
THE COMPUTATION OF l–LOOP CONTRIBUTIONS

IN Y.M. THEORIES WITH CLASS III
NONRELATIVISTIC GAUGES AND REDUCE

A. BURNEL and H. CAPRASSE

D6partement d’ Astxronomie et d’Astrophysique

Institut de Physique B5

Universit6 de Li&ge, B-4000 Sart-Tilman par Li&ge 1, Belgium

EMAIL: U214001Qvml.ulg. ac.be

1 Introduction

Yang-Mills quantum field theories are now used exten-
sively in high energy physics to describe the interactions

of fundamental particles. These theories contain un-

physical degrees of freedom which do not contribute to

physical processes. However, they are present in all in-

termediate steps of calculations in perturbation theory.

The number of degrees of freedom and the nature of

their contributions in a calculation depend on the way

the theory is formulated. Choosing a gauge amounts

to fix the formulation of the theory.

The archetype of such a theory is quant urn electrody-

namics (QED) which is based on local invariance with
respect to the abelian Lie group U(1). This theory is

very well understood. Choosing a gauge fixes the ex-

pression of the photon propagator. In a relativistic

gauge, four degrees of freedom are present. Two c>f

them are unphysical. One may also choose nonrela,-

tivistic gauges i.e, gauges which are not stable against

Lorentz transformations. The so-called aw’ai gauge is

one of them. Its interestlies in the fact that unphysi-

cal degrees of freedom decouple when one is computing

Feynman diagrams. In QED there even exists a partic-

ular nonrelativistic gauge : the Coulomb gauge in which

the unphysical degrees of freedom do not appear any-

more inside the photon propagator.

During those last twenty years, more general Y.M.

field theories have been constructed, They are based

on local invariance with respect to the non-abelian I,ie

groups SU(n). The archetype of such a theory is quan-
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turn chromodynamics (QCD) which is based on local

SU( 3) invariance. In these theories, nonrelativistic

gauge formulations show problems which are not yet

completely solved. For instance, in axial gauge, the

gluon propagator gets an unphysical pole . It must be

regularized to make Feynman integrations but this reg-

ularization is not unique. Another problem (of technical

origin) which arises is the non-locality of the divergent

parts of Feynman integrals. The most important obsta-

cle to tackle these problems is the high complexity of

perturbative calculations done in nonrelativistic gauges

for all non-abelian theories. This complexity has pre-

vented people to make extensive perturbative calcula-

tions. The use of REDUCE has made possible to over-

come this problem. The perturbative calculations made

in the framework of QCD have allowed us to clarify the

properties of nonrelativistic gauges formulations.

The present work is based on results obtained in three

~12’3 It presents the key aspects of acompleted works .

REDUCEprogram created to handle the required pertur-

bative calculations. We shall insist on those features

which may also be useful for other applications .

The high complexity of calculations has led us

- to construct efficient algorithms and to carefully

choose the structure representation of the expres-

sions to be computed,

- to minimize the work done on simplifications.

Another important constraint was the necessity to keep

a trace of the results obtained at several intermediate

stages of the calculations for verification of correctness.

This implied the need to divide the process of calcu-
lation into several well separated tasks. Finally, in or-

der to apply the program to other Feynman diagram

calculations, we wanted to structure it in such a way

that modifications

quirements led us

can be easily realized. All these re-

to give it a high modularity and to
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create specific structure representations well adapted to

each stage of the calculations. We have experimented

its reusability since the set of gauges considered in Ref.

3isquite different from theoneconsidered in Ref.2. In

section 2, we describe the overall structure of the pro-

gram and in section 3, we explain its most interesting

features. The conclusions which may be drawn from our

calculations are presented in section 4. Further remarks

on the program are also made.

2 Structure of the Program

The goal is to compute a QCD one-loop integral us-

ing a gluon propagator which has an unusuaI structure

and to do this computation in such a way that a de-

tailed analysis of the contributions of the various parts

of this propagator may be carried out. Simultaneously,

the verification of the validity of the computation must

be made possible at various intermediate steps of the

calculation. We stress that this is esential since it is

the first time that such a type of propagator is used in

a perturbative calculation without the use of dubious

tricks (see Ref. 3) .
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Fig. 1. Organisation of tasks of the program. The lower boxes

are codemodules which accomplish four dk.tinct tasks and the

upper boxes send input and receive the result of calculations done

by the modules.

The structure of the program is depicted in fig. 1. The

program is divided into four independent modules Ml to

M4 which accomplish four distinct tasks. They receive

their input and send the result of their computation to

their associated data box FT, SFC, LFI, SFE and LR.

The output of each box is kept in a file. The initial

input is the expression of the integrant of the Feynman
integral corresponding to the a specific one-loop Feyn-

man diagram. The output is the result of the Feynman

int egrat ion before the process of renormalization. We

describe briefly here the task of each module:

M 1 separates the integrant into a list of contributions

corresponding to the various portions of the gluon prop-

agators and also according to their dependence with re-

spect to the integration variable. This list is sent to

the box SFC; (Splitted Feynman Contributions). No-

tice that the box FT (Feynman Term) has a passive

role.

M2 analyses the dependence in the integration vari-

able of each term and puts it into a canonical form. The

output is a list (of lists) of MONOMS. Each monom is

in a one-to-one correspondence with a unique Feynman

integral which is represented as a KERNEL. Its output

is sent to LFI (List of Feynman Integrals).

To evaluate each Feynman integral, we choose dimen-

sional regularization. The result may be expressed as

a symmetrized form of a given expression. For reason

of efficiency we do the symmetrization on the abstract

(kernel) form of each Feynman integral and transform

the various lists of monoms into polynomials. This is

the action of M3. The output is sent to the data box

SFE (Symmetrized Feynman Expressions).

M4 computes the Feynman integrals in terms of

generic momenta and substitutes each kernel expression

appearing in the polynomial expressions contained in

the box SFE. It makes a term by term simplification

and gives the output in LR (Loop Result).

3 Description of the Modules

In this section, we want to describe the most interesting
features of the program. First, we shall explain some

properties of the input. This will give us the occasion

to define our notations.

each module is working.

3.1 The Input

Next, we- shall explain, how

The gluon self-energy diagram is given by

internal lines are gluon or ghost lines.

P

d’--’)

Fig. 2. The

D

R=P+Q

Fig. 2. The gluon self-energy diagram.

External lines denote a gluon with 4-momentum Q.

B and D are fixed four-vectors. The projections of Q on

them are respectively Q.B and Q.D. P is the internal

momentum and is also the integration variable of the

Feynman integral. The new aspects of our calculation

is linked to the new structure of the gluon propagator.
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It is given (see Ref. 3) by

—i ( kpk, + k.kP
‘~~(k)= kz+ie 9P. -

k:+ i<

–kPkv
ak2 + a’(c.k)z – k.k

(k: + ie)z
)

(11)

where

c= n*,

k“ = cpvkP,

(k.)’ = CPvkPkv,

n* is a fixed four-vector. A sufficiently general choice

for C is

CPV = ~9tiu + n~n.

where a is a gauge parameter, n a fixed four-vector and

a>o,

*2
n2=n .

The first term in the R.H.S. of (1) is the usual contribu-

tion in the Feynman gauge. The other two terms have a

k-dependence which is more complicated than the one of

the full Feynman gauge propagator itself. When a = O,

the calculations which have been done previously used

identities between distributions, which are algebraically

not necessarily equal, like

k’
-=1
k:+ ic

and the separation formula

n“.w”.(~ + d
(n”.pn.p+ ie)(n”.(p+ q)n.(p+ q) + it) =

+(n*p~f+i,- n“.(p + q)

n*.(p+q)n. (p+ q) + it
)

to reduce the number of propagators. Such “identities”

are proved in distribution theory through the use of reg-

ular test functions. It may however happen that the

regularity conditions are not met in the calculation of

Feynman integrals and that the neglected c-terms in fact

contribute. On the level of the complexity of the Feyn-

man integral, one propagator in the noncovariant for-

malism is, so to say, equivalent to three Feynman gauge

propagators.
From Fig. 2, we see that the integrant contains terms

with denominators of the form

(P2 + ic)”l(r? + ie)02\p~ + it)03(r2 + ic)”4 ‘2)

where al and a4 are equal to 1 while a2 and a3 are inte-

gers between O and 2. Happily, one can avoid to consider

the above explicit expression inside the computer alge-

bra program. Inside the expression of the integrant , it

is unambiguously represented by

pca3rca2.

‘I’he data box FT is the algebraic expression of the graph

of Fig. 2 calculated from Feynman rules taking into ac-

count the above representation of the various denomina-

tors. It is given in terms of products of four-vectors as

it is needed when one wants to use the HEPHYS package

of REDUCE 5.

3.2 The Ml module

This module takes the expression of the self-energy as

given by the data box FT and separates the various

parts corresponding to fixed degrees of PC and rc. The

subexpressions are decomposed to separate the term

which is independent of p and the rest is further de-

composed to separate the various parts according to the

degree of p.p appearing in them. It introduces the re-
sult into an array called FEYN !.TERM whose elements

FEYN!.TERM(a3,a2) have the structure

{&AX, {degp~~~ = d,d}, poo, {Po, PI, .,,, PMAX}} (3)

where Poo is the part independent of p and where Pi is

the coefficient of (p.P)i in the rest. These coefficients

may, of course, still contain other p dependence. The

result is sent to the data box SFC.

3.3 The M2 module

The Feynman integral can be put in a canonical form

which, after a Wick rotation, is a superposition of inte-

grals of the type

~al. .a4

/

~20Jp PP1 . .PP!t
pl, ./Jm = (pz)”1(r~)”2(p~ )a3(r2~

(4)

The numerator of the expression above, is linear with

respect to all components of the integration variable.

The integration is made in the d dimensional space and

d
—w_—

2

In the module this integral is generated and represented
by

SY141NTOP({p1 . . . pn }) (5)

There is no need to keep track of the denominator since

al = l=a4

105



and a3, a2 are fixed and well defined. Let us next explain

the linearization process. Each Pi is extracted from (3).

It is first put in a distributive form and, next, each

monom is placed into a list. The p dependence of each

monom is unambiguously identified and its linearization

realized in the following algorithmic way:

@.P)” * (P.P1)(P1 .P2)(P2.P)(P.P) i-1, (6)

(p.a)i * (p.al)(a.al)(p. a)~-l (7)

where pl, p2, . . .. al.... are generated vectors which will

be declared as indices later on. The recursions are ac-

tive until i = O and j = 1. To avoid superfluous simpli-

fications, these manipulations are done in the symbolic

mode and the list of arguments of each SYMINTOP

directly generated. To give an example, the monom

3( P.P)2(P.7’)3(P. s)(P.0(~.~)

is transformed into

s(~.~)(Pl.P2)(P3 .P4)(~.~1)(~.~2)

* sYMINToP({pl, p2, p3, p4, ?’, ?l, r2, s,t}) (8)

The result is sent to the data box LFI.

3.4 The M3 module

The operator SYMINTOP must be symmetrized.

Though a transformation of each monom (as given by

(8) into a sum over all permutations of the indices ap-

pearing in SYMINTOP would work, the subsequent

number of terms would then be too big. So, we take the

underlying intrinsic symmetry of the expression into ac-

count. For our present purpose, it is enough to compute

the divergent parts of the integrals (4). For these, one

finds terms which contain a certain number i of sym-

metric pairs of indices and n — 2i isolated indices. The

number of terms in the sum is
~!

number-of-terms =
2~i!(n – 2i)!

For instance, the divergent part of the integral

[9)

contains the structure

(P1OI ~9)(~~,f17)(/@,fi5)(~4,/@)(f12)(~~)

and the number of terms is 4725 compared to 10! . M3

contains the procedures for the above symmetrization

of the monoms.

SYMINTOP becomes a symmetrized sum of another

KERNEL called INTOP. The polynomial expression is,

finally, reconstructed. The results, for all values of a3

and a2 are put in an array called POLINTOPEXPR

stored in the data box SFE.

3.5 The M4 module

This module effectively computes the value of the Feyn-

man integrals and, subsequently, substitutes the calcu-

lated values inside the array elements contained in the

data box SFE. The results are put inside the LR . The

calculation is delicate because the swelling of interme-

diate expressions may be very large. First, we further

simplified the calculations taking

~2=o=n*2 (10)

Next, we have made the reduction of each integrant us-

ing the explicit expressions of C’ and C’z (see Ref. 3) by

hand and we have given the results to the program as

symbolic mode expressions . The program extracts the

parametric Feynman integrals called ZINTEG(i, j, k, /, in)

where

ZINTEG(i, j, k, i, in) =

in = {n+~, n->} (12)

and computes them. We observed that the results of

integration are often long expressions. For instance,

when six arguments are present, each integral in fac-

t orized form occupies 11K and a factor over 10 more

when written in a nonfactorized form. It was hopeless

to substitute them simuitaneous[y. So, we developed

the following strategy:

a.

b.

4

To

The integrals are, in a first step, computed for

generic arguments called

VECTI , VECT2, . . . . VECTN.

The results are kept (in a factorized form) in an

array called INTOPINI.

Writing the elements of POLINTOPEXPR in a

distributed form, a term by term substitution of

the integrals is done. The program doing this is

given in the appendix C of Ref. 2 , The functions

which put the input expression into a distributive

form are given in the package ASSIST o of the li-
brary of REDUCE 3.4. With that method of calcu-

lation the intermediate expression has never occu-

pied more than 1.5 Mbytes of heap space for the

calculation of the a2 = 1 = a3 contributions.

Conclusions and Further Re-

marks

give the program its powerful features. we had

mostly to work within the symbolic mode. The main
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reason was that it was vital to avoid superfluous sim-

plifications . The control of the simplification process

is possible in RLISP but not on the level of the alge-

braic mode. This is, in our view, the main drawback

of REDUCE. The default full simplification of algebraic

expressions made by the function aeval should be made

suspendable at the level of the algebraic mode and re-

placed by the evai- type lispian evaluation. To keep the

expression very compact, in each step of the calcula-

tions, we have maximized the implicit character of its

representation . There is one noticable exception to this

rule: this is when we introduce the distributive repres-

ent ation of the multivariate polynomial which describes

the Feynman contribution before integration is made

and when we reintroduce it to generate a step by step

simplification. In each case the increase of the mem-

ory occupation was controllable and, in fact, “ a priori

“ known. The adoption of the distributive represen-

tation made the algebraic calculations become mainly

symbolic manipulations of abstract data.

Feynman integrals have been computed indepen-

dently of the integration package IMT. This lzwt pack-

age has been used only to check the validity of our

own specialized algorithm. The package EEPHYS was

not used for its trace calculation facility (we have no

fermion here). It was used to take profit of its abstract

4-vector data structure, to exploit the algebraic prop-

erties of the product of two 4-vectors and to use the

facility of index summations. The simplification proce-

dures of the package worked automatically and nicely as

soon as the results of integration were introduced in the

final formal expression given by the module M3. The

system was able to realize the important simplifications

we expected.

To give an example, in class HI nonrelativistic gauges

and in the limit a = O (corresponding to the axial

gauge), the divergent part of the contributions of all

Feymnan integrals for a2 = 1 = a3 is regular and re-

markably simple. It is given by :

- ( B .D*Q . tJ*IIIP2**2 + 2*B . Q*D , Q*NP2**2

+ 2*B . D*Q . NN*Q . NSTAR*lfP2

- 6*B . Q*D . IJN*Q . llSTAR*NP2

+ 6*B . Q*D . NSTAR*Q . NN*NP2

+ 6*B . NH*D . Q*Q . NSTAR*NP2

- 2*B . NN*D . NN*Q . NSTAR**2

- 3*B. NN*D. NSTAR*Q, NN*Q. NSTAR

+ 6* B. NsTAR*D. Q* Q.%N*HP2

- 3* B.?7STAR*D .NN*Q. NN*Q. NSTAR

)/(6*MP2**2)

where

1
n+ = ~(n+ n”),

NP2@n~ , NNwn, NS’TAR@ n*.

The fact that we end up with a local expression is an

important outcome of the calculations.

Another feature which merits further comments is the

reusability of the program. In Ref, 3 planar and light-

cone gauges with a causal single-pole prescription have

been reconsidered. A recent proposal made to regu-

Iarize the unphysical pole inside thegluon propagator7

was used to compute the gluon exchange contribution

of fig. 2. The Feynman integrals are quite different.

To implement the necessary modifications, we had only

to make a small addition to the symmetrization pro-

gram included in M3 and we had to modify the module

M4. All calculations were completed within a few days.

Again, new interesting results are obtained. They show

that that ghosts different from the decoupling Faddev-

Popov ghosts must be used so that the main motivation

in using true (class II) axial gauges in loop calculations

is lost.

Our program is still an incomplete package to com-

pute loop integrals. Its aim was NOT to do that task

anyway. In spite of this, we think it offers a unified and

efficient strategy to reach that goal. A module should

be added which generates all Feynman diagrams of a

given order and apply the relevant Feynman rules to

generate the input sent to the data box FT. The al-

gorithms necessary to compute the finite parts of the

Feynman integrals should be added to M4. Finally a

module should be added which apply the renormaliza-

tion process on the results as given by M4. In that way

one isolates the renormalization process. This is impor-

tant for reusability since one may use many different

renormalization schemes.
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