
A Mark-and-Sweep Collector for C++

Daniel R. Edelson

University of California

Santa Cruz, CA 95064

USA

danielt2cse. ucsc.edu

Abstract

Our research is concerned with compiler-independent,

tag-free garbage collection for the C++ programming

language. We have previously presented a copying col-

lector based on root registration. This paper presents

a mark-and-sweep garbage collector that ameliorates

short comings of the previous collector. We describe

the two collectors and discuss why the new one is an

improvement over the old one. We have tested this

collector and a conservative collector in a VLSI CAD

application, and this paper discusses the differences.

Currently this prototype of the collector imposes too

much overhead on our application. We intend to solve

that problem, and then use the techniques described

in this paper to implement a generational Mark-and-

Sweep collector for C++.

1 Introduction

C++ is a modern, object-oriented imperative pro-

gramming language that has been steadily gaining in

use since the mid- 1980s [Str91]. C++ supports mul-

tiple inheritance. It is primarily statically typed, but

a restricted form of dynamic typing allows data struc-

tures and functions to be polymorphic within an in-

heritance hierarchy. C++ has parameterized types

(called templates) and exception handling.

Programming in C++ is no simple task. The com-

plexity of its semantics has been unfavorably com-

pared to that of Ada. The programming task is further

complicated by the lack of automatic storage recla-

mation, or garbage collection (G C). The programmer

must pay attention to reclaiming objects, while at the

same time avoiding dangling references.

Permission to copy without fee all or part of thk material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

INRIA Project SOR

F-78153 Rocquencourt Cedex

France

edelson Qlsor.inria.fr

The absence of GC from C++ results from various

design goals of C++-. A basic principle of C++ is

localized cost (pay for what you use, when you use it).

The inclusion of the feature in the language must not

impact the efficiency of programs that do not use the

feature. Many garbage collectors lack this property,

particularly when viewed at the level of the module,

rat her than the program.

There is already a moderately large body of existing

C++ code. A collector that is object-code compati-

ble with existing code, and that can be distributed in

library form, will be most useful. In this respect we

seek loose coupling between the collector and compiler

[Det90].

Garbage collection is an integral component of lan-

guages such as CommonLisp [Ste84], ML [Wik87],

Smalltalk-80 [GR83], and Self [CUL89]. It is also

present in other object-oriented imperative languages

such as Eiffel [Mey88] and Modula-3 [CDG+ 88]. Var-

ious garbage collectors have been proposed or can be

used with C++ [EP9 l, Bar89,BDS91,Ken91, Det90]. A

primary problem that all these collectors solve is lo-

cating pointers (roots) on the stack and in global data.

We have previously presented a copying collector for

C++ [EP91]. In this paper we present a new mark-

and-sweep collector and explain why it remedies sev-

eral short comings of our previous work. The new col-

lector is intended to become a general, useful option

for those C++ programs that can benefit from GC.

The rest of this paper is organized as follows: Sec-

tion 2 gives an overview of the new mark-and-sweep

collector. Section 3 briefly presents the previous col-

lector, explains its problems, and shows how the new

collector solves them. Section 4 compares the fea-

tures and efficiency of the mark-and-sweep collector

to a conservative collector. Section 5 examines related

work, and section 6 concludes the paper.

@ 1992 ACM 089791+53-8/92/0001/0051 $1.50

51

http://crossmark.crossref.org/dialog/?doi=10.1145%2F143165.143178&domain=pdf&date_stamp=1992-02-01

z A Mark-and-Sweep Collector

We have implemented a mark-and-sweep garbage col-

lector for C++. It is currently being tested in a

VLSI CAD application that performs logic minimiza-

tion and optimization. The application makes exten-

sive use of dynamic memory, requiring graph data

structures that are mutated over time.

The collector itself consists of a memory alloca-

tor, parameterized type definitions, and parameterized

functions. It is implemented in a library outside of the

compiler.

2.1 Terminology

A pointer that the application manipulates is called

a root. This includes pointers in global data, on the

run-time stack, and in registers. It does not include

pointers contained within objects; those are referred

to as internal pointers.

Any object that is reachable from some root by

following a sequence of references is live. An allo-

cated object that is not live is garbage. The job of

the garbage collector is to locate and deallocate every

garbage object.

A collector for a statically typed language is called

type- accurate if every value that the collector inter-

prets as a pointer is statically typed to be a pointer.

The opposite of type-accurate is conservative [BW88].

Conservative collectors assume that any value that

might be a pointer actually is a pointer. Partially con-

servative collectors such as [Bar89] and [Det90] are

conservative in certain regions of memory and type-

accurate in others. This is described in section 5. The

collector described in this paper is type-accurate.

Later in this paper we use the term virtual ~unc-

tion. In C++ a virtual function is a function that is

dynamically bound. Our garbage collector accesses

objects through virtual functions in order to support

polymorphic data structures.

2.2 Indirection Tables

In order to collect garbage, the collector must be able

to locate all the roots. There are several ways of ac-

complishing this:

Conservative scanning: Conservative garbage col-

lectors examine every word on the stack, in global

data, and in the registers. Any word that might

be a pointer is interpreted as a pointer. This tech-

nique is used to provide GC in languages such

as C and C++ in which minimal run-time type

information is available. Conservative collection

generally precludes copying collection because up-

dating an integer that was interpreted aa a pointer

would be incorrect.

Tags: Collectors based on tags examine every word on

the stack, in global data, and in the registers. Ev-

ery word has a tag that indicates whether or not

it is a pointer. Arithmetic efficiency is reduced

for tagged integers; this violates the principle of

localized cost. This solution is generally seen as

undesirable for languages such as C and C++.

Stack-frame decoding: Garbage collectors based

on stack-frame decoding require that the com-

piler place map information in each stack frame.

This map indicates what pointers are present as

local variables or temporaries in that function in-

vocation. The collector “unwinds” the stack, and

interprets the map information that it finds in

every activation record. Using this information,

it marks the objects reachable from the roots

present in that activation record. This solution

permits source-level compatibility with existing

code: it generally requires recompilation of the

libraries.

Root registration: Collectors based on root regis-

tration record the addresses of the roots in aux-

iliary data structures. Collectors based on this

technique have the potential for object-level com-

patibility for existing code. However, there are

disadvantages with root registration for copying

collection in C++ that are discussed later in this

paper.

Root indirection: Collectors based on root indirec-

tion permit the application to manipulate only in-

direct pointers. Each indirect pointer references a

direct pointer that is located in a root table. Dur-

ing garbage collection, the collector just needs to

scan all of the root tables in order to locate the

roots. This method, too, has the potential for

object-level compatibility y between code that uses

garbage collection and code that does not. Its

disadvantages include the level of indirection and

the cost of maintaining the tables.

The collector presented in this paper is based on

root indirection. Each root table is an array of cells.

A cell currently containing a direct pointer is called

active; a cell that is free is called inactive. The inac-

tive cells are linked into a linked-list. When a cell is

required one is taken from this free list. When no free

cell is available, a new root table is allocated. The root

tables are linked into a linked list, Figure 1 illustrates

a single table. Figure 2 illustrates the list of tables.

2.3 Marking and Internal Pointers

During the mark phase of a garbage collection, the

collector must traverse all internal pointers and mark

52

Dynamic Objects

Root Table
—

Reserved ‘-”*

Free cells - Z>

1’
\

/
t o

Key:

+ A direct pointer

. -> Link in list of free cells

o Dynamic object

Figure 1: An root table contains direct pointers and

free cells. The free cells are linked into a free list. The

first cell of each table is reserved for the list of tables.

their referents. There are a number of ways that in-

ternal pointers can be identified. Bartlett’s collector

requires that the internal pointers be located at the

beginning of the object, and that a count of the point-

ers be made available to the collector when the object

is allocated [Bar89, Det90]. Detlefs’ collector stores

map information in an allocator header located im-

mediately before the beginning of the object; the col-

lector interprets this information to locate the inter-

nal pointers. Boehm and Weiser’s collector scans the

entire object conservatively: the size of the object is

available in the allocator header preceding the object

[BW88].

Our collector associates a virtual mark function with

ever y collected type. The mark function is coded or

generated specifically for the type and can locate the

internal pointers. The collector uses static type in-

formation to invoke the mark function on each root-

referenced object. The mark function sets the mark

bits of an objects and its descendants. Currently the

mark functions must be hand-coded. A future im-

plementation of the collector will take the form of a

pre-compiler that will generate them automatically.

2.4 The Allocator

Our memory allocator is derived from Lea’s libg++

allo cat or [Lea9 1]. There are lists of blocks whose sizes

are powers of two as well as intermediate sizes. ‘Io

satisfy an allocation request the smallest block size

Dynamic Objects

“s’y~ ~

i’ I

Ke!y:

‘- A direct pointer

---~ Link in list of tables

Figure 2: The root ta,bles are themselves linked into a

list. The first word of each table contains its link.

that is large enough is used. If no block of the desired

size is available, a larger block is broken up, just as in

the buddy system [Knu73]. We have modified Lea’s

allocator to support lmark bits and sweeping.

The allocator maintains a bitmap with mark bits

for all the objects that it can allocate. The mark bits

are stored contiguously to improve garbage collection

locality.

These functions have been added to the allocator to

support collection:

mark(p) marks the object referenced by p and re-

turns the previous value of its mark bit.

marked(p) returns the value of p’s mark bit.

sweepo iterates over all the objects, deallocating ev-

ery allocated, unmarked object—all mark bits

are cleared.

2.5 Marking and Sweeping

Marking the live objects is accomplished in the follow-

ing way: the collector examines every cell in the indi-

rection tables. The status of a cell, active or inactive,
is determined by the cell’s value. For every active cell,

the sub-data structure that it references is marked.

First the cell’s referent is marked. Then, recursively,

the referent’s descendants are marked. At this point

53

the algorithm is recursive for convenience only. Even-

tually we intend to replace it with a constant-space

algorithm such as Detlefs’ [Det90].

Sweeping isaccomplished with acall to the alloca-

tor’s sweepo routine. That causes every object that is

both allocated and unmarked to be deallocated. In the

process, all of the mark bits are cleared. In addition,

as described in j2.7, a function call is performed on

each object to jinalize the object immediately before

it is deallocated.

2.6 The C++ Interface

The main interface problem is guaranteeing the in-

tegrity of the pointer tables. If the application misuses

a direct pointer, the next garbage collection might in-

advertently collect live data. This is solved using class

objects that behave like pointers, and that encapsu-

late the actual direct pointers. This has been referred

to as a smart pointer scheme [Ede90,Str87]. A smart

pointer can be dereferenced or compared the same way

a standard pointer can. When a smart pointer is cre-

ated it allocates a direct pointer cell from an indi-

rection table. The smart pointer manipulated by the

application is a pointer to an indirection table cell.

When the smart pointer is destroyed it returns its cell

to the free cell list. The creation and destruction se-

mantics are implemented with C++ constructors and

destructors. The smart pointers are implemented as

parameterized types derived from the types of objects

they reference. They overload the C++ indirection

operators * and -> in order to simulate direct point-

ers.

One of the most significant advances of C++ over

C is support for polymorphic type hierarchies. A

garbage collector for C++ must operate with poly-

morphic data structures to be most useful. This col-

lector supports polymorphic type hierarchies by using

one root type for every type in the hierarchy. The root

types support implicit type conversions corresponding

to the valid conversions of the raw pointer types.

Access to the standard memory allocator is still per-

mitted for objects such as strings and vectors. The

C++ free-store operators (new and delete) are over-

loaded for collected classes to allocate objects from

the collector’s memory allocator. Figure 2.6 shows a

sample class declaration of a collected class,

This system does not attempt to completely prevent

the programmer from acquiring raw (direct) point-

ers. Indeed, as shall be seen, the careful use of direct

pointers represents a useful (if dangerous) optimiza-

tion. This also provides weak pointersl. However, the

programmer must take care never to have an object

1A weak pointer is a reference that does not cause an object
to be retained during garbage collection. The object will be
retained only if it is also referenced by a non-weak pointer.

class anything {

. . .

public:

virtual void mark () ;

virtual void destroyo ;

void * operator new(size_t) ;

void operator delete (voi.d * p) ;

static void gco ;

3;

whose

would

2.7

Figure 3: A sample collected class.

only references are direct pointers; the object

be erroneously garbage collected.

Finalization

C++ supports initialization and destruction of objects

though constructors and destructors. A constructor

function initializes an object. A destructor is invoked

when an object becomes inaccessible to free resources

associated with the object. Destructors are essentially

synchronous: they execute when the object becomes

inaccessible. In the case of local variables, for example,

this is when the variable leaves scope.

The use of constructors is perfectly consistent with

garbage collection. Destructors, however, present a

problem. Precisely when (garbage collected) objects

become inaccessible is generally unknown. This ren-

ders synchronous destruction impossible [Str9 1]. In-

stead, we implement finalization [Lam83].

Finalization is essentially the equivalent of an asyn-

chronous destructor. When an object is garbage col-

lected, immediately before its storage is deallocated,

the object is finalized. Thus, finalization is used to

“clean-up” after an object. For instance, if an object

has hardware resources associated with it, finalization

is used to free those resources when the object is col-

lected. In our system the destroy member function

is called on every object when it is reclaimed by the

collector. In order to avoid this overhead, destroy may

be defined as a non-virtual (meaning statically bound),

null inline function.

3 The Previous Copying Col-

lector

The collector that we describe in [EP91] is a copying

collector for C++ that is based on root registration.

It implements the basic copy collector algorithm as

described in [FY69].

We have tested several memory allocators with the

copy collector. One memory allocator uses an ex-

plicit bounds-check to determine when it is out of

54

storage. Another allocator uses virtual memory write-

protection to avoid the explicit test [App87]. The re-

search that we were duplicating used a programming

language with comparatively simple initialization se-

mantics in which every word of a new object is ini-

tialized. In C++, on the other hand, the semantics of

initialization are almost entirely controlled by the ap-

plication programmer. In C++ an allocator that uses

virtual memory protection to avoid an explicit bounds-

check is not worth the added complexity [Ede90].

Since this is a copy collector it moves objects and

must be able to update roots. This collector tracks the

roots with two data structures. Only one of the two

is necessary; the other is present as an optimization.

The two data structures are a doubly-linked list of

root pointers and a stack of root pointers. Every time

a root is created it inserts its address into one of the

two lists. Roots that are allocated and destroyed in

a LIFO pattern, such as variables that are local to a

function, can be tracked with a stack. These roots

push their addresses onto the root stack. Other roots,

such as pointers cent ained within other dynamically

allocated objects, can’t be tracked with a stack. They

insert their addresses into the doubly-linked list. Dur-

ing a collection, every root’s address is in one of the

two lists. Therefore, the collector can: (1) find the

roots, (2) copy all the reachable objects, and (3) up-

date the roots.

Stackable roots (roots whose addresses are tracked

with the stack) are about four times as expensive to

create and destroy as plain pointers. Roots that are

tracked with a doubly-linked list (termed doubly-linked

roots) are about four times as expensive as stackable

roots. Doubly-linked roots can serve in place of stack-

able roots, but their inefficiency makes that unattrac-

tive.

3.1 Problems with the Copy Collector

It turns out that stackable roots are very rarely us-

able. For example, global pointers, function param-

et ers, and pointer-typed expression temporaries all

must be doubly-linked roots. This is because the lan-

guage does not require LIFO construction and destruc-

tion for those objects. For example, if a global variable

and a local variable were both stackable roots, the lo-

cal variable could conceivably be constructed before

the global. This can easily occur if the variables are

in separately-compiled files. This can lead to the root-

stack becoming corrupted. The uselessness of stack-

able roots brings the efficiency of the copy collector

into question.

Another problem involves member functions. In

C++, whenever a method (member function) is in-

voked on an object, a pointer to the object is passed

to the method on the stack. This pointer is called

the this pointer. Thrcmgh the this pointer the method

can access the object’s inst ante data. These point-

ers are in fact roots; as such they must be updated

during a collection. This can be accomplished if the

addresses of the this pointers are stored in the root

doubly-linked list. However, the C++ language defi-

nition [X3 J91,Str91] forbids taking the address of this

pointers. Thus, the collector can only be implemented

in a customized compiler; it cannot be implemented

and distributed in a library, aa is our goal.

The final problem with the copy collector involves

the use of two kinds of roots: stackable and doubly-

linked. A stackable root requires two words, one for

the pointer and one for the link. A doubly-linked root

requires three words, one for the pointer and two for

links. Suppose an object contains a root as instance

data. What kind of root is required? The answer

depends on how the object is allocated. For safety’s

sake doubly-linked roots must be used.

It turns out that, with an implementation in a li-

brary, stackable roots can only be used for variables

that are local to a function.

3.2 Comparing the Mark-and-Sweep

and Copy Collectors

The main similarity between the copy collector and

the mark-and-sweep collector is their shared C++ in-

terface. In both cases, the dynamic memory operators

new and delete are overloaded so that garbage collected

objects are allocated from the collected heap. Smart

pointers are used to enable the collector to locate the

roots.

In the case of the copy collector the smart pointers

are direct pointers that register their addresses in aux-

iliary lists. Both singly-linked and doubly-linked lists

are required.

In the mark-and-sweep collector the smart point-

ers are indirect through pointer tables. Allocating a

smart pointer, unless a new table must be allocated,

requires only a singly-linked list operation. There are

no doubly-linked lists.

The copy collector requires that this pointers on the

stack be updated during each collection. This is illegal

if the collector is distributed in a library. Using mark-

and-sweep collection the this pointers need only to be

examined, not updated. This removes the need for

taking the addresses of this pointers.

4 Comparison with a Conser-

vative Collector

We have compared our collector to the conservative

collector described in [BW88] in a VLSI CAD appli-

cation. The application generates and manipulates

55

graphs of dynamically allocated If-Then-Else gates,

called ites. Given a logical description of a graph, the

application creates and optimizes it to minimize the

number of gates that it cent ains.

The ites exist simultaneously in two data structures:

a network and a hash table. The network comprises

the collected dynamic data structure. The hash table

contains a pointer to every ite. However, the hash

table entries must be weak pointers. That is, if the

only reference to an ite is in the hash table, then the

ite is garbage and should be collected. Furthermore,

it is desirable to remove the hash table entry when an

ite is collected.

4.1 Features

The Mark-and-Sweep collector provides all the fea-

tures needed by the application. The roots manipu-

lated in the application are smart pointers. The hash

table contains raw pointers. This prevents hash table

entries from retaining ites during collection. Final-

ization is used to remove the hash table entries when

objects are collected.

The conservative collector does not directly support

weak pointers. However, it does not scan memory

managed by other dynamic memory allocators, includ-

ing the standard C ma IIoc allocator. Therefore, point-

ers that are dynamically allocated by other memory

allocators allocator are weak pointers. We allocate

the hash table pointers using malloc to make them

weak pointers. It is desirable to remove the hash ta-

ble entries when ites are collected. The conservative

collector does not support finalization. The lack of fi-

nalization means that garbage collection results in an

invalid hash table. Therefore, for these tests, we ran

the application for some time with no garbage col-

lection, then garbage collected once and exited the

application. This methodology was used for both col-

lectors,

4.2 Efficiency

Our experiments were conducted on a Sun Sparcsta-

tion IPC (4/40). We ran the application on fixed input

data under each of the two collectors. We measured

the CPU time spent running the application and the

time spent garbage collecting.

[M-and-S] Conservative

mSmall Input

Application Time 297s 178s

Mark Time <0.01s 2.12s

Sweep Time 8.13s 0.15s

Data Reclaimed 4MB 146KB

Unfortunately, random values in global data kept

the conservative collector from reclaiming the data

structure. Therefore, we cannot compare the efficiency

of the garbage collection process itself. This should be

viewed as an unusual case; other results using conser-

vative collection have shown much better reclamation

percentages [BDS91].

It is clear from the data that the indirection and

overhead of maintaining the root tables in this ver-

sion of the mark-and-sweep collector imposes a lot of

overhead on the application. Indirect pointers are only

required when a new unique reference may be created.

Determining this fact is harder than indiscriminate

use, but still easier than manual reclamation. These

results reflect considerable effort to optimize the ap-

plication by often using direct pointers when possible.

We believe that by further limiting the use of indirect

pointers we can greatly reduce even this overhead.

The benefits of this type-accurate collector, finaliza-

tion, weak-pointers, and potentially generations, in-

dicate that it is worthwhile to try and improve the

efficiency of the collector.

5 Related Work

There is a significant body of related work, in the gen-

eral field of GC, in C++ software tools, and specifi-

cally in collectors for C++. Several of these collectors

have been made publically available, as ours will be in

the near future.

Boehm et al. have conducted research in conserva-

tive garbage collectors [BDS91,BW88]. Their garbage

collectors work without any compiler support in lan-

guages like C and C++. These collectors are sequen-

tial and parallel non-generational mark-and-sweep col-

lectors. Russo has adapted these techniques for use

in Choices, a C++ object-oriented operating system

toolkit [Rus91,RMC90]. Since they are fully conser-

vative, during a collection they must examine every

word of the stack, of global data, and of every marked

object.

Bartlett has written

a generational garbage

the Mostly Copying Collector,

collector for Scheme and C++

56

that uses both conservative and copying techniques

[Bar89,Bar88]. This collector divides the heap into

logical pages, each of which has a space-identifier.

During a collection an object can be promoted from

from-space toto-space inone of two ways: it can be

physically copied to a to-space page, or the space-

identifier of its present page can be advanced.

Bartlett’s collector conservatively scans the stack

and global data seeking pointers. Any word the collec-

tor interprets as a pointer (a root) may in fact be either

a pointer or some other quantify. The root-referenced

objects must not be moved because the roots can not

be modified. Those objects are promoted by having

the space identifiers of their pages advanced. Then the

root-referenced objects are (type-accurately) scanned;

the objects they reference are compactly copied to the

new space. This collect or works only with homomor-

phic data structures, not polymorphic ones.

Detlefs generalizes Bartlett’s collector in two ways

[Det90]. Bartlett’s collector contains two restrictions:

1. Internal pointers must be located at the beginning

of objects, and

2. heap-allocated objects may not contain “unsure”

pointers.z

Detlefs relaxes these by maintaining type-specific map

information in a header in front of every object. Dur-

ing a collection the collector interprets the map infor-

mation to locate internal pointers. The header can

represent information about both sure pointers and

unsure pointers. The collector treats sure pointers ac-

curately and unsure point ers conservatively. Detlefs’

collector is concurrent and is implemented in the

cfront C++ compiler.

Kennedy describes a C++ type hierarchy called

OATH that uses garbage collection [Ken91]. It’s col-

lector algorithm uses a combination of reference count-

ing and mark-and-sweep. In OATH objects are ac-

cessed exclusively through references called accessors.

An accessor implements reference semantics and ref-

erence counting on its referent. OATH uses a three-

phase mark-and-sweep algorithm. First, OATH scans

the objects to eliminate from the reference counts all

references between objects. After that, all objects

with non-zero reference counts are root-referenced.

The root-referenced objects serve as the root set for a

standard mark-and-sweep garbage collection.

Goldberg describes tag-free garbage collection for

polymorphic statically-typed languages using compile-

time information [G0191] building on work by Appel

[App89]. Goldberg’s compiler emits functions that

know how to collect garbage at various points in the

program. Upon a collection, the collector follows the
—

2An unsure pointer is a quantity that is statically typed to
be either a pointer or a non-pointer. For example, in “union {
int i; node * p; }x;” x is an unsure pointer.

chain of return addresses up the run-time stack. As

each stack frame is visited an associated garbage col-

lection function is invoked. A function may have more

than one garbage ccdlection routine because different

variables are live at different points in the function.

The collectors by IBoehm, Bartlett and Kennedy are

implemented in libraries. Goldberg’s and Detlefs’ col-

lectors must be implemented in a compiler.

6 Conclusions

Garbage collection for C++ is a difficult and impor-
tant problem. The language philosophy does not per-

mit traditional techniques such as tags. There is a

wide variety of alternatives that have been proposed or

are possible. These include Bartlett’s Mostly Copying

collect or, Boehm’s conservative collectors, Kennedy’s

reference counting collector, our copying and mark-

and-sweep collectors, and many others. There is

not yet a generational collector that supports poly-

morphism, nor has any particular collector gained

widespread use.

In this paper we have presented the techniques that

support our mark-and-sweep collector for C++. This
has been implemented in a library and we are cur-

rently testing it in a VLSI CAD application. Our short

term goal is to improve its efficiency. Our long-term

goals include parallelizing it and supporting genera-

tions. This promises to yield a C+-t- garbage collector
that is consistent with the language and useful in a

wide variety of applications.

7 Acknowledgements

I would like to express my gratitude to Anne Urban

for her detailed comments after reading a draft of this

paper. I would like to thank Dirk Coldewey for very

timely international logistical support. I would like to

thank Soeren Soe for help with the ITEM application.

References

[App87]

[App89]

[Ass91]

Andrew W. Appel. Garbage collection

can be faster than stack allocation. ln~or-

mation Processing Letters, 25(4):275–279,

June 1987.

Andrew W. Appel. Runtime tags aren’t

necessary. In Lisp and Symbolic Computa-

tion, volume 2, pages 153-162, 1989.

Association for Computing Machinery.

Proceedings of the SIGPLAN ’91 Confer-

ence ori! Programming Language Design

and Implementation. ACM Press, June

1991.

57

[Bar88] Joel F. Bartlett. Compacting garbage col-

lection with ambiguous roots. Technical

Report 88/2, Digital Equipment Corpora-

tion, Western Research Laboratory, Palo

Alto, California, February 1988.

[Bar89] Joel F. Bartlett. Mostly copying garbage

collection picks up generations and C++.

Technical Report TN-12, DEC WRL, Oc-

tober 1989.

[BDS91] Hans-J. Boehm, Alan J. Demers, and Scott

Shenker. Mostly parallel garbage collec-

tion. In Proceedings of the SIGPLAN ’91

Conference on Programming Language De-

sign and Implementation [Ass91], pages

157-164.

[BW88] Hans-Juergen Boehm and Mark Weiser.

Garbage collection in an uncooperative en-

vironment. Software-Practice and Expe-

rience, 18(9):807–820, September 1988.

[CDG+88] L. Cardelli, J. Donahue, L. Glassman,

M. Jordan, B. Kalsow, and G. Nelson.

Modula-3 report. Technical report, Digi-

tal Systems Research Center and Olivetti

Research Center, Palo Alto, CA, 1988.

[CUL89] Craig Chambers, David Ungar, and El-

gin Lee. An efficient implementation of

SELF a dynamically-typed object-oriented

language based on prototypes. In OOP-

SLA ’89 Conference Proceedings, pages

49-70. Association for Computing Machin-

ery, ACM Press, October 1989.

[Det90] David Detlefs. Concurrent garbage collec-

tion for C++. Technical Report CMU-CS-

90-119, Carnegie Mellon, 1990.

[Ede90] Daniel Edelson. Dynamic storage reclama-

tion in C++. Technical Report UCSC-

CRL-90-19, University of California at

Santa Cruz, June 1990. M.S. Thesis.

[EP91] Daniel Edelson and Ira Pohl. A copying

collector for C++. In Usenix C++ Con-

ference Proceedings [Use91], pages 85-102.

[FY69] R. Fenichel and J. Yochelson. A LISP

garbage-collector for virtual-memory sys-

tems. Communications of the ACM,
12(11):611-612, November 1969.

[G0191] Benjamin Goldberg. Tag-free garbage

collection for strongly typed program-

ming languages. In Proceedings of the

SIGPLAN ’91 Conference on Program-

ming Language Design and Implementa-

tion [Ass91], pages 165–176.

[GR83]

[Ken91]

[Knu73]

[Lam83]

[Lea91]

[Mey88]

[RMC90]

[Rus91]

[Ste84]

[Str87]

[Str91]

[Use91)

[Wik87]

[X3J91]

Adele Goldberg and David Robson.

Smalltalk-80: The Language and Its Im-

plementation. Addison-Wesley Publishing

Company, Reading, MA, 1983.

Brian Kennedy. The features of the object-

oriented abstract type hierarchy (OATH).

In Usenix C++ Conference Proceedings
[Use91], pages 41-50.

Donald E. Knuth. The Art of Computer

Programmingj volume 1. Addison, Wesley,

Reading, Mass., 1973. Second ed.

Butler W. Lampson. A description of the

Cedar language: A Cedar language refer-

ence manual. Technical Report CLS-83-

15, Xerox PARC, 1983.

Doug Lea. A memory allocator for libg++,

1991. private communication.

Bertrand Meyer. Object-Oriented Soflware

Construction. Prentice Hall, 1988.

Vincent Russo, Peter W. Madany, and

Roy H. Campbell. C++ and operat-

ing systems performance: A case study.

In Usenix C++ Conference Proceedings,
pages 103-114, San Francisco, CA, April

1990. Usenix Association.

Vincent Russo, 1991. Using the parallel

Boehm/Weiser/Demers collector in an op-

erating system: private communication.

Guy L. Jr. Steele. Common Lisp: The

Language. Digital Press, Burlington, MA,

1984.

Bjarne Stroustrup. The evolution of C++

1985 to 1987. In Useniz C++ Workshop
Proceedings, pages 1-22, Santa Fe, NM,

November 1987. Usenix Association.

Bjarne Stroustrup. The C++ Reference

Manua!. Addison-Wesley, 2nd edition,

1991.

Usenix Association. Useniz C++ Confer-

ence Proceedings, Washington, DC, April

1991.

Ake Wikstrom. Functional programming

using standard ML. Prentice Hall, 1987.

ANSI Committee X3J 16. Draft standard

for programming language C++, May

1991.

58

