
A Safe Approximate Algorithm for Interprocedural Pointer Aliasing’

William Landi Barbara G. Ryder

(landi@cs.rutgers.edu) (ryder@cs.rutgers.edu)

Department of Computer Science

Rutgers University, New Brunswick, NJ 08903

Abstract

During execution, when two or more names exist for
the same location at some program point, we call them
aliases. In a language which allows arbitrary pointers,
the problem of determining aliases at a program point
is P-space-hard [Lan92]. We present an algorithm for
the Conditional May Alias problem, which can be used
to safely approximate Interprocedural May Alias in the
presence of pointers. This algorithm is as precise as
possible in the worst case and has been implemented in
a prototype analysis tool for C programs. Preliminary
speed and precision results are presented.

1 Introduction

Programming language environments feature software

tools that improve the quality, efficiency, understand-

ability, and reusability of code. Optimizers, debug-

gers, testers and parallelizers use data flow analysis to

statically extract semantic information from programs

to increase their eflicacy. Aliases represent impor-

tant semantic information whose precision can greatly

affect the quality of optimized code and the preci-

sion of various compile-time interprocedural analyses

[Ca188, CK89, PRL91].

An alias occurs at some program point during pro-

gram execution when two or more names exist for the

same location. The aliases of a particular name at a

program point t are all other names that refer to the

same memory location on some path to t.When this

execution path traverses more than one procedure, we

are solving the Interprocedural May Alias Problem.

While the calculation of aliases for FORTRAN is well

understood [Ban79, CO085, CK89, Mye8 1], aliasing in

C is different than aliasing in Fortran in two respects.

First, aliases can change due to side effects of intrapro-

cedural execution flow. Second, aliases created dur-

ing execution of a called procedure can affect aliases

which hold on return to the calling procedure. Arbi-

trary pointers cause the problem of computing aliases

to become ?-space-hard; currently, there are no good

approximation algorithms.

In this paper, we present an approximation al-

gorithm for interprocedural pointer-induced aliasing

based upon Conditional May Alias information that

describes aliasing within a procedure assuming certain

conditions hold at its entry. We report data on algo-

rithm performance and accuracy on real C programs.

We define a appropriate precision measure and show

that our algorithm is as precise as possible in the worst

case.
*The researeh reported here was supported, in part, by

Siemens Research Corporation and NSF grant CCR8920078.

Permission to copy without fee all or part of this material is

granted provided that the copias ara not mada or distributed for

direct commercial advantage, the ACM copyright notioe and the

title of the publication and its date appaar, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM SIGPLAN ’92 PLD1-6/92/CA

01992 ACM 0-89791 -476-71921000610235 . ..$1 .50

2 Related Work

Weihl devised an approximation algorithm for finding

aliases in the presence of pointers [Wei80], which unfor-

tunately was very imprecise. Our attempts to use his

9cl K

http://crossmark.crossref.org/dialog/?doi=10.1145%2F143103.143137&domain=pdf&date_stamp=1992-07-01

algorithm for interprocedural analysis of C programs

in ISMM [Ryd89] were unsuccessful because of the de-

gree of imprecision in the reported aliases. Chow and

Rudmik [CR82] also presented an algorithm for finding

aliases in the presence of pointers; however, their algo-

rithm traced non-executable interprocedural execution

paths and handled local variables incorrectly. Coutant

[COU86]extended Weihl’s work by keeping his restric-

tion of finding program aliases, but allowing the tracing

of aliases through more than one level of dereference

and adding additional language constructs (e.g., struc-

tures and arrays). Benjamin Cooper [CO089] developed

an algorithm which used alias histories to insure that

a procedure returns to the call site that invoked it.

There also has been some work [Deu90, Deu92,

NPD87] in detecting aliases in higher order program-

ming languages. [NPD87] only considers programs

with single level dereferences and has the added dif-

ficulty of tracking the binding of functions to names.

The problem addressed by [Deu90] is an order of mag-

nitude complication over general aliasing; he allows clo-

sures (partially evaluated functions) and continuations

(storing of runtime environment for later reuse). In

[Deu92], an algorithm for finding aliases in polymor-

phically typed programs is presented.

The work done on dependence analysis and con-

flict detection in programs with recursive structures

[CWZ90, Gua88, HA90, HN89, HPR89, JM82, LH88]

is also related, although it is directed at finding access

patterns into structures rather than explicitly finding

aliases. A conflict [LH88] occurs between two state-

ments when one statement writes a location and the

other accesses (reads or writes) the same location (ioc),

thus preventing the possibility of those statements be-

ing executed in arbitrary order. A data dependence ex-

ists between two statements iff they conflict and there

is an execution path from one program point to the

other on which 10Cis not written.

int *gl, gz;
P()

{
!71= &92;

}

main ()

{
int **II, *12
II = ≷
P();
12= &g2;
P();

}

‘l:?
4 ng:

na: callp entryp

I
na: returnp

1 nlo: +
ns: 12= &gz; 91 = &92;

I
n6~ callp

I nil: */ \ , \

Figure 1: A program and its ICFG

3 Problem Representation

We analyze C-like imperative programming languages

with sophisticated pointer usage and data structures,

no type casting, explicit function calls (without func-

tion variables), and arrays which we treat as aggre-

gates. We represent a program by an .lnterprocedural

Control Flow Graph or ICFG[LR91] which intuitively

is the union of statement-level control flow graphs for

each procedure augmented by call, return, entry and

exit nodes. Call nodes are connected to the entry nodes

of procedures they invoke; exit nodes are connected to

return nodes corresponding to these calls. A sample

ICFG can be found in Figure 1.

Objects are locations that can store information, and

object names provide ways to refer to objects. An ob-

ject name is a variable and a (possibly empty) sequence

of dereferences and field accesses. Object names can be

defined by three simple BNF rules:

236

● object-name + *object-name

e object.name * object-name. field.of-structure
o object-name + variable

If there are any recursively defined data structures

(e.g., linked lists) then the number of object names is

potentially infinite. We will limit to some constant,

k, the number of dereferences allowable in any object

name and obtain a finite number of potential object

names. We consider any object name with 1> k deref-

erences to be represented by the object name obtained

by ignoring the last 1– k dereferences yielding a unique

k-limited name. Thus, for k = 1, p> fl-> fz would be

represented by p> fl (and not by *p). We borrow ter-

minology from [JM79] and call this k-limiting, because

their process is analogous even though they k-limit dy-

namic structures while we k-limit object names. We

need the following functions for object names:

is-prefix (onl, on2) returns tmte iff onl can be trans-
formed into on2 by a (possibly empty) sequence of
dereferences and field accesses.

apply .tran$(onl, onz, on3): is-pref iz(onl, 0n2)
must be true, The function applies to ons the se-
quence of dereferences and field accesses necessary
to transform onl into on2 and returns the result.
For example, app@trans(p–>n, p–>n–>d, ~)
returns r–>d.

As in [LR91] we will represent aliases by unordered

pairs of object names (e.g., (v, *P)). The order is

unimportant because the alias relation is symmetric.

Since we have k-limited objectnames, to safely repre-

sent aliases we must assume that (a, b~) with k-limited

component bk, represents not only (a, b~) but also any

alias (a, b~) such that b~ can be transformed into ~j

by a sequence of dereferences and field accesses. Also

(a~, b~) with two k-limited components represents itself

and all aliases (aj, b!) such that ak is a Prefi of a~ and

bk is a prefix of b~.

The following definitions will be used throughout the

paper:

realizable: A path is realizable iff it is a path in
the ICFG and whenever a procedure on this path

returns, it returns to the call site which invoked it.

holds: Alias (a, b) holds on the realizable path
p1n2...ni iff a and b refer to the same location
& execution of program point ni whenever the
execution defined by the path occurs.

Interprocedural May Alias: The precisel solution
for Interprocedural May Alias is
{[n, (a, b)] I 3 a realizable path, gmln2...ni_ln, in
the ICFG on which (a, b) holds}.

visible: At a call site, an object name (e.g., *z) of
the calling procedure is visible in the called pro-
cedure iff the called procedure is in the scope of
the object name and at run time the object name
refers to the same object in both the calling and
called procedure. (e.g., If z is a local variable of
procedure P, then the z in P before a recursive
call is not visible after the call, since at execution
time it is a different instantiation,)

4 Approximating May Alias

The may-hold Relation We have used our pre-

cise algorithm for computing aliases in the presence of

single level pointers [LR91] as a basis for a safe in-

terprocedural aliasing algorithm for arbitrary pointers.

The key idea in both algorithms is to use Conditional

May Alias information that answers the question: If

there is a path from pTogram entry to the entTy node of

the procedure containing ni on which every alias in the

set AA holds, then may object name a be aliased to ob-

ject name b on some path to ni ? Fortunately, it is safe

to consider only AA (sets of aliases) with cardhality

less than or equal to one [Lan92]. To insure efficiency,

we only concern ourselves with Ad sets that actually

occur. We use may-hoid([(w, .4..4),(a, b)]) to encode the

answer to the Conditional May Alias question:

may- hoid([(~i, U), (a,b)]) is true iff (a, b) holds on
some path from entry(ni), the entry of the proce-
dure containing ni, to ni assuming there is a path
from entry of main to entTy(?Q) on which the as-
sumed alias AA holds and there is a path from
entry of main to the entry(ni) on which dd
holds.

1We are using the standard data flow definition of precise
which means “precise up to symbolic execution”, assuming all
paths through the program are executable [Bar78].

237

For even further efllciency gains we have designed our

algorithm so that work is performed only when

mag-hoht([(nj, U), (a,~)]) is twe. Since most of the

may-holds will be false, this improves the average time

complexity of our algorithm considerably.

Finally, given Conditional May Alias, May Alias is

easily computable;

rnay-aiias(node) =

{7A!(3ti)may-hoid(node, AA, PA) = -hue}.

This can be computed in time linear in the size of the

may-hold solution; thus, we will only concern ourselves

with the computation of may-hold.

Computing may-hold The algorithm for comput-

ing may-hoid is simple at a high level. First, we find all

the may-hold relations which are trivially true, (e.g.,

f indaliases ()
{ worklist = f!

/* Alias Introduction */
for each node (N) in the ICFG
{ if N is an assignment to a pointer

alias es-intro.by-ass ignment (N)
if N is a call node

alias esintro.by-call (n)

}
/* Implied Aliases */
while worklist is not empty
{ remove (N ,AA,?d) from worklist

if N is a call node
alias es=t.callimplies (N, A4, ?A)

else if N is an exit node
aliasat.exitimplies (N, A4, ?A)

else any.otheraliasimplies (N, &l, Pd)

Figure2: Computing may-hold

rnay-hold([(’’P= &d’,O), (*p,v)]) is true). Once we have

this initial set of true may-holds, we compute the set

of all true may-holde using a worklist algorithm (Fig-

ure 2) which propagates alias information from exits of

nodes to their immediate successors in the ICFG.

The remainder of this section gives details of this

algorithm. We discuss our implementation of may-hold,

parameter binding, and the functions used in Figure 2.

We will use the following macro throughout:

make-true (node ,AA, PA)
{ if may-hoM([(node, AA),? A]) is false

{ set may-hold([(node, AA), P.4]) to true
add (node ,dd, PA) to the worklist

}
}

Representation In order to have an efficient im-

plementation for our alias algorithm, we must be able

to do the following operations in constant time:

o Set may-hold([(nocle, .4.4),PA]) to false for all POS-
sible node, A4, and PA

e Find the value of may- hold([(node, &t), ‘PA]) for a
given node, U, and PA.

e Set the value of may- hold([(node, U), ‘PA]) for a
given node, AA, and PA.

We use dynamic hashing [KS86] to do this, giving

us constant time operations in the average case. We

assume may-hold for any [(node,fi), PA] triple is false

if it is not in the hash table; otherwise it is true [Lan92].

Implicit Assumptions Consider the assignment

“p = q“ where p and q are pointers to linked lists, This

assignment results in the following:

:~””~

Thus yielding the aliases (*p, *q), (p->nezt, q->nezt),

(p->next->next, q->next->next), and so on. How-

ever, these aliases depend on *q, q- >nezt, and

q->nezt->nezt being non-NULL before the assign-

ment. Our algorithm implicitly assumes that this is the

case, and we would create all of the above aliases that

k-limiting allows. This assumption is not an inherent

part of our algorithm and can be removed, but we use

it here because it is generally reasonable and increases

efficiency of the algorithm. For conciseness, through-

out this paper, whenever we create an alias (*p, *q) we

assume that the aliases (p->nezt, q->nezt),

(P>ne~t->neat, q->nezt->nez%), ... are also created

although we do not explicitly state this everywhere.

Modeling Parameter Bindings For interproce-

dural analysis, we need to model the affects of param-

238

eter bindings on aliases. We do this with a function

bindCall(PA). Intuitively, Mndcall(o) will be all the

aliases on entry of a called procedure that must ex-

ist because of parameter bindings, while bindc=ll((a, b))

will be the set of aliases at entry ofa called procedure

whose existence is implied by a being aliased to b at

call.

Unfortunately, this definition is not sufficient be-

cause a procedure call can both create and destroy an

alias in the calling procedure, involving an object name

not visible in the called procedure. For example, the

first call of P in Figure 1 creates the alias (**Zl, g2) in

main even though 11is not in the scope of P. However,

only references to the visible object name in an alias

pair can affect whether the alias holds on a path. A pro-

cedure has the same effect on all alias pairs which con-

tain visible object name w and any non-visible object

name. Therefore, we use the object name nonvisible

to represent all non-visible object names2.

In the bind function, if any of the aliases in the bind

set involve non-visible, we need to know the corre-

sponding object name in the calling procedure. For

example, assume q is global to P, r is not visible to I’,

and q,r, and f are all type “int *“:

&~nOn-vi’ib’e
{

((*f, *q) , -),
bindCalrF(Q((*q, *r))= ((*q, non-visible), *r),

((*f, non-visible) , *r) }

The occurrence of ((*q, non-visible) , w) in bindc~liP(q)

((*q, *r)) represents the fact that *q is aliased to non-

visible object name *T at the entry of the called proce-

dure P,

Computing bindca//(0): There are two ways aliases

can be implied by parameter bindings. The first alias

corresponds to a simple formal to actual pairing. For

2h [LR91] we ~~emed to non-visibk * ““”.

example, if P is a function with formal f of type “int

*“ and call is an invocation of P with actual a then

(*f, *a)3 is in bindcall(o). The second occurs if two

distinct formals are passed two actuals where one ac-

tual is a prefix of the other, For example, if P is a

function with two formals ~1 (type “int **”) and f2

(type “int *“) and call is P(a,*a) then (**fl, *f2) is in

bindc=/l(@).

Computing bindcalr((x, y)): There are three ways

that an alias at a call site may imply an alias on entry

to a procedure. The first is trivial: if the two object

names are global to the called procedure then they are

also aliased on entry to the called procedure. The other

two can be illustrated by the following example (both

al and tz2are global to P):

~’ yf2 a2

cab(al, a2) entrYP(fl J2)

In this example, since *a2 is aliased to **al at

callP(a1,a2)t *f2 is aliased to **al. This example can be

generalized to the second way an alias at a call site can

imply an alias at the entry of a procedure. Whenever

an actual has an alias to an object name, its corre-

sponding formal picks up an alias to that object name

or non-visible, if the object name is not visible in the

called procedure. Also in the example, since *a2 is

aliased to **al at callp(al,.,), *f’ is aliased to ** fl at

entryp(f, ,t,). This is typical of the third case; when

two actuals are aliased at a call site, the correspond-

ing formals are aliased on entry to the called proce-

dure. The algorithm for computing bind.all ((z, y)) is a

straightforward encoding of these three cases.

The remainder of this section gives a more detailed

description of the algorithm in Figure 2 by discussing

which may-holds are set to true by each its functions.

3((*j, non-visible),w) if a is not visible in P.

239

4.1 Aliasesintro.by .assignment(node)

Let mxiebe the pointer assignment “p=q”.4 Clearly,

may-ho?d([(nocle, O),(*p,*q)]) is true unless p is a prefix

ofq. To understand this exception, consider the as-

signment “p = p—>nezt”. It does not create an alias

(*p, *(p–>next)) because p and p–>next both refer

to different objects after this assignment but their alias

relationship does not change.

4.2 Aliases_intro_by.call (node)

For each alias (a, i5) in bindcall(O), nmlce.true (entry,

(a, b), (a, b)) where entry is the entry node correspond-

ing to call.

4.3 Alias_at.ca113rnpHes(call,&l,T/1)

A may-hold at a call node has effects on the corre-

sponding entry and return nodes.

E#ects on corresponding entry node (entry): For

each alias (a, b) in bindcall(PA), rnake.true (entry ~

(a, b), (a, b)).

Eflects on corresponding return node (return): For

simplicity assume that we are dealing with a pro-

gramming language that has no local variables, and

thus no formal parameters. We are interested in

the relationship between may-hold at a return node

and may-hold at its predecessors. Clearly, may-hold

([(~e~~~%AA), (a,b)]) is true if (a, b) holds at the corre.

spending exit node, conditional on AA’ holding at its

entry and AA’, conditional on AA, holds at the cor-

responding call node.

This situation can be generalized resulting in the

equation in Figure 3. We have to intreduce the func-

tions back-bind and back-bind’ which have the following

definitions:5

back-bindcall((a, b)) specifies the alias on any path to
call that guarantees a is aliased to b after control
flows to corresponding entry node,

4“p = &z” is handled similarly. Simply consider q ~ &z and
treat*&z S x.

5Thesef~ctions recoverthe PA aliasesfrom call-siteso

back- bind~all((a, non-visible) , o) specifies the alias on
any path to call that guarantees a is aliased to
the non-visible object name o after control flows
to corresponding entry node.

These definitions imply:

back-bindcail((a, b)) = (c, d) iff (a, b) c bindcall((c, d))

back-bind~all((a, non.wisible) , o) = (c, d) iff

(a, non-visible) E bindcatl((c, d))

and nonvisible represents o.

We can now proceed to describe the effects of may-hold

([(C4AA),PAI) at the corresponding return. To do a

case analysis, let PA = (a, b):

1.

2.

If a and b are both not visible in the called proce-

dure then the procedure invocation does not af-

fect this alias. The desired action is obviously

make-true (return ,AA, (a, b)).

a and b are both visible in the called procedure.

We know may-hold([(.at~, AA),’PA]) (’PA E back-

bindc.ll (AA’)) and we consider its relationship to

Rule 2. From call we can get exit and return of

Rule 2. From PA we can get AA’.G This leaves

Rule 2 with one free variable (x, y), so the obvious

action for may-hold([(cal~, u), (~,b)]) would be7:

For each (AA’, -) in bind=~~j((a, b))
for every possible (z, y):

if may-hoid([(ezit, u’), (~,y)]) is
make-true (return ,AA, (z, y))

true

However, this is not acceptable because it requires

work to be done for every possible (z, y) even

though most (x, y) are not necessary. since in

Rule 2 we are performing a conjunction in which

we know one half is true, instead of doing work

for all (x, y), we would prefer to only do work

for (z, y) such that may-hold([(ezit, .4.4’), (~, v)]) is

i%ue. This can be done at the cost of maintaining

an additional data structure [Lan92],

6bi7dcaZI(back-bkfdcaf~ (AA’)) = 4’.
‘Strictly speakingthis means if rnag-hold([(erit,0), (C,~)])

wastrue, we make mag-hold([(retumz, AA), (z, g)]) t~ue for all
possibleAA. However,in practiceit is sutiicientto only make
rnag-hokt([(return, 0), (z, g)]) true.

240

Rule 1 If x and y are both not visible in the called procedure:

?7W&hOM([(ret7mn, AA), (e, ~)]) = T7tc&h0M([(ealt, AA), (m,v)])

Rule 2 If x and y are both visible in the called procedure:

?’nay-hoki([(return, AA), (23,v)])= ?7my-hold([(ed, 0),(at,y)])V v
(

~~y-hdd([(ed, AA’), (iz,~)]) A

AAJ cASSUMP~t ‘?7Wy-hO?d([(ca~~, AA), back-bindcalj (AA’)]))

Rule $’ If z is visible but y is not (the symmetric caee is similar):

t ASSUMED is the set of all possible assumed aliases.

Figure 3: may-hold relation at return nodes

3. Assume a is not visible in the called procedure but

b is.

This corresponds to Rule 8 in Figure 3 and is anal-

ogous to the case where a and b are both visible in

the called procedure, except now we need to fill in

the nonvisible at exit with a. Thus we would get

the following action for may-hoid([(.atl, AA), (a, b)]):

For each (AA’, nv) in bindc.zl ((a, b)),
for every possible (z, y):
(assume x contains non-visibles) :

if may-hoid([(ezit, AA’), (r, v)]) is t~ue
{ let z’ = nv

apply _trans(non.visible ,Z ,Z’)
make-true (return ,AA, (z’, y) }

More Complex Effects on Return Node8 in Case $’:

While the action described above is sufficient if only

single level pointers are allowed, it is not sufficient in

the general case. In general, it is possible to have an

alias between two non-visible’s. For example, the sec-

ond call of P in Figure 1 creates the alias (**11, *22) at

nlo even though neither 11nor i2 are visible in P. Thus

we must handle the case of creation in the called proce-

dure of an alias between two non-visible object names.

We will do this with a special case of may-hold with

two assumed aliases:

may- hold([(enit, (01,non-visible)

(02, ~.visible))? (nUl , nvz)])

8For example, z —— *non-visible.

This represents the fact that if 01 is aliased to non-

visible object name 11 and 02 is aliased to non-visible

object name 12on a path to the entry of the procedure

then, on some path to ewit, nvl (where the non-visible

portion represents 11) is aliased to nv2 (where the

non-visible portion represents 12). Thus,

ma~-hotd([(nll, (gl, .rwn-visible)

(L72,*n~-visible~’ (“nw-vi’i~le, n~-visibl.)])

represents the alias (**11, *12) at nll because

● gl is aliased to Waon.visibte (non-visible 41) at
ng when called from n6 and

● g2 is also aliaeed to *non-visible (non-visible 42)
at ng when called from nG.

The action for Case 3 given above must be mod-

ified to handle the special case where ma~-holds

([(cd, AA),’PA]) implies one of the two assumed aliases

needed for an alias with two non-visibles, Details can

be found in [Lan92].

4.4 Alias_at-exitjmplies (ezit,AA,T~)

An exit node can have any number of successors, how-

ever they are all return nodes. This function encodes

the rules for return nodes in Figure 3 with the ad-

ditional case of aliases between two non-visible ob-

ject names. The encoding is analogous to that for

Alias-at -callfimpli.es and we omit a formal descrip-

tion of this routine.

241

4.5 Any.other.alias-.implies(node,A~,T~)

The implications of may-hohl([(node, d.A), ‘PA]) depend

on its successors and must be considered separately

for each successor. Since we have examined the cases

where node is a call or exit node, the successors must

be either a call, an exit, or a statement in the program.

Successor (SUCC) is a call node, exit node, or a

program statement which is not an assignment to a

pointer: These nodes simply collect may-hold infor-

mation from their parents. When succ is of one of

these types, the action for may-hold([(node, .4.A),7.4]) is

simply nmke.true(succ, ti,?~).

Successor (succ) is an assignment to a pointer:

This case encompasses the major intraprocedural af-

fects of pointers on aliasing. The effects of may-hold

([(~o~e,AA),’PA]) depend on the relationship of the ob-

ject names in PA and the object names involved in the

pointer assignment. In the following discussion we will

consider succ to the be statement ‘p = q“, where p and

q are arbitrary object names of pointer type, What fol-

lows is a case analysis; the algorithm applies all suitable

cases. The cases are: 1. Does the assignment preserve

the alias? 2. What are the effects of an alias of *q? 3.

What are the effects of an alias of p?

1.

2.

PA = (v, z) where P is a prefix of neither y nor z.

(preserves the alias)

In all cases, y and z point to the same object after

the assignment as before since only p changes its

value and the assignment has no effects on (v, z).

The action in this case is simply make-true (succ,

Ad,PA). This is clearly safe, but it can also be

approximate.

PA= (Y, Z) where is.prefix-with.deref(q,y)g

(effects of an alias of *q).

There are 3 different cases that need to be handled

(the first two are mutually exclusive, but either

9is-prefix-with.deref(g,~) is the same as is-prefix (q,y) ex-
cept that y must have at least one more deference than g.

can occur in conjunction with the third). They

are: (i) not is-prefix(p,z), (ii) is-prefix(p,z), and

(iii) the interaction of (*q, Z) with other known

aliases.

In general, the effects of the assignment on this

alias depend on whether or not is-prefix(p,z) is

true. The two types of effects are characterized by

the following examples:

Case 2.i: y Z *q

node; u P --mhm+-””

(A)—qz ,..

Succ: p=q;
P cE-cEl-””

\
q-gcm+E- ,..

In case 2.i, may-hoid([(node, A), (X9,.)]) implies

may-hold([(sticc, .4A), (*9, z)]) and

may-hold([(succ, .4A), (*P,z)]).

Case 2.iti y S *q, z S *(p-> nezt)

‘i’-
P

node: ,2
. . .

(?

‘uCc:G@‘*...
qef-”

In case 2.ii, ma~-hoki([(node, &t), (*g, *(P>newt))])

gives no information about the aliasing that occurs

at SUCCIo.Thus the action when

may-hold([(node, old), (v, z)]) is true for succ = “p =

q“ where is-prefix-with-deref(q,y) would appear to

be:

if ! is-prefix (p, z)
{ apply _trans (q ,y,p’)

make_true(suCc,4, (P’, z)) }

10The o~Y d~s thatholdsat succin case2ii, is (*P,*q) which
holdsregardlessof the aliassituationat node.

242

3.

This can miss some aliases when p is not a prefix

of z. Consider the following case 2.iii:

Q
u-p q

G1
‘t.bWp q

T T

\ J \ /

The problem is that the existence of the alias

(**u, z) at succ does not necessarily follow from

a single alias at node. Instead, (**u, z) can

hold on [entrymain]...[node] [SUCC]if both (*u, p)

and (z, *q) hold on the path [ent~yma~n]...[node].

Unfortunately, we do not keep any information

about pairs of aliases holding on the same path.

Whenever we have ma~-hold([(node, A.4), (*u,P)])

and may- hoid([(node, old’), (z, w)]) we have to as-

sume may- hoki([(“P= ~“,U), (**w z)]) in order for

our solution to be safe. We must extend the above

action to account for this situation. One notable

feature of this extension which deserves mention

is how to handle the case when AA # AA’ when

both occur on the same path. We do not allow

multiple assumptions, so we must safely approx-

imate this situation. Clearly both assumptions

are individually necessary and either can be safely

chosen. In general, if one assumption contains

non.visdde, then use that one (so that we remem-

ber how to instantiate nonvisible); otherwise use

either.

PA= (p, v) (effects of an alias of p)

Again there are three cases to consider; (i) simple

effects of (p, v), (ii) secondary effects of (p, W),and

(iii) interaction of (p, v) with other known aliases.

The effects of “p= q“ on (p, *u) (i.e., w - *u) are

characterized by:

Case 3.i: ma~-hokl([(node, AA), (p,w)]) implies

may- hohl([(svcc, ..4.4),(P,w)]) and, unless u or p is

a prefix of qll, may- hoki([(awc, AA), (w, **u)]),

Case 3.ii: An alias (*p, o) at node is, in general, im-

plicitly killed. However, in the case where (p, *u)

holds on some path to node, (*p, **u) will not be

killed by the assignment “p = q“ and we have to

account for this..

Case 3.iii: The only other effect of

may-hold([(no~, a), (P, *ti)I) comes from handling

the other half of case 2.iii and is handled in the

same way.

5 Empirical Results

This section starts with a theoretical examination of

the worst case precision of our algorithm. We next

discuss our implementation of the algorithm and em-

pirically compare our solution to Weihl’s solution. We

then report empirical data on algorithm precision.

Precision Throughout this paper we have used k-

limiting to deal with infinite sets of object names, and

we now apply that notion to precision.

&7J’dk(SOIUt~O?J)=

{

(node, (a’, b’))

(node, (a, b)) c solution, a’ is
the k-limited representation
for a, and b’ is the k-limited
representation for b

We use the following definition for the precision of a

safe algorithm A when analyzing program P:

p~e(%~onk (A, P) =

l/imitk({A’s solution for ~})1
llimit~({precise solution for P})l

Consider the program all-or-none in Figure 4 for any

given n. Thk program has the unfortunate property

that if no aliases hold before it is executed then the pre-

cise solution under the common assumptions of static

11when ~ or p is~~refix of q, we do not want to creak (*%*4
for the same reason we do not want to create (*P, *(p- >mzt))
for “p = p->next”.

243

while (-)
{#for allk, l~k~n:

if (-)
{ v~=b;

b= NULL ;

)
#end for all
if (-)
{b=d;

d= NULL;

Figure 4: Program cdl-or-none(n); n is a parameter
determining the size of the program

analysis has n + 1 program point aJiases. However, if

justthe alias (*b, *d) holds before program all-or-none

then, for all i and j (1 ~ i, j ~ n), *vi is aliased to *vj

on some path to all program points (0(n3) of them).

Any approximate algorithm can erroneously produce

the aliaa (*b, *d). Thus when alz-or-none(n) follows the

creation of the erroneous (*b, *d) alliaa, the algorithm

will report 0(n3) aliases12 even though there are only

Q(n) aliases. For our algorithm, using the the precision

measurement Weci.$ionk this is the ‘worst case.

Prototype Our prototype implementation, written

in C, finds aliases for a reduced version of C that ex-

cludes: union types, nested structures, casting, point-

ers to functions, and exception handling. The first

three of these omissions are not theoretically difficult to

handle, but complicate the implementation. The other

two require more theoretical examination. We do allow

arrays and pointer arithmetic; however, we deal with

these on a very simple and naive level and treat them

as aggregates. For building ICFGS, we were fortunate

to have access to ptt, a program developed by Siernens

Research Corporation.

Empirical Comparison to Weihl’s Algorithm

Unfortunately, we can not directly compare our alias

12the Cqn3) from ~ll-or.none(n) plus some comtant n~nber

form the program that erroneously generates (*b,*d)

solution to Weihl’s solution because we find program.

point specific aliases and Weihl does not. Therefore let

us define programaliases as:

{(a, b) l(~n)a ICFG node and (a, b) ~ may-alias(n)}

In Table 1 we compare our solution versus Weihl’s so-

lution, As expected Weihl’s algorithm reports more

program albees than our algorithm. The timing for

Weihl’s algorithm is approximate because in our im-

plementation of his algorithm, we were only able to

time the second stage of his calculation (the transitive

closure part) and not the total time taken. On av-

erage Weihl reported 30.7 times as many aliases and

the timings are more or less comparable. The numbers

reported here are based on an improved implementa-

tion of our algorithm. make was included in the origi-

nal data set, but the new implementation does not yet

handle it.

Measurement of Empirical Precision There are

four distinct approximations in our alias algorithm

(this is proved in [Lan92]). Our first source of approxi-

mation, k-limiting, is discussed in Section 2. A second

source of approximation is illustrated by the following

scenario. Suppose there is an assignment p = z at pro-

gram point t, alias pair (p, *q) holds on some path13 to

an immediate predecessor of t and (*z, *y) also holds

on some path to an immediate predecessor of t.Does

(**q, *y) hold on some path to t?

(P, *9)

w

(*x, *y)

-t: p=z

(**q, *y)?

on the same path,

extended by t;our

If both (p, *q) and {KC,*y) occur

then (**q, *y) holds on that path

algorithm safely concludes this, even though it may

not be true.

13Remember that may-hold

last statement on the path.
is defined after execution of the

244

Weihl program
Program Lines Weihl program-aliases program- aiiases

aliases Weihl
Number ‘Time Number Time Number Time

U1 523 4,851 3s 349 26s 13.8 8.7
pokerd 1,354 62,225 84s 352 4s 176.7 0.1
compress 1,488 6,316 4s 341 2s 18.5 0.5
loader 1,522 39,059 36s 496 7s 78.7 0.2
learn 1,642 61,845 46s 883 27s 70,0 0.6
ed 1,772 1,796 6s 1,455 42s 1.2 1.4
cliff 1,793 44,366 58s 1,444 43s 30.4 0.7
tbl 2,545 4,401 10s 1,065 85s 4.1 8.5
lex 3,315 9,490 18s 1,240 50s 7.6 2.7

Wograrmaliases = {(a, b) l(3n)n is a node of the ICFG and (a, b) c may-alias(n)}

Table 1: Comparison to Weihl

The third source of approximation is similar to the

second. Consider the assignment p = x at program

point t. Suppose (p, *q) holds on some path to an im-

mediate predecessor of t and (**q, *z) holds on some

path to an immediate predecessor of L Does (**q, *z)

hold on some path to t?

(P, *q)‘E/
(**q, *Z)

t: p=x

(**q, *z)?

If on at least one path to an immediate predecessor of t

(**q, *z) holds, and neither (p, *q) nor (p, z) does, then

(**q, *z) holds on that path extended by L However,

if on all those paths (**q, *z) and (p, *q) both hold,

then (**q, *z) does not necessarily hold on any path

tot. Here, our algorithm safely assumes that (**q, *z)

holds on some path to t.

The fourth approximation results from two distinct

aliases of the LHS of an assignment.

‘p’*’)\..p*v)t:p.n = v->n->~

(*(u-”>n), *(v-> n->n))?

Normally, (*(u-> n), *(v–>n–>n)) should hold on

a path to t because assigning v—>n—>n to p.n is also

an assignment to u–>n on paths on which (p, *u)

holds. This, however, is not necessarily the case.

If, for example, on the same path (p, *v) holds then

(*(u–>n), *(v–>n–>n)) does not necessarily hold:

before: after:

L’

U* ?) u

‘%

v

p.n = v–>n–>n;

We’ve modified our algorithm to count the last three

approximations. An alias is counted as possibly impre-

cise if it is the result of any of the last three types of

the approximations or depends on the existence of an-

other alias that is counted as possibly imprecise. In

[Lan92], we prove that the four cases given above are

the only base sources of imprecision in a variant our

algorithm.14

There is one other source of approximation that is

not a base source of approximation. Consider the fol-

lAThe ~~orit~ pres~ted here has the implicit ass~Ption

that the RHS of an assignment is not NULL on some path to
the assignment,whichcan lead to imprecision.We considerthis
assumptionreasonable,and havenot countedthisimprecision.

245

lowing (where s is some immediate predecessor of t):

may-hohi([(., (p, WI)), (P, w)])

k
may-hold([(~, (w, w)), (w, w)])

t: p=x

may-hoki([(t, (P, *g)), (**~, *V)])

This is the second source of approximation mentioned

above. Note that since may-hold at t depends on two

assumptions we arbitrary chose one. Assume that the

may-hold at t reaches the exit of the procedure so that

we get may-ho~d([(eait, (P, *q)), (**q, *v)]). It is possible

possible that the alias (**q, *u) does indeed hold on

some path to t (and some path to exit) and hence is

not imprecise. However, we will propagate (**q, *y)

to a return if only the alias (p, *q) holds at the cor-

responding call. This can be inaccurate even though

the original may-hold at t is accurate. Notice, however,

that any such inaccuracies will be counted, because the

may-hold at t will be counted as possibly inaccurate

and since the may-hold at exit depends (indirectly) on

may-hold at t,it too will be counted as possibly inac-

curate.

Define %YEf$k (P) for may-hold computed from P

as in Figure 5. Given that there are only the aforemen-

tioned four types of approximations, we claim that L

~ ~imitk (precise solution). Thus %YESk (P) < 100 *

(l/precisionk (landi, P)) and can be used to bound

precision.15

Table 2 presents empirical precision results for 18 C

programs with the k-limit constant equal to three16.

This suite contains all the programs that we compared

to Weihl’s algorithm in Section 5. These programs

came from a pool of available C programs that was

collected for an ongoing empirical study of the struc-

ture of C programs [RP88]. The sample is by no means

large enough to draw general conclusions about algo-

15 zand~refers tO o~ approximate ~i%orithm.
1srn [Lm92] We ~ve &.o exaruined these programs for k= 1 to

4.

rithm behavior, but it is large enough to indicate that

our algorithm performs well over a limited domain of

C programs.

6 Conclusions

Our development of an approximate algorithm for solv-

ing for Interprocedural May Alias has been promis-

ing. It justified the use of Conditional May Alias as

a method for the interprocedural aspects of the alias

problem. While it is not precise in the presence of ar-

bitrary pointers, it is safe, erring conservatively. We

showed that for at least one definition of precision, in

the worst case no algorithm can be more precise than

our algorithm. Our empirical investigations yielded en-

couraging precision results and showed great improve-

ment over the extant technique [Wei80]. Our idea of us-

ing a conditional version of aliasing to solve for aliases

has been extended to the Interprocedural Reaching

Definitions Problem in C [PRL91].

Acknowledgments We thank our colleagues at

Siemens Corporate Research, Hemant Pande, Michael

Platoff, and Michael Wagner, for their assistance with

ptt. We also thank Siemens for allowing us to use

their optimized implementation of our algorithm. The

timings for Siemens implementation are on average 13

times faster than our initial ones. Rlta Altucher, Bruce

Ladendrof, and William Landi17 are primarily respon-

sible for the improvements.

References
[Ban79] J. Banning. An efficientway to fmd the side effects of

procedure calls and the aliases of variables. In Con~er.
ence Record of the Sixth Annual ACM Symposium on
P~i?w@les of Programming LangGages, pages 29–41,
January 1979.

[Bar78] J. M. Barth. A practical interprocedmal data flow
analysis algorithm. Communications of the A CM,
21(9):724-736, 1978.

[Ca188] D. Callahan. The program smnmary graph and flow-
sensitive interprocedural data flow analysis. In Pro.
ceedings of the SIGPLAN ’88 Conference on ProgTam.
ming Language Design and Implementation, pages
47–56, June 1988.

17while worfing for Siemens

246

(,{{
(M4)may-hold([(nde, A.,4),1’A]) = YES

%YEsk(P) = 100*
L = (node, PA) and not directly or indirectly the result

of a type 2, 3 or 4 approximation
(node, PA) I (3ti)mag-ho?d([(~ode, fi),pA]) = YES },})

Figure 5: Definition of %YESk(P)

I ICFG I May I %YES~ I 1
Program Nodes Ali~es (PTogTam) Time

allroots 407 257 loof 1s
fixoutput 615 1,937 loot 1s
dii?ih 647 8,046 loot 1s
poker 896 3330 loot 2s
U1 1,625 101,273 loot 26s
lex315 1,204 5,163 loot 2s
loader 1,596 119,259 78t 24s
compress 1,914 8,656 67t 2s
tD 1.710 96.098 loot 9s

ICFG May %YESk
Program Nodes Aliases (PTogTam) Time

Dokerd 1.936 54.819 45 7s.
learn 2:781 179;844 98t 27s
ed 3,299 127,502 loot 41s
assembler 3,631 1,260,582 lot 396s
cliff 3,926 89,056 88t 40s
simulator 5,305 241,621 98t 31s
football 5,910 232,913 loot 23s
tbl 5,960 400,464 loot 80s
lex 6,792 420,268 96t 44s

t %yE&(~TOgTUm) < 100* (1/PTeC~S~Onk (Iundi Program))

Table 2: Precision of our May Alias Solution (k = 3)

[CK89]

[CO085]

[CO089]

[COU86]

[CR82]

[CWZ90]

[Deu90]

[Deu92]

K. Cooper and K. Kennedy. Fast interproceduralalias
analysis. In Conference Record of the Sixteenth An-
nual ACM Symposium on Principles of Programming
Languages, pages 49–59, January 1989.

K. Cooper. Analyzing ahzes of reference formal pa-
rameters. In Conference Record of the Twelfth Annual
ACM Symposium on Principles of Prognanwning Lan-
guages, pages 281-290, January 1985.

B. G. Cooper. Ambitious data flow analysis of pro-
cedural progrsme. Mast er’s thesis, University of Min-
nesota, May 1989.

D. S. Coutant. Retargetable high-level alias analysis.
In Conference Record of the Thirteenth Annual A CM
Symposium on Principles of Programming Languages,
pages 110-118, January 1986.

A. Chow and A. Rudmik. The design of a data flow an-
alyzer. In Proceedings of the ACM SIGPLAN Sympo-
sium on Compiler Constmtction, pages 106–113, June
1982.

D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis
of pointers and structures. In Proceedingsof the SIG-
PLAN ’90 Conference on Programming Language .De-
sign and Implementation, pages 296–310, June 1990.
SIGPLAN Notices, Vol 25, No 6.

A. Deutsch. On determining lifetime and ahssing of
dynamically allocated data in higher-order functional
specifications. In Conference Record of the Seven-
teenth Annual ACM Symposium on Principles of Pro-
granwningLangwages,pages 157–168, January 1990.

Alain Deutsch. A storeless mode of aliasing and its
abstractions using tiniterepresentationof right-regular
equivalencerelations. In Proceedingsof the IEEE 1992
Conference on Comptiter Language8, April 1992.

[Gua88]

[HA90]

[HN89]

[HPR89]

[JM79]

[JM82]

[KS86]

[Lan92]

[LH88]

C. A. Guarna. A technique for analyzing pointer and
structure references in parallel restructuring compil-
ers, In %oce.di?ag$ of the Intewationai Conference
on Parallel Processing, pages 212–220, 1988.

W .L. Harrison III and Z. Amrusrguellat, Parcel and
miprac: Parallelizers for symbolic and numeric pro-
grams. Tn International Workshop on Compilers jor
Parallel Computers, December 1990.

L. J. Hendren and A. Nlcolau. Parallelizing programs
with recursive data structures. In Proceedings of the
1989 International Conference on Pavallel Processing,
pages 49–56, August 1989.

S. Horwitz, P. Pfeiffer, and T. Reps. Dependence
analysis for pointer variables. In P~oceedings of the
ACM SIGPLAN Svmposium on Compiler Construc-
tion, pages 28–40, June 1989.

N. Jones and S. Muchnick. Flow analysis and opti-
mization of lisp-like structures. In S. Muchnick and
N. Jones, editors, ProgTamFlow Analysis: Theory and
Applications, pages 102-131. Prentice Hall,1979.

N. D. Jones and S. S. Muchnick. A flexible approach to
interprocedural data flow analysis and programs with
recursive data structures. In Conference Record of
the Ninth Annual ACM Symposium on P%tciples of
Programming Languages, pages 66-74, January 1982.

H. Korth and A. Silberschatz. Database System Con.
cepts. McGraw-Hill, New York, NY, 1986.

W. Landi. Intevpvocedwal Aliasing in the Presence
of Pointers. PhD thesis, Rutgers University, January
1992. LCSR-TR-174.

J. R. Lams and P. N. Hilfinger. Detecting conflicts
between structure accesses. In Proceedings of the

247

SIGPLAN ’88 Conference on Programming Language
Design and In@etnentation, pages 21–34, July 1988.
SIGPLAN NOTICES, Vol. 23, No. 7.

[LR91] W. Landi and B. G. Ryder. Pointer-induced aliasing:
A problem classification. In Conference Record of the
Eighteenth Annual ACM Symposium on Principles of
Programming &anguage8,pages 93–103, January 1991.

[Mye81] E, M. Myers. A precise interprocedural data flow al-
gorithm. In Conference Record of the Eighth Annual
ACM Symposium orLPrinciples of PTogravnming Lan-
guages, pages 219–230, January 1981.

[NPD87] A. Neirynclc, P. Panangaden, and A. Demers. Com-
putation of aliases and support sets. In Confe~ence
Record of the Fourteenth Annual A CM Symposium on
Principles of ProgvamvningLanguages, pages 274–283,
January 1987.

[PRL91] H.D. Pande, B. G. Ryder, and W. Landi. Interproce-
dural clef-use associations in c programs. In Proceed.
ings of the Fifth Testing, Analysis, and VeTijication
Symposium, October 1991.

[RP88] B. G. Ryder and H. Pande. The interprocedural strut.
ture of c programs: An empirical study. Labora.
tory for Computer Science Research Technical Report
LCSRTR99, Department of Computer Science, Rut-
gers University, February 1988.

[Ryd89] B. G. Ryder. Isnun: Incremental software mainte-
nance manager. In PToceeding8of the IEEE Computer
Society Conference on Softwa~e Maintenance, pages
142–164, October 1989.

[Wei80] W. E. Weihl. Interproceduml data flow analysis in
the presence of pointers, procedure variables and la-
bel variables. In Con.fe~ence Record of the Seventh
Annual ACM Symposium on P~inciples of Pvog~am.
ming Languages, pages 83–94, January 1980.

248

