
Ray Shooting in Convex Polytopes*

Otfried Schwarzkopf

Utrecht University, Department of Computer Science,
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

Let H be a set of n halfspaces in Ed (where the dimen-

sion d ~ 4 is jixed), and ‘P(H) the convex polytope de-

jined as their intersection. We show that P(H) can be

preprocessed in time and space 0(nLdJ2J /(log n)Ld12J”)

(for any jixed e > O) so that ray shooting queries

with rays starting in P(H) can be answered in time

O(logrl). This improves previous bounds by obtain-

ing optimal query time and by improving the product

Q(n)s(n)lJLd/2J (’Q(n) and S(n) denoting query time

and storage of a data structure for this problem) to

O(n(log n)’) for an arbitrarily small e > 0. By a

well known lifiing transformation, the results imply the

same bounds for nearest (or furthest) neighbor queries

in space of one dimension lower, which is an improve-

ment in itself. We furthermore show that a structure

for the ray shooting problem can be dynamically main-

tained under a sequence of random insertions, using the

history of the maintenance process for the polytope as a

point location data structure. The expected update time

jo(’)), the query timeforrays hoot-is ~?(nzLdJ2J-l(logrn

ing queries is O(log m) wzth high pr-obabiiity, where m

is the current number of points.

●This research was supported by the ESPRIT It Basic Research

Action of the European Community under contract No. 3075

(project ALCOM). It was done while the author was employed

at Freie Universit5t Berlin. Part of it was done during the First

Utrecht Workshop on Computational Geometry, supported by

the Netherlands’ Organization for Scientific Research (N WO).

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-

wise, or to republish, requires a fee and/or specific permission.

1 Introduction

We consider the following problem: Given a polytope

P(H) defined as the intersection of a set H of n half-

spaces, preprocess them into a data structure such that

queries of the form: What is the facet intersected by a

query ray starting within P(H) ? can be answered effi-

ciently.

The most efficient previous solution to the d-

dimensional problem is due to Agarwal and Ma-

tou~ek [AM92]. They have shown how to answer

ray shooting queries by applying Meggido’s paramet-

ric search to a data structure for queries of the form:

“does a query point lie in the polytope P(H)?” Us-

ing a data structure for the latter problem by Clark-

son [Cla88] with 0(n[dj2~ +E) storage (for an arbitrarily

small but fixed constant s > O) and O(log n) query

time, they thus obtain a solution with the same stor-

age and query time 0(log2 n) for ray shooting queries.

Unfortunately, this logarithmic overhead between the

basis algorithm (the structure by Clarkson) and the re-

sulting solution to the ray shooting problem seems to

be intrinsic to the approach using parametric search.

In order to avoid that bottleneck and to improve the

query time to optimal O(log n), we discuss a variation

of Clarkson’s structure to solve ray shooting queries di-

rectly without recurring to parametric search. We thus

obtain a solution with o(rz Ldi2~ polylog n) storage and

@(log n) query time, Since the complexity of the inter-

section of n halfspaces in d dimensions can be @(n Ld12J),

it is generally believed that this is close to optimal. A

popular conjecture suspects a lower bound of !d(n) on

the product Q(n) .S(n)l/Ld12j , where Q(n) and S(n) de-

note query time and storage of a data structure for the

problem. (There is, however, nothing even approaching

a proof of this conjecture, but compare with some re-

cent results by Bronnimann and Chazelle [BC92] who

prove an !J((n/ log n)l–a /MIJd) lower bound for

the query time of a halfspace range reporting data struc-

8th Annual Computational Geometry, 6/92, Berlin, Germany

01992 ACM 89791 -518-6/92/W06/0286 $1.50

286

http://crossmark.crossref.org/dialog/?doi=10.1145%2F142675.142734&domain=pdf&date_stamp=1992-07-01

ture with storage M).

It seems therefore interesting whether we can further

improve the storage of the data structure. We show

that the idea of bootstrapping by applying the pre-

vious structure to a large random sample of H used

by Chazelle and Friedman in [CF92] (for point loca-

tion in hyperplane arrangements) can in fact be used

to improve the storage of our solution for ray shoot-

ing queries to O(n ldj2j /(log n) ldJ2j’s). This obtains

a Q(n)s(n)llid12j product of O(n(log n)s) for an arbi-

trarily small e >0, which improves the previous bounds

using parametric search on Clarkson’s (O(nl+c)) and

Mulrnuley’s solution ([Mu191b] proves a O(n(log n)”tl))

solution).

Note that by a well known lifting transformation (see

e.g. [Ede87]), nearest (and furthest) neighbor queries

can be solved by shooting a vertical ray in the upper

envelope of a set of n hyperplanes (which is a poly-

tope) in a space of one dimension more. We thus ob-

tain a structure for the post office problem, which is

an improvement to previous results in itself. Even in

three-dimensional space, for instance, the best previous

solution with space @(nz) had query time 0(log2 n),

see [Cha85, AESW90]. We improve this query time to

O(logn).

We then turn our attention to a dynamic version of

ray shooting queries. Note that we do not intend to

make the structure discussed before dynamic (a recent

result by Agarwal and MatouSek [AM91] shows that a

version of Clarkson’s structure with o(ni~lzJ +C) storage

can—with considerable effort-be made dynamic, and

in fact, the ideas mentioned above to solve ray shoot-

ing queries directly without requiring parametric search

can be applied to their dynamic solution as well). In-

stead, we consider the problem of maintaining the in-

tersection of halfspaces in dimension d under a model

of random insertions and deletions (in a nutshell, it is

assumed that at every insertion step, every halfspace

currently not present is equally likely to be inserted,

and at a deletion step, every halfspace currently present

has the same probability of being deleted). Several au-

thors [Mu191c, CMS92, Sch91] studied this problem be-

fore and presented (three different) ways of maintaining

the intersection polytope efficiently uncler such a ran-

dom model. For randomized incremental algorithms, it

is often the case that the history of the dynamic main-

tenance process can be used as a point location struc-

ture for the current structure, see e.g. [B DS+90, GKS92,

BDT90, DMT92, Mu188, Sei91b, CMS92], [Mu191c] and

[Sch91] also considered deletions. For the case of main-

taining halfspace intersections, however, such a data

structure has remained elusive for dimension d .~. 5.

([Mu19 lb] gives a structure for the problem of decldmg

whether a point q lies in the polytope, assuming a ran-

dom sequence of insertions and deletions, but it does

not use the history as a search structure). As Mulmu-

ley [Mu191c] observed, the problem is the retriangula-

tion of the regions adjacent to a newly created facet.

We show in Section 4 that Chazelle and Friedman’s

notion of an antenna can be used to cope with this

problem. We consider the semi-dynamic case, where

halfspaces are only allowed to be inserted. We obtain

a data structure for d-dimensional ray shooting queries

capable of insertions of halfspaces in a model of ran-

dom insertions. It is possible to obtain similar results

for deletions of halfspaces. For reasons of space and mo-

tivation, however, we do not pursue that any further.

2 Definitions

Given a set H of n hyperplanes in d-dimensional space

Ed, we denote by d(H) the arrangement of the hyper-

planes, and by ‘P(H) the closure of the cell of A(H)

containing a certain fixed point o (the origin of the co-

ordinate system, say). For h E H, we define h+ as

the open halfspace bounded by h and containing o and

h- as the open halfspace not containing o. ?(H) is

a d-dimensional polytope, defined as the closure of the

intersection of the n halfspaces {h+ I h c H}. Its com-

plexity is thus at most 0(nLdf2J) by the upper bound

theorem, see e.g. [Ede87]. We will assume throughout

this paper that the given hyperplanes are in general po-

sition, i.e. no d + 1 hyperplanes intersect in a common

point. Let us say that a hyperplane h is hit by a ray p

if the intersection of p and h is a point, i.e. p intersects

h but is not contained in h. We can thus define @(p, H)

as the first hyperplane h 6 H hit by p. We resolve am-

biguities arising if p passes through a lower dimensional

face of A(H) by imposing some arbitrary order on H,

such M the lexicographic order with respect to some

unique representation of the hyperplanes.

Definition 1 Given a set H of n hyperplanes and its

polyt ope ‘P(H). A ray shooting query ts defined as fol-

lows: Given a ray p with origin p such that p G ‘P(H),

jind the first hyperplane h c H hit by p.

Note that we do not consider hyperplanes containing p.

This is essential since we will have to use rays p which

are contained in hyperplanes bounding P(H). Another,

more formal definition we could have used is: Given

a ray p with orvgin p such that p E P(H), find the

point q ● P(H) wtth p nP(H) = pq, and a hyperplane

containing q but not p.

We furthermore need the following concept, which

is a modified version of a notion due to Chazelle and

Friedman [CF92]. Again we are given a set H of hy-

perplanes and its arrangement A(H). Given a subset

@/

#’
. -. ----.:

4
‘. .

direction u

Figure 1: Example for an antenna in three dimensions

K C H with IK I < d and a direction vector u, we de-

fine another direction vector wK (u) as follows: We let

~ denote the (d – lKl)-dimensional flat f := nh~~ h,

and take the first vector w in the list

(U, (l, o,o ,...,O), (0,1,0,0)(0.0.0,. ..,1)),

that is not normal to ~ (w exists since IK I < d) and

define wK (u) as the direction vector lying in ~ which

maximizes w. WK(U). Imagine walking around in f. The

direction w~(u) is the direction in which we proceed as

much in direction w as possible in the flat ~ at all.

Definition 2 Given a set H of hyperplanes in general

position, a point q, a subset K c H with q E fih~~ h,

and a dzrection vector u, the antenna ant~(q, K) of q

with respect to K and u is dejined as a binary tree of

depth d – [Kl whose edges are labeled with elements

of H and whose nodes correspond to points in Ed. If

]Kl = d, antu(q, K) consists of a single leaf correspond-

ing to the vertex nhe~ h; otherwise we consider the

rays p’ and ptt with origin q and directions wK(u) and

–wK(u) resp. Let h’ = @(p’, H) and h“ := ~(p”, H)

be the first hyperplanes hit by p’ and p“ resp., and let

9‘ := p’ n h’ and q“ := p“ n h“ be the points of inter-

section. Then ant~(q, K) is defined as the binary tree

consisting of a root (corresponding to the point q), two

outgoang edges labeled with h’ and h“, and the two sub-

trees antu(q’, K U {h’}) and antu(q”, K U {h’’}).

The edges of atit (p, H) are the line segments joining the

points corresponding to two adjacent nodes (i.e. parent

and child) in the tree antu(q, K). In Figure 1 an exam-

ple of an antenna in three dimensions is given, showing

the edges of ant~ (q, 0). The figure should explain the

name of the construct,

Observation 3 Gwen the situation of Definition 2.

Then antu(q, K) has 2 k leaves corresponding to ver-

tices of A(H) that are not necessarily distinct, where

k := d – IKI; and q lies in the convex hull of these ver-

tices. The vertex corresponding to a leaf v of the tree

ant U(q, K) can be found as the intersection of the hyper-

planes in K with those labeling the path from the root

of antu(q, K) to v; v is adjacent to the face of A(H)

containing q. Furthermore, the antenna ant U(q, K) can

be computed by at most 2k+l ray shooting queries in

A(H),

Finally, we define the antenna of a ray p with respect

to a set If of hyperplanes as ant(p, H) := antu(p, 0),

where p is the origin of p and where u is the direction

of p.

3 The static ray shooting problem

In this section we assume that a set H of n hyperplanes

and its polytope P(H) are given in advance, and we

wish to preprocess them into a data structure which

allows for fast ray shooting queries. Agarwal and Ma-

touiiek [AM92] have given such a structure with prepro-

cessing time and storage O(n Ldizj +:) (for an arbitrarily

small, but fixed e > O) and query time O(log2 n) by ap-

plying parametric search to a data structure by Clark-

son. We first improve upon this solution by giving a

data structure with query time O(log n) and storage

and preprocessing time O(n LdJ2J(log n) Ofl J). We then

further improve the storage requirement of this struc-

ture slightly by doing as Chazelle and Friedman [CF92]

and bootstrapping the first solution. While [CF92]

needs four such bootstrapping steps for the final so-

lution, we employ somewhat more powerful tools to do

so in a single step. This approach should work for the

problem considered in [CF92] as well.

We first need several definitions, partly borrowed

from [Mat91b]. For a simplex A, let HA denote the

set of hyperplanes h c H intersecting A. Note that

our simplices can be unbounded. In fact, we define a

simplex as the intersection of d + 1 closed halfspaces.

A (l/r) -cutting for P(H) is a collection E of simplices

with disjoint interiors, such that IHA I ~ n/r for every

Ac:, and such that P(H) is covered by the union

of the simplices and that every simplex A contains a

point of T(H), The size of a cutting is the number of

its simplices. We then have the following result:

Lemma 4 (Restricted version of the Shallow cutting

lemma, [Mat91b]) Let H be a collection ofn hyperplanes

tn general position in Ed, and r < n a parameter. There

~ for P(H) of size ~(rLd/2J).ezists a (l/r) -cutting -

We then have the following observation:

Lemma 5 Given a set H of hyperplanes in Ed and

a set E of simplices such that P(H) is covered by the

unton of the simplices and that every A E Z intersects

P(H). Let p be a ray with origin p in P(H) and let A

1The author is indebted to Jirka Matou6ek for pointing out
this observation which somewhat simplifies the algorithm

288

be the lastsimplex in Z intersected by p (with respect

to the natural order of simplices along the ray p). Then

h := $(P, H) intersects A.

Proof: There is a simplex A intersected by p since

p starts in P(H) and P(H) is covered by E. Conse-

quently, there also exists a last simplex A intersected

by p. Let h := O(P, H) be the first hyperplane in H hit

by p and let q := p n h be the point of intersection. If

q ● A, h clearly intersects A. Otherwise A contains a

point z on p but outside P(H). Since q E h and p E h+

we must have z e h-. Since A intersects P(H), there is

a point y c A that lies in the polytope P(H) and thus

in h+. This implies that xy intersects h, so h intersects

A. ❑

We will need the following data structure as a secondary

structure.

Lemma 6 Given a set E of m simpltces with disjoint

interior in Ed. We can build in time 0(msd+2) a data

structure of size O(msd-6+’) (for an arbitrarily small

constant c > O) that permits queries of the form “Given

a query ray p, find the last simplex A in Z intersected

by p“ with query time O(log m).

Proof: We apply a standard locus approach. We con-

sider the (2d — I)-dimensional space of all rays. The

loci corresponding to rays with the same last simplex

induce a subdivision of this space. We can do point lo-

cation in this subdivision using the following result by

Chazelle et al. [CEGS89].

Lemma 7 ([CEGS89]) Given N polynomials fi, 1 S

i ~ N, of bounded degree in D variables (where D is

also considered a constant). For a D-dimensional vari-

able x := (X1, X2,..., x~), let sign;(z) be the sign of

fi(x), and sign(x) := (signI(z),..., sign~(z)) be the

sign vector of x with respect to the family (fi). Assume

we are given a label for every possible value of sign(x).

There is a data structure with storage 0(N2D-3+C),

for an arbitrarily small constant c >0, that can be com-

puted in time 0(N2D+1) and that permits, given a D-

Dimensional variable x, to find the label associated with

sign(z) in time O(log N).

We represent the query ray p by its origin p and by a di-

rection vector u. We thus have a D := 2d dimensional

representation for p. Consider now a fixed simplex A.

We compute a constant number of polynomials in the

D = 2d variables representing p to test whether p inter-

sects A. We first observe that p intersects A if either
the origin p of p lies in A, or if some facet f of A is vis-

ible from p and the direction u lies in the convex cone

‘This is admittedly not optimal.

with apex p spanned by f. The first case ,can easily be

tested by d + 1 linear inequalities (polynomials of de-

gree one). For second case we first identify the facets f

visible from p using the same inequalities iis in the first

case.

We now have a facet f of A visible from p and wish to

test whether u lies in the cone spanned by f. This can

be done by checking the orientation of u with respect

to the d hyperplanes that pass through p and the d

ridges ((d — 2)-faces) of f. For every ridge, we choose

d – 1 affinely independent points ql, qz, . ~~., qd- 1. The

orientation of u with respect to the hyperplane spanned

bypandql, qz, . . . , qd- 1 can be tested by computing the

orientation of the simplex spanned by u amd the d – 1

vectors ql —p, qz —p, . . . , qd- 1 —p. This orientation can

be found by computing the determinant of the matrix

whose rows are these d vectors, which corresponds to

the evaluation of a polynomial of degree ~!.

In this fashion we have determined a set of O(m)

polynomials. The signs of these polynomials for the

variable representing a given ray p give us complete

information as to which simplices are intersected by p,

and, if a simplex A is intersected, through which facet

f of A the ray p enters the simplex A. “[t remains to

determine the last simplex intersected by p.

To this end, we add another set of U(m!2) polynomi-

als. Assume that p intersects two simplices Al and Az,

and enters them through their facets fl and f2, resp.

Let hl and h2 be the hyperplanes containing fl and f2.

We can then test which of the two simplices is inter-

sected first by testing which of the two intersections of

p with hl and h2 lies closer to p. But this can again be

tested by determining the orientation of u with respect

to the hyperplane through p and the (d – 2)-flat hl n Itz.

This can be dealt with as above. In this fashion we can

add a polynomial for every pair of facets of different

simplices.

The sign sequence of the resulting set of polynomials

determines uniquely which simplex is the last one in-

tersected by p. We can therefore appeal to Lemma 7,

with parameters N c 0(m2) and D = 2d, to obtain a

search structure with the time bounds claimed above.

Given a ray p, this structure returns the labels of the

last simplex A intersected by p. H

We can now start to describe our data structure. We

are given a set II of n halfspaces in general position,

and the special point o defining P(H). If n is smaller

than some (large) constant, we simply store the list of’

hyperplanes H. Otherwise, we take a cutting E accord-

ing to Lemma 4 with parameter r := n“, Where ~ > 0

is a (small) constant (depending on d) to be determined

later. Furthermore, we build a secondary structure ac-

cording to Lemma 6 for the set E. By choosing a

289

small enough, the storage of this secondary structure

is bounded by O(n Ldizj). We then identify for every

simplex A c E the set HA of hyperplanes intersecting

A, and recursively construct the same structure for HA.

The storage requirement S(n) follows the recurrence:

S(n) c 0(1) for n E 0(1), and

s(n) = c1 ?’Ld/2J s(rz/r’) + o(nL~/2J)

for some constant c1 >0 and r = na, which solves to

s(n) ~ 0(nLd12J loge n) for some constant c >0.

To answer a ray shooting query with query ray p,

we first use the secondary data structure for the col-

lection = to find the last simplex A E = intersected

by the query ray p. We then continue in the structure

associated with A, until we reach a point where we ex-

plicitly stored all hyperplanes, which we can simply test

sequentially.

The correctness of this query algorithm relies on two

facts: There always is a last simplex A intersected by p,

and the hyperplane h = @(p, H) which is the solution to

the ray shooting query intersects this simplex A. These

claims follow directly from Lemma 5.

The query time follows a recursion of the form Q(n) =

Q(n’-a) + O(logn), which gives Q(n)= O(logn).

Let us now turn to the preprocessing time. The main

problem is the construction of a shallow cutting accord-

ing to Lemma 4. Inspection of the proof of Lemma 4

in [Mat9 lb] shows that it can be computed by a rather

simple randomized algorithm in time 0(nrLd12J), but

Matou3ek [Mat92] actually shows that it can even be

computed by a deterministic algorithm within time

O(n log r) for our choice of r. Identification of the sets

HA can trivially be done in time O(nrLd/2J) by testing

every hyperplane with every simplex of the cutting.

The time to construct the secondary structure on E

according to Lemma 6 is polynomial in r = na, and for

sufficiently small a >0 all this is bounded by O(n Ld12J)

again. Thus we get the same recursion as for the space

requirement and find that the preprocessing time is also

bounded by 0(nLd12J log’ n).

Theorem 8 Given a set H ofn hyperplanes in general

position of Ed, d z 4. It can be preprocessed with pre-

processing time and storage 0(nLd12J (log n)”tl)) such

that ray shooting queries for P(H) can be answered with

query time O(logn).

In [A M91], Agarwal and MatouSek give a dynamic ver-

sion of the classical structure for containment in a poly-

tope by Clarkson [C!a88]. They show that a set of n

halfspaces H can be stored in 0(nLd/2J +’) space, for

an arbitrarily small constant .s > 0, such that queries

of the form “Does a given point q lie in the intersec-

tion P(H) of the halfspaces?” can be answered in time

O(log n), and such that halfspaces can be added to or

removed from the set in amortized time O(n Ld/2J – 1+’).

The trick presented in this section allows us to con-

vert their structure into one which permits ray shooting

queries on P(H) with the same time bounds.

We will now show that the idea of bootstrapping used

by Chazelle and Friedman in [CF92] can be used to

improve the storage of our solution for ray shooting

queries to 0(nLd12~ /(log n) Ld12J”). While [CF92] needs

four bootstrapping steps, we employ somewhat more

powerful tools do obtain our result with a single such

step. This idea could be used for the point location

in hyperplane arrangements as well, and, in fact, the

time bound given in [CF92] can be slightly improved

by following exactly the same ideas as presented here.

We need a result by [AM92] which gives a solution

for the ray shooting problem with a tradeoff between

space and query time, and a lemma on random sampling

following easily from results by Clarkson [CS89, Cla87].

Lemma 9 (Agarwal and Matou3ek [AM92]) Given a

set H of n hyperplanes Ed (d ~ 4), and a parameter

M (n s M ~ nLd/2~), there is a data structure for

ray shooting queries with space and preprocessing time

o(Ml+’) and query time 0(rZ/MliLd/2J log3 n), where

& > 0 is an arbitrarily small constant.

Lemma 10 Given a set H of n hyperplanes and a pa-

rameter P > 0. When taking a random sample R of

r hyperplanes from H, with probability at least 1/2 the

following is true: For all vertices v of P(R), the num-

ber nv of hyperplanes h 6 H with v G h- is bounded by

O(n log rir), and the sum ~V~P(~) n{ aS bounded h

~(rLd12J (n/r) ~).

Proof: The expected value of the sum ~U ~p(~) n!

is in ~(rLd12J (n/r)fl) by Theorem 3.6 in [CS89]. The

probability that the sum exceeds four times its mean

is bounded by 1/4. On the other hand, Corollary 4.2

in [Cla87] proves that the probability that any rzV ex-

ceeds m log r/r k at most 1/4, for a suitable constant

c. Together, these results prove the claim. ❑

The improved structure can now be derived as follows:

We take a random sample R of H of size r = n/ logk n

for some parameter k (which is determined later), and

build a structure according to Theorem 8 for P(R). Fur-

thermore, for every vertex v of P(R) we identify the set

Ifv of hyperplanes h G H with v ~ h-. Let n. = IHU 1.

We then construct for every vertex v ● P(R) a sec-

ondary structure according to Lemma 9 with storage

1–6/ l.@J 1og3 nv)M = O(n~+’) and query time O(nv

(1 S 6< ~d/2j is yet another constant to be chosen

later). By Lemma 10 we can choose R such that the

290

total storage for the secondary structures is

x
n~+’ = o(rL~lzJ (n/r)@+E) =

UEP(R)

= 0(dd/2J (log ~)~P+~’-~ld/2J)

and such that n. c O(logk+l n) for all vertices v E

T(R).

To perform a query with a ray p with origin p in

P(H), we first use the structure of Theorem 8 to find

the antenna of p with respect to R. By Observation 3,

this can be done by repeated ray shooting queries on

P(R). Finally, we query the secondary structures asso-

ciated with the at most 2d vertices appearing as leaves

in ant (p, R) with the ray p, and output the first hyper-

plane hit by all the subproblems.

It remains to show that the first hyperplane h =

4(P, ~) in H hit by p appears in ~“ for some vertex

v of ant(p, R). Let h’ = @(p, If’) denote the first hy-

perplane hit by p in T(R). If the solution hyperplane

h is not identical to h’, it must separate the origin p of

p and the point q where p intersects h’. Since q lies in

the convex hull of the v E ant (p, R), h must separate p

from at least one of the vertices v. And since h cannot

separate p from o (p being in P(H)), h must separate

this vertex v from o as well.

Since no e O(log~+l n), the query time of our com-

bined structure is bounded by

o(log n + (log n)(~+l)(l-@lLd/2JJ(log log n)3).

We choose/3 such that (k+ 1)(ld/2j – /3) = lri/2] – 6 for

some small constant 6 >0. This implies that the query

time is bounded by O(log n), and that the storage is

bounded by

@Ld12J log’ ~ + ~L4zJ (log @@+~+WzJ)

= o(nLd12J(logn)c-kLd/2J +

+ ~L~/2]/(log ~)(~+l)(ld/zl -@)-~ ~-(Ld/zj-@))

= 0(nLdt2J (log n)c-kLd12~ +

+nLd/2j /(log n) Ld/zJ-~-~~- L~/ZJ/(~+1))

Choosing k sufficiently large, and 6 and e sufficiently

small, we can bound this by u(n Ldi2J /(log n) Ld12J‘“)

for an arbitrarily small C’ >0.

Let us turn to the cost of preprocessing. The problem

is to find a sample R which conforms to the require-

ments of Lemma 10. Those can be checked once we

know the number of halfspaces in the lists H. for every

vertex v E P(R) (these halfspaws have to be computed

anyway). We just take a random sample R of the ap-

propriate size, and construct its polytope P(R). Then

we sequentially take all n halfspaces h from If and find

all w E ‘P(R) which are in h–. It is well known that this

can be done in time linear in the number of such vertices

once one such vertex is known (see e.g. [CS89]). On the

other hand, we get such a vertex (a conj?ict of h) by

linear programming on R in time O(r) (see [Sei9 la]),

so the total time for this step is O(nr-) plus the to-

tal number of vertices found. We stop this algorithm

if it tries to report more than O(rrr Ldj2~’- 1) such ver-

tices (because then the sample R is bad), otherwise we

check whether it fulfills the requirements c~f Lemma 10.

If not, we discard R and take a new random sample.

By Lemma 10, the expected number of ~such trials is

constant, so we can find R in time O(nrl.d12j -1) (and

identify the lists H. in the same time). The secondary

structures can be computed in time linear in their stor-

age (see [AM 92]), so we have again the same recursion

as for the space. We have thus proven

Theorem 11 Given a set H of n hyperplanes Zn Ed,

d ~ 4, ray shooting queries on P(H) can be done with

storage S(n) = ~(nLdJ2J /(log n)Ldi2J ‘S) and query time

Q(n) = O(log n), where e >0 is an arb~trariiy small

constant.

The post office problem in Ed (which calls for perform-

ing nearest-neighbor queries on a set of points) can be

transformed into the problem of shooting a vertical ray

on the upper envelope of a set of n hyperplanes in Ed+l

by a well-known lifting map, see e.g. [Ede87]. We thus

obtain the following corollary.

Corollary 12 Gaven an n-point set P in Ed-*j

nearest-neighbor queries on P can be solved with stor-

age S(n) = @(nLd12J /(log n) Ldi2J–c) and query time

Q(n) = O(log n), where s >0 is an arbitrarily small

constant.

This corollary is an improvement in itself. Even in three

dimensions, the best previous solution to the post office

problem with space 0(n2) needed query time (log2),

see e.g. Chazelle [Cha85] and Agarwal et al. [AESW90].

Remark: From a practical point of vievv, it was not a

good idea to use the antenna concept in the algorithm

of Theorem 11, because it introduces an exponential de-

pendence on d, which can be avoided by replacing the

antenna of p by a suitable simplex of the bottom-vertex

triangulation of P(R). Since we will reall,y need the an-

tenna concept in the next section, it seemed permissible

from a theoretical point of view to present the result

this way, making some additional definitions unneces-

sary. And then, Theorem 11 is of theoretical interest

only anyway.

291

4 Semi-dynamic ray shooting

As mentioned before, we do not aim at making the

structures presented in the previous section dynamic.

(But compare with the recent structure by Agarwal and

MatouSek [AM91]).

We prefer to concentrate on the question whether the

diRerent randomized incremental algorithms to com-

pute the intersection of halfspaces in d-space (using a

sequence of random insertions) can be augmented to

permit ray shooting queries using the history of the in-

sertion process as a data structure.

Let us thus assume that we are given a set H of hy-

perplanes, a random permutation {hl, hz, hn } of H,

and we wish to maintain P({hl, h,}) while adding

the hyperplanes in that random order. For brevity, we

put H, := {hi,...,hr}.

Assume we have P(Hr_ 1) and we wish to add h,.

A vertex v of P(lfr- 1) which is deleted by the addi-

tion of h, can be found by solving a linear program

in time O(r) (an especially simple algorithm for doing

this has been given by Seidel [Sei9 la]). Then a graph

search can be used to identify the portion of P(H.- 1)

that gets removed by h, (because it lies in h;) and it

can be replaced by the new facet (in h,) in time linear

in the structural change (the number of vertices that

are removed or created when going from P(llr _ 1) to

P(17r)), see Clarkson and Shor [CS89]. Since the ex-

pected structural change in any stage is bounded by
L7(rL@J-1) ([CS89]), we can update the intersection

polytope P(Ifr) in expected time O(n~d’2J -1) per step

(still assuming d ~ 4).

As mentioned before, the problems arise when we

wish to maintain a point location structure at the same

time. We want to use the history of the maintenance

process as a point location data structure, an idea that

by now is nearly part of the folklore in the field, see

e.g. [BDS+90, GKS92, BDT90, DMT92, Mu188, Sei91b,

Mu19 lc, CM S92]. The problem with this approach is

the choice of a suitable triangulation of the polytope:

When the “region” 3 containing the query point q in

P(17r- 1) is destroyed by the insertion of h,, we have to

find the appropriate region in P(Ifr). It is possible to do

this when the region “belongs” to the facet of the newly
inserted hyperplane hr, but this seems rather difficult

and gives rise to nasty complications when the new re-

gion belongs to one of the facets adjacent to h, (a facet

which has been truncated by the insertion of hr and

which had therefore been repartitioned into regions).

The problem is that then we have to build a point loca-

tion structure not for the whole facet, but only for the

3 We have to be a blt vague in this paragraph. Readers without

experience in history-oriented randomized incremental algorithms

are advised to skip to the next paragraph.

portion of the “triangulation” that has been changed

between P(If,_l) and P(llr). This can be done for up

to four dimensions, but for higher dimensions a solution

to this problem has been elusive. In this section we first

describe how to use Chazelle and Friedman’s ([CF92])

concept of an antenna defined in Definition 2 to circum-

vent this problem. Using the antenna of a query point,

we can step from P(HT - 1) to P(ll,) using only location

operations in the newly created facet (that of h.).

What is our data structure actually? When we have

to remove some vertices of P(H,- ~), we do not really

delete them, but just mark them as “old” and attach

a pointer to them, indicating the hyperplane h. whose

insertion made the vertex disappear. Furthermore, at

every insertion, we build a static data structure for ray

shooting queries on the (d – 1)-dimensional polytope

P(llr)nh. (the facet supported by h,). (We will discuss

later how to find such a structure).

To perform a ray shooting query with a query ray p

in ?(~~), we trace this history data structure while

maintaining ant(p, H,). (If we can find this ant(p, IIm)

for the current IIm, that solves the ray shooting query).

To do so, we find ant(p, HI) in P(lll), and observe

that ant(p, H,) is different from ant(p, H,_l) exactly if

at least one of the vertices in ant (p, Hr _ 1) is removed

by the insertion of h, (by the same argument as in

the proof of Theorem 11). Since a vertex which is re-

moved from P(17.– 1) has a pointer to h,, we can thus

jump from one stage changing ant (p, H,) to the next,

skipping all stages that leave ant(p, H,) unchanged.

By backwards analysis, it is easy to see that the ex-

pected number of stages changing ant (p, IIr) is O(log r)

(in fact, it is O(log r) even with high probability, see

e.g. [Sch91]).

It remains to show how to update ant(p, H.) if it ac-

tually changes between P(Il,_ 1) and P(II,). Recalling

Definition 2, we can find ant(p, H,) by shooting from q

in two directions until we hit the first hyperplanes, then

shooting from the two thus obtained points in four di-

rections etc. The important observation is that, when

shooting from some point q’, the first hyperplane hit is

either the same as in P(Hr– 1) (which we know since

it labels the appropriate edge in ant (p, H,_ 1) or the

newly inserted hyperplane h?. We thus only have to
check whether the hyperplane which was hit in H,_ 1 is

now covered by hr. Since this can be done in constant

time, we can in constant time traverse the antenna tree

ant (p, Hr _ 1) and determine a set of nodes where we

have hit the new hyperplane h,. At every such node we

have to replace the subtree by some lower dimensional

antenna which lies completely in h, and can thus be

obtained by the structure for ray shooting queries on

P(Ifr) n h,. This implies the following theorem.

292

Theorem 13 Let Z’(r) be the ezpected time (and space)

to build a structure for ray shooting queries on P(H,) n
h. when adding a hyperplane h, to P(Hr-l), and let

Q(r) be its query time.

Then P(H,) can be maintained under random inser-

tions of hyperplanes with 0(mLd12J + rnT(m)) ezpected

storage, 0(mLdJ2J’1 + T(m)) expected update time, and

L?(log m . Q(m)) query time (with hzgh probability) for

ray shooting queries on P(Hr), where m is the current

number of hyperplanes present.

It remains to find a structure for ray shooting queries on

T(H,) n hr. If the dimension d is even, this is easy: We

just take the (d– I)-dimensional version of Theorem 11.

Since for d even we have L(d – 1)/2] = ld/2j – 1, we

thus have

Corollary 14 For even dimension d > 4, we can

maintain the intersection of halfspaces under random

insertions of halfspaces with ~(mLd12J) expected stor-

age, ~(mLd/2J ‘*) ezpected update time, and 0(log2 m)

query time (with high probability), where m is the cur-

reni number of halfspaccs.

The problem becomes considerably more involved if

the climension is odd, because then the complexity of

the facet P(H,) n h, can be as bad as @(n[di2J). How-

ever, we can observe that if we fix Hr, h, is still a ran-

dom facet of P(H,), and its ezpect ed complexity is only

O(n~’2J ‘l). This will help us to find a better solution

for this case. We prove the following theorem.

Theorem 15 Given a set H of n hyperplanes in Ed.

A (d – 1)-dimensional data structure for ray shooting

queries on a random facet of P(H) can be build with

ezpected storage O(n[dlzj’1 (log n)O(ll) (’where the ex-

pectancy is with respect to the random choice of the

facet) and query time C2(logn).

In fact, we will use the structure of Theorem 8, with a

slight modification. The trick is to think of the problem

as if it was actually a problem in d dimensions, i.e. we

build a structure for ray shooting queries on P(H)—

but with the restriction that the query ray must lie in

the hyperplane h!

We thus take a cutting E for P(H) according to

Lemma 4, with parameter r = n“ (for some sufficiently

small a > 0 to be determined later), and construct a

secondary structure for the simplices of E as in Theo-

rem 8. For every A E El we identify the set HA of half-

spaces whose bounding hyperplanes intersect A. Fur-

thermore, we identify all simplices of E intersected by

h (the hyperplane determining the (d – 1)-dimensional

space we intend to work in) and denote this collection

by ~h. We then recursively construct for every A E %

the same structure for HA.

Since a query ray must lie in h, the last simplex in-

tersected by the ray p is also intersected b!y h. We have

thus constructed the recursive structure for this A, and

can perform a query as in the full structure of Theo-

rem 8, taking query time O(log n).

Denote the storage required by the structure for set

H and chosen halfspace h c H by S(H, h), and denote

the expected storage for a random facet of the polytope

P(H) by S(H) (where the expectation is over the choice

of h c H, so S(n) = ~~c~ S(H, h)/n). The maximum

value of S(H) for any set of n halfspaces iIs denoted by

S(n).

The crucial observation is that A G ~~h exactly if

h c HA. We thus have (choosing a >0 [small enough

so that the storage for the secondary structure for E is

in ~(nLd/2J–1))

S(n) = ~ ~ S(H,h)
n

hCH

< ~ ~ [HAI S(HA) + O(n[’i’j-’)—
n

AGE

1
~ –c1rLd12J ~S(n/r) + ~(nl.dizJ-l)

n r
— clrLd/2J-ls(rt/r) + 0(nLd/2J-1)—

This recursion solves to S(n) = O(n [dlz~l -1 log’ n) for

some constant c > 0. For the preprocessing time we

have a slight problem: To get the same recursion as

above for the space, we have to be able to build the cut-

ting and to identify the sets HA in time O(n Ld12J- 1).

As we have seen before that this can be done in time

~(nrLdJ2J), this is no problem for dimension d at least 6.

For dimension 5 (d = 4 is even and therefore harm-

less anyway), however, ~(nr[d12J) is not good enough

a bound. Let us consider this case. ,4s mentioned

above, the cutting E itself can be computed in time

@(n log r) = O(n log n). It remains to identify the sets

HA. We build in time O(n log n) a data structure stor-

ing the set H, such that for a simplex A we can report in

time 0(n4/5(log n)O[l) + IHA 1) the set HIL of halfspaces

whose bounded hyperplanes intersect A. This can be

done by using a partition tree for simplex range search-

ing, see [Mat9 la] for details. Now we observe that we

only have to determine the sets HA for the simplices

A E ~h, and that we can easily determine ~h from ~

in time ~(rLd/2J). Using the structure built before, we

can therefore identify the sets HA for all A E ~h in

293

time O(l~~l(n/r)). Since

the average size of ~h is O(r). This implies that the av-

erage time to identify the sets HA is only O(r(rt/r)) =

O(n). Thus we get the same recursion as above, re-

placing the additive term by O(n log n), which does not

influence the result. E!

Corollary 16 For any dimension d, we can maintain

the intersection of halfspaces under random insertions

of halfspaces with 0(rnLd/2J (log rn)O(lj) ezpected sior-

age, 0(n~LdJ2J ‘l(log rn)O(lj) ezpected update time, and

0(log2 m) query time (with high probability) for ray

shooting queries, where m is the current number of half-

spaces.

It is possible to tackle the ray shooting problem on

convex polytopes in the presence of deletions of half-

spaces by going further along the lines demonstrated

in this section. A treatment of this problem is omit-

ted for reasons of space. Furthermore, the author has

not found any way of dealing with deletions of hyper-

planes without paying a high price in the complexity of

the resulting data structure. The main justification for

considering algorithms that perform well on the aver-

age only, taken over all possible sequences of updates,

was that we hoped to find structures that are consider-

ably simpler (compared, for example, to the structure

by Agarwal and Matou3ek [AM91] cited before). This

is already somewhat dubious for the structure of Corol-

lary 16. It is for this reason as well that we do not

pursue our ideas any further from this point.

Acknowledgments: Many thanks go to Jirka Ma-

tou~ek and Emo Welzl for lots of helpful discussions.

Furthermore, I would like to thank all participants of

the First Utrecht Workshop on Computational Geom-

etry, especially Leo Guibas, for helpful discussions and

remarks. I would also like to thank Pankaj Agarwal for

1A comments on previous versions of this wo;k.

References

[AESW90] Pankaj K. Agarwal, Herbert Edelsbrun-

ner, Otfried Schwarzkopf, and Emo Welzl.

Euclidean minimum spanning trees and

dichromatic closest pairs. In Proc. 6th

Ann. ACM Symp. Computational Geome-

try, pages 203–210, 1990.

[AM91]

[AM92]

[BC92]

[BDS+90]

[BDT90]

[CEGS89]

[CF92]

[Cha85]

[Cla87]

[Cla88]

Pankaj K. Agarwal and Jiii MatouEek. Dy-

namic half-space range reporting and its ap-

plications. Tech. Report CS-199 1-43, Duke

University 1991, 1991.

Pankaj K. Agarwal and Jiii Matouiek. Ray

shooting and parametric search. In 2dth

Symp. on Theory of Computing, 1992. To

appear. Also published as Tech. Report CS-

1991-22, Duke University 1991.

Herv6 Bronnimann and Bernard Chazelle.

How hard is halfspace range searching?

These proceedings.

Jean-Daniel Boissonnat, Olivier Devillers,

Ren6 Schott, Monique Teillaud, and Mari-

ette Yvinec. Applications of random sam-

pling to on-line algorithms in computational

geometry. Discrete @ Computational Geom-

etry, 1990. To appear. Available as Techni-

cal Report INRIA 1285.

Jean-Daniel Boissonnat, Olivier Devillers,

and Monique Teillaud. A randomized incre-

mental algorithm for constructing higher or-

der Voronoi diagrams. Algorithmic, 1990.

(to appear), an abstract has been published

in the 2nd Canadian Conference on Com-

putational Geometry, 1990.

B. Chazelle, H. Edelsbrunner, L. Guibas,

and M. Sharir. A singly-exponential strati-

fication scheme for real semi-algebraic vari-

eties and its applications. In Proc. 16th In-

ternational Colloquium on Automata, Lan-

guages and Programming, volume 372 of

Lecture Notes in Computer Science, pages

179-192, 1989.

Bernard Chazelle and Joel Friedman. Point

location among hyperplanes and vertical ray

shooting. Computational Geometry: Theory

and Applications, 1992. To appear.

Bernard Chazelle. How to search in history.

Information and Control, 64:77–99, 1985.

Kenneth L. Clarkson. New applications of

random sampling in computational geome-

try. Discrete 8’ Computational Geometry,

2:195–222, 1987.

Kenneth L. Clarkson. A randomized algo-

rithm for closest-point queries. SIAM Jour-

nal on Computing, 17:830–847, 1988.

294

[CMS92]

[CS89]

[DMT92]

[Ede87]

[GKS92]

[Mat91a]

[Mat91b]

[Mat92]

Kenneth L. Clarkson, Kurt Mehlhorn, and

Raimund Seidel. Four results on random-

ized incremental construction. In Syrnp. on

Theoretical Aspects of Computer Science,

volume 577 of Lecture Notes in Computer

Science, pages 463–474. Springer-Verlag,

1992.

Kenneth L. Clarkson and Peter W. Shor.

Applications of random sampling in com-

putational geometry, II. Discrete & Compu-

tational Geometry, 4:387-421, 1989.

Olivier Devillers, Stefan Meiser; and

Monique Teillaud. Fully dynamic Delau-

nay triangulation in logarithmic expected

time per operation. Computational Geom-

etry: Theory and Applications, 1992. To

appear. Available as Technical Report IN-

RIA 1349. Abstract published in LNCS 519

(WADS’91, august 1991).

Herbert Edelsbrunner. Algorithms in Com-

binatorial Geometry. Springer-Verlag, 1987.

Leo J. Guibas, Donald E. Knuth, and Micha

Sharir. Randomized incremental construc-

tion of Delaunay and Voronoi diagrams. Al-

gorithmic, 7(4):381-413, 1992.

Jifi Maton~ek. Efficient partition trees. In

Proc. 7th Symp. on Computational Geome-

try, pages 1–9, 1991.

Jiii Matou3ek. Reporting points in half-

spaces. In 32nd Symp. Foundations of Com-

puter Science, pages 207–215, 1991.

Jiii Matouiek. Personal communications,

February 1992.

[MU188] Ketan Mulmuley. A fast planar partition

algorithm, I. In 29th Symp. Foundations of

Computer Science, pages 580–589, 1988.

[Mu191a] Ketan Mulmuley. Randomized, multidi-

mensional search trees: dynamic sampling.

In Proc. 7th Symp. on Computational Ge-

ometry, pages 121-131, 1991.

[Mu191b] Ketan Mulmuley. Randomized multidimen-

sional search trees: Further results in dy-

namic sampling. In 32nd Symp. Founda-

tions of Computer Science, palges 216-227,

1991.

[Mu191c] Ketan Mulmuley. Randomized multidimen-

sional search trees: Lazy and dlynamic shuf-

fling. In 32nd Symp. Foundations of Com-

puter Science, pages 180-196, 1991.

[Sch91] Otfried Schwarzkopf. Dynamic maintenance

of geometric structures made easy. In 32nd

Symp. Foundations of Computer Science,

pages 197-206, 1991.

[Sei91a] Raimund Seidel. Low dimensional lin-

ear programming and convex hulls made

easy. Discrete .!? Computational Geometry,

6(5):423–434, 1991.

[Sei91b] Raimund Seidel. A simple and fast incre-

mental randomized algorithm for comput-

ing trapezoidal decomposition~s and for tri-

angulating polygons. Computational Ge-

ometry: Theory and Applications, 1:51–64,

1991.

295

