
Lazy Code Motion

Jens Knoop” Oliver Ruthing$ Bernhard Steffen

CAU Kielt CAU Kielt RWTH Aachen$

jk@informatik.uni-kiel. dbp.de or@informatik. uni-kiel.dbp.de bus@zeus.informatik. rwth-aachen.de

Abstract

We present a bit-vector algorithm for the optimal
and economical placement of computations within flow
graphs, which is as eficient as standard uni-directional
analyses. The point of our algorithm is the decom-
position of the hi-directional structure of the known
placement algorithms into a sequence of a backward
and a forward analysis, which directly implies the etll-
ciency result. Moreover, the new compositional struc-
ture opens the algorithm for modification: two further
uni-directional analysis components exclude any un-
necessary code motion. This laziness of our algorithm
minimizes the register pressure, which has drastic ef-
fects on the run-time behaviour of the optimized pro-
grams in practice, where an economical use of registers
is essential.

Topics: data flow analysis, program optimization, par-
tial redundancy elimination, code motion, bit-vector
data flow analyses.

1 Motivation

Code motion is a technique to improve the efficiency
of a program by avoiding unnecessary recomputations

*Part of the work was done, while the author was supported
by the Deutsche Forschungsgemeinschaft grant La 426/9-2.

t In~titut ffir InfOmatik ~nd prakti~che Mathematik,
Christian- Albrechts-Universit3t, Preufierstrafie 1-9, D-2300 Kiel
1.

tThe author is supported by the Deutsche Forschungsgemein-
schaft grant La 426/11-1.

sLehr~tuhl fur Infomatik II, Rheinisch-Westfali~&e Te&ni-

sche Hochschule Aachen, Ahornstrat3e 55, D-51oo Aachen.

Permission to copy without fee all or part of this material is

granted provided that the copias are not made or distributed for

direct commercial advantaga, the ACM copyright notica and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, raquires a fee
and/or specific permission.

ACM SIGPLAN ’92 PLD1-6/92/CA

e 1992 ACM 0-89791 -476-71921000610224 . ..$ 1.50

of a value at run-time. This is achieved by replac-
ing the original computations of a program by auxil-
iary variables (registers) that are initialized with the
correct value at suitable program points. In order to
preserve the semantics of the original program, code
motion must additionally be sa$e, i.e. it must not in-
troduce computations of new values on paths. In
fact, under this requirement it is possible to obtain
computationaily optimal results, i.e. results where the
number of computations on each program path can-
not be reduced anymore by means of safe code mo-
tion (cf. Theorem 3.9). Central idea to obtain this
optimality result is to place computations as early as
possible in a program, while maintaining safety (cf.
[Dh2, Dh3, KS2, MR1, St]). However, this strategy
moves computations even if it is unnecessary, i.e. there

is no run-time gainl. This causes superfluous register
pressure, which is in fact a major problem in practice.

In this paper we present a lazy computationally op-
timal code motion algorithm, which is unique in that
it

e is as eficient as standard uni-directional analyses
and

e avoids any unnecessaryy register pressure.

The point of this algorithm is the decomposition of the
hi-directional structure of the known placement algo-
rithms (cf. “Related Work” below) into a sequence of
a backward analysis and a forward analysis, which di-
rectly implies the efficiency result. Moreover, the new
compositional structure allows to avoid any unneces-
sary code motion by modifying the standard computa-
tionally optimal computation points according to the
following idea:

e Initialize “as late as possible” while maintaining
computational optimality.

Together with the suppression of initializations, which
are only going to be used at the insertion point it-

1In (Dhslunnecessarycode motions are called redundant.

224

http://crossmark.crossref.org/dialog/?doi=10.1145%2F143103.143136&domain=pdf&date_stamp=1992-07-01

self, this characterizes our approach of lazy code mo-

tion, Figure 1 displays an example, which is complex
enough toillustrate the various features of the new ap-
proach. It will be discussed in more details during the
development in this paper. For now just note that our
algorithm is unique in performing the optimization dis-
played in Figure 2, which is exceptional for the follow-
ing reasons: it eliminates the partially redundant com-
putations of “a+b” in node 10 and 16 by moving them
to node 8 and 15, but it does not touch the computa-
tions of a + b in node 3 and 17 that cannot be moved
with run-time gain. This confirms that computations
are only moved when it is profitable.

1 ~

2 a:=c 1

4’
3 x:= a+b 4

5

6

8 9

i’
1(J y:= a+b 11 12

JJ
14

16 z:=a+b

181 1

Figure 1: The Motivating Example

Related Work

In 1979 Morel and Renvoise proposed a bit-vector al-
gorithm for the suppression of partial redundancies
[MR1]. The hi-directionality of their algorithm became
model in the field of bit-vector based code motion (cf.
[Ch, Dhl, Dh2, Dh3, DS, JD1, JD2, Mo> MR2, So]).
Bi-directional algorithms, however, are in general con-
ceptually and computationally more complex than uni-
directional ones: e.g. in contrast to the uni-directional
case, where reducible programs can be dealt with in
O(n /og(n)) time, where n characterizes the size of
the argument program (e.g. number of statements),

2 a:=c

i
3 x:= a+b 4

5

61 7

8 h:=a+b 9

J

10 y:=h 11 12

J’
14 llj h:=a+b

y:=h

16z:=h

181 I

Figure 2: The Lazy Code Motion Transformation

the best known estimation for hi-directional analyses is
0(n2) (cf. [Dh3]). The problem of unnecessary code
motion is only addressed in [Ch, Dh2, Dh3], and these
proposals are of heuristic nature: code is unnecessarily
moved or redundancies remain in the program.

In contrast, our algorithm is composed of uni-
directional analyses2. Thus the same estimations for
the worst case time complexity apply as for uni-
directional analyses (cf.[AU, GW, HU1, HU2, Ke, KU1,
Tal, Ta2, Ta3, Ull]). Moreover, our algorithm is con-
ceptually simple. It only requires the sequential com-
putation of the four predicates D-Safe, Earliest,
Latest, and Isolated. Thus our algorithm is an ex-
tension of the algorithm of [St], which simply computes
the predicates D-Safe and Earliest. The two new
predicates Latest and Isolated prevent any unnec-
essary code motion.

2 Preliminaries

We consider variables v E V, terms t E T, and directed
jlow graphs G= (N, E,s, e) with node set N and edge
set E. Nodes n c N represent assignments of the

2Such an algorithm was first proposed in [St], which later on
was interprocedurally generfllzed to programs with procedures,
local variables and formal parameters in [KS2]. Both algorithms
reaKze an “as early as possible” placement.

225

form v := t and edges (r-n,n) ~ E the nondeterminis-
tic branching structure of G3. s and e denote the
unique start node and end node of G, which are both
assumed to represent the empty statement skip and
not to possess any predecessors and successors, respec-
tively. Every node n c N is assumed to lie on a path
from s to e. Finally, Succ(n)=ti { m I(n, m) c E }
and precl(n)=df { m I(m, n) c E } denote the set of all
successors and predecessors of a node n, respectively.

For every node n = v:= t and every term t’c T \ V
we define two local predicates indicating, whether t! is
used or modified4:

e Used(n, t’)=d~ t’ E SubTerms(t) and

0 Thmsp(n, t’)=dj v @ Var(t’)

Here SubTerms(t) and Var(t’) denote the set of all
subterms of t and the set of all variables occurring in
t, respectively,

Conventions: Following [MR1], we assume that all
right-hand-side terms of assignment statements contain
at most one operation symbol. This does not impose
any restrict ions, because every assignment statement
can be decomposed into sequences of assignments of
this form. As a consequence of this assumption it is
enough to develop our algorithm for an arbitrary but
fixed term here, because a global algorithm dealing
with all program terms simultaneously is just the in-
dependent combination of all the “term algorithms”.
This leads to the usual bit-vector algorithms that real-
ize such a combination efficiently (cf. [He]).

In the following, we fix the flow graph G and the
term t G T \ V, in order to allow a simple, unparame-
terized notation, and we denote the computations of t
occurring in G as original computations.

3 Computationally Optimal

Computation I?oints

In this section we develop an algorithm for the “u
early as possible” placement, which in contrast to pre-
vious approaches is composed of uni-directional anal-
yses. Here, placement stands for any program trans-
formation that introduces a new auxiliary variable h

3 We do not assume any structural restrictions on G. In
fact, every algorithm computing the fixed point solution of a
uni-directional bit-vector data flow analysis problem may be
used to compute the predicates D-Safe, Earliest, Latest, and
Isolated (cf. [He]). However, application of the efficient tech-
niques of [AU, GW, HU1, HU’Z, Ke, KU1, Tal, Ta2, Ta3, Ull]
requires that G satisfies the structural restrictions imposed by
these algorithms.

1Flow ~aphs composed of basic blocks can be treated entirely

in the same fashion replacing the predicate Used by the predicate
Ant~oc (cf. [MR1]), indicating whether the computation of t is
locally anticipatable at node n.

for t, inserts at some program points assignments of

the form h:= t,and replaces some of the original com-
putations of t by h provided that this is correct, i.e.
that h represents the same value. Formally, two com-

putations of t represent the same value on a path if
and only if no operand of t is modified between them.
With this formal notion of value equality, the correct-
ness condition above is satisfied for a node n if and
only if on every path leading from s to n there is a
last initialization of h at a node where t represents

the same vahse as in n.

This definition of placement obviously leaves the
freedom of inserting computations at node entries and
node exists. However, one can easily prove that after

the edge splitting of Section 3.1 we can restrict our-

selves to placements that only insert computations at

node entries.

3.1 critical Edges

It is well-known that in completely arbitrary graph

structures the code motion process may be blocked by

“critical” edges, i.e. by edges leading from nodes with

more than one successor to nodes with more than one

predecessor (cf. [Dh2, Dh3, DS, RWZ, SKR1, SKR2]).

u) \ / b) \ I

b

@

1 x:=a+b 2

3 y:= a+b

Figure 3: Critical Edges

In Figure 3(a) the computation of “a+ b“ at node 3 is
partially redundant with respect to the computation of
“a + b’) at node 1. However, this partial redundancy

cannot safely be eliminated by moving the computation
of “a + b“ to its preceding nodes, because this may

introduce a new computation on a path leaving node
2 on the right branch. On the other hand, it can safelv
be elimina~ed after inserting a synthetic node 4 in th~

critical edge (2, 3), as illustrated in Figure 3(b).

We will therefore restrict our attention to programs
having passed the following edge splitting transforma-
tion: every edge leading to a node with more than
one predecessor has been split by inserting a synthetic
node5. This simple transformation cert airily implies
that all critical edges are eliminated. Moreover, it ;im-

5In order to keep the presentation of the motivating example
simple, we omit synthetic nodes that are not relevant for the
Lazy Code Motion Transformation.

226

plifies the subsequent analysis, since it allows to obtain
programs that are computationally and lifetime opti-
mal (Optimalit y Theorem 4.9) by inserting all compu-
tations uniformly at node entries (cf. [SKR1, SKR2])6.

3.2 Guaranteeing Computational Opti-

mality

A placement is

● safe, iff every computation point n is an n-safe
node, i.e.: a computation of t at n does not in-
troduce a new value on a path through n.

This property is necessary in order to guarantee
that the program semantics is preserved by the
placement process7.

● earliest, iff every computation point n is an n-
earliest node, i.e. there is a path leading from s
to n where no node m prior to n is n-safe and
deli~ers the same value as n when computing t.

A safe placement is

● computaiionaihj optimal, iff the results of any
other safe placement always require at least as
many computations at run-time.

In fact, safety and earliestness are already sufficient to
characterize a comput ationally optimal placement:

* A placement is computationally optimal if it is
safe and earliest,

However, we consider the following stronger require-
ment of safety which leads to an equivalent character-
ization and allows simpler proofs:

A placement is

● down-safe, iff every computation point n is an n-
down-safe node, i.e. a computation of t at n does
not introduce a new value on a terminating path
starting in n.

Intuitively, this means that an initialization h:= t

placed at the entry of node n is justified on ev-
ery terminating path by an original computation
occurring before any operand of t is modifieds.

As safety induces earliestness, down-safety induces the
notion of ds- earliest ness. The following lemma states
that it is unnecessary to distinguish between safety and
down-safety in our application, and that the notions of
earliestness and ds-earliestness coincide.

6 Splitting critical edges only, would require a placement pro-
cedure whkh is capable of placing computations both at node
entries and node exits.

7In ~artic~a, a safe placement does not change the Potential

for run-time errors, e.g. “division by O“ or “overflow”.
8 ~ [MR1] down-~&ty is called anticipabihty, and the dual

notion to down-safety, up-safety, is called availability.

Lemma 3.1 A placement is

1. earliest if and only if it is ds-earliest

2. safe and earliest if and only if ii is down-safe and
ds-earliest

Proof: ad 1): Earliestness implies ds-earliestness.
Thus let us assume an n-ds-earliest computation point
n # s. This requires a path from s to n where no
node m prior to n is n-down-safe and delivers the
same value as in n when computing t, In particular,
there is no original computation on this path before n
that represents the same value. Thus a node m prior to
n on this path where a computation of t has the same
value as in n cannot be n-up-safeg and consequently
not n-safe eitherl”. Hence node n is n-earliest.

ad 2): Due to 1) it remains to show that a safe and ear-
liest placement is also down-safe. This follows directly
from the fact that an n-earliest computation point n
is not n-up-safe, which has been proved in 1), ❑

Let n be a computation point of a down-safe and ear-
liest placement. Then the n-down-safety of n yields
that every terminating path p = (nl, ... n~) starting in
n has a prefix q = (nl, . . ., nj) which satisfies:

a) Used(nj)

b) -Wsed(ni) for all i G {1,..., j– 1}

c) ~nsp(n~) for all i e {l, . ..jj– 1}

In the remainder of the paper the prefixes q are called
safe-earliest jirst-use paths (SEFU-paths). They char-
acterize the computation points of safe placements in
the following way:

Lemma 3.2 Let pi=
pls a safe placement

path. Then we have:

be a safe and eariiest placement,

and q=(nl,nj) a SEFU-

1. p!= has no computation of t on (nz, ..., nj).

2. P1. has a computation of t on q.

Proof: In order to prove 1) let ni be a computa-
tion point of pi~ with i G {2,..., j}. Then we are
going to derive a contradiction to the earliestness of
pl~. According to Lemma 3.1 we conclude that pl% is
down-safe and, in particular, that ni is n-down-safe.
Moreover, every predecessor m of ni is n-down-safe
too: this is trivial in the case where ni has more than
one predecessor, because then they must all be syn-
thetic nodes. Otherwise, ni_ 1 is the only predecessor
of n~. In this case its n-down-safety follows from the

9n-up-safety of a node is defined in analogy to n-down-safety.
10Note that ~ node is n-safe if and only if it is n-down-safeor

n-up-safe.

227

properties a) – c) of q and the n-down-safety of nl.
Consequently, n~ is not n-ds-earliest and therefore due
to Lemma 3.1 not n-earliest either.

2) follows immediately from the n-earliestness of nl,
and the safety of pl~. •1

As an easy consequence of Lemma 3.2 we obtain:

Corollary 3.3 No computation point of a computa-

tionally optimal placement occurs outside of a SEFU-
path.

The central result of this section, however, is:

Theorem 3.4 A placement is computationa![y op-ti-
mal if it is down-safe and eariiest.

Proof: Applying Lemma 3.2, which is possible because
of Lemma 3.1, we obtain that any safe placement has
at least as many computations of t on every path p
from s to e as the down-safe and earliest placement,
❑

In the following we will compute all program points
that are n-down-safe and n-earliest.

3.2.1 Down-Safety

The set of n-down-safe computation points for t is
characterized by the greatest solution of Equation Sys-
tem 3.5, which specifies a backward analysis of G.

Equation System

D-SAFE(n) =

(
false

3.5 (Down-Safety)

ifn=e

[

Used(n) V

Tkansp(rt) A ~ D-SAFE(m) otherwise
?7aCsucc(?a)

Let D-Safe be the greatest solution of Equation Sys-

tem 3.5. Then we have (see Figure 4 for illustration):

Lemma 3,6 (Down-Safe Computation Points)

A node n is n-down-safe if and only if D-Safe(n)
holds.

Proof: “only if”: Let D denote the set of nodes that
are n-down-safe and U the set of nodes satisfying Used.
Then all successors of a node in D \U are again in D.
Thus a simple inductive argument shows that for all
nodes n c D the predicate D-SAFE(n) remains con-
stantly true during the maximal fixed point iteration.

“if”: This can be proved by a straightforward induction
on the length of a terminating path starting in n. ❑

3.2.2 Earliestness

Earliestness, which according to Lemma 3.1 is equiva-
lent to ds-earliestness, is characterized by the least so-
lution of Equation System 3.7, whose solution requires
a forward analysis of G.

Equation System 3.7 (Earliestness)

EARLIEST(n) =

I

true ifn=s

~ (-llunsp(m) V

?n@red(n)
~D-Safe(m) A EARLIEST(m)) otherwise

Let Earliest denote the least solution of Equation

System 3.7. Along the lines of Lemma 3.6 we can prove:

Lemma 3.8 (Earliest Computation Points)

A node n is n-earliest if and only if Earliest(n)
holds.

Figure 4 shows the predicate values of Earliest for
our motivating example. It illustrates that Earliest
is valid at the start node and additionally at those
nodes that are reachable by a path where no node prior
to n is n-down-safe and delivers the same value as n
when computing t. Of course, computations cannot
be placed earlier than in the start node, which jus-
tifies Earliest(l) in Figure 4, Moreover, no node
on the path (1, 4, 5, 7, 18) is n-down-safe. Thus
Earli.est({2, 4,5,6,7, 18}) holds. Finally, evaluating
t at node 1 and 2 delivers a different value as in node
3, which yields Earliest(3).

D-Safe and Earliest induce the Safe-Earliest Trans-
formation:

The Safe-Earliest Transformation

e Introduce a new auxiliary variable h for t.

● Insert at the entry of every node n satisfying
D-Safe and Earliest the assignment h:= t.

. Replace every original computation of t in G
by h.

Whenever D-Safe(n) holds there is a node m on ev-
ery path p from s to n satisfying D-Safe(m) and
Earliest(m) such that no operand of t is modified
between m and n. Thus all replacements of the Safe-
Earliest Transformation are correct, which guarantees
that the Safe-Earliest Transformation is a placement.
Moreover, according to Lemma 3.1, Lemma 3,6 and
Lemma 3.8 the Safe-Earliest Transformation is down-
safe and earliest. Together with Theorem 3.4 this
yields:

228

a1

2 a.=c

1

Figure 4: The D-Safe and Earliest predicate values

Theorem3.9 (ComputationalOptimality)
The Safe-Earliest Transformation is computationally
optimal.

Figure 5 shows the result of the Safe-Earliest Transfor-
mation for the motivating example of Figure 1, which
is essentially the same ae the one delivered by the al-
gorithm of Morel and Renvoise [MRl]ll. In general,
however, there may be more deviations, since their al-
gorithm inserts computations at the end of nodes, and
it moves computations only, if they are partially avail-
able. Introducing this condition can be considered as
a first step in order to avoid unnecessary code motion.
However, it limits the effect of unnecessary code mo-
tion only heuristically. For instance, in the example of
Figure 5 the computations of node 10, 15, 16 and 17
would be moved to node 6, and therefore more than
necessary. In particular, the computation of node 1?
cannot be moved with run-time gain at all.

In the next section we are going to develop a pro-
cedure that completely avoids any unnecessary code
mot ion.

11~ the ~x-ple of Figure 1 the algorithm of [MR1] would not

insert a computation at node 3.

1 1

6 h:= a+b 7

8 9 1(

J
10/y:=h 11 12 13

i
14 15y:=h

16 z:=h 1

181
I I

Figure 5: The Safe-Earliest Transformation

4 Suppressing Unrwcessary

Code Motion

In order to avoid unnecessary code motion, computa-
tions must be placed as late as possible while main-
taining computational optimality. We therefore define:

A computationally optimal placement pl is

● latest, iff every computation point n is an n-latest

e

node, i.e.:

– n is a computation point of some computa-
tionally optimal placement and

– on every terminating path p starting in n
any following computation point of a compu-
tationally optimal placement occurs after an
original computation on p.

Intuitively, this means no other computationally
optimal placement can have “later” computation
points on any path.

isolated, iff there is a computation point n that is
an n-isolated node with respect to pl, i.e. on every
terminating path starting in a successor of n every
original computation is preceded by a computation
of pl.

229

Essentially, this means that an initialization h:= t
placed at the entry of n reaches a second original
computation at most after passing a new initial-
izationof h.

e lifetime optimal (or economic), iff any other com-

putationally optimal placement always requires at

least as long lifetimes of the auxiliary variables

(registers).

We have:

Theorem 4.1 A computationally optimal placement
is lifetime optimal if and only if it is latest and not
isolated.

F’roofi We only prove the “if’’-direction here, because
the other implication is irrelevant for establishing our
main result Theorem 4.9.

The proof proceeds by contraposition, showing that
a computationally optimal but not lifetime optimal
placement plCO is not latest or isolated. This requires
the consideration of a lifetime optimal placement plitO
for comparison.

The fact that pico is not lifetime optimal implies
the existence of a SEFU-path q = (nl, ... nj) such that
plCOhas an initialization in a node n. which precedes
a computation of plltO in a node nl with c ~ 1. Now
we have to distinguish two cases:

Case 1: c <1. Applying property b) of q, we obtain
that the path (n., ... nl- 1) is free of original computa-
tions. Thus nc is not n-latest and consequently PICO
not latest.

Case 2: c =1. Obviously, this implies c= 1= j, and
that the computation of p/~tO in nl is an original one.

Thus it remains to show that ni is n-isolated with

respect to plco, i.e. that on every terminating path

starting in a successor n of nj the first original com-

putation is preceded by a computation of plco.

We lead the assumption that nj is not n-isolated,

i.e. that there exists a path p = (n, m) without

computations of plco but with an original computa-
tion at m, to a contradiction. Under this assumption
Lemma 3.2(2) delivers that p is also free of computa-
tions of the Safe-Earliest Transformation, which yields
that every node of p appears outside a SEFU-path.
Thus, according to Corollary 3.3, p is also free of com-
putations of pllte, which implies that p/ltO does not
initialize h on either q or p. Moreover, because of
the n-earliestness of nl, it is also impossible that h is
initialized on every path from s to nl after the last
modification of an operand of t. This contradicts the

placement property of pllto, and therefore implies that

nj is n-isolated with respect to plco as desired. •1

Intuitively, lifetime optimal placements can be ob-

tained by successively moving the computations from

their earliest safe computation points in direction of the

control flow to “later” points aa long as computational
optimality is preserved, This gives rise to the following
definition:

A placement is

● delayed, iff every computation point n is an n-
delayed node, i.e. on every path from s to n there
is a computation point of the Safe-Earliest Trans-
formation such that all subsequent original com-
putations of p lie in n.

Technically, the computation of n-delayed computation
points is realized by determining the greatest solution
of Equation System 4.2, which requires a forward anal-
ysis of G.

Equation System 4.2 (Delay)

DELAY(n) = D-Safe(n) A Earliest(n) V

{

false if 7?,=s
~ yUsed(m) A DELAY(m) otherwise

mcp!’cd(n)

Let Delay be the greatest solution of Equation System

4.2. Analogously to Lemma 3.6 we can prove:

Lemma 4.3 A node n is n-delayed if and only if
Delay(n) holds.

Furthermore we have:

Lemma 4.4

1. A computationally optimal placement is delayed.

.$2.A delayed placement is down-safe.

Proof: ad 1): We have to show that every computa-
tion point n of a computationally optimal placement
is n-delayed. This can be deduced from Corollary 3.3

and property b) of SEFU-paths, which deliver that ev-

ery path froms to n goes through a computation point

of the Safe-Earliest Transformation such that all sub-

sequent original computations of p lie in n.

ad 2): According to Lemma 3.6 and Lemma 4.3 it is
enough to show that Delay(n) implies D-Safe(n) for

every node n. This can be done by a straightforward

induction on the length of a shortest path from s to n.
❑

Based on the predicate Delay we define Latest by:

Latest(n)=~~ Delay(n) A (Used(n) V -I
II

Delay(m))

mc$ticc(n)

The predicate values of Delay and Latest are illus-
trated for our motivating example in Figure 6.

We have:

230

Q
1

2 a:=c
.....+~@:@;4y ~

..... ,.,...,.:.:.::.,.:.,.,.,............

5

10

Figure 6: The Delay and Latest predicate values

Lemma 4.5 A node n is n-latest if and only if
Latest(n) holds.

Proof: We will concentrate here on the part of the
proof being relevant for the proof of Theorem 4.9,
which is the “if” -direction for nodes that occur as com-
putation points of some computationally optimal place-
ment. This is much simpler than the proof for the gen-
eral case.

Thus let us assume a computation point n of a

computationally optimal placement satisfying Latest.
Then it is sufficient to show that on every terminating
path p starting in n any following computation point
of a computationally optimal placement occurs after an
original computation on p.

Obviously, this is the case if n itself contains an
original computation. Thus we can reduce our atten-
tion to the other case, in which =Delay(m) must hold
for some successor m of n. This directIy yields that
n is a synthetic node with m being its only successor,
because m must have several predecessors.

Now assume a terminating path p starting in m, and
a node 1 on p that occurs not later than the first node
with an original computation. Then it remains to show
that i is not a computation point of a computationally
optimal placement.

Lemma 3.2(1) implies that there does not exist any

computation point of the Safe-Earliest Transformation
prior to 1 on p, because n is n-delayed due to Lemma
4.3. Moreover Lemma 4.3 yields that m is not n-
delayed. Thus 1 cannot be n-delayed either. Accord-
ing to Lemma 4.4(1) this directly implies that i is not
a computation point of any computationally optimal
placement, ❑

As D-Safe and Earliest also Latest specifies a pro-

gram transformation. We have:

Lemma 4.6 The Latest Transformation is a compu-
tationaliy optimal placement.

Proof: Whereas the safety property holds due to
Lemma 4.3 and Lemma 4.4, the proof that the Latest
Transformation is a placement and that it is computa-
tionally optimal can be done simultaneously by show-
ing that (1) every SEFU-path cent ains a node satisfy-
ing Latest and that (2) nodes satisfying Latest do
not occur outside SEFU-paths. This is straightforward
from the definition of Delay. ❑

Figure 7 shows the result of the Latest Transformation
for the motivating example.

@

1

2 a:=c

3 h:=a+b ~
x:=h

5

6 1 7 I

8 h := a+b 9

i’
10 y:=h 11 12

i’
14 15;:= ;+b

..=

16 z:=h

Figure 7: The Latest Transformation

The Latest Transformation is already more economic
than any other algorithm proposed in the literature.

231

However, it still contains unnecessary initializations of
h in node 3 and 17. In order to avoid such unneces-
sary initializations, we must identify all program points
where an inserted computation would only be used in
theinsertion node itself. This isachieved bydetermin-
ing the greatest solution of Equation System 4.7, which
specifies a backward analysis of G.

Equation System 4.7 (Isolation)

ISOLATED(n) = ~ (Latest(m) V
mesucc(n)

=Used(m) A ISOLATED(m))

Let Isolated(n) be the greatest solution of Equation
System 4.7. Then we can prove in analogy to Lemma
3.6;

Lemma 4.8 A node n is n-isolated with respect to the

Latest Transformation if and only
holds.

Figure 8 shows the predicate values
the running example.

if Isolated(n)

of Isolated for

& 1!,+’$8’ b~:~y’:;,:
,.: :.,.,.,

, .,,..,,,,
10Y:=a+b 11 12‘~;%; 13i’i’’:’.’,:”j.”j,,. ,,,,,,,,,,,.,,,,,..,

Figure 8: The Isolated and Latest predicate values

4.1 Tile Optimal Program Transforma-

tion

The set of optimal computation points for t in G is
given by the set of nodes that are latest, but not iso-
lated

OCP =.~ { n I Latest(n) A yIsolated(n) }

and the set of nodes that contain a redundant occur-

rence of t with respect to O CP is specified by

RO =df { n I Used(n) A =(Latest(n) A Isolated(n))}

Note that the occurrences of t in nodes satisfying the
Latest and Isolated predicate are not redundant
with respect to O CP, since the initialization of the
corresponding auxiliary variable is suppressed.

The Transformation

O CP and RO induce the Lazy Code Motion Trans-
formation.

The Lazy Code Motion Transformation

● Introduce a new auxiliary variable h for t.

o Insert at the entry of every node in O CP the

assignment h:= t.

e Replace every original computation of t in
nodes of RO by h.

Our main result states that this transformation is op-
timal:

Theorem 4.9 (Optimality Theorem)

The Lazy Code Motion Transformation is computation-
aity and lifetime optimal,

Proof: Following the lines of Lemma 4.6 we can prove
that the Lazy Code Motion Transformation is a com-
putationally optimal placement. According to Lemma
4.5 and Lemma 4.8 it is also latest and not isolated
(Lemma 4.8 can be applied since the Lazy Code Motion
Transformation has the same computation points as
the Latest Transformation.). Thus Theorem 4.1 com-
pletes the proof. •1

The application of the Lazy Code Motion Transfor-
mation to the flow graph of Figure 1 results in the
promised flow graph of Figure 2.

232

5 Conclusions

We have presented a bit-vector algorithm for the tom-
mutationally and lifetime optimal placement of com-
putations within flow graphs, which is as eficient as
standard uni-directional analyses. Important feature of
this algorithm is its laziness: computations are placed
as early as necessary but as late as possible. This guar-
antees the lifetime optimality while preserving compu-
tational optimality.

Fundamental was the decomposition of the typi-
cally hi-directionally specified code motion procedures
into uni-directional components. Besides yielding clar-
ity and reducing the number of predicates drasti-
cally, this allows us to utilize the efficient algorithms
for uni-directional bit-vector analyses. Moreover, it
makes the algorithm modular, which supports future
extensions: in [KRS] we present an extension of our
lazy code motion algorithm which, in a similar fash-
ion as in [JD 1, JD2], uniformly combines code mo-
tion and strength reduction, and following the lines of
[KS1, KS2] a generalization to programs with proce-
dures, local variables and formal parameters is straight-
forward. We are also investigating an adaption of the
as early as necessary but as late as possible placing
strategy to the semantically based code motion algo-
rithms of [SKR1, SKR2].

References

[AU]

[Ch]

[Dhl]

[Dh2]

[Dh3]

[DS]

Aho, A, V,, and Unman, J. D. Node listings
for reducible flow graphs. In Proceedings ?h

STOC, 1975, 177-185.

Chow, F. A portable machine indepen-
dent optimizer – Design and measurements.
Ph.D. dissertation, Dept. of Electrical Engi-
neering, Stanford University, Stanford, Calif.,
and Tech. Rep. 83-254, Computer Systems
Lab., Stanford University, 1983.

Dhamdhere, D, M. Characterization of pro-
gram loops in code optimization. Comp. Lang.

8, 2 (1983), 69-76.

Dhamdhere, D. M. A fast algorithm for code
movement optimization. SIGPLAN Not. 23, 10
(1988), 172-180.

Dhamdhere, D. M. Practical adaptation of
the global optimization algorithm of Morel and
Renvoise. ACM Trans. Program. Lang. Syst.
13, 2 (1991), 291-294.

Drechsler, K. H., and Stadel, M. P. A solu-
tion to a problem with Morel and Renvoise’s
“Global optimization by suppression of partial

[GW]

[He]

[HU1]

[HU2]

[JD1]

[JD2]

[Kc]

[KRS]

[KS1]

[KS2]

[KU1]

[KU2]

[Me]

redundancies”, ACM Trans. Program. Lang.
Syst. 10, 4 (1988), 635-640.

Graham, S. L., and Wegman, M. A fast and
usually linear algorithm for global flow anal-
ysis. Journa/ of the ACM 29, 1 (1976), 172-
202.

Hecht, M. S. Flow analysis of computer pro-
grams. Elsevier, North-Holland, 1977.

Hecht, M. S., and Unman, J. D. Analysis of
a simple algorithm for global flow problems. In
Proceedings Isi POPL, Boston, Massachusetts,

1973, 207-217.

Hecht, M. S., and Unman, J. D. A simple al-
gorithm for global data flow analysis problems.
In SIAM J. Comput. 4,4 (1977), 519-532.

Joshi, S. M., and Dhamdhere, D. M. A com-
posite hoisting-strength reduction transforma-
tion for global program optimization – part 1.
Internat. J. Computer Math. 11, (1982), 21-
41.

Joshi, S. M., and Dhamdhere, D. M. A com-
posite hoisting-strength reduction transforma-
tion for global program optimization – part II.
Internat. J. Computer Math. 11, (1982), 111-
126.

Kennedy, K. Node listings applied to data
flow analysis. In Proceedings Fd POPL, Palo
Alto, California, 1975, 10-21.

Knoop, J., Riithing, O., and Steffen, B. Lazy
strength reduction. To appear.

Knoop, J., and Steffen, B. The interprocedu-
ral coincidence theorem. Aachener Informatik-
Berichte Nr. 9127, Rheinisch-Westfalische
Technische Hochschule Aachen, Aachen, 1991.

Knoop, J., and Steffen, B. Efficient and opti-
mal interprocedural bit-vector data flow analy-
ses: A uniform interprocedural framework. To
appear.

Kam, J. B., and Unman, J. D. Global data
flow analysis and iterative algorithms. Journal
of the ACM 23, 1 (1976), 158-171.

Kam, J. B., and Unman, J. D. Monotone data
flow analysis frameworks. Acts Informatica 7,

(1977), 309-317.

Morel, E. Data flow analysis and global
optimization. In: Lorho, B. (Ed.). Meth-
ods and tools for compiler construction, Cam-
bridge University Press, 1984.

233

[MR1]

[MR2]

[RWZ]

[s0]

[St]

Morel, E., and Renvoise, C. Global opti-
mization by suppression c)f partial redundan-
cies. Comrnun. of the ACM 22, 2 (1979), 96-
103.

Morel, E., and Renvoise, C. Interprocedural
elimination of partial redundancies. In: Much-
nick, St. S., and Jones, N. ID. (Eds.). Program
flow analysis: Theory and applications. Pren-
tice Hall, Englewood Cliffs, NJ, 1981.

Rosen, B. K., Wegman, M. N., and Zadeck,F.
K. Global value numbers and redundant
computations. In Proceedings It?h POP.L, San
Diego, California, 1988, 12-27.

Sorkin, A. Some comments on A solution to
a problem with Morel and Renvoise’s “Global
optimization by suppression of partial redun-
dancies”. ACM Trans. Program. Lang. Syst.
11, 4 (1989), 666-668.

Steffen, B. Data flow analysis as model check-
ing. In Proceedings TA C’S’91, Sendai, Japan,
Springer-Verlag, LNCS 526 (1991), 346-364.

[SKR1] Steffen, B., Knoop, J., ancl Ruthing, O. The
value flow graph: A program representation
for optimal program transformations. In Pro-

ceedings $d ESOP, Copenhagen, Denmark,
Springer-Verlag, LNCS 432 (1990), 389-405.

[SKR2] Steffen, B., Knoop, J., and Riithing, O.
Efficient code motion and an adapti;n to

[Tal]

[Ta2]

[Ta3]

[Ull]

~h TAP.strength reduction. In Proceedings 4
SOFT, Brighton, United IKingdom, Springer-
Verlag, LNCS 494 (1991), 394-415.

Tarjan, R. E. Applications of path compres-
sion on balanced trees. Journal of the ACM 26,

4 (1979), 690-715.

Tarjan, R, E. A unifiecl approach to path
problems. Journal of the ACM 28, 3 (1981),
577-593.

Tarjan, R. E. Fast algorithms for solving path
problems. Journal of the .ACM 28, 3 (1981),

594-614.

Unman, J. D. Fast algorithms for the elimi-
nation of common subexpressions. Act a Infor-

maiica 2, 3 (1973), 191-213.

234

