OPTIMALLY PROFILING AND TRACING PROGRAMS
by

Thomas Ball and James R. Larus

Computer Sciences Technical Report #1031

July 1991

Optimally Profiling and Tracing Programs

THOMAS BALL JAMES R.LARUS
tom@cs.wisc.edu larus@cs.wisc.edu

Computer Sciences Department
University of Wisconsin — Madison
1210 W. Dayton St.
Madison, WI 53706 USA

Technical Report #1031
Revision 1

September 6, 1991

An abridged version of this paper will appear in the 19th Symposium on Principles of Programming
Languages (January 19-22, 1992).

Copyright © 1991 by Thomas Ball and James R. Larus

ABSTRACT

This paper presents two algorithms for inserting monitoring code to profile and trace programs. These
algorithms greatly reduce the cost of measuring programs. Profiling, which counts the number of times
each basic block in a program executes, is widely used to measure instruction set utilization of computers,
identify program bottlenecks, and estimate program execution times for code optimization. Instruction
traces are the basis for trace-driven simulation and analysis and are used also in trace-driven debugging.

The profiling algorithm instruments a program for profiling by choosing a placement of counters that is
optimized—and frequently optimal—with respect to the expected or measured execution frequency of each
basic block and branch in the program. The tracing algorithm instruments a program to obtain a subse-
quence of the basic block trace—whose length is optimized with respect to the program’s execution—from
which the entire trace can be efficiently regenerated.

Both algorithms have been implemented and produce a substantial improvement over previous
approaches, as the performance figures in this paper show. The profiling algorithm reduces the number of
counters by a factor of two and the number of counter increments by a factor of three. The tracing algo-
rithm reduces the file size and overhead of an already highly optimized tracing system by 20-40%.

CONTENTS

INTRODUCTION
BACKGROUND
PROGRAM PROFILING
3.1 The Edge Frequency Problem
3.2 Comparing the Three Frequency Problems
3.3 Optimality Revisited
PROGRAM TRACING
4.1 Single-Procedure Tracing
4.2 Multi-Procedure Tracing
4.3 Bit Twiddling
PERFORMANCE
5.1 Profiling Performance
5.2 Tracing Performance
RELATED WORK
6.1 The Knuth/Stevenson Algorithm

6.2 The Insertion of Software Probes in Well-Delimited Programs

6.3 Profiling Using Control Dependence

6.4 Optimal Placement of Traversal Markers
SUMMARY AND FUTURE WORK
APPENDIX - A WEIGHTING ALGORITHM

= O 0 W W N =

16
19
20
20
22
23
23

23
24
24
25

Optimally Profiling and Tracing Programs

THOMAS BALL JAMESR.LARUS
tom@cs.wisc.edu larus@cs.wisc.edu

Computer Sciences Department
University of Wisconsin — Madison
1210 W. Dayton St.
Madison, WI 53706 USA

1. INTRODUCTION

This paper presents two algorithms for inserting monitoring code to profile and trace programs. These
algorithms greatly reduce the cost of measuring programs. Profiling, which counts the number of times
each basic block in a program executes, is widely used to measure instruction set utilization of computers,
identify program bottlenecks, and estimate program execution times for code optimiza-
tion [2,4,6,11,13,14,17]. Instruction traces are the basis for trace-driven simulation and analysis and are
used also in trace-driven debugging [9, 12, 18].

The product of this work is an exact basic block profile or trace—as opposed to the Unix prof command,
which samples the program counter during program execution and does not produce exact measurements.
This paper shows how to significantly reduce the cost of profiling and tracing with:

(1) an algorithm to instrument a program for profiling that chooses a placement of counters that is
optimized—and frequently optimal—with respect to the expected or measured execution frequency
of each basic block and branch in the program;

(2) an algorithm to instrument a program to obtain a subsequence of the basic block trace—whose length
is optimized with respect to the program’s execution—from which the entire trace can be efficiently
regenerated.

Both algorithms have been implemented and substantially improve performance over previous
approaches. The profiling algorithm reduces the number of counters by a factor of two and the number of
counter increments by a factor of three. The tracing algorithm reduces the file size and overhead of an
already highly optimized tracing system by 20-40%.

Each of these algorithms consists of two parts. The first chooses points in a program at which to insert
profiling or tracing code. The second uses the results from the program’s execution to derive a complete
profile or trace. Surprisingly, the algorithms for instrumenting a program for profiling and tracing are
identical and based on the well-known maximum spanning tree problem applied to the program’s control-
flow graph [20].

In the control-flow graph representation of a program, where a vertex represents a basic block of instruc-
tions and an edge represents passage of control from one block to another, instrumentation code can be

This work was supported in part by the National Science Foundation under grant CCR-8958530 and by the Wisconsin Alumni Research Foundation.

An abridged version of this paper will appear in the 19th Symposium on Principles of Programming Languages (January 19-22, 1992).

placed on vertices, edges, or some combination of the two. This work also shows that for both profiling
and tracing, it is always better to place instrumentation code solely on edges.

The algorithms optimize placement of profiling and tracing code with respect to a weighting that assigns
a nonnegative value to each edge in the control-flow graph. The cost of profiling or tracing a set of edges
is proportional to the sum of the weights of the edges. The values in a weighting must satisfy Kirchoff’s
law of conservation of flow: the flow into a vertex is equal to the flow out of a vertex. A weighting cap-
tures the idea that every time control flows into a basic block, control also flows out of the block, and vice
versa. Weightings can be obtained either by empirical measurement (i.e., profiling) or a heuristic estima-
tion. Our results show that a simple heuristic for estimating edge frequencies is accurate in predicting
areas of low execution frequency at which to place instrumentation code. The placement algorithms are
insensitive to the absolute values in the weighting. Instead, they rely on the order of edges induced by the
weighting,

Our algorithms choose edges for instrumentation based on the control-flow of a program and a weight-
ing. They are applicable to any control-flow graph—the graphs need not be reducible or have other proper-
ties that would preclude the analysis of some programs. The algorithms do not make use of other semantic
information that could be derived from the program iext (i.e., via constant propagation). While there exist
unstructured control-flow graphs for which the algorithms do not find an optimal placement, the algorithms
optimize placements for a large class of well-structured control-flow graphs.

This paper has seven sections. The next section provides background material on control-flow graphs,
weightings, and spanning trees. Section 3 shows how to efficiently profile programs and Section 4
describes how to efficiently trace programs. Section 5 presents results on the performance of the profiling
and tracing algorithms. Section 6 reviews related work and Section 7 summarizes the paper and describes
future work. The Appendix describes an algorithm for computing a weighting.

2. BACKGROUND

A control-flow graph (CFG) is a rooted directed graph G = (V, E) with special vertex EXIT (distinct from
the root vertex) that corresponds to a program in the following way: each vertex in V represents a basic
block of instructions and each edge in E represents the transfer of control from one basic block to another.
The root vertex represents the first basic block to execute and EXIT executes last. There is a directed path
from the root to every vertex and a directed path from every vertex to EXIT. Finally, for the profiling algo-
rithm, it is convenient to insert an edge EXIT —root to make the CFG strongly connected. This edge does
not correspond to an actual flow of control and is not instrumented.

A vertex p is a predicate if there are distinct vertices a and b such that p—a and p—b.

All weightings W of a CFG G assign a nonnegative value to every edge subject to the constraint that for
each vertex v, the sum of the weights of edges with target v (the incoming edges of v) is equal to the sum of
the weights of edges with source v (the outgoing edges of v). If vertex v has incoming edges with sources
¥1i,....Yn and outgoing edges with targets z4,...,z,, then v contributes the flow equation

i=m j=n

izjlW(y,-vw) = j}_:IW(vazj)
where W (x—y) is the weight of edge x—y. A weighting W assigns a value to every edge such that all
flow equations (}V | of them) are satisfied. The weight of a vertex is simply the sum of the weights of its

program p
105
while P do 05
if Q then Q
A 5.25 25
else 1
" Lal |B]
if R then break fi 5.25 525 /10
C R c
od 10
‘ Tos
o EXIT

Figure 1. A program, its CFG with a weighting, and a maximum spanning tree. The edge EXIT P is needed so that
the flow equations for the root vertex (P) and EXIT are consistent. This edge does not correspond to an actual flow of
control and is not instrumented.

incoming (or outgoing) edges. If W is a weighting of CFG G, then for a set of edges/vertices pl from CFG
G, cost(G, pl, W) is the sum of the weights on the edges/vertices in pl.

A spanning tree of a directed graph G is a subgraph G’ =(V’, E"), where V' = V and E’ ¢ E, such that
for every pair of vertices (v,w) in G’ there is a unique path (not necessarily directed) in G’ that links v to w.
A maximum spanning tree G’ of graph G with weighting W is a spanning tree such that cost(G, E', W) is
maximized. The maximum spanning tree for a graph can be computed efficiently by a variety of algo-
rithms [20].

Figure 1 illustrates these definitions. The first graph is the CFG of the program shown—this graph has
been given a weighting as shown by the values accompanying each edge. The second graph is a maximum
spanning tree for the given weighting. Note that any vertex in the spanning tree can serve as a root and that
the direction of the edges in the tree is unimportant. For example, vertices C and EXIT are connected by
the path C—P «EXIT.

An execution EX of a CFG is a directed path that begins with the root vertex and ends with EXIT in
which EXIT appears exactly once (we also refer to an execution as a sequence of vertices from such a
directed path. If the CFG has multiple edges in the same direction between two vertices, collapse them into
one edge and add their weights). The frequency of a vertex v or edge e in an execution EX is the number of
times that v or e appears in EX. If a vertex or edge does not appear in EX, its frequency is zero. However,
for any execution, the frequency of the edge EXIT—root is defined to be 1. The edge frequencies for any
execution of a CFG constitute a weighting of the CFG.

3. PROGRAM PROFILING

In order to determine how many times each basic block in a program executes, the program can be instru-
mented with counting code. The simplest approach places a counter at every basic block (vertex). The
counter increments every time the block executes (pixie and other instrumentation tools use this

method [19]). There are two drawbacks to such an approach: too many counters are used and the total
number of increments during an execution is larger than necessary.

The vertex frequency problem, denoted VF (G, pl), is to determine a placement of counters pl in CFG G,

where pl is a set of vertices and/or edges annotated with counters,! such that the frequency of each vertex
in any execution of G can be deduced solely from the counters’ values and the CFG G. Furthermore, to
reduce the cost of profiling, these counters should be placed in areas of low execution frequency. That is, pl
should solve VF (G, pl) and minimize cost(G, pl, W) for a weighting W.2 Such a pl is referred to as an
optimal solution to VF (G, pl) (with respect to weighting W),

A similar problem is the edge frequency problem, denoted EF (G, pl): to determine a placement of
counters pl such that the frequency of each edge in any execution of G can be deduced solely from the
counters’ values and the CFG G. A solution to the edge frequency problem obviously yields a solution to
the vertex frequency problem by simply summing the frequencies of the incoming or outgoing edges of
each vertex.

To limit the number of permutations of these problems, pl is restricted to be a set of edges (epl) or a set
of vertices (vpl). Section 3.2 shows that mixed placements (edges and vertices) are never better than pure
edge solutions. We study the problems of optimally solving VF (G, epl), VF (G, vpl), and EF (G, epl).
Since there are CFGs for which there are no vpl solutions to EF (G, vpl), it is not considered {15]. This
section presents three results:

@ EF(G, epl) VF(G, vpl)
\\ Z
VF(G, epl)

b) EF(G, epl) = VF(G, epl) = VF(G, vpl)

Figure 2. Case (a) shows the relationship between the costs of the optimal solutions of the three frequerncy problems
for general CFGs. Case (b) shows the relationship when G is restricted to CFGs constructed from while loops, if-then-
else conditionals, and begin-end blocks.

'A counter that appears on an edge v —>w is incremented once every time control flows from vertex v to vertex w.

*We use a weighting as opposed to an arbitrary assignment of values because any execution of a CFG yields edge frequencies that
form a weighting and because the sum of any two weightings is also a weighting. Thus, depending on how it is computed, a weighting
can summarize many different executions of a given CFG. A weighting can be obtained by empirical measurement or a heuristic. The
Appendix describes an algorithm for computing a good heuristic weighting. The absolute values in a weighting are not as important as
the ordering of the vertices and edges induced by these values.

(1) an algorithm to optimally solve EF (G, epl) (Section 3.1);

(2) acomparison of the optimal solutions to VF (G, epl), VF (G, vpl), and EF (G, epl). Case (a) of Fig-
ure 2 summarizes the relationship between these three problems for general CFGs (Section 3.2);

(3) aproof that an optimal solution to EF (G, epl) is also an optimal solution to VF (G, epl) for a large
class of structured CFGs (Section 3.3).

3.1. The Edge Frequency Problem

To solve EF (G, epl) by placing counters on edges, it is clearly sufficient to place a counter on the outgoing
edges of each predicate vertex. However, this placement uses too many counters. From a well-known
result in network programming, it follows that an edge-counter placement epl solves EF (G, epl) iff
(E~epl) contains no cycle (possibly undirected) [7]. Since a spanning tree of a CFG represents a maximum
size subset of edges without a cycle, it follows that epl is a minimum size solution to EF (G, epl) iff E —epl
is a spanning tree of G. Thus, the minimum number of counters necessary to solve EF (G, epl) is
[E|-(1V]-1).

To see how such a placement solves the edge frequency problem, consider a CFG G and an epl such that
E—epl is a spanning tree of G. Let each edge ¢ in epl have an associated counter that is initially set to 0 and
is incremented once each time e executes. If v is a leaf in the spanning tree (pick any vertex as the root),
then all but one of the edges incident to v must be in epl. Since the edge frequencies for an execution are a
weighting, the unmeasured edge’s frequency is uniquely determined by the flow equation for v and the
known frequencies of the other incoming and outgoing edges of v. The remaining edges with unknown
frequency still form a tree, so this process can be repeated until the frequencies of all edges in E —epl are
uniquely determined. If E—epl is not a spanning tree of G (i.e., there is a cycle, possibly undirected, in

-

Execution: PQARC PQBRC PQBR EXIT

(b)

Figure 3. Solving EF (G, epl) using the spanning tree. The dotted edges are in epl and the remaining edges (E —epl)
form a spanning tree of the CFG. The frequency of each edge in the execution is shown and the measured frequencies
are underlined. For the weighting given in Figure 1, the epl in case (a) is not optimal (minimal) but the epl in case (b) is
optimal.

—6—

E-epl), it can be shown that whenever the frequencies of edges in epl are fixed, there is more than one
solution to the system of flow equations.

Case (a) of Figure 3 illustrates this process. The dotted edges in the CFG are the edges in epl. The other
edges are in E—epl and form a spanning tree of the CFG. The edge frequencies are those for the execution
shown. The measured frequencies are underlined. Let vertex P be the root of the spanning tree. Vertex Q
is a leaf in the spanning tree and has flow equation (P —Q = Q —A + Q —B). Since the frequencies for
P —(Q and Q —A are known, we can substitute them into this equation and derive the frequency for Q —B.
Once the frequency for Q —B is known, the frequency for B —R can be derived from the flow equation for
B, and so on.

The propagation algorithm in Figure 4 does a post-order traversal of the spanning tree E—epl to pro-
pagate the frequencies of edges in epl to edges in the spanning tree. The procedure DFS calculates the fre-
quency of a spanning tree edge. Since the calculation is carried out post-order, once the last line in DFS(G,
epl, v, e) is reached, the counts of all edges incident to vertex v except e have been calculated. The flow
equation for v states that the sum of v’s incoming edges is equal to the sum of v’s outgoing edges. One of
these sums includes the count from edge e, which has been initially set to 0. Therefore, the count for e is

global
cnt: array[edge] of integer; /* for each edge e in epl, cntfe] = frequency of e in execution */

procedure propagate_counts(G: CFG; epl: set of edges)
begin

for each e € (E—epl) do cnile] :=0 od

DFS(G, epl, root-vertex(G), NULL)
end

procedure DFS(G: CFG; epl: set of edges; v: vertex; e: edge)
let INW)={(w—-V|w-sveE}] and OQUTW)={(v-ow)|vowe E} in
in_sum =0,
for eache’ € IN(v) do
if (¢" #) and InSpanningTree(e”) then DFS(G, epl, source(e’), €') fi
in_sum = in_sum + cnt[€]
od
out_sum := 0,
foreache” € OUT (v)do
if (¢" # €) and InSpanningTree(e”) then DFS(G, epl, target(¢’), €') fi
out_sum = out_sum + cntle’]
od
if e # NULL then cnt[e] := max(in_sum, out_sum) — min(in_sum, out_sum) fi
ni

Figure 4. An algorithm to determine the frequencies of edges in the spanning tree E—epl given the frequencies of
edges in epl. The algorithm uses a post-order traversal of the spanning tree. The predicate InSpanningTree(e) =
(e € E—epl).

. .

found by subtracting the minimum of the two sums from the maximum.

For the weighting W given in Figure 1, the epl solution in case (a) of Figure 3 has cost(G, epl, W) =
16.75 and cost(G, E —epl, W) = 53.5-16.75 = 36.75. However, as case (b) of Figure 3 shows, there is an
epl solution with cost(G, epl, W) = 11.5. This spanning tree has cost(G, E —epl, W) = 53.5-11.5 =42. For
this example, the epl placement of case (a) is suboptimal for any weighting. This is so because the cost of
edge P —(Q is equal to the cost of (Q —A + Q —B). Moving the counter from P —Q to Q —B incurs the
cost (Q —A + Q —B) - (P—Q + Q —>A), which can never be greater than zero.

It is clear that if epl solves EF (G, epl) and minimizes cost(G, epl, W), then E —epl is a maximum span-
ning tree of G. Any of the well-known maximum spanning tree algorithms described by Tarjan [20] will
produce the maximum spanning tree of G with respect to weighting W. The edges that are not in the span-
ning tree (epl) solve EF (G, epl) and minimize cost(G, epl, W).

Although profiling has been described in terms of a single CFG, the algorithm scales up almost directly
to programs with multiple procedures. The pre-execution spanning tree algorithm and post-execution pro-
pagation of edge frequencies are simply applied to each procedure separately. However, two problems can
arise:

(1) If there is a CFG G with a directed path from root to EXIT that contains no edge in epl (which can
occur only if EXIT—root is in epl), then there is a possible execution of G that increments no counter
(since the edge EXIT —root is never traversed). Thus, it will be impossible to determine the exact count
information for edges in . To ensure that no such path arises, the maximum spanning tree algorithm can
be seeded with the edge EXIT—sroot. In fact, for any CFG and weighting, there is always a maximum
spanning tree that includes the edge EXIT-—root. The derived count for the edge EXIT—sroot represents

Execution: P QBRCP QA (call to exit)

Figure 5. The first CFG executes the path shown and calls the exit routine at vertex A, which terminates the program.
If the measured counts (underlined) are propagated to the spanning tree edges, incorrect values are computed. The
second graph shows how this problem is solved. At program termination, the edge A —EXIT is added and given count 1
to model the early termination of this procedure. After this edge has been added, the counts will be computed correctly.

the number of times the procedure G executed.

(2) The simple extension to multi-procedure profiling will determine the correct frequencies only if inter-
procedural control-flow occurs via procedure call and return and each call eventually has a corresponding
return. Statically-determinable interprocedural jumps also fit in our framework. However, dynamicaily-
computed interprocedural jumps (e.g., setjmpllongjmp) can cause problems. The common case of the call
to the escape or exit procedure that terminates execution of the program illustrates this problem. In this
case, the information on the activation stack at program termination is sufficient to correct the count error.

Suppose that the CFG in Figure 5 is called for the first time and executes the path shown. At vertex A, a
call is made to the exit procedure. The measured counts are underlined. Propagating the measured counts
to the edges in the spanning tree yields frequencies that are clearly incorrect for some edges. Edge R —C
has a count of 2 yet was traversed only once.

Eliminating this error requires an examination of the activation stack at program termination. For each
procedure X on the activation stack, add an edge Px—>EXITy to the CFG for procedure X, where Py is the
vertex from which procedure X calls the next procedure, and give it a count of 1. This edge models the ter-
mination of each active procedure. The propagation algorithm then can be applied to yield the correct
results for each CFG. The second CFG in Figure 5 shows the added edge from A—EXIT and the derived
counts.

3.2. Comparing the Three Frequency Problems

This section examines the relationships between the optimal solutions to VF (G, epl), VF (G, vpl), and
EF (G, epl) for general CFGs, as summarized in case (a) of Figure 2.

We first consider why VF (G, epl), VF (G, vpl), and EF (G, epl) are the most interesting problems to
study. Suppose that p/ contains a mix of vertices and edges and optimally solves VF (G, pl) or EF (G, pl)
for CFG G with weighting W. For any vertex v in pl, v’s counter can be “pushed” off of v onto each outgo-
ing edge of v, resulting in placement pl’. Since the cost of a vertex is equal to the sum of the costs of its
outgoing edges, and some of v’s outgoing edges may be in pl, cost(G, pl’, W) < cost(G, pl, W). Further-
more, pl’ clearly solves the same problem as pl since no vertex or edge frequency information is lost in
going from pl to pI’. Thus, for any CFG G and weighting W, a “mixed” solution to one of the problems can
never be better than an optimal epl solution to the same problem.

It follows directly from this argument that for any CFG G and weighting W, the optimal solution to
VF (G, vpl) can never be better than the optimal solution to VF (G, epl). It is easy to find examples where
the optimal solution to VF (G, epl) is better than the optimal solution to VF (G, vpl).

Since any ep! solution to EF (G, epl) must also solve VF (G, epl), it is clear that the optimal solution to
EF (G,epl) can never be better than the optimal solution to VF (G, epl) for any CFG G and weighting W.
As Figure 6 illustrates, there are cases where the optimal solution to VF (G, epl) is better than the optimal
solution to EF (G, epl). In case (a), E—epl is a maximum spanning tree of G and epl has cost 22. In case
(b), epl has cost 20 and E —epl is not a spanning tree because there is a cycle in E —epl containing the inner
four vertices. To see that this epl solves VF (G, epl), note that the counts of the checked edges are
uniquely determined by the counts of edges in epl. The count of each vertex’s incoming or outgoing edges
can be determined, which is sufficient to derive each vertex’s count. The counts for the four edges in the
inner cycle are not uniquely determined. For example, in order from left to right, one could assign the

@ (b)

Cost = 2%2 + 3*6 = 22 Cost = 4*] + 2%2 + 3%4 =20

Figure 6. An example of a CFG and a weighting for which the optimal solution to VF (G, epl) is better than the op-
timal solution to EF (G, epl). The dotted edges are in epl. The first graph shows the optimal solution to EF (G, epl).
The edges in E—epl form a maximum spanning tree of the graph. The lower cost epl placement in the second graph
does not solve EF (G, epl) (as there is a cycle in E—epl) but does solve VF (G, epl). To see this, note that the count for
each checked edge can be derived from the dotted edges and that this yields enough edge counts to determine the count
for every vertex.

counts (4,2,2,4), (1,5,5,1), or (3,3,3,3) to these edges to satisfy the vertex flow equations.

The only examples that we have encountered in which VF (G, epl) betters EF (G, epl) exhibit unstruc-
tured control-flow such as found in Figure 6. For the CFG in Figure 1, the optimal solution to EF (G, epl)
is also an optimal solution to VF (G, epl). Section 3.3 describes a class of graphs for which an optimal
solution to EF (G, epl) is an optimal solution to VF (G, epl).

Finally, in comparing EF (G, epl) and VF (G, vpl) (for general CEGs), there are examples in which one
is better than the other and vice versa. Case(b) of Figure 6 can be easily modified to show an example
where VF (G, vpl) is better than EF (G, epl): simply consider each black dot as a vertex in its own right
and split the dotted edge into two edges. The dots constitute the set vpl and solve VF (G, vpl) with cost 20.
The optimal epl solution to EF (G, epl) for this graph still has cost 22.

There are many examples of structured CFGs where EF (G, epl) is preferable to VF (G, vpl). Consider
the CFG in Figure 1 again. The vertex frequencies in this graph are relaied by the equations Q =R =A + B
and EXIT = (P+R) ~ (C+Q). From these equations and the weighting in Figure 1, it turns out that the
optimal solution to VF (G, vpl) is { A, B, C, EXIT }, with a cost of 21.5. The optimal solution to
EF (G, epl) has cost 11.5. By instrumenting edges instead of vertices, there is greater freedom to pick and
choose lower cost points ([E| as opposed to [V]).

3.3. Optimality Revisited

The previous section points out that the optimal way to solve the VF (G, pl) is to optimally solve
VF (G, epl). Unfortunately, VF (G, epl) is a hard problem to solve optimally! We have made some

—10 -

progress towards understanding this problem but have no efficient algorithm or proof of intractability for it
yet. However, we believe that for most CFGs encountered in practice, an optimal solution to EF (G, epl)
will provide an optimal (or near-optimal) solution to VF (G, epl). This section describes a class of CFGs
for which an optimal solution to EF (G, epl) is also an optimal solution to VF (G, epl). The class of CFGs
generated by while loops, if-then-else conditionals, and begin-end blocks is properly contained in this
class.

Definition. A diamond consists of two simple directed paths (a path is simple if no vertex appears in it more
than once) PTH, = p—»a-» -+ —z and PTH, = p—b—> -+ - —z such that a # b, and p and z are the only
vertices common to both PTH, and PTH,,.

THEOREM 3.1. If epl solves VF (G, epl), then E —epl contains no diamond or directed cycle.

PROOF. By contradiction. Suppose the antecedent and that (E —epl) contains a directed cycle C. Let execu-
tion EXy consist of the following paths in order: a path PTH ; from root to v such that v is in the cycle C; N
traversals of cycle C from v to v; a path PTH 5 from v to EXIT. Let EXy,, be the execution: PTH; N+1
traversals of cycle C from v to v; PTH 5. Since the cycle C contains no counters, the counts measured by epl
do not differentiate these two executions, which have different frequencies for vertex v. Therefore, epl
cannot solve VF (G, epl).

Now, suppose the antecedent and that (E—epl) contains a diamond D comprised of the paths PTH, =
p—>a->---—z and PTH, = p—b— -+ —z. Let execution EX, consist of the following paths: a path
PTH , from the root vertex to p; PTH,; a path PTH 5 from z to the EXIT vertex. Let EX,, be the execution:
PTH ; PTH,; PTH;. Since neither PTH, nor PTH, contains any counters, the counts measured by epl do
not differentiate these two executions, which have different frequencies for vertices a and b. Therefore, epl
cannot solve VF (G, epl). (1

COROLLARY 3.2. For any CFG G with weighting W, an optimal ep! solution to VF (G, epl) can never cost
less than a minimal cost epl such that E —~epl contains no directed cycle or diamond.

Consider the CFG in Figure 1 and any simple cycle (a cycle with N vertices is simple if N—1 of the ver-
tices in the path representing the cycle are unique) in the graph. The cycle need not be directed. Each such
cycle is either a directed cycle or a diamond. Let G represent all CFGs in which the only simple cycles
are directed cycles or diamonds. For any CFG G in G* with weighting W, the following two statements are
equivalent:

(1) eplisaminimal cost set of edges such that E —epl contains no directed cycles or diamonds.
(2) E-—eplisamaximum spanning iree.

Corollary 3.2, together with this result, implies that for any CFG G in G* with weighting W, an optimal
solution to VF (G, epl) can never be better than an optimal solution to EF (G, epl). Therefore, for this
class of CFGs, an optimal solution to EF (G, epl) is an optimal solution to VF (G, epl).

The class of graphs G* contains many examples of CFGs with multiple exit loops (such as in Figure 1),
CFGs that require gotos, and even some irreducible graphs. However, in general, CFGs generated by pro-
grams with repeat loops or breaks are not always members of G*. Take, for example, the program frag-
ment in case () of Figure 7. The hashed edges form a cycle that is neither a directed cycle nor a diamond.
Any CFG generated solely by begin-end blocks and if-then-else conditionals clearly is a member of G".

—11-

(a) (b)
if A then if A then
repeat while C do
B B
until C od
fi fi
D D

Figure 7.

The reason a repeat loop causes trouble is that the targets of the repeat predicate are both directly accessi-
ble from outside the loop. However, in the case of a while loop, only the exit edge of the while predicate is
directly accessible from outside the loop (see case(b) of Figure 7). This is why the set of CFGs generated
by while loops, if-then-else conditionals, and begin-end blocks is a subset of G*.

To date, we have not found any examples of CFGs generated by structured programs with multi-exit
loops for which there exists a solution to VF (G, epl) with lower cost than an optimal solution to
EF (G, epl). Further work is required to find other classes of CFGs for which the optimal solutions to these
problems are the same.

4. PROGRAM TRACING

Just as a program can be instrumented to record basic block execution frequency, it also can be instru-
mented to record the sequence of basic blocks executed by the program. The tracing problem is to record
enough information about a program’s execution to reproduce the entire execution. A straightforward way
to solve this problem is to instrument each basic block so that it writes a unique mark (witness) to a trace
file whenever it executes. In this case, the trace file need only be read 1o regenerate the execution. A more
efficient method is to write a witness only at basic blocks that are targets of predicates [9]. The following
code regenerates the execution from a predicate trace file and the program’s CFG G:

pc = root-vertex(G);

output(pc);

do
if not IsPredicate(pc) then pc := successor(G, pc)
else pc = read(trace) fi

output(pc);
until (pc = EXIT)

Assuming that there is a standard representation for witnesses (i.e., a byte, half-word, or word per wit-
ness), then the tracing problem can be solved with significantly less time and storage overhead than either
solation by writing witnesses when edges are traversed (not when vertices are executed) and carefully
choosing the edges that write witnesses. Section 4.1 formalizes the trace problem for single-procedure

—12-

programs and shows that any epl! solution to EF (G, epl) or VF (G, epl) also solves the tracing problem.
Section 4.2 considers the complications introduced by multi-procedure programs. Section 4.3 illustrates

how the tracing problem changes when the representation for witnesses depends on the number of
witnesses used.

4.1. Single-Procedure Tracing

In this section, assume that basic blocks do not contain any calls and that the extra edge EXIT-—>root is not
included in the CFG. The set of instrumented edges in the CFG is denoted by epl. In this application,
whenever an edge in epl is traversed, a “witness” to that edge’s execution is written to a trace file. No two
edges in epl generate the same witness. The statement of the tracing problem relies on the following
definitions:

Definition. A path in CFG G is witness-free with respect to a set of edges ep! iff no edge in the path is in
epl.

Definition. Given a CFG G, a set of edges epl, and edge p—q where p is a predicate, the witness set (10 ver-
tex q) for predicate p is:

witness (G, epl, p, q) = {w] p—q € epl (and writes witness w) }
v {w] x—y € epl(and writes witness w)
and there exists a witness-free path p-—>g— - -+ —x }
v { EOF | there exists a witness-free path p—>q— - - - —EXIT }

Figure 8 illustrates the above definitions. The edges marked by dots are in ep/ and the witnesses are
shown next to them. Vertex A does not have a witness set because it is not a predicate. For the execution

Execution: PACPBACPBGCEXIT
A A A A
Trace: t u v EOF

EXIT

witness(P, A)= {t} witness(B,A)= {u} witness(C,P)= {t,u,v}
witness(P, B)= {u,v} witness(B,C)= {v} witness(C, EXIT)= { EOF}

Figure 8. Example of a traced function. Vertices P, B, and C are predicates and EXIT is the function return. The
witnesses are shown by dots along edges. For the execution shown, the traced generated is (t, u, v, EOF). The execu-
tion can be reconstructed from the trace using the witness sets to guide which branches to take.

-13 -

shown, the trace generated is (t, u, v, EOF). The witness EQF is always the last witness in the trace.

Let us examine how the execution in Figure 8 can be regenerated from this trace. Re-execution starts at
predicate P, the root vertex. To determine the successor of P, we read witness t from the trace, which is a
member of witness (P, A) but not of witness (P, B). Therefore, A is the next vertex in the execution. Ver-
tex C follows A in the execution since it is the sole successor of A. Since the edge that produced witness t
(P—A) has been traversed already, we read the next witness from the trace. As wiiness u is a member of
witness (C,P) but not witness (C,EXIT), vertex P follows C. At vertex P, witness u is still valid (since the
edge B — A has not been traversed yet) and determines B as P’s successor. Continuing in this manner, the
original execution can be reconstructed.

If a witness w is a member of both witness (G, epl, p, a) and witness (G, epl, p, b), where a # b, then
two different executions of G generate the same trace file, which makes regeneration based solely on the
control-flow and trace information impossible. For example, in Figure 8, if the edge P—A does not gen-
erate a witness, then witness (P,A) = { u, v, EOF } and witness(P,B) = { u, v }. The executions
(P, A, C,P,B, C, EXIT) and (P, B, C, EXIT) both generate the trace (v, EOF). This motivates our
definition of the tracing problem:

Definition. A set of edges that wrile witnesses, epl, solves the tracing problem for CFG G, denoted
TP (G, epl), iff for each predicate p in G with successors ¢, ..., g, for all pairs (g;, ;) such that i # j,

witness (G, epl, p, g;) n witness (G, epl, p, q;) = @

A witness placement ep/ and an execution EX of CFG G determine a trace as follows: let
trace_record(EX, epl) = (w1, ..., ws) || EOF, where w; is the witness generated by the i edge in EX that is
a member of epl. Given the CFG G, a set of edges epl that solves TP (G, epl), and trace_record(EX, epl),
the algorithm in Figure 9 regenerates the execution EX. The following theorem captures the correctness of
this algorithm:

THEOREM 4.1. If epl solves TP (G, epl) then for any execution EX of G, the call regenerate(, epl,
trace_record(EX, epl)) outputs the execution EX.

PROOF. We prove by induction that, at the beginning of the i* loop of algorithm, the following invariant
(/NV) holds: the prefix EX (1..0) of EX has been generated, pc is equal to EX (i), and one of the following is
true: (WIT1) the prefix trace_record(EX (1..0), epl) of trace has been consumed and wit = NULL, or
(WIT 2) the prefix (trace_record(EX (1..i), epl) || w) of trace has been consumed and wit = w.

The fact that the algorithm terminates follows directly from the above invariant. Since the loop only ter-
minates when pc = EXIT, the EXIT vertex occurs last in EX (and in no other place), and the invariant
guarantees that at the i iteration of the loop the variable pc equals the i vertex of EX, the algorithm is

guaranteed to loop once more when i < |EX | and to terminate when { = [EX |.

Base Case: i = 1. The invariant INV is satisfied as pc = root, the root vertex has been output, wit = NULL,
and none of the trace has been consumed.

Induction Hypothesis: at the beginning of the N iteration (N >1) the invariant NV holds.

Induction Step: consider the beginning of the N* iteration of the algorithm. By the Induction Hypothesis,
the algorithm has generated the prefix EX (1..N) of EX and pc = EX(N). If pc is the EXIT vertex then the

— 14—

procedure regenerate(G: CFG; epl: set of witness edges; trace: file of witnesses)
declare
pc, newpc : vertices;
wit . witness;
begin
pc = root-vertex(();
wit := NULL;
output(pc);
do
if not IsPredicate(pc) then
newpc = successor(G, pc);
if wit = NULL and pc—newpc € epl then wit := read(trace) fi

else
if wit = NULL then wit := read(trace) fi
newpc = q such that wit € witness (G, epl, pc, q)
fi
if pc—newpc € epl then wit := NULL fi
pC = newpc;
output{pc);
until (pc = EXIT)

end

Figure 9. Algorithm for regenerating an execution from a trace.

algorithm terminates, having generated the execution EX. If pc is not the EXIT vertex, then the loop
iterates once more. The invariant holds at the beginning of the N+1* iteration by case analysis on pc at the
beginning of the N* jteration:

(1) Suppose pc is not a predicate vertex. The algorithm sets newpc to the control-flow successor of pc.
Therefore, at the end of the loop, the prefix EX(1.N+1) of EX has been generated and
pc =EX (N+1). By the Induction Hypothesis, at the beginning of the N* iteration, either WIT 1 or
WIT 2 holds. Furthermore, either pc—newpc is a member of epl or not. Thus, there are four sub-
cases to consider:

(A) Suppose WIT'1 holds at N and pc—newpc € epl. Since trace_record(EX (1..N), epl) of trace
has been consumed and trace_record(EX (1..N+1), epl) contains one more witness, the next witness
in the trace file is the witness generated by pc—snewpc. Since wit = NULL, this witness is read and
WIT 1 holds at N +1.

(B) Suppose WIT 1 holds at N and pc—newpc € epl. It is clear that WIT 1 holds at N+1.

(C) Suppose WIT?2 holds at N and pc—newpc € epl. Since (trace_record(EX (1..N), epl) || w) =
trace_record(EX (1..N+1), epl), WIT 1 holds at N +1.

(D) Suppose WIT 2 holds at N and pc—snewpc ¢ epl. Itis clear that WIT 2 holds at N+1.

@

~ 15—

Suppose pc is a predicate vertex. By the Induction Hypothesis, at the beginning of the N* iteration,
either WIT 1 or WIT 2 holds.

(A) Suppose that WIT 1 holds at N. Consider the suffix EX (N.. |EX |) of execution EX and the first
witness w generated along this path. Note that pc = EX (N). Let ¢ = EX(N+1). Since wit = NULL
and the prefix trace_record(EX (1..N), epl) of trace has been read, w is read and assigned to variable
wit. Witness w is a member of witness (G, epl, pc, q) since w is the first witness generated on the
path EX (N.. |EX |). Since epl solves TP (G, epl), there can be no r {r # g) such that w is also a
member of witness (G, epl, pc, r). Therefore, at the end of the N* iteration, the prefix EX (1.N+1)
has been generated and pc = EX (N +1). If pc—snewpc € epl then WIT 1 holds at N+1. On the other
hand, if pc—newpc ¢ epl then WIT 2 holds at N +1.,

(B) Suppose that WIT 2 holds at N. Since the prefix (trace_record(EX (1..N), epl) || w) of trace has
been consumed, w is the first witness generated by the suffix EX (V.. | EX |) of execution EX. Again,
let g = EX (N-+1). Witness w is a member of witness (G, epl, pc, q). Since epl solves TP (G, epl),
at the end of the N iteration the prefix EX (1.N+1) of EX has been generated and pc = EX (N+1).
If pc—newpc € epl, then WIT1 holds at N+1. If pc—snewpc ¢ epl instead, then WIT2 holds at
N+1. O

The following theorem shows that epl solves TP (G, epl) exactly when the set of edges E—epl contains
no diamond or directed cycle. This result implies that any epl that solves EF (G, epl) also solves
TP (G, epl). Therefore, if the set of edges T is a maximum spanning tree of G, epl = E-T solves
TP (G, epl). Also, Theorem 3.1 implies that any epl that solves VF (G, epl) solves TP (G, epl).

THEOREM 4.2. The set E—epl, where E represents the edges of CFG G and epl ¢ E, contains no directed
cycles or diamonds iff epl solves TP (G, epl).

PROOF. By contradiction.

..._)

Suppose that there exists a predicate p with distinct successors a and b such that {w] <
witness (G, epl, p, a) n witness(G, epl, p, b). Let x—y be the edge in epl that generates witness
w. There is a witness-free path PTH, = p—sa—> +-+ —x and a witness-free path PTH, =
p—b— -+ —x. If any vertex in PTH, (PTH,) occurs more than once in PTH, (PTH,), then there
is a directed cycle in E—epl. Suppose that PTH, and PTH, are both simple. Let z be the first vertex
in PTH, besides p that is shared by PTH,. There is a diamond in E—epl consisting of the prefix of
PTH, from p to z and the prefix of PTH,, from p 10 z.

Suppose that there is a diamond or a directed cycle in E—epl. First, consider the case of a diamond
consisting of the paths PTH, =p-—sa—> -+ —xand PTH, = p—b— -+ —x. By the definition of a
diamond, both paths are simple and share only the vertices p and x. Consider any path from x to the
EXIT wvertex. If the path contains no edges in epl then EOF is a member of both
witness (G, epl, p, a) and witness (G, epl, p, b). Instead, suppose w is the witness generated by the
first edge in this path that is in epl. Witness w is a member of both witness (G, epl, p, a) and
witness (G, epl, p, b).

Suppose that there is a directed cycle in E—epl. At least one of the vertices in this cycle is a predi-
cate since there is a path from every vertex in G to the EXIT vertex and there can be no directed

~16 —

cycle that contains the EXIT vertex (as there are no outgoing edges from EXIT). Let p—a be an edge
in the cycle where p is a predicate. Let p—b be another outgoing edge from p, where a # b. Since
there is a witness-free path p—a— - —p, any witness that is in witness (G, epl, p, b) is also in
witness (G, epl, p, a). [0

The remaining open questions are whether an optimal solution to VF (G, epl) is an optimal solution to
TP (G, epl), and whether optimally solving TP (G, epl) is an inherently intractable problem. Finding a
minimum size set of edges epl such that E —epl contains no directed cycles (Feedback Arc Set) or diamonds
(Uniconnected Subgraph) are NP-complete problems that bear some similarities to TP (G, epl), but we
have not succeeded in constructing a reduction [5, 10]. There are different constraints on TP (G, epl) that
complicate matters. First, the problem is to find a minimum cost set of edges ep! with respect to a weight-
ing rather than one of minimum size. Second, the weighting is not an arbitrary assignment of values—all
the values are nonnegative and satisfy the flow equations. Although optimally solving TP (G, epl) is prob-
ably an NP-complete problem, we should keep in mind that for any CFG G in G* an optimal solution to
EF (G, epl) is an optimal solution to TP (G, epl). We believe that an optimal solution to EF (G, epl) pro-
vides an optimal or near-optimal solution to TP (G, epl) for most CFGs found in practice.

4.2. Multi-Procedure Tracing

Unfortunately, tracing does not extend as easily to multiple procedures as does profiling. There are several
complications that we illustrate with the CFG in Figure 8. Suppose that basic block B contains a call to
procedure X and that execution starts at P and continues to B, where procedure X is called. After procedure
X returns, suppose that C executes. This call creates problems for the regeneration process since the
witnesses generated by procedure X, possibly an enormous number of them, precede the witness v in the
trace file.

In order to determine which branch of predicate P to take, the witnesses generated by procedure X must
be buffered or witness set information must be propagated interprocedurally. The first solution is impracti-
cal because there is no bound on the number of witnesses that may have to be buffered. The second solu-
tion eliminates the possibility of separate compilation (instrumentation) and is complicated by multiple
calls to the same procedure from a procedure and by calls to unknown procedures. Furthermore, if witness
numbers are reused in different procedures, which greatly reduces the amount of storage needed per wit-

ness, then the second approach becomes even more complicated.

The following restrictions describe the tracing problem for programs with multiple procedures: (1) only
one trace file is generated; (2) witnesses can be reused in different procedures but not within a procedure;
(3) procedures and functions are separately instrumented (i.e., no interprocedural analysis). The solution
presented in this section places “blocking” witnesses that prevent all predicates in a CFG from “seeing” a
basic block that contains a call site or from seeing the EXIT vertex in that CFG. This ensures that when-
ever the regenerator is in CFG G and reads a witness 1o determine which branch of a predicate to take, the

%If a separate trace file was maintained for each procedure then all these problems would disappear and extending tracing to muliiple
procedures would be quite straightforward. However, this solution is not practical for anything but toy programs for obvious reasons.

—-17 -~

witness is guaranteed to have been generated by an edge in G.*

Definition. The set epl has the blocking property for CFG G iff there is no predicate p in G such that there
is a witness-free path from p to a vertex containing a call or a witness-free path from p to the EXIT vertex.

Definition. The set { epl, ..., epl, } solves the tracing problem for a set of CFGs { G, ..., G, } iff, for all
I, epl; solves TP (G;, epl;) and epl; has the blocking property for G;.

The regeneration algorithm in Figure 9 need only be modified to maintain a stack of currently active pro-
cedures: when the algorithm encounters a vertex with a call, it pushes the current CFG name and pc value
onto the stack and starts executing the callee; when the algorithm encounters an EXIT vertex, it pops the
stack and continues executing the caller from the point of the call. For multiple calls per vertex, the algo-
rithm also has to keep track of the current instruction in the current basic block.

An easy way 1o ensure that epl has the blocking property is to include each incoming edge to a vertex
that contains a call in ep/, and to include each incoming edge to EXIT in epl. This approach is suboptimal
for several reasons. Consider the first control-flow fragment in Figure 10 in which the dashed vertices con-
tain calls and the black dots represent blocking witnesses. The witness on edge H—/ is redundant since the

blockers(B)= { A->B}

blockers(I)= {B->D, B->E,
C->F, C->H}

blockers(H) = {C->F, C->H}

Cost=9 Cost=06

Figure 10. Two placements of blocking witnesses. The dashed vertices (B, I, and H) are call vertices. In the first sub-
graph, a blocking witness is placed on each incoming edge to a call vertex (black dots). This placement is suboptimal
because the witness on edge H —/ is not needed and because a witness must be added to edge B —D to solve the trac-
ing problem (white dot). In the second subgraph, blocking witnesses are placed as far away from call vertices as possi-
ble, resulting in an optimal placement.

*In some tracing applications, data other than witnesses (such as addresses) are also written to the trace file. Vertices in the CFG that
generate address information can be blocked with witnesses so that no address is ever mistakenly read as a witness. It would also be
feasible in this sjtuation to break the trace file into two files, one for the witnesses and the other for the addresses, to avoid placing
more blocking witnesses.

~18—

witnesses on edges F—H and C-»H already block all paths from C to I. Also, the edge B—D requires a
witness in order for epl to solve the tracing problem.

These problems can be solved by placing blocking witnesses as far away as possible from the vertices
that they are meant to block. Consider a call vertex v and any directed path from a predicate p to v such
that no vertex between p and v in the path is a predicate. One of the edges in this path must contain a wit-
ness to satisfy the blocking property. For any weighting of G, placing a blocking witness on the outgoing
edge of predicate p in each such path has cost equal to placing a blocking witness on each incoming edge
to v (since no vertex between p and v is a predicate). However, placing blocking witnesses as far away as
possible from v ensures that no blocking witnesses are redundant. Furthermore, placing the blocking
witnesses in this fashion increases the likelihood that they solve TP (G, epl).

The second placement of blocking witnesses in Figure 10 uses the above approach. After blocking
witnesses are added, no other witnesses need to be added to solve the tracing problem. However, in gen-
eral, this is not always the case. Therefore, computing epl becomes a two step process: (1) place the block-
ing witness; (2) ensure that TP (G, epl) is solved by adding edges to epl. The details of the algorithm fol-
low:

Definition. Let v be a vertex in CFG G. The blocking edges of v are defined as follows:

blockers(G, v) = { p—x, | there is a path p—xy—> - - - —>x, where p is a predicate, v = x,,,
and for 0 <i < n, x; is not a predicate]

The following algorithm computes the optimal cost set of edges (for any weighting) that has the blocking
property:

(@) (b)

Figure 11. Example (a) illustrates the result from first finding blocking witnesses (black dots) and then applying the
maximum spanning tree algorithm (white dot). Example (b) shows the suboptimal placement that results from applying
these phases in reverse order. The spanning tree algorithm places the black dots. The white dot is added to block the
topmost predicate from seeing the call vertex. This placement is suboptimal because one of the black dots on an edge
with weight 5 could be removed.

-19 -

epl ==,

for each vertex v € { EXIT } v { w] vertex w contains a call } do
epl := epl L blockers(G, v)

od

To ensure that epl also solves TP (G, epl), edges are added to epl so that E—epl contains no diamonds or
directed cycles. The maximum spanning tree algorithm, modified so that no edge in ep! is allowed in the
spanning tree, is applied to G. If the edges that are not in the spanning tree are added to epl, then epl is
guaranteed to have the blocking property and solve TP (G, epl).’ Applying this algorithm to the control-
flow fragment in case (a) of Figure 11, the blocking phase adds the black dot edges to epl. The spanning
tree phase adds the white dot edge to epl.

One might question whether it is better to reverse the above process and first compute an epl that solves
TP (G, epl) using the maximum spanning tree algorithm, adding blocking witnesses as needed afterwards.
Case (b) of Figure 11 shows that this approach can yield undesirable results. The black dot edges are
placed by the spanning tree phase and solve TP (G, epl) but do not satisfy the blocking property. The white
dot edge must be added to satisfy the blocking property and creates a suboptimal epl.

4.3. Bit Twiddling

Suppose that a program contains predicates with only two successors (i.e., no case statements are allowed)
and that each outgoing edge of a predicate vertex generates a witness. While this approach records more
witnesses than necessary, only one bit per witness is needed to distinguish the witness set at any predicate.
If witnesses are placed on fewer edges (using the spanning tree approach), then some predicate branches
will not generate witnesses. However, in general, more bits will be needed per witness in this case.

The CFGs in Figure 12 illustrate this tradeoff. In case (a), witnesses are placed according to the span-
ning tree approach. No pair of distinct witnesses from the set { a, b, ¢, d } can be assigned the same value,
so two bits per witness are required. In case (b), only one bit per witness is required. Any iteration of the
loop in this CFG will generate three bits of trace. However, in case (a) the amount of trace generated per
iteration can either be two or four bits. In this example, neither witness placement is a clear winner.

The spanning tree approach has the advantage that it is sensitive to weightings. For example, if the edge
with witness ¢ had low probability of executing then the witness placement in case (a) would be superior to
that in case (b).

On the other hand, it is easy to construct examples where the one-bit approach is superior. For instance,
consider a loop similar to that in Figure 12 that contains a chain of nine diamonds. The spanning tree
approach requires 11 distinct witnesses, resulting in 4 bits per witness. In the one-bit approach every itera-
tion of the loop generates 10 bits of trace (one for each diamond in the loop plus one for the loop back-
edge). In the spanning tree approach the number of bits per iteration ranges from 4 to 36. If every predicate
has equal probability of taking either branch then, on average, each iteration generates 20 (4 + 32/2) bits of
trace.

*The modified spanning tree algorithm may not actually be able to create a tree that spans all vertices in G because of the edges already
in epl. In this case the algorithm simply identifies the maximal cost set of edges in E—epl that contains no (undirected) cycle.

-20 —

X
a=00
b =01 x=0
c=10 X y=1
d=11 y

X

Figure 12. These CFGs illustrate the tradeoff between (a) placing witnesses according to the spanning tree approach
and (b) placing witnesses on every outgoing edge of a predicate vertex. In general, the former approach requires more
bits per witness and some edges do not generate wimesses. In the latter approach, every (predicate) edge generates a
witness but only one bit per witness is needed.

Further study is needed to determine whether one of these approaches is better than the other in practice.
In addition, the one-bit approach would have to be extended to handle predicates with more than two out-
going edges.

5. PERFORMANCE

This section describes several experiments that demonstrate that the algorithms presented above
significantly reduce the cost of profiling and tracing real programs.

5.1. Profiling Performance

We implemented the counter placement algorithm for profiling in QP, which is a basic block profiler
similar to MIPS’s pixie [19]. QP can either insert counters in every basic block in a program (slow mode)
or along the subset of edges identified by our algorithm (guick mode).

We used the SPEC benchmark suite to test QP [3]. This is a collection of 10 moderately large Fortran
and C programs that is widely used to evaluate computer system performance. The programs were com-
piled at a high level of optimization (either -O2 or -O3, which does interprocedural register allocation).
However, we did not use the MIPS utility cord, which reorganizes blocks to improve cache behavior, or
interprocedural delay slot filling. Both optimizations confuse a program’s structure and greatly complicate
constructing a control-flow graph. The timings were run on a DECstation 5000/200 with 96MB of main
memory and local disks.

—-21—

Table 1 shows the cost of running the benchmarks with profiling. The column labeled “Slow” contains
the time for programs modified by QP to have a counter in each basic block. The column labeled “Quick”
contains the times for programs with optimized edge profiling. The column labeled “Pixie” contains the
times for programs profiled by pixie, which inserts a counter in each basic block. These times are less than
the times required by slow QP because pixie rewrites the program 1o free 3 registers, which enables it to
insert a code sequence that is about half the size of the one used by QP (6 instructions vs. 11 instructions).
In fact, the pixie code sequence can be reduced to 5 instructions. The column labeled “Quick+" is the pro-
jected time for quick QP tracing using this 5 instruction code sequence. As can be seen, the placement
algorithm reduces the overhead of profiling dramatically, from 11-424% to 9-105%. Fortunately, the
greatest improvements occurred in programs in which the profiling overhead was largest, since these pro-
grams had more conditional branches and more opportunities for optimization.

SPEC Slow Quick Pixie Quick+
Benchmark (sec.) %o (sec.) % (sec.) % (sec.) %
gee (C) 32.2 222.0 19.5 95.0 24.5 145.0 14.3 432
espresso (C) 71.5 177.1 45.6 76.7 52.6 103.9 34.8 34.9
spice 379.9 62.7 320.7 373 320.8 374 273.1 17.0
doduc 197.5 56.6 142.6 13.1 180.1 42.8 133.6 5.9
nasa7 10459 15.7 | 1025.9 13.5 992.4 9.8 959.3 6.1
1i (C) 945.9 2189 553.6 86.6 808.2 172.5 413.4 394
eqntott (C) 313.1 423.6 122.5 104.8 178.7 198.8 88.3 47.7
matrix300 311.5 13.6 308.8 12.6 292.4 6.6 290.0 5.7
fpppp 240.2 36.2 199.7 132 207.2 17.5 187.0 6.0
tomcatv 179.4 10.7 176.6 89 176.4 8.8 168.7 4.1

Table 1. Cost of profiling. For Slow profiling, QP inserts a counter in each basic block. For Quick profiling, QP in-
serts a counter along selected edges. Pixie is a MIPS utility that inserts a counter in each basic block. Quick+ is the
time that Quick profiling would require if QP used the efficient pixie counter instruction sequence. The columns la-
beled % show the additional cost of profiling, with respect to the unprofiled program’s execution time.

Counter Increments Dynamic

SPEC Slow Quick Slow/ Feedback Slow/ Block
Benchmark Quick Feedback Size

gee (C) 27149754 8458003 32 5324315 5.1 4.6
espresso (C) 91259523 33139589 2.8 27247737 33 5.0
spice 308194784 180543666 1.7 172595830 1.8 10.6
doduc 130897009 45651338 2.9 35920460 3.6 11.2
nasa7 298530617 254628038 1.2 251638412 1.2 30.2
1i (C) 1208747235 413622801 2.9 289473770 42 4.1
eqntott (C) 465938460 114410157 4.1 112562938 4,1 2.3
matrix300 60035631 54951383 1.1 54947186 1.1 46.1
fpppp 25932871 6186762 4.2 4098093 6.3 100.8
tomcatv 35012274 27762776 1.3 21254823 1.6 56.3

Table 2. Reduction in counter increments due to optimized counter placement. The column labeled Slow is the number
of increments in basic blocks. The column labeled Quick is the number of increments along edges chosen by the place-
ment algorithm guided by the heuristic weighting described above. The column labeled Feedback records the number
of increments along edges chosen by the placement algorithm using an exact weighting from a previous run. The last
columnn is the average dynamic basic block size.

—-22

Table 2 shows this improvement in another way. It records the number of counter increments for both
Slow and Quick profiling. For the Fortran programs, the improvements varied. In programs with large
basic blocks that execute few conditional branches (where profiling was already inexpensive), improved
counter placement did not have much of an effect on the number of increments or the cost of profiling. The
foppp benchmark produced an interesting result. While it showed the greatest reduction in counter incre-
ments, the overhead for measuring every basic block was quite low at 36% and the average dynamic basic
block size was 101. This implies that large basic blocks dominated the execution of fpppp. Thus, even
though many basic blocks of smaller size executed (which yielded the reduction in counter increments),
they contributed little to the running time of the program. The FORTRAN program doduc, while it has a
dynamic block size of 10 instructions, has “an abundance of short branches” [3] that accounts for its reduc-
tion in counter increments. The decrease in run time overhead for doduc was substantial at 57%-13%.

For programs that frequently executed conditional branches, the improvements were large. For the 4 C
programs (gcc, espresso, li, and egniott), the placement algorithm reduced the number of increments by a
factor of 3 and the overhead by a factor of 2-3.

Table 2 also demonstrates that the heuristic weighting algorithm described in the Appendix is good. The
column labeled “Feedback™ contains the number of counter increments when the placement algorithm was
guided by an exact profile from a previous run of the same program with identical input. As can be seen,
the difference in cost between the heuristic and exact weightings was usually small.

The cost of modifying a program to place counters along edges was higher than placing counters in each
basic block, primarily because of the additional work required to compute a program’s control-flow graph
and to determine counter placement. However, the cost was quite reasonable (exact times omitted since
QP has not yet been tuned).

5.2. Tracing Performance

The witness placement algorithm was also implemented in the AE program tracing system [9]. AE ori-
ginally recorded the outcome of each conditional branch and used this record to regenerate a full control-
flow trace. One complication is that AE traces both the instruction and data references so a trace file con-
tains information to reconstruct data addresses as well as the witnesses. The combined file requires the
changes to the placement algorithm described in Section 4.2.

Program Old File New File Old/ | Old Trace NewTrace Old/ | OldRun NewRun Old/
(bytes) (bytes) New (bytes) (bytes) New (sec.) (sec.) New
compress 6,026,198 4,691,816 1.3 2,760,522 926,180 3.0 6.6 5.4 1.2
sgefa 1,717,923 1,550,131 1.1 1,298,882 1,131,091 1.2 4.1 4.5 0.9
polyd 19,509,062 16,033,055 12 5,523,958 2,047,951 2.7 19.0 15.5 1.2
pdp 11,314,225 10,875,475 1.0 1,496,013 1,057,263 14 104 9.2 1.1

Table 3. Improvement in the AE program tracing system from placing witnesses along edges. Old refers to the original
version of AE, which recorded the outcome of every conditional branch. New refers to the improved version of AE,
which uses witnesses. File refers to the total size of the recorded information, which includes both witness and data
references. Trace refers 1o the total size of the witness information.

—23~

Table 3 shows the reduction in total file size (“File”), witness trace size (“Trace”), and execution time
that result from switching from the original algorithm of recording each conditional (“Old”) to a witness
placement (“New”). As with the profiling results, the programs with regular control-flow, sgefa and pdp,
do not gain much from the tracing algorithm. For the programs with more complex control-flow,
compress and polyd, the tracing algorithm reduces the number of witnesses by a factor of 3 and 2.7 times.

6. RELATED WORK

This section describes related work on efficiently profiling and tracing programs.

6.1. The Knuth/Stevenson Algorithm

Knuth and Stevenson exactly characterize when a set of vertices vpl solves VF (G, vpl) and show how to
compute the minimum size vpl that solves VF (G, vpl) [8]. They construct a graph G’ from CFG G such
that vpl solves VF (G, vpl) iff epl’ solves EF (G’, epl’), where vpl can be derived from epl’ by a one-to-one
and onto map from edges in G’ to vertices in G that falls out from the construction. The authors note that
their algorithm can be modified very easily to compute a minimum cost vp! solution to VF (G, vpl) given a
set of measured or guessed vertex frequencies.

As this paper shows, if counter placement is restricted to vertices, a minimum cost solution to the vertex
frequency problem cannot always be found—lower cost solutions often can be obtained by placing
counters on edges instead of vertices. Furthermore, since the optimal solution to EF (G, epl) is equal to the
optimal solution to VF (G, epl) for a large class of CFGs and the optimal solution to VF (G, vpl) can never
be better than VF (G, epl), we expect EF (G, epl) to perform better than VF (G, vpl) in practice.

6.2. The Insertion of Software Probes in Well-Delimited Programs

Probert discusses the problem of solving EF (G,vpl) [15], which is not always possible in general. Using
graph grammars, he characterizes a set of “well-delimited” programs for which EF (G, vpl) can always be
solved. This class of graphs arises by introducing “delimiter” vertices into well-structured programs,
These extra vertices allow EF (G, vpl) to be solved for this class of graphs. Although Probert declares oth-
erwise, delimiter vertices serve the same function as “artificial” vertices that are inserted on an edge: they
allow edge frequencies to be determined from vertex frequencies.

Probert is also concerned with finding a minimal size set of measurement points as opposed to a minimal
cost set of measurement points.

6.3. Profiling Using Control Dependence

Sarkar describes how to choose profiling points using control dependence and has implemented a profiling
tool for the PTRAN system, which uses the profile information to guide the automatic parallelization of
FORTRAN programs [17]. His algorithm finds a minimum size set of edges epl that solves EF (G, epl)
based on a variety of rules relating control dependence and control-flow, as opposed to the spanning tree
method given here. There are several other major differences between his work and the work reported here:

(1) The algorithm only works for a subclass of reducible CFGs. Reducible CFGs that do not fall into this
subclass must be transformed for the algorithm to work properly. Our algorithm can be applied to
any CFG.

(2) The algorithm does not use a weighting or other method to place counters at points of lower execu-
tion frequency. As aresult, the algorithm may produce a suboptimal solution such as that in case (a)
of Figure 3.

-24 -

(3) When the bounds of a DO loop are constants, the algorithm will eliminate the loop iteration counter.
Our analysis is based solely on the control-flow information from the program and does not make
such optimizations.

6.4. Optimal Placement of Traversal Markers

Ramamoorthy, Kim, and Chen discuss the problem of instrumenting a single-procedure program with a
minimal number of monitors so that the traversal of any path through the program may be ascertained after
an execution [16]. This is equivalent to the tracing problem for single-procedure programs discussed here.
The authors do not give an algorithm for reconstructing an execution from a trace or consider how to han-
dle the problem of tracing multi-procedure programs.

The authors are interested in finding a minimal size solution to TP (G, epl), an NP-complete prob-
lem [10], and develop an efficient heuristic procedure for constructing a near minimal size solution. How-
ever, a minimum size solution does not necessarily yield a minimum cost solution; sometimes a lower cost
solution can be obtained by instrumenting more lower cost points rather than fewer higher cost points. We
expect the problem of finding a minimum cost solution to TP (G, epl) (where the edge values yield a
weighting) to be NP-complete also.

7. SUMMARY AND FUTURE WORK

This paper introduced two algorithms for efficiently profiling and tracing programs. These algorithms
optimize placement of instrumentation code with respect to a weighting of the control-flow graph. The
placements for a large class of graphs are optimal, but there exist programs for which the algorithms pro-
duce suboptimal results.

Many interesting questions remain open. First, is there an efficient algorithm to optimally solve the ver-
tex frequency problem with a set of edge-counters or is the problem intractable? Second, are there other
classes of graphs for which an optimal solution to the edge frequency problem is also an optimal solution to
the vertex frequency problem? How are these problems related to the tracing problem and its optimal solu-
tion? Finally, can better weighting approximation algorithms be found?

As previously noted, the profiling algorithm has been implemented in a profiling tool called QP and the
tracing algorithm is part of the AE tracing system [9]. Both tools run on several machines and are available
from James Larus.

ACKNOWLEDGEMENTS

We would like to thank Susan Horwitz for her support of this work. Gary Schultz and Jonathan Yackel
provided valuable advice on network programming. Eric Bach pointed out the NP-complete Feedback Arc
problem. Samuel Bates, Paul Adams, and Phil Pfeiffer critiqued many descriptions of the work in pro-
gress. Thanks also to Guri Sohi and Tony Laundrie, who provided their code for a basic-block profiler that
eventually became QP, and to Mark Hill, who provided the disk space and computing resources for the per-
formance measurements. Chris Fraser’s insightful comments on tracing led to the addition of Section 4.3.

—25—

APPENDIX - A WEIGHTING ALGORITHM

This section describes how to compute a weighting for reducible CFGs, those CFGs with single-entry
loops. A CFG is reducible iff for each backedge e of G (as defined by a depth-first search from the root
vertex), target(e) dominates source(e). Other equivalent characterizations of reducibility are given in [1].
The edge EXIT —root is not counted as a backedge even though it is identified as such by a depth-first
search.

The weighting algorithm uses natural loops to identify loops and loop-exit edges. The natural loop of a
backedge x —y is defined as follows:

nat-loop(x —>y) = {y} v { w| there is a directed path from w to x that does not include y }

A vertex y is a loop-entry if it is the target of one or more backedges. The natural loop of a loop-entry y,
denoted nat-loop(y), is simply the union of all the natural loops nat-loop(x —y), where x —y is a backedge.

If @ and b are different loop-entry vertices, then either nat-loop(a) and nat-loop(b) are disjoint, or one is
entirely contained within the other. This nesting property is used in the definition of the exit edges of a
loop with loop-entry y:

exit-edges(y) = { a—bla—b € E,a € nat-loop(y), b ¢ nat-loop(y),

and there is no loop-entry z (z # y) such that @ € nat-loop(z) and
nat-loop(z) < nat-loop(y) }

Edge a —b is an exit edge if there exists a loop-entry y such that a—b € exit-edges(y).

The weighting algorithm assumes that each loop iterates LOOP_MULTIPLIER times (for our imple-
mentation, set to 10) and that each branch of a predicate is equally likely to be chosen. Exit edges are spe-
cially handled, as described below. Initially, the weight of each edge and veriex is 0. The weight of the
edge EXIT —root is fixed at 1 and does not change. The weighting algorithm simply iterates the following
rules until they converge (i.e., the application of any of the rules will not change any weight):

(1) If vertex v is a loop-entry with weight W and N = [exit-edges(v)|, then each edge in exit-edges(v) gets
weight W/N.,

(2) If vertex v has weight W and Wgy;r is the sum of the weights of the outgoing edges of v that are exit-
edges, then each non-exit outgoing edge of v gets the weight (W — Weyr)/N, where N is the number
of non-exit outgoing edges of v. If v is a loop-entry, then each non-exit outgoing edge of v gets the
weight (LOOP_MULTIPLIER * W — Weyr)/N.

(3) The weight of a vertex is the sum of the weights of its incoming (non-backedge) edges.

The following example illustrates the above definitions and shows the weighting that the algorithm will
compute for the CFG from Figure 1:

nat-loop(P) = nat-loop(C->P) ={ P, Q, A, B, R,C}

exit-edges(P) = { P->EXIT, R->EXIT }

—26 —

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley,
Reading, MA (1986).

R. F. Cmelik, S. I. Kong, D. R. Ditzel, and E. J. Kelly, “An Analysis of MIPS and SPARC Instruction
Set Utilization on the SPEC Benchmarks,” ASPLOS-IV Proceedings (published as SIGARCH Com-
puter Architecture News) 19(2) pp. 290-302 (April 1991).

Systems Performance Evaluation Cooperative, SPEC Newsletter (K. Mendo:za, editor) 1(1)(1989).

J. A. Fisher, J. R. Ellis, J. C. Ruitenberg, and A. Nicolau, “Parallel Processing: A Smart Compiler and
a Dumb Machine,” Proc. of the ACM SIPLAN 1984 Symposium on Compiler Construction (SIPLAN
Notices) 19(6) pp. 37-47 (June 1984).

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco (1979).

S. L. Graham, P. B. Kessler, and M. K. McKusick, “An Execution Profiler for Modular Programs,”
Software Practice and Experience 13 pp. 671-685 (1983).

J. L. Kennington and R. V. Helgason, Algorithms for Network Programming, Wiley-Interscience,
John Wiley and Sons, New York (1980).

D. E. Knuth and F. R. Stevenson, “Optimal Measurement Points for Program Frequency Counts,” BIT
13 pp. 313-322 (1973).

J. R. Larus, “Abstract Execution: A Technique for Efficiently Tracing Programs,” Software Practice
and Experience 20(12) pp. 1241-1258 (December, 1990).

S. Maheshwari, “Traversal marker placement problems are NP-complete,” Report No. CU-CS-092-
76, Dept. of Computer Science, University of Colorado, Boulder, CO (1976).

S. McFarling, “Procedure Merging with Instruction Caches,” Proceedings of the SIGPLAN 91 Confer-
ence on Programming Language Design and Implementation, (Toronto June 26-28, 1991), ACM SIG-
PLAN Notices 26(6) pp. 71-91 (June, 1991).

B. P. Miller and J. D. Choi, “A Mechanism for Efficient Debugging of Parallel Programs,” Proc. of
the ACM SIPLAN 1988 Conf. on Prog. Lang. Design and Implementation (SIPLAN Notices) 23(7) pp.
135-144 (June 1988).

W. G. Morris, “CCG: A Prototype Coagulating Code Generator,” Proceedings of the SIGPLAN 91
Conference on Programming Language Design and Implementation, (Toronto June 26-28, 1991),
ACM SIGPLAN Notices 26(6) pp. 45-58 (June, 1991).

K. Pettis and R. C. Hanson, “Profile Guided Code Positioning,” Proceedings of the ACM SIGPLAN
"90 Conference on Programming Language Design and Implementation (published as SIGPLAN
Notices) 25(6) pp. 16-27 ACM, (June, 1990).

R. L. Probert, “Optimal Insertion of Software Probes in Well-Delimited Programs,” IEEE Transac-
tions on Software Engineering SE-8(1) pp. 34-42 (January, 1975).

C. V. Ramamoorthy, K. H. Kim, and W. T. Chen, “Optimal Placement of Software Monitors Aiding
Systematic Testing,” IEEE Transactions on Software Engineering SE-1(4) pp. 403-410 (December,
1975).

V. Sarkar, “Determining Average Program Execution Times and their Variance,” Proceedings of the
ACM SIGPLAN ’89 Conference on Programming Language Design and Implementation (published as

—27—

SIGPLAN Notices) 24(T) pp. 298-312 ACM, (June 21-23, 1989).
18. A.J. Smith, “Cache Memories,” ACM Computing Surveys 14(3) pp. 473-530 (1982).

19. MIPS Computer Systems, Inc., UMIPS-V Reference Manual (pixie and pixstats), MIPS Computer
Systems, Sunnyvale, CA (1990).

20. R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA (1983).

