance, have this property

when carefully specified. Hence, on the face of it,

rational arithmetic seems to solve our problem.

However, many applications from scientific compu-

tation and artificial intelligence necessarily mix such

well-behaved algorithms with operations that destroy

the exactness of the rational representation. One such
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operation is rotation, which is the primary concern of

this paper. For example, suppose we have two sets

of polygons, A and B that model rigid objects in a

2D world. Suppose we rotate A by L9 radians (in the

plane), to obtain A(6); i.e., for each vertex (x, y) of A

we compute a new one (z’, y’) by the familiar trans-

formation:

3? = c.cosfl-y. sin O

Y’ = z.sin O+y. cost3
(1)

This models a physical rotation of the object modeled

by A, but here a problem arises. For almost all 0,

one of 6, sin 0, or cos 0 is irrational (in fact, transcen-

dental, by the Gelfand-Schneider theorem). Further-

more, for almost all 0, one of 8, sin 7r0, or cos 7r0 is

irrational. Similarly, for almost all 0, one of sin 0 or

cos 0 is irrational. The last is obvious, because almost

all real numbers are irrational. Of course, arbitrary

irrational cannot be represented in computing ma-

chines. We will have to approximate somewhere, but

where?

We might simply approximate the irrational sines

and cosines in equations (1) by rationals within a cer-

tain tolerance, selectively introducing limited preci-

sion. The resulting transformation is typicalIy not

simply a rotation, but, instead, a rotation and scal-

ing. In our example, instead of A(O) we obtain

(1 +6, ) . A(6 + &), where 68 and 6, are small con-

stants. This has two distinguishable effects. First,

the rotated versions of A are not rotated exactly the

desired amount. We regard this as a good kind of

approximation because it still models a nearby con-

figuration of A and B in the world. Second, the ro-

tated polygons of A have changed size with respect to

those of B. This is a bad approximate ion because it is

inconsistent with A and B as models of rigid objects.

Hence the thrust of this paper is to find rational

rotation coefficients for some angle close to the one

desired that have small representations and do not

introduce scaling (i.e., we want 6$ = O). We call these

pure rotations and give efficient algorithms to find

them. More precisely, for given angle 6 and tolerance

C@,our final algorithm returns a rational S with the

following properties:

1.

2.

3.

f5@=lsin-lS-61<c~

The corresponding cosine, ~~, is also ratio-

nal.

S has at most one more bit than the shortest

rational satisfying 1. and 2.

Shortness of sines is vital for applications, because,

roughly speaking, the length of a rotated coordinate

is the sum of its unrotated length and the length of

the longest rotation coefficient. Moreover, storage for

numbers may easily comprise the bulk of implementa-

tion storage requirements, and per-number-bit com-

putations may easily be a performance bottleneck. 1

To ease further discussion, then, let us adopt some

conventions. The iength of a rational is the magni-

tude of its denominator. Rational t is shorter (resp.

ionger) than rational u if the denominator of t has

smaller (resp. greater) magnitude than that of u. The

number of bits of a rational is the number of digits in

the base-2 representation of its denominator with no

leading zeros. Without loss of generality, we restrict

discussion in this paper to O ~ 0 < 7r/4; thus sines

are positive and sign bits are of no concern.

Excepting the exhaustive search described in sec-

tion 4, our algorithms are iterative and terminate in

O(n) iterations where n = log( l/cc). Each iteration

requires O(J4(n)) time where ikf(n) is the time to

multiply two integers of n bits. With Schi5nhage-

Strassen multiplication, this yields an overall com-

plexity of O(n2 log n log log n), It is practical to im-

plement the algorithms entirely with rational arith-

metic and thus achieve arbitrary precision, However,

we concentrate on simple codes that use double preci-

sion floating point arithmetic to compute error terms.

These perform well for co > 10-10 and thus may be

regarded as constant time operations. In practice,

they run in a few milliseconds.

A secondary result of this paper concerns the vari-

ant of Euclid’s algorithm often employed to approx-

imate arbitrary numbers by some rational within a

given tolerance. An example is the rationalize

function of Common Lisp implementations (where

the tolerance is machine floating point precision). We

show this algorithm does not always return the short-

est possible rational and give a fixup so it does.

1.1 Application: configuration space

obstacles

The primary advantage of pure rotations is that they

are distance-preserving (i.e., they are isometrics).

Moreover, they are trivially invertible, hence the in-

verse has the same bit-complexity. To illustrate why

the former is important (the latter is covered in sec-

tion 9), we now discuss a fundamental algorithm in

robot motion planning where distance-preserving ro-

tations are essential. Suppose we wish to compute

the configuration space obstacle COA(B) for a mov-

ing polygon A due to a stationary polygon B (see

[LoF’83]). COA(B) can be characterized using the

1At least thk holds in several of our Lisp implementations

of robotics algorithms.
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Minkowskisum BeA ={b–a la~A,b~B}.

[LoP83] provides a linear time (optimal) algorithm

for the case where A and B are convex, and this al-

gorithm has been generalized by Guibas to the non-

convex case. In practice, a non-convex A (or B) is

often represented as a set of (possibly overlapping)

convex polygons; these convex polygons are then pair-

wise convolved to find a set of configuration space

polygons whose union is COA(B). This union is of-

ten computed using sweep-line techniques. Suppose

now that we wish to rotate A by 0 and then compute

COA(0)(B). B @ A(6) is clearly a set in which ro-

tated and non-rotated edges must be simultaneously

processed. Using rational rotations, the effect on the

motion plan would be that the robot rotates to some

0’ (the output of our algorithm) within a tolerance c

of O instead. Finally, the computation of COA(e/) (B)

is exact, whereas, for

exact ly represented.

most 0, COA(e)(B) cannot be

2 Outline

The final algorithm is short and simple, belying the

rich structure of the problem it solves and the assort-

ment of techniques available to attack it. As such,

we chronicle various approaches that lead to the fi-

nal results. In section 3, we couch the problem in

convenient terms. In section 4, we describe a brute

force approach that yields a few rational sines. Sec-

tion 5 gives our first iterative algorithm, with encour-

aging insights. Section 6 applies well-known results

on Diophantine equations to show that finding sines is

equivalent to finding rational approximations to arbi-

trary numbers. Section 7 shows a variant of Euclid’s

algorithm to perform this approximation. Section 8

analyzes the Diophantine technique and Euclid and

finishes with the algorithm that satisfies the claims

above. Section 9 gives more application examples.

Section 10 relates this work to algebraic geometry

and suggests extensions.

3 Setting Up the Problem

Let s = sin 0 and c = cos 0, then we are interested in

rational solutions to:

S2+C2=1 (2)

Picking such a rational solution is clearly equivalent

to picking Q such that sin $ and cos Q are both ra-

tional, but, as mentioned above, such O values are

often irrational, so we are not free to compute them

directly; we must be more subtle.

Define a rational sine to be any rationid solution

for s in (2). An alternate definition will also be help-

ful: Let fl(z) = i-. Then a rational :sine is any

rational number S such that Q(S) is also rational.2

What is wanted is an algorithm with this specifica-

tion:

Inputs: Angle 0, tolerance CO.

Output: Rational sine S such that:

(a) Isin-l S –61 <co

(b) S is as short as possible.

4 Simple-minded Search

Our first attempt is purely pragmatic. In implement-

ing planners for paths of robots that rotate, one ap-

proach is to consider only a finite, uniformly spaced

set of rotation angles in [0, 2r). The first job of the

planner is then to compute configuration space ob-

stacles for this set of angles as described above in

sec. 1.1. For this purpose, it appears natural to see

if there are enough short rational sines to fill a ta-

ble with reasonable density, perhaps one per degree.

Considering the equation

(;)2+(22= ()bc 2
1 + b2–a2=

7

it is not hard to see that we are looking for all pairs

of integers (a, b) such that b’ — a’ is a perfect square.

The pragmatic approach is to search exhaustively for

all of these with fewer than some small number of

digits. It is surprising to find 159 pairs where O ~

a < b < 1000 and a/b < @/2, corresponding to sines

for angles between O and m/4. Moreover, they are

distributed evenly enough so that for most integral

degrees, a sine is available within 0.3 degrees, and

usually much closer. The exceptions are angles within

2 degrees of 90. k for integer k, where no 3 digit sines

exist. Searching for 4 digit sines is feasible, especially

to fill the empty spaces at 1 and 2 degrees, and this

yields many more pairs. The 46 sines closest to whole

degrees found in this manner are given in Figure 1.

However, this is about the practical limit of brute

force search. We have compromised on (a) of the

specification to ensure (b).

5 Inspired Iteration

We next seek a way to iteratively refine the entries

of the table to achieve arbitrarily precise results, sat-

isfying (a) of the specification. The result is given

2 Of course Q(S) is also a rational sine, as 0(0(S)) = S.
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o–o
1 – 115/6613

2 – 57/1625

3- 39/761

4- 29/421

5- 23/265

6- 19/181

i’ - 32/257

8- 129/929

9- 100/629

10- 92/533

11- 93/485

12- 76/365

13- 156/685

14-205/853

15-69/269

16- 7/25

17-120/409

18-57/185

19-12/37

20-51/149

21-135/377

22-372/997

23-348/877

24-231/569

25-36/85

26-39/89

27-300/661

28- 8/17

29-189/389

30-451/901

31-180/349

32-28/53

33-432/793

34-161/289

35-228/397

36–504/865

37- 3/5

38-580/941

39-341/541

Figure 1: Short rational sines for Oto45 degrees

40-88/137

41-48/73

42–65/97

43-429/629

44-555/797

45-697/985

—

1. Retrieve S, the closest rational sine to sin~ from aprecalcu-

lated table.

2. If lsin-l S–f31 <~, return S.

3. Compute acorrectionangle6e =sin–l S–f3.

4. Compute a correction factor

k=
2C–12c2_2c+l Mwhere c= &

5. Set S:= SQ(k)+t2(S)k, where the sign is opposite the sign

of60. Go to Step 2.

Figure2: The first algorithru

in Figure 2. The following is a brief description of

the non-obvious steps. Step 5 is based on the sum

ofsines identity sin(a+fl) =sincrcos/3+cos crsin/3

and the fact that for small k, sink = k. The jobof

Step 4 then is to find a small k related to 68 that

ensures convergence and has Q(k) rational so that

Step 5always yields a rational number. This it does.

The algorithm returns reasonably short sines, about

twice the optimal number of bits, very quickly, but

wehave yielded on (b) of the specification to get (a).

It remains to show that we can come quite close to

achieving both at the same time.

6 Invoking Diophantus. . .

The thing to notice about the algorithm of Figure 2

is that finding a suitable k, an approximation of the

sine of a correction angle, is much the same as our

overall requirement. If the formula in Step 4 had the

power to generate all possible corrections k such that

Q(k) is rational, it would also be able to generate all

possible rational sines by iterating over all integers

c. It is not clear what can be said about the sine-

generating powers of the formula in Step 4—it was

obtained ad hoc—but we can derive a similar form

which is close to optimal for our purposes.

All solutions to the Diophantine equation

a2+~2=c2

with b even and a, b, and c relatively prime are of the

form

~=~z—~z b=2mn c=m2+n2

where m and n are integers. Rearranging, we have

(:)2+(92=1
Thus all a/c and b/c are rational sines, Sol~ing for

b/c, we have

b 2mn 2 2_— =— =—
c— m2+n2 :+: t + l/t

where t is any rational number. Thus the expression

2/(t + l/t)exactly characterizes all rational sines.3

3The restriction of the Diophantine solutions to even b is
of no concern. If some rational sine b’/cl has bt odd, then the

solution with b = 2b’, c = 2CJaccounts for it.
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eo, pO, qO, el, pl, ql := Z,O, 1,—1, llO;

repeat

r := Leo/elj;

eo, po, qo, eljPll 91 ‘=

el, pl, ql, eo -rel, po-rpl, qo-rql;

until lpl/cfl – xl < c

Figure 3: Rational approximation algorMun

The outline of an algorithm immediately suggests it-

self

Guess rational t such that S = 2/(t + I/t)

satisfies I sin-l S – O! < c. Return S.
(3)

Thus the problem is reduced to a search for t,but

the search has a very specific goal. We can solve the

equation sin 0 = 2/(s + l/z) for x:

‘“ @’+- (4)

Then x is the exact value oft we need, except that it

is probably irrational. It remains to approximate s

with a nearby rational number. We initially did this

using bisection between [z] and (z1, and this gave

answers with one third fewer bits than the algorithm

of Figure 2. However, we can do better.

7 . . . And Then Euclid

There is a classical algorithm to approximate any

number z with a series of successively closer (and

longer) rationals to,tl,.... What makes it especially

desirable for our needs is that the tiare significantly

shorter than the estimates we got by bisection; often

they are the shortest possible. Figure 3 is the algo-

rithm. The assignment statements perform all assign-

ment of right hand side expression results to respec-

tive left hand side variables simultaneously. Variable

c holds the number we are approximating. The ap-

proximations tiare the values of pl /ql in successive

iterations. Iteration stops when this value is within c

of z. The astute reader will see embedded in this al-

gorithm Euclid’s method for finding the GCD of two

integers. In effect, it is finding the “GCD” of x and

1.

The existence of this algorithm should not sur-

prise Common Lisp users! The library func-

tion rat ionalize commonly uses it to get a ra-

tional nearby to a floating point number; e.g.,

(rationalize .1111111111111111) returns 1/9 in

many implementations.

Incorporating Figure 3 and the discussion of Sec-

tion 6 yields a complete algorithm. Figure 4 shows

Common Lisp code to compute rational sines in

[0, m/4). Recall that do loops have simultaneous as-

signment semantics as the notation in Figure 3 above.

The first line of the do evaluates the right hand side

of (4) in double precision arithmetic to obtain the

“exact” value of x to be approximated. Iteration pro-

ceeds as in Figure 3, with the stopping criterion from

(3). The last line computes the current most accu-

rate value of the rational sine due to the current most

accurate rational approximation of z, namely pi/qi.

8 Analysis

How short are the answers of Figure 4? There are two

things to consider. First, we developed this algorithm

on the intuition that if we find a short t,it will indeed

yield a short value of 2/(t + l/t). This intuition needs

verification. Second, though Euclid’s algorthm is ap-

pealing, we do not know if it really produces shortest

answers for a given c. We deal with these matters in

order.

To address the first point, suppose S* is the

shortest rational sine for angles within ~. of 0, i.e.

I sin-’ S* – @l < EO. We need to show th,e following:

Claim: Let t be the shortest rational such that

I sin-l S – 131 < CO, where S = 2/(t + l/t). Then

S is at most one bit longer than S*.

For this, we need some simple lemmas.

Lemma 1: Given p and q relatively prime,

gcd(2pq, p2 + q2) <2.

Proof: If 2 divides p2 + q2, then 2 is certainly a com-

mon divisor. Now suppose d > 1 is another prime

divisor. Then d divides 2pq, so it divides either p or

q but not both. Thus one of p2 or q2 is congruent

to zero (mod d) but the other is not. This implies

p2 + q2 is not divisible by d, a contradiction.

Lemma 2: Let t = p/q be the shortest rational in

interval I (p, q relatively prime). Then t’ = pl~q’ E I

(P, q E W, t’ # t) implies p < p’ and q < q’.

Prooj: q < q’ is immediate from the shortness of t,

and p < p’ follows by an easy analysis with the Farey

sequences discussed below.

Proof of claim: If S = S*, then we are done. Other-

wise S is longer than S*, and we must determine how

much longer it might be.

Let t = p/q, with p and q relatively prime. Then

S = (2pq)/(p2 + q2) by substitution. $limilarly, we

know S* = (2p’q’)/(p’z + q’z) for some relatively

prime p’ and q’. From lemma 2 we have

p<p’ and q < q’. (5)
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(defuussine (sng &optional (eps 0.01))

(let ((s (sin ang)))

(if (< sngeps) O

(do ((eO (+ (/ 1 s) (sqrt (- (/ 1 (*s s)) 1))) el)

(po Opl)

(qo 1 ql)

(ei -i (- eO (*rat ei)))

(P1 1 (-PO (*rat pi)))

(ql O (-qO (*rat ql)))

(rsin 1)

rat )

((< (abs (- sng (aain (coerce rsin ‘double-float)))) eps) rain)

(setq rat (truncate eO el)

rain (/ (* 2 pi ql) (+ (*plpl) (* qi ql))))))))

Figure 4: Code for a better sine algorithm

Let a’= gcd(2pq, p2+q2) and d’= gcd(2p’q’, p’2-tq’2).

Fromlemmal, we have

d > d’/2 (6)

and wish toprove(p2+q2)/d< 2(p’2+q’2)/d’jk,

the denominatorof S is less than twice that ofS*,

and thus at most a bit longer. Then

pz + qz (:) p’2+ g’2 (:) p’z+ q’z P’2+ q’2 .

d d– d’/2 = 2 dl ~

Po!flo, Pl!ql, := 0! 1> 1! 1;
loop

a, b:=po+pl, qo+ql;

ifz <a/b then

P1>91 :=%~

iflpl/ql–z{ <c then returnpl/ql

else

po,90:= a, 4

iflpo/qo–xl <c then returnpo/qo

Figure 5: Farey approximations to z

Tosummarize, this shows that ifwe really do find the

shortest t, then 2/(t + I/t) is either the shortest sine,

or another sine only a bit longer.

That leaves the second point: Does the algorithm

of Figure 3 produce shortest answers? The answer

is no, but it is quite close to one that does. To see

what’s going on, we need a simple tool from num-

bertheory, Farey Sequences (see e.g. [Rad84]). The

Farey Sequence of order N is just the ascending se-

quence of canonically reduced fractions between zero

and one with denominators not exceeding N. There

are two fundamental theorems concerning them:

Theorem 1. Every reduced positive rational less

than one appears in a Farey sequence.

Theorem 2. Every element of the Farey sequence of

order N + 1 that is not in the sequence of order N is

an N-mediant.

An N-mediant is a number (a + b)/(c + d), where

a/c and b/d are adjacent elements of the order N

sequence. Noting these theorems, we claim there is

an obvious algorithm to find the sequence of fractions

that approximate any x, O ~ x < 1 in ascending order

of length. We start with the order 1 sequence 0/1, 1/1

and add the mediants closest to x in succession. Re-

fining this idea a little, we obtain the algorithm of

Figure 5. Why have we bothered with Euclid’s algo-

rithm at all when this is clearly correct and optimal

in the length of results? Unfortunately, Figure 5 re-

quires O(d) iterations, where d is the denominator of

the returned value. Our version of Euclid’s algorithm

requires only O(log d) iterations.

Thus we cannot use Figure 5 directly, but we can

use it for insight into Euclid’s algorithm in Figure 3,

Consider maximal sequences of adjacent iterations of

the loop in Figure 5 where the “if” condition tests

true (resp. jake). Call these T (resp, F’) sequences.

Then it is not hard to see that the effect of a T se-

quence is to add r(~/qo) to pl/ql where r = ITI. Re-

spect ively, F sequences add rl (pl/ql ) to po/qo where

r’ = IF I. This suggests that we can speed up Fig-

ure 5 by calculating r and r’ for adjacent T and F

sequence pairs, replacing all iterations for a T, F pair

by exactly one. We have done this in Figure 6.

The summary result is this: A tedious algebraic

analysis (not given here) shows that Figure 6 yields

the same answers as Figure 3, at least for O < z <

1/2. Thus Euclid’s algorithm effectively simulates

the successively tighter bracketing by Farey mediants

of Figure 5, but does it much faster.

Despite this interesting equivalence, we cannot con-

clude that Figures 3 and 6 give shortest answers.

Why? Precisely because entire T and F sequences
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PO!90, P1>91 := 011, 1! 1;
loop

r:= l(pl–qlz)/(qox –po)]

~1/91:= (rw + w)/(wO + 91)

if lpl/ql –xl < E then return pl/ql

1“ := [(X*O - po)/(p, - q,z)j

~/~0:= (~’~1 + m)/(r’m +90)

lf l~/qo–zl < c then return po/gO

Figure 6: Speedy Fareyapproximations tox

are replaced by single iterations in Figure 6. Each

iteration of Figure 5 increases the length of the an-

swer, and the first approximation close enough to x

to satisfy the stopping criterion may be generated in

the middle of a T or F sequence. Figure 6 applies

the stopping criterion only at the ends of T and F

sequences.

Thus we have at once characterized the cases

where Euclid’s algorithm produces non-shortest an-

swers and suggested how to solve the problem. We

need to ensure that the calculation of r and r’ in Fig-

ure 6 (resp. r in Figure 3) does not go too far, produc-

ing a too big value that steps past the shortest medi-

ant. Incorporating this idea, Figure 7 is the final code

with separate functions to approximate numbers and

give rational sines. With Ce = 10-4, the sine function

gives answers one to three bits shorter that Figure 4

about a third of the time for random angles. Interest-

ingly, about one in twenty returns is a bit longer than

Figure 4. This occurs when a non-shortest t gener-

ated by Figure 3 happens to yield a one bit shorter

sine than the shortest t. This possibility is allowed by

our earlier claim, and we are thus assured that it oc-

curs in fact. Though this implementation is sufficient

for perhaps most applications, it is worth noting that

all the double precision arithmetic can be replaced by

rational arithmetic to achieve any precision. E.g., we

can use the factorial series expansion of the sine and

Newton iteration for the square root.

We now briefly discuss the fundamental complex-

ity of the final algorithm. It is easy to verify that

the size of the result denominator grows by at least

a bit in each iteration. The final size is n = log(l/c)

bits, and none of the other operands in the calcula-

tion are significantly longer. Assuming Schi5nhage-

Strassen4 multiplication, doing arithmetic on them

takes O(n log n log log n) time. There are O(n) it-

erations, which means 0(n2 log n log log n) time. A

remaining detail is the complexity of computing ra-

tional approximations to the sine and square root to

AE+g+ MIT ~ and Kyoto CbWNLISp use t~ls

method, so it is not a merely theoretical invocation.

initialize the iteration. We merely note that New-

ton’s method converges quadratically and the sine

series linearly (as our algorithm). Since these are ex-

ecuted only twice each, and there is also no problem

with excessively long intermediate operands, these

calculations do not increase the overall complexity.

Finally, we note there are faster GCD algorithms

than our Farey derivative that are very well known

(see [AHU74], Thin. 8.20.). These algorithms are

O(rt log2 n log log n) and extend to finding rationals.

However, whether our size-optimality analysis and

modifications extend as well remains open.

9 Applications

This section applies the rational method to exam-

ples of the many geometric algorithms that require

rotations to remove degeneracies, simplify intersec-

tion calculations, represent rotations of modeled ob-

jects, etc. These algorithms are often presented and

analyzed using the real-RAM model, which allows

rotation to arise in subtle forms. For instance, the

statement “assume the direction of sweep is par-

allel to the z axis” masks a prescripticm for rota-

tion. The more realistic bit-complexity model de-

mands greater precision, and the work described here

lets us provide it; we can now write, “Construct a

rotation matrix that brings the sweep (direction to

the positive x axis. . . Approximate the entries with

rationals. . . Apply the resulting transformation to the

input. ..” or, “Choose a pure rotation within c of 0.”

This validates the algorithm’s correctness and use-

fulness in practical settings without reliance, implicit

or otherwise, on robust, limited precision techniques

for implementation. Thus, we believe these examples

elaborate a significant lacuna in robust geometric al-

gorithms.

The first two applications involve rota,ting the in-

put as a pre-process to an algorithm, and then “un-

rotating” the output. One is a line-sweep in an arbi-

trary direction. The other is a perturbation of input

to remove vertical degeneracies. Note that pure ro-

tations are not optimal for these algorithms in their

basic form for this reason: If all we need is the finally

unrotated output, then we can find coefficients that

rotate to within the desired tolerance and introduce

an arbitrary scaling with fewer bits than a pure ro-

tation matrix (about half as many suffice). This is

possible because the inverse of such a transformation

also has rational coefficients-the scaling introduced

in rotating can be exactly undone while unrotating-

and scaling does not affect correctness by changing

topology. Scaling does cause problems, though, if
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;;; Find the srnalleet rational between XO and xl.

(defun rat (xO xl)

(let ((i (ceiling xO)) (iO (floor xO)) (il (ceiling xl)))
(if (>=x1 i) i

(do ((PO iO (+PI (*rpO)))

(qOl (+ql (*rqO)))

(P1 ii PO)

(qi 1 qo)

(eO (- ii xO) elp)

(el (- XO iO) (- eOp (* r elp)))

(eOp (- ilxl) el)

(elp (-xl iO) (-eO (*r el)))r)

((<=xO (coerce (/pO qO) ‘double-float) xl) (/pOqO))

(setqr (rein (floor eOel) (ceiling eOpelp)))))))

‘-- Return a small rational sine for an angle in [aO,al], O <= aO < al < pi/2>,s

(defun rat-sin (aO al)

(if (zeropaO) O
(let* ((s0 (sin aO)) (s1 (sin ai))

(tt (rat (+ (/ si) (sqrt (i- (/ (* si s1)))))

(+ (/s0) (sqrt (i- (/ (*so-so))))))))

(/ 2 (+ tt (/ tt))))))

Figure 7: Shortest rational approximations and short sines

ever we must augment the algorithms to compare a

distance, area, or volume in the rotated problem to

one in the original. It is not hard to imagine such a

requirement.5 We conclude that while a pure rota-

tionmay notbe theoretically necessary for these and

similar algorithms, it will often be highly desirable in

practice.

The third application iscomputingvisibility graphs

for an environment containing arotating robot where

pure rotations are essential for consistency. Finally,

we propose an application in computer graphics.

9.1 Rotating line sweep problems

To employ the Canny–Donald6 line sweep projection

algorithm in a multistep compliant motion (robot)

planner with uncertainty in sensing and control, it

is sufficient to compute projections for a finite set of

robot velocity angles. For each, we rotate theenvi-

ronment and robot so that the velocity vector points

along the negative z axis as shown in Figure 8. The

sweep line then movesin the positive z direction and

computation of intersections and distances is greatly

simplified.7 We can use the rational rotation method

‘To make thk work without pure rotations, we would have
to compute the square of the scale introduced by the impure
matrix (i.e, its determinant; the scale itself is usually irrational)
and use it in every comparison.

Csee any of [Don89, Don90, Lat91]. For readers unfamiliar
with thk algorithm, the same issues arise in any sweep-line
algorithm, e.g., [F’S85].

7Rotating the mountain to Mohammed, if you will.

v~

/

-... -,.

F“Bk e~.:........,,...“’ s
... ........

s .’
,... v...,,

:“ Sweep Line A.
Sweep Line

Figure 8: Rotating a projection problem.

presented here to do this rotation of the environment.

9.2 Tweaking line sweep problems

The characterization of rational sines by 2/(t + I/t)

witht rational has possibilities beyond the algorithm

of Figure 7. Many line sweep algorithms are oblivious

to the direction of the sweep line. Another common

feature is that segments parallel to the sweep line

must be treated as special cases. It might be much

simpler and even more efficient to get rid of these

cases by rotating the problem so there are no such

segments. We can use our new understanding of ra-

tional sines to compute short rotation coefficients for

this purpose: Generate the canonically reduced ra-

tionals O s t s 1 in ascending order of length and

pick the first one such that 2/(t + l/t) is the sine for

a rotation angle with the desired effect. The t values

are just the stream of N-mediants of Farey sequences

in increasing order of N. We omit further details.
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9.3 Visibility graphs

Suppose we compute the visibility graph G of a set

of polygons A U B. Denote by EA the (set of) edges

of A. Note that as a graph, EA C G. Now, compute

the visibility graph G(6) of A(6) u l?. Define ~A(d)

to be edges of A(O), so EA (0) C G(6). Unless pure

rotations are used, the lengths of the edges in EA will

be from the edges in EA (6). Most disturbing! This

application arises in motion planning for a robot that

can rotate, where A models the robot and B models

the environment.

9.4 Graphics transformations

Many computer graphics applications are character-

ized by large databaaes of polygons with integer ver-

tex coordinates. Homogeneous transformations must

be applied to these very rapidly, perhaps many times

a second. Floating point coefficients are a possibility,

but another approach that has been successful for ex-

tracting good performance from inexpensive integer-

only processing units is to use rational transformation

coefficients with a restricted number of bits, say n. In

the 3D case, the transformation matrix ill is 4 x 4,

and the desired transformation of a vertex [vo, VI, V2]

is as follows:

(Mi3 + ~~=o Mij vj
V: =round

)

9
w

where w = M33 + ~~=o M3j Vj

Careful rewriting allows this to be calculated with

15 integer multiplies and three divides. Additional

economies are possible when the structure of M is

restricted.

Our algorithms are useful for forming M. Typi-

cally, it will be the concatenation of several transfor-

mations, say rotation, scaling, and perspective. We

create a pure rotation first using some heuristic choice

for its accuracy, perhaps 2-‘/4 radians. Then we

concatenate the desired scaling and perspective in a

floating point or arbitrary precision matrix, and ap-

proximate its entries as accurately as possible with-

out overflowing n bits in the result. A conservative

tolerance is not hard to derive.

10 Relation to Algebraic

Geometry

Algebraic geometry points to generalizations of this

work: eq. (2) is a genus O curve, which implies it

can be parameterized in one variable t. Our char-

acterization of rational sines results from the choice

x = t(y – 1) (i.e., substitution in (2) yields y =

(t2 – 1)/(t2 + 1) = fl(2/(t + l/t))). All quadratic

curves have similar parameterizations. These yield

algorithms for short rational hyperbolic sines and

cosines (for example). [Sha77] gives a genleral param-

etrization method and also explores its limitations

for algebraic functions of higher degree. Note that

this technique will not work in general; for example

it won’t work for elliptic functions!

Then the following interesting question arises: Re-

call the “one-bit-from-optimal” property we prove for

the rational sine parameterization. We ask: Do such

parameterizations of all quadratic curves have this

property?

In partial answer, we believe they do not. The

question devolves to answering the following:

Question: Given an algebraic curve C defined by

f(x, y) =0, Of total degree 2 and genus O.

Pick a rational point (xo, yo) on the curve. Con-

sider a line i(t) through (xo, yo) with rational slope t.

Then the other intersection (x, y) of l(t) with C is a

rational point. Hence, t parametem”zes all such ratio-

nal points (x, y). Moreover, the choice of (xo, yo) is

canonical.

So let t be the rational p/q, and consider the equa-

tion f(x, y. + (p/q)(x – Xo)) = O. Solve (’by quadratic

formula) to get x = g(p, q)/h(p, q), where g and h are

relatively prime integer polynomials.

Then, for any relatively prime p, q is

gcd(g(p> q), h(p>q)) s 2?

We believe that gcd(g(p, q), h(p, q) can be as large

as the product of the coefficients of f. It remains to

demonstrate this as an upper or lower bound.
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