N
N

N

HAL

open science

Asymptotic expansions of functional inverses
Bruno Salvy, John Shackell

» To cite this version:

Bruno Salvy, John Shackell. Asymptotic expansions of functional inverses. [Research Report] RR-

1673, INRIA. 1992. inria-00074883

HAL Id: inria-00074883
https://inria.hal.science/inria-00074883
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00074883
https://hal.archives-ouvertes.fr

LLvappPul o UL v uldliul vl

N-1673

UNITE DE RECHERCHE
INRIA-ROCQUENCOURT

Programme 2

Calcul symbolique, Programmation
et Génie logiciel

ASYMPTOTIC EXPANSIONS OF
FUNCTIONAL INVERSES

Institut National
de Recherche Bruno SALVY
en Informatique John SHACKELL
et en Automatique

Domaine de Voluceau
Rocquencourt
B.P. 105
78153 Le Chesnay Cedex
France
Tél.:(1)3963 5511

Mai 1992

Asymptotic Expansions of Functional Inverses

Bruno Salvy John Shackell
Algorithms Project, University of Kent at Canterbury,
INRIA Rocquencourt, Canterbury,
78153 Le Chesnay Cedex, Kent CT2 7TNF,
France England
Abstract

We study the automatic computation of asymptotic expansions of functional inverses. Based on
previous work on asymptotic expansions, we give an algorithm which computes Hardy-field solutions of
equations f(y) = z, with f belonging to a large class of functions.

Développements asymptotiques d’inverses fonctionnels

Résumé

Nous étudions le calcul automatique de développements asymptotiques d’inverses fonctionnels. A
partir de résultats antérieurs sur les développements asymptotiques, nous donnons un algorithme qui
calcule les solutions d’équations f(y) = z, pour des fonctions f appartenant & une classe étendue, et
pourvu que ces solutions appartiennent a un corps de Hardy.

To appear in Proceedings ISSAC’92, P. Wang ed., ACM Press, 1992.

Asymptotic Expansions of Functional Inverses

Bruno Salvy
Algorithms Project,
INRIA Rocquencourt,
78153 Le Chesnay Cedex,

France

Abstract

We study the automatic computation of asymptotic ex-
pansions of functional inverses. Based on previous work
on asymptotic expansions, we give an algorithm which
computes Hardy-field solutions of equations f(y) = z,
with f belonging to a large class of functions.

Introduction

Asymptotics in symbolic computation have long been
restricted to formal power series manipulations. In the
recent years, new approaches have given rise to more
and more general types of series (see [4, 14, 15]) and this
opens up a new field of applications to computer algebra
that we shall christen “symbolic asymptotics”. In the
same way as symbolic integration is based on differential
algebra, the existing theory of symbolic asymptotics is
based on Hardy fields. We shall review some properties
of Hardy fields in Section 1. Two important notions
for formal manipulations and for proving theorems were
introduced in [19, 16], these are nested forms and nested
expansions. Nested forms are expressions like

610g2 7 eV/loglog e (1+¢1) (2))
bl

where [is a real constant and qb(l)(r) tends to 0 when z
tends to infinity (a formal definition will be given be-
low). In certain cases, one can compute a nested form
of ¢{1) (), introducing a new function ¢¢* and then re-
peat the process, thus generating a sequence of nested
forms; this sequence is called a nested expansion.

In previous papers by J. Shackell [15, 19, 16, 18, 17],
algorithms are described that enable the computation
of nested expansions for: i) exp-log functions, i.e. real

John Shackell

University of Kent at Canterbury,

Canterbury,
Kent CT2 7TNF,
England

functions of one variable composed by finitely many ex-
ponentials, logarithms and real algebraic functions, ii)
Liouvillian functions and ¢iz) solutions of algebraic dif-
ferential equations (provided that these lie in a Hardy
field).

In this paper, we give an algorithm to compute a
nested expansion of y(z), where y(z) is a solution of

fly) ==,

The class of allowable functions f, includes some which
are not meromorphic at infinity, which means that the
problem cannot always be solved by functional inversion
of a power series. Equations of this type are encountered
for instance when applying the saddle-point method to
asymptotic estimates of Taylor coefficients of generating
functions (see for instance [2, chap. 6]). In this context,
one is interested by an integral of the form

r — 00. (1)

1 F(z)

— z
2w J ntl T

and when the saddle-point method applies, the saddle-
point is defined by

F(p)
"Fp)

One is then interested in the asymptotic behaviour of
the solutions to this equation when n tends to infinity.

This paper is structured as follows: in Section 1, we
recall the elementary theory of Hardy fields and prove a
result concerning Hardy fields and functional inversion.
Then in Section 2, we reduce the problem to the case
when the inverse function tends to infinity. In Section 3
we show how to obtain the first asymptotic approxima-
tion to the inverse, and give a proof of its correctness.
In the next section we describe the algorithm for the full
asymptotic expansion and prove our main result which
is that the algorithm computes the nested expansion of
the inverse function. Then in Section 5, we describe the
working of the algorithm on an example from de Bruijn’s

book [2, p. 25-28].

—1=n.

1 Basic
fields

We recall the part of the theory of Hardy fields that will
be used in this paper. More information can be found
in M. Rosenlicht’s papers [10, 11, 12, 13].

Let X be the ring of germs at infinity of C*° func-
tions. (Think of it as the set of possible asymptotic
behaviours.) A Hardy field is a subring of X' which is a
field closed under differentiation.

The main constraint here is that non-zero elements
of Hardy fields have to be invertible, and thus cannot
have arbitrarily large zeros. Consequently, since their
derivatives belong to the field, they have to be ulti-
mately monotonic and tend to a possibly infinite limit.
Also, differences of two (germs of) functions of a Hardy
field belong to the field and are ultimately of constant
sign, so that this field is ordered.

properties of Hardy

Theorem 1 Let f be an element of a Hardy field which
tends to infinity. Then there exrists a unique inverse
function g of f. It tends to infinity and moreover be-
longs to a Hardy field.

Theorem 1 should be compared to a question asked by

G. H. Hardy in [6, p.87]:

Whether or not it is true that, given an L-
function [exp-log function] ¢ and its inverse
&, there must be an L-function 1, such that
& ~), I cannot say; and, as I said in [5], T
am very doubtful whether this is so.

Theorem 1 does not answer Hardy’s question but

proves the weaker property that there is a function ¥ n
a Hardy field such that ¢ ~ 1.
Proof. Since f belongs to a Hardy field and tends to
infinity, its derivative cannot be identically zero, and
so f'(y) has no zeros for y sufficiently large. The ex-
istence of a unique inverse then follows from standard
results. To prove that ¢ lies in a Hardy field, let P
be a polynomial over R and suppose that there ex-
ists a sequence of points {zy} tending to infinity at
which P(g,4’,...,¢™)) is zero. We show that P = 0.

A simple induction, starting from the relation ¢’ =
(f' o g)~! shows that for each n = 1,2,... the n-th
derivative ¢(™) may be expressed in the form ¢(®) =
Qn(flog, f'oy,. L fM o g), where @, is a rational
function over R. On substituting these into P, we obtain
M oyg),

P(g,d',-.,d™)=R(g,f og,...

with R rational over R. If we regard R as a function of ¢
(i.e. we make a change of variable y = g()), then R
belongs to the Hardy field generated by R(y) and f(y)

and vanishes at the points {g(zx)}. But g(zx) — o©
and hence R(y) = 0. Thus P = 0. It then follows
easily that any rational function of ¢ and its derivatives
must ultimately be of constant sign and so g belongs to
a Hardy field as required. This completes the proof of
Theorem 1. O

If f and ¢ are two elements of a Hardy field tending
to infinity, they are said to be comparable when there
exists a positive integer n such that

f<g" and g <[,

where the order is that of the field. Extending this by
saying that & f and f~! are comparable and that two el-
ements tending to a non-zero finite limit are comparable
yields a decomposition of the Hardy field into equiv-
alence classes called comparability classes; the com-
parability class of f is denoted by v(f). Given two
functions f and ¢ in the field, with f,g — oo, we
write y(f) > v(g) if f > ¢” for all n € N. This re-
lation is independent of the representatives of the class,
and setting (1) as the smallest class gives a total order
on the set of comparability classes. One should think of
these classes as basic functions of an asymptotic scale.
Their possibly finite number minus one is called the rank
of the field.

An important special type of Hardy field, one of fi-
nite rank, closed under f — f° for all real ¢, was consid-
ered by M. Rosenlicht in [12]. In [19], such fields were
called Rosenlicht fields and it was shown that any ele-
ment of a Rosenlicht field has a nested expansion. We
now define these latter objects more precisely.

We use the classical notations l;(z) (or sometimes
just lpz) for the logarithm iterated k times and like-
wise ey (z) for the iterated exponential. A nested form
is then a finite sequence {(s;, €, my, di, ¢i),i=1...n},
where s; and m; are non-negative integers, ¢; is +1, d;
is a real number, and ¢; is an element of a Hardy field.
Such a sequence represents

¢ = €3 (I, (2)1(2)),

and recursively

Gi—1(z) = eZ’l(lg;l(r)qSZ(r)), 1=2,...,n,

with the additional constraint that ¢, tends to a fi-
nite limit, that each ¢; is of a smaller order of growth
than l,, (i.e. v(¢;) < y(lm,)). We also impose some
conditions ensuring, for example, that the expression
cannot be reduced by simplifying an exp(log(.)); specif-
ically we require d, # 1 unless s, = 0 or m, = 0
and also d; > 0 unless s; = 0. The number n will be
called the length of the nested form. Having thus de-
fined a nested form, one defines a nested expansion as

a sequence of nested forms Fj, such that Fi4q is the
nested form of ¢{¥+1)
set ¢(0) = ¢.

What makes these nested expansions very useful is
that one can compute easily their ordering, their expo-
nential and their logarithm.

= ¢$lkk) — lim qbﬁlkk), where we have

2 Singularities of f

In the quest for the possible asymptotic forms of y(z)
satisfying (1), the first task is to find the singularities
of f, since the possible limits of y(z) form a subset of
these. Unfortunately we know of no algorithm for doing
this in the most general case, when f is defined by an al-
gebraic differential equation. We deal with this problem
by introducing a new constructor Singularity0f, akin
to Maple’s Root0f. However, there are several special
cases where one can be more specific.

Rational and algebraic functions. Then the singularities
are algebraic numbers and thus known “explicitly”.
Ezp-log functions. Then the set of possible singularities
can be reduced to a set of Root0fs, by a direct recursive
algorithm.

Solutions of linear differential equations with exp-log co-
efficients. Then it is known that the singularities of the
solutions are either at infinity, or at roots of the leading
coefficient, or at singularities of the coefficients. Thus
the set of possible singularities can be obtained auto-
matically in terms of RootOfs.

One particular problem that occurs when dealing
with symbolic asymptotics is that of deciding whether
a constant is zero or not. With exp-log functions, for
example, this is related to some difficult conjectures in
number theory and could be undecidable (see [7, 8, 9]).
A fuller discussion of the constant problem is beyond the
scope of this paper. It suffices to say that in view of the
above, we require the use of an oracle which is able to
decide the signs of constants. These constants will have
to include the singularities of f given by the constructor
Singularity0f. Note that having a solution in terms
of Singularity0f is useful from the practical point of
view, since one can then use numerical evaluation to get
a partial answer to the constant problem, just as one
often does when constants like = or v are involved. For
other cases, like f(y) = cos(my) + 1/sin(y), we assume
that at some stage the program or the user will decide
that one particular kx is of interest.

Suppose we have found a candidate singularity s.
Our next step will then be to change the variable de-
pending on whether s is finite or not. If it is finite,
we study both the changes of unknown function! y =
s+ 1/Y; if s = —oco then we change the sign of y.

1Everything we consider here lies in the real domain.

In all these cases, we have reduced the problem to the
study of (1) when y tends to +o00. Note that if s is a
finite singularity and f(s — 1/Y) belongs to a Hardy
field, and f — oo as y — s_ for example, it follows
from Theorem 1, using the change of variable, that there
is a unique Hardy field solution of equation (1) which
tends to s_. Similar remarks apply to s;. However not
all equations of type (1) have solutions lying in Hardy
fields. Two simple examples where this is not the case
are given by —y? = z and y~! +sin(y~!) = z.

3 The First Nested Form

In this section, we restrict ourselves to the case when y
tends to infinity in equation (1). We shall also require
that f (or rather its germ at infinity) belongs to a Hardy
field. We furthermore require that nested forms can be
computed for f itself and various expressions containing
it. To be precise, let F be the set of functions obtained
from y and f(y) by application of arithmetic operations
and the operations F' — exp(F') and F' — log|F|. Then
we assume that we can compute nested forms for ele-
ments of F. This will be the case if f is an exp-log
function (see [15]) or more generally if f belongs to an
asymptotic field (see [18] for the definition and details,
and also [17]).

Algorithm: First Nested Form.

Input: a function f(y) € F given as a nested form.

Output: the first nested form for y(z), the Hardy-field

solution of f(y) = z tending to infinity at infinity.
Suppose then that

fly) = es (lgny : fl(y)))

with ¥(f1) < ¥(lm). The exponent of e, is +1 here since
by hypothesis f tends to infinity. Inverting equation (1)
we obtain an implicit equation

y = em(I/ %2 91(y)), (2)

where for simplification we have set g1(y) = fl_l/d(y).
This last equation will be the basis of our iteration. The
algorithm then outputs (m,1,s,1/d) and calls the iter-
ation step on g¢1(y). Note that g € F and that y(g1) <
7 (lm).-

Tteration step. The input of this step of the algorithm
is a function g¢;(y) € F with v(g;) < v({n). Its output
is the nested form of g;(y(z)).

If g;(y) has a finite non-zero limit ¢ (at infinity),
then ¢;(y) = e+ G(y), with G(y) = o(1) as # — oo, and
the nested form for ¢;(y(x)) is g:(y(z)) = ¢ + G(y(z)).
The algorithm ouputs this and then stops.

If ¢i(y) tends to zero or infinity, we begin by com-
puting the first part of the nested expansion of g;(y):

9i(y) = e5lluy - G), (3)

and we substitute (2) into this giving
gi(y) = €5 \Ulem (/2 - 1)) - G(y)| . (4)

We next note that since y(gi) = (e, (I - G)) < 7(Im),
we must in this case have p > m. We can therefore
rewrite (4) as follows.

1
6:(y) = Gl (Glop1z +log g1 () - G(y)],
= 62[12—m+s$: h(ri y) : G(y)]’ (5)
where for g — m = 1 we have
1 loggi(y) '
h = -+ ==
() = 5+ 22200 0

and for g — m > 1, we have the asymptotic estimate

e =140 (——). (7)

Note that loggi(y)/ls+12 — 0, since (91(y)) <
Y(lmy) = v(lsx). The output of this step is (o, €, u —
m + s, 8) representing the estimate

€

9i(y) = e [lm st - 9in1 V)],
where we have set g;y1(y) = G(y) - h(f(y),y). We
have ¥(g;+1) < ¥(9:) < 7(lm), and since
gi+1(y) =

__lo(gi(v)
lz—m+s (f(y))
gi+1 belongs to the asymptotic field F, and thus can be

fed back into the algorithm.
End of the algorithm.

We have to prove that the process described above
yields a nested form for y(z) in a finite number of steps.
We begin with the following lemma.

Lemma 1 Let ¢ be an element of F, and let its nested
form be

6(0) = e i, e,y - (e o)] - 1)

with ¢\ (y) = o(1). Let ¢ be a member of F such
that v = o(¢). Then the nested form of ¢+ is identical
to the nested form of ¢ except possibly in its last terms:

S(y)+o(y) = e 1% y-e2 [-ecn 1% y-(d+0(y))] - -],

with d a non-zero constant, § — 0 and 8 € F.

Proof. Note first that by rewriting (b(l)(y), one gets
that ¢{1) € F. The proof is then by induction on n.

If n = 0, then ¢(y) + ¥(y) = ¢+ qb(l)(y) + Y(y) is a
nested form of ¢ + ¢, and ¢'t) + 1 € F.

Ifn>0,let ¢1(y) = e2[---esn[idr y - (c+ oM (y))] - 1.
Then

$(y) + ¥(y) = el y - (W1 + ¢(v)/d1(v)).
If s; = 0, this can be rewritten

Iy <¢1(y) + %) :

and the induction hypothesis applies to the inner sum.
Otherwise, having rewritten the sum as

$(y) + ¥(y) = ei {es, -1l v - d(w)] +
exlog(1+¢(y)/91(y)},

an induction on s; leads to the result. O

We need a similar lemma for the product by a function
with a non-zero finite limit.

Lemma 2 Let ¢ be as in Lemma 1, and let i be a
member of F which tends to a finite imit A > 0. Then
the nested form of ¢ -1 is identical to the nested form
of & except possibly in its last terms. Moreover the error
term belongs to F.

Proof. We have
Y(y) = A+ (y),

where {1 (y) — 0, and we first note that it is sufficient
to prove the lemma for ¥(y) = A, because the result
will then follow from Lemma 1. We now proceed by
induction on the length n of the nested form of ¢.

If n =0, then

Ad(y) = Ac+ Aol (y)

is a nested form of the product.
If n > 0 then

Ad(y) = AeSt (1% y - é1(y)]-

If s = 0 then the induction applies to A¢q, otherwise
we rewrite the product as

e (es,-1llt, v d1(¥)] + e1log),

and we can apply Lemma 1 to the inner sum. This
completes the proof of the lemma. (|

Next we examine the effect of substituting an identity
of the form (2) into a nested form.

Lemma 3 Let ¢ be as in Lemma 1. Let y(z) sat-
isfy y = em(I/ 2 AW), with X € F, y(A(y(#))) <
Y(lsz) and my > m. Then a nested form for ¢(y(z))
i

o(y(z)) =

eor7d2 €3
[lm1 m+s¥ €s [lm2 m4s® Csylm

exn [l —mes (d+0(z, y(@))] -~ N,

where d is a non-zero constant, 0 — 0 and 0(f(y),y) €
F.

Proof. Again we use induction on n. The case n = 1
is already clear from the presentation of the algorithm
above and we therefore concentrate on the induction
step.

Suppose then that the result holds when n is re-
placed by n — 1 and let

1(y) = e[z y e[enllm y(e+ oM ()] -]

By the induction hypothesis,

S1(y(z)) = e[t wes
e [l oy (d+ 0z, y(2))] -,

with 6(f(y),y) € F. But

$(y(x)) =) (I, y(x) 1 (y(2)))
= €51 (I, g 2(C + 0(1)d1(y(2))),

as above (where C' is a non-zero constant), and the
result now follows from Lemmas 1 and 2. O

Theorem 2 Let f € F. Then one can compute the
nested form for any solution y of equation (1) in «a
neighbourhood of +o0o. In particular, if the nested form
of f is

fy) = e [0 yel [l yes] -

esn iy (c+ fM @] 1, (8)
with ¢ a non-zero real number and) (y) — 0 as y —
oo, then the nested form of y s

_ 1/d —¢ €
y_eml[l/I 2[lm2 m1+51I62.”

e 10y por (d g™ (, y(@)] - 11, (9)
with d a non-zero real number and ¢'') (z,y(x)) — 0
as * — co. Moreover dY is equal to ds/dy if s = 0 and
to da otherwise, df is equal to d3/dy if s5 = s3 =0 and
to d3 otherwise, and so on. Furthermore g<1)(f(y),y) €
F.

Proof. Inversion of (8) yields
y(2) = em, (]2 g1(y(2))),
asin (2). On applying Lemma 3 with ¢ = g1, we obtain
&) = om0 U,
6"[mn—ml+sl z(b+&(x,y(x)))] -,

where b is a non-zero constant, £ € F and £ — 0. If s2 #

0, then

red[-

—62/d1 dz
652 [lm2 mi1+s1

cen [l e @ (O €2, y(2)] -)] =
eXp{(62/611)652 1[lm2 m1+51‘l663[

e [l —mes @ (0 € y(2)))] -1,

and the result follows from Lemma 2. The proof of

Theorem 2 is thus complete and it is clear that our
algorithm gives a nested form for y(«) in a finite number
of steps.

red|

4 The full
of y(z)

We would like to be able to obtain the nested form
for gt*) (y) in (9) and also subsequent forms in the nested
expansion of y(z). We shall denote these by g{¥+1) (y) =
gh (f(v),9) = lim g} (F(), v).
to substitute an existing asymptotic expression for y(z)
into g{!(y). The only problem is that now when we sub-
stitute (2) into ¢! —and more generally into glgk)fin
the iteration step, the inequality g > m may no longer
hold. We therefore consider the modifications necessary
to our arguments of the previous section when u < m.

If 4w = m then (4) becomes

es [z - g5 (), (10)

nested expansion

The obvious tactic is

g (4

y) =
where we have set glgi)l (vy) = ¢%(y)G(y), which is
fed back to the algorithm. The output of this step
is (o,€,s,6/d). Of course, if ¢ > 0, s > 0, § = d
and giil — a, where a € R\ {0}, then we need to rewrite
the expression for gﬁk) as ef_([l9_, exp{ls(f(y))(gZ{_]i)1 —
a)}], so as to satisfy the conditions for a nested form.
Likewise if ¢ > 1, s > 1, a = 1 and exp{ls(f(y))(gg_li)1 -
a)} tends to a finite limit, then a further rewrite is nec-
essary, and so on. However this causes no serious diffi-
culty.
If p < m, then (4) gives

1/d

9 (W) = €5 |em—um1 (1% - 1 ()

()]
em_u_1(lsl/ zg1(y))

= €5 pm_u[lt/ % - g1(y) - Az,).
If m—pu=1, then

while if m — g > 1, we have the asymptotic estimate

1

s mgl(y)

The output of this step is (¢ +m — p,¢€,s,1/d) repre-
senting the estimate

0P W) = oo, gl ()

where we have set gﬁi)l(y) = g1(y)-h(f(y), y). The proof

that ggf_)l € F is easily done by rewriting ggf_)l from (11)

as a function of g<k)(y) and f(y). We can therefore

feed gﬁ?l back into the algorithm as before.

We can thus summarize our full algorithm as follows.

Algorithm: Full Nested Form.

1. Determine the singularities of f to be investigated.
Treat each singularity in turn, replacing y by a
new variable where appropriate, to reduce to the
case when y — oo.

2. Compute the first part of the nested form of f.
Check that it tends to infinity, otherwise reject
the singularity.

3. Invert the first part of the nested form of f to ob-
tain an expression of the form (2). Then substi-
tute (2) into itself, as in Algorithm: First Nested
Form. This yields a nested form and an error
term lo 4 ‘" (y).

4. Apply the iteration step to gl*!(y), yielding a
nested form, a non-zero limit [; and a func-
tion g{#+1) (y), for which this step can be repeated.

Note that in the case of functional inversion of a func-
tion which is meromorphic at infinity, our algorithm re-
duces to formal inversion of formal power series, and
this means that it can compute (although not very effi-
ciently) inversion of power series.

We now give our main theorem.

Theorem 3 The above algorithm computes each nested
form of the nested expansion of y(x) in a finite number
of iterations.

Proof. We have already proved that the algorithm suc-
cessfully computes the first nested form. As regards the
later nested forms we have to ensure two things. Firstly
we must show in (10) and (11) that 7(g§i)1(y($))) <
Y(ls(2)), and secondly we must prove that after a finite
number of stages, we reach the stage ¢ = ny when ggi)
tends to a finite non-zero limit.

When g = m, we have

(6 (1) = 1L ()G (w)),

On the other hand, 7(125/%) =v(liz) = y(4ygi(y)) =
Y(lmy). By definition of the nested form, we
have y(lmy) > 7(91(y)) and since g = m we also
have 7(lny) > 1(G(). So 1(glh (u(x)) < 7(1:(=))
as required.

For the case when g < m, we already have
that v(g1(y)) < ~(ls(2)) and because of the form
of h(z,y), we immediately obtain that ’y(gﬁ?l (y(x))) <
Y(ls(2)) in this case also.

The fact that the computation of each particular
nested form in the expansion of y(z) terminates in a
finite number of steps can be seen as follows. When we
are computing a particular nested form suppose that
at some stage we substitute y = e, (l;2 ¢1(y)) into a

form glgk)(y) = €,(l,y G(y)). Then the input of the next
stage is gﬁi)l(y) with 7(g§i)1) < %(l,) and so the value
of p strictly increases as we go from one substitution
to the next. Since m remains fixed, we must eventually
reach the stage when g > m, unless the computation
first ceases by reaching the stage when some g§k)
to a non-zero constant. But once > m, Lemma 3 ap-
plies and so we always get termination for each nested

form in a finite number of stages. O

tends

5 Example

We shall work out the example given in de Bruijn’s
book [2] on pages 25-26:

ye! = .

In this case, the nested form of f is computed by the
algorithm in [15] as

f(y) = e¥litlosy/y]

The estimate produced by the first step of the algorithm

1S
loi] (12)

y=logxz |l—
Y g[y+logy

which yields the first level of the nested expansion:
y1 = logz(1+ o(1)).
The second step starts by computing a nested form
of logy/(y + logy) as y — oo:
logy _ logy <1 _logy) .
y +logy y y+logy

Now the algorithm substitutes (12) into the dominant
part of (13) yielding the exact form:

loglog <1 log[l—i—logy/y])] (14)
log 2 log(y +logy) /|

This gives us the second level of the nested expansion:

(13)

y = logz [1—

y2 = logz — loglog z(1 + o(1)),

and we apply once again the same process. We get
a nested form for the last quotient by the algorithm
of [15]:

log[l1+logy/y] 1

log(y + log) , (Lt 00w,
with ¢(y) a function tending to 0 at infinity, whose ex-
pression is too messy to be reproduced here. Then we
substitute (12) into the dominant part of this, which
gives an exact form:

loglog x 1
Tlogz <1 - logm(l + 1#(3/)))] ,

y = logz [1 —
hence the third level of the nested expansion:

ys = logz — loglog z + %(1 +o(1)),

and so on, each new step producing one more term.

Although this method is clearly more cumbersome
than the approach described in [2], it has the advan-
tage of being purely automatic and general. Besides,
the algorithm for nested forms in [15] was not designed
with complexity in mind, and will hopefully be improved
complexity wise in the future.

Conclusion

The calculus of nested form which has been started
in [15] proves to be both a computational and a math-
ematical tool. It becomes possible to state and prove
algorithms on a class of asymptotic expansions much
larger than mere formal power series. We feel that sym-
bolic asymptotics is a young field of symbolic computa-
tion which has plenty of potential applications. Func-
tional inversion is one of them and others should follow,
such as asymptotic expansions of integrals or of coeffi-
cients of generating functions (see [14] for ideas on that
and [3] for applications to the automatic analysis of al-
gorithms).

Acknowledgements. The second author would like
to thank INRIA-Rocquencourt, and in particular
Philippe Flajolet and Bruno Salvy, for their hospitality
during the week 24-30 November, when the groundwork
for this paper was laid. This work was supported in part
by the ESPRIT III Basic Research Action Programme
of the E.C. under contract ALCOM II (#7141).

References

[1] BourBaKI, N. Eléments de Mathématiques. Her-

mann, 1951, ch. V: Fonctions d’une variable réelle.
Appendice, pp. 36-55. Second edition, 1961.

[2] DE BrRULN, N. G. Asymptotic Methods in Anal-
ysis. Dover, 1981. A reprint of the third North
Holland edition, 1970 (first edition, 1958).

[3] FLAJoLET, P., SALvy, B., AND ZIMMERMANN,
P. Automatic average—case analysis of algorithms.
Theoretical Computer Science, Series A 79, 1 (Feb.
1991), 37-109.

[4] GEDDEs, K. O., AND GONNET, G. H. A new
algorithm for computing symbolic limits using hi-
erarchical series. In Symbolic and Algebraic Com-
putation (1989), vol. 358 of Lecture Notes in Com-
puter Science, pp. 490-495. Proceedings ISSAC’88,

Rome.

[5] HarDY, G. H. Orders of infinity.
Tracts in Mathematics 12 (1910).

Cambridge

[6] HarDY, G. H. Properties of logarithmico-
exponential functions. Proceedings of the London

Mathematical Society 10, 2 (1911), 54-90.

[7] Mosgs, J. Algebraic simplification: a guide for
the perplexed. Communications of the ACM 14, 8
(Aug. 1971), 527-537.

[8] RicHARDSON, D. Some undecidable problems in-
volving elementary functions of a real variable. The

Journal of Symbolic Logic (1968), 514-520.

[9] RicHARDSON, D. Towards computing non al-
gebraic cylindrical decompositions. In ISSAC’91
(New York, 1991), ACM Press, pp. 247-255.

[10] RoseENLICHT, M. Hardy fields. Journal of Mathe-
matical Analysis and Applications 93 (1983), 297-
311.

[11] RosENLICHT, M. The rank of a Hardy field.
Transactions of the American Mathematical Soci-

ety 280, 2 (1983), 659-671.

[12]

[13]

RoseENLICHT, M. Rank change on adjoining real
powers to Hardy fields. Transactions of the Amer-
ican Mathematical Society 284, 2 (1984), 829-836.

RosENLICHT, M. Growth properties of functions
in Hardy fields. Transactions of the American

Mathematical Society 299, 1 (1987), 261-272.

Sawvy, B. Asymptotique automatique et fonctions
génératrices. Ph. D. thesis, Ecole Polytechnique,
1991.

SHACKELL, J. Growth estimates for exp-log func-
tions. Journal of Symbolic Computation 10 (Dec.
1990), 611-632.

SHACKELL, J. Computing asymptotic expansions
for elements of hardy fields. Preprint, 1991.

SHACKELL, J. Extensions of asymptotic fields via
analytic functions. Preprint, 1991.

SHACKELL, J. Limits of liouvillian functions.
Preprint, 1991.

SHACKELL, J. Rosenlicht fields. To appear in
Transactions of the American Mathematical Soci-
ety, 1991.

