
~ CHI’92 May3-7, 1992

EVOLVING TASK ORIENTED SYSTEMS

Paul Seaton and Tom Stewart

System Concepts

Museum House
Museum Street

London, WCIA lJT
tel +4471 6365912

email Tom_Stewart@Hicom.LUT.AC.UK

ABSTRACT
This paper describes an approach to developing systems

which can be summarised as ‘analyse top-down, design

middle-out, and build bottom-up’, A case study is

described in which this approach is used to develop a

system to support staff who select new products for a

major UK company, The novelty of the approach lies in

its use of task analysis to define an appropriate domain

for the system and then the use of a working prototype to

grow a system from the bottom up. The project involved

using simple development tools which allowed the users

to start getting business benefit from the system right

from the start. Their use could therefore develop as the

system evolved.

KEYWORDS Task Analysis, Prototyping, User

Involvement, Design Methods, Evolutionary Design,

Bottom-up Methods, Graphical Interfaces

1.0 INTRODUCTION
Our client is a major UK organisation with over 200 retail

outlets in the UK and an increasing number worldwide.

It is highly centralised with the London-based head office

responsible for selecting and buying all merchaxdse.

Within head office the Departments are organised

accord:ng to groups of products, covering a very diverse

range. Mainframe computer systems are a vital part of

the buying process, with facilities for monitoring sales,

estimating and placing orders with suppliers, but there is

a growing recognition, as in so many organisations, that

current systems development techniques are failing to

deliver the business benefits expected. The systems

which are developed are often late, over budget and

difficult to use.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific permission.

@ 1992 ACM 0-89791-513-5/92/0005-0463 1.50

Traditional systems analysis techniques have been

effective for speciijing the functional requirements for

new systems, but they have been criticised for placing

insufficient emphasis on the usabtity of the resulting

systems,

Other system development approaches have been tried

which encourage greater user involvement in system

specitkation and development. However, this has not

always been successful. Insufficient analysis early-on in

the development process has resulted in system

specifications evolving in an ad hoc and sometimes

uncontrolled way. Prototypes and demonstration systems

have been developed to reflect the preferences of some

users without sufficient attention to the technical

feasibtity or costs associated with full scale

implementation.

Putting it another way, analysis-driven designs have

tended to be unusable whereas user-drken designs have

been unbuildable. To make matters worse, staff in head

office User Departments are making increasing use of

spreadsheets and other PC tools and are becoming

critical of the limitations of the mainframe systems and

the outdated style of interface. The scale of

development required for mainframe systems prevents

them from being sufficiently flexible to reflect the

changing commercial priorities of the User Departments.

Much of the information used by the User Departments

is held on spreadsheets and other PC packages. Up un(il

now these systems have been viewed by the Information

Technology Department (IT) as d~tinctly separate from

mainstream systems development.

What is required is a method for developing systems
which combines the business bemetlts of incrcascd

usability with the efficiency benefits of more ordered

development and better engineered systems,

463

http://crossmark.crossref.org/dialog/?doi=10.1145%2F142750.142900&domain=pdf&date_stamp=1992-06-01

~ [HI ’91 May3-7, 1992

1.1 The Need for a New Approach
The above problems are wasteful of resource and

represent a major lost opportunity. Better usability could

allow managers to use the systems dwectly instead of

through intermedhries and assistants, saving staff costs.

But experience in other organisations shows that allowing

managers to drive systems themselves has signiilcant

benefits in helping them to understand the business

better and make far more effective use of the information

provided. However, this requires much more than just a

‘filendly’ or ‘pret& interface. It requires that the user

interface as well as the functionality of the system is

matched to the real business tasks of the users.

Tasks in this sense are defined in business terms not

system operation terms. Thus ‘estimate sales’ is a

business task whereas ‘update an amend estimate screen’

is not. It is simply a means to an end.

Ideally, therefore, a task oriented interface reflects an

understanding of the steps, options and requirements for

performing the business task, Using well-designed

task-oriented software is not only efficient, it is also

satisfying. At every stage, the choices available in menus

or other navigation match the real decisions. The right

options fall easily to hand. The system is intelligent and

makes sensible assumptions, based on previous actions.

The defaults are sensible guesses and more often right

than not. Even when the task is novel, the interface

allows the users to reach exactly the information or the

choices they require, although perhaps not quite so

quickly or so elegantly as in the frequent tasks.

However the task-oriented development approach is in

its infancy and there are major risks in rushing into new

and untried methods of working. We therefore decided

to gain real experience of its use in a limited trial

development of an exemplar system before considering

scaling up the approach to other areas.

1.2 Creating an Exemplar Task-Oriented System
In choosing the exemplar, we wished to ensure that the

task area selected was important for User Departments.

However, because we ultimately wanted to change the

working practices and the attitudes of designers as well as

users, it was important that we dld not cut across existing

IT activities. There already was a major system design

activity adressing the problem of helping buyers (known

as merchandkers) to estimate future sales

From early discussions with users in User Departments,

the new product development activity emerged as a likely

caddate. It is an important task area with little existing

IT support. It is currently carried out by staff who are not

heavily involved in other IT related activities.

We therefore proposed to develop an exemplar system to

support these users in their new product development

tasks, to demonstrate the business benefits of a more user

centred approach to systems design.

In addition, we believed tha~

. A successful system would provide the most

powerful illustration of the benefits of a

task-oriented interface.

. As a by-product of the development, we would be

able to develop usable task analysis techniques and

to create the tools necessary to support this

approach.

. Since the process required close involvement with

the staff in User Departments, our exemplar would

demonstrate by example how to involve users in a

dkciplined way,

. The exemplar would also provide a sound starting

point for Ii&kg into other areas of buying should

the task oriented approach prove beneficial.

. Last, but not least, the exemplar would provide real

business benefits to the chosen department, ideally

far more than they expected and certainly more than

they were promised.

1.3 Assumptions behind the approach
The most important requirement was that we would focus

on real tasks. We intended to identify these through task

analysis. However, we recognised that one of the dangers

of our approach was that the new system would merely

mimic the existing working practices. In order to

overcome this constraint, we decided to implement a

minimal working protoype system. Although this system

supported the existing working practises of the users it

was also sufficiently flexible to allow these practices to

evolve to exploit the full capabfities of the system.

Such ‘bottom-up’ development helps to ensure that the

initial system is useful as well as usable. But it does have

the danger that it can be difficult to extend later, To

avoid this, we took two important decisions.

First, the task analysis would be performed ‘top down’

from the departmental level. This-would

could ident;fy tasks which were capable

464

ensure that we

of growth and

May3-7, 1992

which were of suftlciently general applicability, ie they are

tasks associated with meeting real business requirements

rather than operating the existing systems.

Second, the system would be built from a tilted set of

standard modules to ensure that future growth could be

achieved without major redesign. This standardisation

included the overall ‘look and feel’ of the user interface.

The modular approach also allowed us to be able to

deliver 80% of the users’ requirements quickly.

In addition we made it clear that we were not aiming for a

100% solution with the tools we had available. This

helped us to manage the user’s expectations to a realktic

level which proved to be one of the most critical factors in

the success of the approach.

We believed that the combination of ‘top-down’ analysis,

middle out design and ‘bottom-up’ build would give us

the best of all worlds.

2.0 ESTABLISHING THE INFRASTRUCTURE
There were two infrastructure components upon which

our development depended:

- a user interface standard to serve as a model to

guide the growth of the system and which could

encompass all the functionfllty which the system

might eventually develop

- a hardware and software platform suitable for

immediate applications as well as providing future

growth path opportunities

Our inital investigations into this area showed that

Microsoft’s Windows 3.0 was a suitable vehicle for the

provision of a common interface on the IBM PS/2

workstations within User Departments. It is widely

accepted across the industry and has an ever increasing

portfolio of supporting products, ranging from simple

spreadsheet packages to full development environments.

Using a product such as Windows provided us with a

Graphical User Interface (GUI) which could potentially

encompass all applications within the User Departments.

It also provided the basis for a common user interface in

that it has its own implied interface standards which are
consistent across all its supporting products. Within the

Windows framework it is then possible to use further

GUIS to front end individual applications and again they

adopt the common Windows interface standards. Such a

feature allowed us to remain independent of products

and suppliers, allowing new products to be ‘plugged in’ as

and when they become available,

To support the approach a comprehensive in house user

interface standard was developed independently of

Windows 3.0 and this ensured the approach could be

extened to other technical platforms such as 0S/2.

3.0 THE EVOLUTIONARY APPROACH
Some proponents of analysis methods seem to imply that

a suitable design emerges almost as a by product of good

analysis. We would argue that if this is the case, then it

probably means that the analysis was conducted at the

wrong level. In other words, the analysis probably

focused on potential design solutions rather than on

establishing requirements.

No matter how good the analysis method, there is still a

vital design activity to create a system which matches

these task requirements. If the analysis has been done

properly, there will be several design options. The task

analysis data may make it obvious that some of these

options are more Iikley to succeed than others but they

should still be valid options.

Our priority was to develop a working prototype which

provided sufficient functionfllty and usability to get the

users started. One of the key attributes of this approach

is that the prototype works from the start ie it delivers

value to the users immediately.

Often what are called prototypes are really just

demonstrations of ‘wouldn’t it be nice if’ features. These

may mislead users about what is realistic and may focus

attention on details of presentation or content which are

less important than functionality at the early stages.

By providing users with somethmg which works right

from the start, we deliberately aimed to focus their

attention on task related issues. That is not to say that wc

ignored their comments on the overall appearance and

presentation of the system. First impressions are very

important but too many changes can be confusing. Our

strategy was to start a process whereby they could evolve

a new method of working as the system evolved.

Paradoxically, this places more emphasis on the designers

of the prototype understanding the users’ real task

requirements and anticipating future requirements. Thus

the system has to be designed with a degree of ‘future

proofing’ built-in. In practice, this involves adopting a

465

v (H1’92 May3-7, 1992

modular approach, paying addhonal attention to the

maintainabdity of the design and the code and

recognizing that some design effort will have to be thrown

away as new ideas evolve.

There is no established methodology for developing

task-oriented interfaces. Indeed, our own approach

evolved during the course of the project. We believe this

approach is repeatable and indeed we are currently

planning to repeat it for a different application area. We

describe it below in its evolved form, which although not

final, is sufficiently mature to be useful,

The approach involves the following steps:

. Identify target users and define focus of future

system

. Perform Task Analysis

. Agree Scope of working prototype

. Perform Task Modelliig

. Perform Task Mapping

. Design working prototype

. Help users to learn through experience

. Manage Change

. Grow system within department

In the following sections, we discuss each of these steps in

more detail.

3.1 Identify Target Users and Define Focus
Traditionally it is normal to define a boundary to the

system being proposed. With a task oriented approach,

this is not appropriate. Until the task analysis has been

performed, it is not at all clear where the ‘boundary’
should be. Indeed, with front end tools such as

Easel/Wh (a PC based GUI for external databases

especially those held on mainframes) it may be

unnecessarily restrictive to think in terms of boundaries

at all. We therefore identified a focus for our system and
left the question of boundary to a much later date.

From our early investigations of User Departments, the

New Product Selection Team emerged as a suitable

target group for this approach. They play a key role in

new product development and represent a combination

of experienced and novice computer users. The staff in

the chosen department already used spreadsheets to a

tilted extent to support their buying activities.

3.2 Perform Task Analysis
Although Task Analysis is an established technique in

ergonomics, it has mainly been applied to tasks which

have a large physical component eg operating machine

tools. Tasks which are primarily mental are much more

diffiiult to analyse not only because ahnost all the activity

is hidden but also because the tasks tend to be

ill-structured and involve subtle nuances.

A recent review of task analysis techniques suitable for

user interface design carried out by System Concepts had

identifed one technique - Hierarchical Task Analysis - as

most promising. We therefore used that as our starting

point but rapidly found that we had to evolve our own

simptiled version for it to be effective in a dynamic retail

environment:’”

The main technique used to collect the data involved

structured interviews with relevant staff in the User

Departments. This enabled us to draw a hierarchy of

tasks showing the linkages between the different levels.

In this context, a task is an organised sequence of

behaviour which is performed by a person or a group of

people in order to achieve a business objective,

The fust stage in the Task Analysis is to establish the

highest level Departmental Tasks. These represent the

main mission of the Department as a whole, eg Develop

New Product. The next level is the Primary Task, These

contribute directly to the business objectives of the

Department eg Decide Overall Strategy (for developing a

new product).

Below the Primary Task, the secondary task is a task

which must. be performed in order to perform the

primary task eg Establish “hssons Learned (from

previous seasons sales figures). Sub-tasks are the lowest

level of detail and maybe associated with document and

screen based information sources and output.

Figure 1 shows the task hierarchy that was adopted

throughout the project,

We found that it was important to conduct the analysis

from Department Task down to Sub-Task level for the

specified area. This helps to ensure that no false

assumptions are made during the design phase and that

all associated tasks are incorporated in the system.

466

Mav3-7, 1992

wDepartmental

Task

m
I

1
1

I

Q ~~

Secondary

Task

PEsiE!l

[Screens

.,

F@re 1: Task Hierarchy

Figure 2 shows a detailed example of the break down of

the Sub-Task: Update Development Programme.

[Develop New

I Product I

lDevelopment Vvithl

I Department I
I

r-=k--l
I Development I

FRzhTkl~,
nn‘-”r--”------FzE=m$a

LYS?L-JLQ!!LI

Figure 2: Task Hierarchy for Sub-Tas~ Update
Development Programme.

These tasks were then further reviewed in order to

identify one which would be a suitable target for the

working prototype. Ideally this should be a task which is

important, which is amenable to computer aid and where

improvements in current performance on the task would

be important in achieving the departments overall

business objectives.

The most suitable candidate was the sub task ‘Update

Development Programmed’. This document formed the

basis of the department’s information about the

characteristics and status of products under

development,

3.3 Agree Scope of Working Prototype
The prototype was intended to simplii the maintenance

and publishing of the two documents by the provision of

a simple ‘electronic list’ to replace the current manual
method. Such a list could form the basis of a different

way of working which could help them keep better track

of new products and communicate progress within the

department.

Each feature of the system was negotiated with the users

in terms of tirnescale to build and the ability of the

technology to deliver. This concept was central to our

approach in that it allowed us tto quickly provide the

users with a workkig ‘prototype/system’ that

demonstrated its benefit immediately. We therefore had

to very carefully manage their expectations of what the

system would deliver. By doing this effectively we were

able to provide them with the basic system quickly and

then use their experiences of using it to ‘evolve’ the

system to better reflect the true user need,

3.4 Perform Task Modelling
Once the Task Analysis had been completed to the

Sub-Task level, and the scope of the prototype agreed

with the users, then the next stage in the process was to

Model the Sub-Task in terms of how it would logically be

performed. This process was achieved by the use of a

Task Model. This model reflects the Actions and

Objects relating to the Sub-Task and should be

independent of any pre-conceived view of how the

system will function.

Figure 3 shows the Task Model for the Sub-Task Update
Development Programme, Subsequent Sub-Tasks can

either be incorporated into an existing Task Model or a

new Model developed.

467

~ [HI ’92 May3-7, 1992

1Select

Department

Select Update Review Print—
Season Information Information Document

/ I

~~

Input New ChangeExisting

Data Data

save

0Select

Pages

I
EEcl

Ls!EEd

Key:

(====’1 Task Object/Action

Figure 3 : Task Model for Sub-Task Update

Development Programme. The arrows indicate the

sequence in which the Actions are performed. The

bottom of each ‘column’ represents a potential exit point

from the dialog.

Both the functionality and the design of the interface are

centered around the task model produced. This helps to

ensure that the system reflects the tasks performed by the

users.

3.5 Perform Task Mapping
The next stage was to map the Task Objects and Actions

onto interface objects eg Dialogue Box or Action Bar etc.

This required a working knowledge of the In-house User

Interface Standards.

Each Task ActiotiObject pair is taken in turn and the

mapping procedure applied to it. The procedure

involves establishing the options and rules, (determined

from the task analysis and any limitations of the
technology being used) and then mapping the Task
Action/Objects onto Interface Objects and Controls,

Such a process ensures that maximum task orientation is

achieved in the specifkation of the user interface and

that the usability factor is maximised,

3.6 Build Working Prototype
Through consultation with the users it was established

that the minimum requirement was the provision of a

simple ‘electronic list’ which would allow easy

maintainrtnce of the data and automatic generation the

required documents. From the tools at our disposal at

that time we considered the Excel spreadsheet package

as the most appropriate choice with which to build the

application. Excel is a very powerful package however,

we considered it complicated to learn and intimidating to

users who are not familiar with spreadsheets.

The majority of our users had never used the PC before

and had difficulty even switching it on. In any case our

users had neither the time or the inclination to become

sufficiently familiar with the package to allow them to use

it for themselves. It was for these reasons that we

decided not to offer them the Excel package to use

directly but decided to customise the Excel interface to

provide the users with only features they required. This

allowed the spreadsheet itself to be Kldden from the

users along with the majority of the Excel functionality.

The documents were formated by Excel macros

extracting the required information from the various

databases contained on the spreadsheet itself. The

update of the database was through an Excel dataform,

this had the added advantage of offering the users online

reference to the data and it is hoped that with time they

will begin to use thk facility more often and only produce

hard copies when absolutly necessary.

3.7 Help Users to Learn by Experience
As already stated the prototype was introduced to the

users as quickly as possible, We found that this had the

effect of gaining the users interest and getting a more

involved commitment to the project from them, It also

had the effect that they began requesting features that

they had not at fwst seen as being necessary, By

managing thier expectations we were able to keep the

prototype functional and add addhional features once

they had been agreed as feasible (in terms of technology

and timescales). Once the users realised that certain

features would mean a more lengthy development they

soon became less vital and they began to accept small

drawbacks in favour of having a working system quickly.

To enable a quick implementation of the prototype and

to gain the commitment of the users we had to ‘hold the

hands’ of the users in the initial stages.

Individual training sessions were held for all users

involved, which included an overview of Windows itself

as well as an introduction to the prototype. Since the

interface design matched closely the task in hand after a

quick overview of the functions available they soon

became comfortable in its use. We then provided

support as and when requested and helped the users to

actually use the system to produce production
documents.

468

~ [HI ’92 May3-7, 1992

3.8 Manage Change
Although the basis of the approach was to be supportive

of the users and to be attentive to their stated

requirements, this dld not mean that we immediately

actioned every request for changes. Indeed, we instituted

a degree of change control very early in the process.

Once the prototype was introduced into the department

and was being used to manipulate ‘real’ data, change

control was instigated. This was achieved by logging each

request to change the system on a change request form.

All such requests were then assessed to determine their

full impact on the prototype and estimates made for how

long it would take to deliver. A record of each change

was kept on a Change Response Form. Once the impact

was established, we relayed back to the users what the

change would mean to the prototype and how long it

would take to deliver. We quickly found that users soon

learnt to prioritise requirements in terms of ‘nice to have’

and necessary features.

3.9 Grow System
The next step is to grow the system within the

Department in order to extend its usefulness and value to

the New Product Selection Team and to extend its

usefdness to other members of the department. Our

strategy involves gentle nudging of users and potential

users as well as responding positively to ideas and

suggestions.

We also expect to be able to suggest extensions ourselves

based on further task analyses and also from our

continued exposure to real users and their day to day

requirements.

4.o CONCLUSIONS
At the time of writing this paper, the initial stage of the

project had been well received by the users. They were

using the system as a routine tool to support their work

and were beginning to explore the further potential of

the various utilities provided.

From our regular visits and informal discussions, it was

clear that there were many possible opportunities for

main-frame links and extensions to the functionality

which could greatly help the users in their work.

In retrospect, one of the most important parts of the

process was to treat the users as partners, However, thk

did not mean that we ‘gave them what they wanted’,

Indeed, one aspect of treating them with a degree of

respect was to point out that there were constraints and

that some of their requirements were easier to achieve

than others. Having established a degree of mutual trust,

this was not a major problem.

The most signitlcant problem area turned out to be

relating what we were doing to conventional system

development activities. For example, typical project

management reporting required us to answer questions

such as ‘when will the system be implemented?’ and

‘when will the project be completed?’ which we found

dtificult to answer. Answers such as ‘its already been

installed for two months’ and ‘it depends’ are not entirely

satisfactory to traditional project managers who like to

minimise uncertainty and structure the development

process,

Nonetheless, we believe that this approach has

considerable potential for identifying worthwhile systems

to support the business tasks of real users. That may not

be everythhg but it seems like a worthwhile start.

469

