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Nous 6tudions ici la paral161isation de

l’algorithme .L3 pour la r6duction des bases de

u.%eaux. Sous le mod~le des architectures par-

allbles ~ m6moires distributes, l’algorithme pro-

pos6 permet d’utiliser efficacement 0(n2) pro-

cesseurs, oti n est la dimension de la base con-

sid&6e. Cet algorithm, implant6 sur une ma-

chine massivernent parall~le, donne lieu i de

nombreuses experimentations. Les premibres,

reportdes ici, font d’une part apparaitre de

bons rr%ultats quant aux acc~kations obtenues

en pratique pour des grands nombre de pro-

cesseurs. Elles permettent d’autre part de com-

p16ter Ies connaissances exp&imentales sur la

complexit~ s6quentielle de L3 .

Abstract

The famous L3 algorithm for lattice basis

reduction k parallelizecl. Using a dktributed

memory architecture compntationaJ model, the

algorithm we propose efficient y uses 0( n2 ) pro-

cessors, where n is the dimension of the ba-

sk to reduce. Its implementation, realized on

a massively parallel machine, allows us to con-

duct many experimentations. The first results

are presented in this paper. We show that high

speed-ups are obtained even for large amounts

of processors, and give new ernpiricti knowl-

edge of the L3 sequential complexity.
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1 Introduction and Survey

Throughout the paper n and m are positive integers

b c Zm n linearly independent vectorsand bl, bz, ..., ~

(for the general case, see [7, 23]). Without loss of gen-

erality we will take m = n. The lattice L in Zn gener-

ated by the basis (bl, b2 , . . . . b~ ) is the additive subgroup

~~=1 Zbi. We define the lengh B of the basis to be the

largest Euclidean norm lb~ 1, [bi I < lb~ I = B, for 1 ~ i <

n. L will also denote the n x n matrix which rows are

the vectors bi.

Algorithm 1 : L3 reduction

Input data : bl, b2, . . . . bn a basis

Compute the b;, b;, . . . . b; and the [Lij

i:z2

while i < n

forj = i-1 to 1

if Ipijl > ~ then bi := bi — [ pij jbj

if lb: + pi,i_lb~_l Iztz < lbl_,12
then swap b, and bi_l, i:=i-1 (i#l)

else i:=i+l

Output data : bl, bz, , . . . b~ a t-reduced basis.

Sequential point of view. We recall that the reduc-

tion a/gor’zthm 1 described in A. Lenstra, H .Lenstra and

L. LOV6SZ [18] modifies an input basis bl, b2, . . . . bn so it

satisfies the following t-reduction properties :

and,

where the vectors b;, bj, . . . . b: denote the Gram-

Schmidt orthogonalisation of the output basis :

(3)
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(4)

Forthecornplexity studies, thepararnetert in(2) will

have its usual value 2/@ but could vary from I+c

(c > O) to m. The lattice basis reduction algorithm

has many application areas, such as factoring polyno-

mials [1, 11, 17, 18] or integers [32], breaking cryptosys-

tem [2, 6, 37, 39, 21, 40], diophantine approximation

[14], finding integer relations [7, 8] or solving subset

sum problems [15, 24, 33]. Such a great interest for

the L3 fundamental technique has leaded several au-

thors to improve the original method and reduce its

computational cost. Assuming that the classical arith-

metic procedures are employed, the number of arith-

metic operations needed in [18] for the reduction is at

most 0(n4 log 1?) and the integers on which these opera-

tions are performed each have binary length O(n log B).

The algorithm runs in 0(n6 log3 l?).

In [9] Kaltoken has shown that the algorithm can ac-

tually be executed in- 0(n6 log2 1? -I- n5 log3 B) with a

slighty weaker notion of reduced basis (Siegel’s fi-

reduction [42]): with condition (2) replaced by

This is not a loss of generality, indeed, both (2) and (5)

lead to the following lemma,

Lemma 1 ([18]) If L is a lattice with reduced basts

bl, bz, ..., bn, then for every nonzero x G L,

Schonage [34] then successfully attempted to change one

basic choice of L3 , let us first recall that a L3 execution

produces a somewhat bubble-sort sequence of the two

following transformations,

Swap. Choose i, 1< i < n, such that (2) is not satisfied

and interchange bi - 1 and b%.

Translation. Choose i and j, 1< j < i < n, such that

(1) is not satisfied and translate bi respectively to

bj: if r is the integer nearest to ~ij replace b, by

bi – rbj.

It is well known [19] that independently of the order in

which swaps and translations are applied and indepen-

dently of the related choices of i and j, this lead after

a finite number of steps to a reduced basis. In [18] al-

ways the smallest i is chosen for the swaps. Schonage

has shown that a different strategy may lead to better

results. Applying block reduction i.e. with i varying in

small intervals for the swaps, he satisfies the following

semi-reduction condition:

using at most 0(n5 log3 B) bit operations.

A different approach has been investigated by Schnorr

[31, 33]. In order to avoid exact computations on

big integers, he developed a self-correcting algorithm

which simulates the .L3 reduction through high preci-

sion floating-point arithmetic. His algorithm uses at

most 0(n5 log 1?) arithmetic operations on O(n + log B)

bit integers. Since this improvement is entirely dif-

ferent than Schonage’s one, the two can certainly be

combined to give a reduction algorithm using at most

O(n5 5 log B + n35 log3 l?) bit operations.

In a more experimental point of view, working on

the factorization of polynomials, Abbott [1] has re-

ported improved reductions. Beyond a tentative with

floating-point arithmetic and one for a generalization of

Lehrner’s idea for integer gcd [13], he baa given a method

based on complete reductions of pairs of vectors and on

postponed updating of the data. A series of experiments

shows that this last method leads to low running times.

Parallel point of view. All the previous studies have

been done in a sequential framework. Furthermore,

none of them seems to be helpful to derive the par-

allel complexity of basis reduction, or even to design

an efficient parallel algorithm. Anyway, to our knowl-

edge, except von zur Gathen’s classification [43], no

work has been done before on the reduction from a par-

allel point of view. The computational costs of the se-

quential methods presented above, all include the factor

S = 0(n2 logt B) which is an upper bound on the num-

ber of swaps that are necessary to reduce a basis [18].

Our empirical study of the L3 complexity will show that

whereas this bound is too pessimistic for subset sum

problems, lattices for which the bound is experimen-

tally reached can be constructed. A main problem from

a parallel point of view will thus be to reduce this fac-

tor. We will also discuss the influence of the value oft

in (2).

However, to decide whether the problem of computing

a reduced basis, called SHORT VECTORS in [43],

have a fast parallel algorithm is still an open question

[43], We refer to Cook [3] for the definitions of the

complexity classes and of the NC-reductions. Lattice

basis reduction and gcd computations are strongly re-

lated, ~CD OF TWO INTEGERS has been shown

to be hfC’~-reducible to SHORT VECTORS in

dimension two by von zur Gathen. But to

decide whether the former problem is in NC is
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also an open question [3], even if a sublinear al-

gorithm has been given in [12]. Another related

problem is liERMITE FORM OVER Z. As pre-

viously, ~CD OF TWO INTEGERS is easily shown

to be NC~-reducible to ‘H ERMITE FORA! OV.ER

Z in dimension two [10]. And in addition, the lEler-

mite normal form viewed as an application of the basis

reduction in [35] shows that SHORT VECTORS is a

more difficult problem. We may finally remark that size-

reducing a basis (to satisfy the condition (1)) is merely

an Hermite normal form computation.

We are now ready to introduce our parallel approach to

basis reduction. Evidently, a naive parallel inlplenuen-

tation can be based on the parallelization of each swap

of pair of vectors. This idea allows to use O(n) pro-

cessors, but let unchanged the value 0(n2 logt l?) for

S . Our main result is a parallel algorithm based on an

heuristic which consists in swapping up to O(n) pairs

simultaneously. We show that this algorithm efficiently

uses up to 0(n2) processors. While the previous papers

on reduction was using the same strategy to satisfy the

condition (1) of weak reducedness, under the contraiuts

of parallelism we use a different one. Recall that, as no-

ticed by Lovzisz [20], this condition of weak reducedness

is only partially used in order to establish the klIH171a 1:

onlY b%+l,il < } is needed. The full strentgh of weak

reducedness principally restrains the growth of the num-

bers on which operations are performed during the re-

duction.

2 L3 complexity study

Instead of considering the total execution times of the

reductions, we focus on the number of swaps which are

performed during those reductions. This will lead to

better conclusions concerning the L3 complexity. For

most of the lattices which are used by the applications,

the theoretical upper bound S = 0(n2 logt l?) on the

number of swaps using the L3 strategy is too pessimistic.

n 20 30 40 46

193, 391 289, 834 386, 1288 444, 1523

n 50 56 60 66
48~, 1768 540, 2102 579, 2220 636, 2495

1

Table 1: log2, fi B and number of swaps

for subset, sum n-lattices.

A first example is given by the basis associated to the

fifth polynomial factorized by Lenstra [16]. For n = 9

and log21~ 1? % 1000, 309 swaps are sufficient to recluce

the basis. In the same way, we have run systematic

tests for random instances of the subset sum problem

[15, 24] (with randomly distributed solution of lengt,h

n/2, and a density d = 1/2). The results are gathered in

table 1. It can be verified that for the chosen subset sum

lattices, with log B = O(n), we have S = O(n) instead

of 0(n3), Nevertheless, we can construct lattices which

experimentally behave like the worst case of L3 .

n 4 6 8 10
96, 25 163, 109 193, 291 241, 678

n 12 14 18 22

290, 1347 352, 2518 I 434, 6471 533, 13280

Table 2: log2ifi B and number of swaps

for dense n-lattices (K = 8).

Let Fi,j, 1 < i, j < n, i # j be the n x n matrix which

transform any matrix by left multiplying its rows i and

11
j, in this order, by the 2 x 2 matrix F = ~ ~ .

Matrices Fi,j are used to derive the worst c~se of {he

reduction in dimension 2 [41]. They may be combined

in many ways to give lattices of small determinant which

rows are long vectors, say dense lattices. A simple way

to proceed is as follow. We define the matrices Wn ,K:

(7)

jodd>l iodd>l

where we substract n to i + j if it is necessary to fit the

dimension of the matrices. From the eigenvalues 1 + V6

and 1 – W of F, it can be derived that:

[1 wn,K [Im= 0((1 + V5)n’”). (8)

By reducing the lattices given by the matrices Wn,S we

have obtained the results of table 2. Let us first notice

that S = 0(n3). Furthermore, S tends to behave like

$ logl+fi 1?.

n 14 20 26 30

ratio 1.53 1.88 2.69 2.73

n 36 40 50 60
ratio 3.2 3.59 4.15 4.5

Table 3: number of swaps for t= 1 over number of swaps

for t= 3/4 for subset sum n-lattices.

n 4 6I8I1O
1 , ,

ratio 1.08 1.07 l.~(1 1.28

n l~l1411f3118

ratio 1.49 I 1.64 I 1.81 I 1.92

Table 4: number of swaps for t= 1 over number of swaps

for t= 3/4 for dense n-lattices (K = 8).

However, to determine exactly tbe worst case of L3 is

still a major problem, possibly related to the one of

proving that L3 still runs in polynomial time for t = 1.

Lagarias and Odlyzko [15] had soon remarked that in

practice a reduction takes about three tilmes for t = 1
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as long as for 2/fi. To finish this empirical study of

L3 complexity, we precisely compare in table 3 and in

table 4, the number of swaps in the two cases: 2/&

and t = 1. The major remark we can do is that for

two definitely different types of lattices, the ratios of

the number of swaps for t = 1 over the number of swaps

for 2/fi increase like O(n) with similar slopes.

3 L3 -like reductions

For a better understanding, this section is dedicated to a

presentation of the sequential version of the method we

will use for our second parallel algorithm. The order in

which the swaps are applied in the algorithm 1 would be

too restricting in a parallel framework. The algorithm

may be easily modified in order to allow any strategy:

this lead to algorithm 2 below which performs say an

any swap reduction.

Algorithm 2: any swap reduction

Input data : bl, b2, . . . ,b~ a basis

Compute the by, b;, . . . . b; and the ~ij

fori=2 ton

forj = i-1 to 1

if l~ijl > ~ then bi := bi — [ ~ij jbj

while the basis is not reduced

(F) find i St. lb;+ ~i,i-lb~_1\2t2 < lb~_112

swap bi and bi - 1

forj = i-1 to 1

if l~ijl > } then hi := hi – ( Ptj Jbj

output data : bl, b2, . . . . bn a t-reduced basis.

We show in the following that a complexity study simi-

lar to the one used for the L3 reduction can be applied

for the any swap reduction.

Remark (Coefficient growth). Let us already no-

tice that during the translations, the integers will have

length as large as 0(n2 log B) (versus O(n log B) for the

L3 reduction). This could appear to be a major draw-

back. Contrary to that, on the one hand, this seems to

be necessary in order to decrease the parallel complexity

(see section 4.3). On the other hand, empirical results

show that coefficients are not so big, the corollary 2

below on particular lattices will prove this fact.

Our arguments are those laid out in [18] with one mod-

ification given by the the following lemma,

Lemma 2 If l/~, ,L?eZ is a lower bound for the inztial

values of the [b; /2, 1//3 remains a lower bound through-

out the algorithm.

Proof. Let us first notice that each weak reduction does

not modify the value of the Ib: 12. As for the new values

of the norms after a swap (i, i – 1), say bj_l and bj, we

have:

{

b’~_l = \b$12 + /.~~,i_llb~_112 > lb$12]

b’; > t21b;12 > lb;12.
(9)

The assertion of the lemma follows directly. •1

Proposition 1 (Complexity study) The number of

arithmetic operations needed for the any swap reduction

ts 0(n4 log B). If l/~ is a lower bound for the initial

values of the ~b~12, the integers on whzch these operations

are performed are of binary iength O(n log n~B).

Proof. We know that throughout the algorithm, Ibj [2 <

13z for 1 < i < n. It remains to estimate Ibi 12 and p~l.

At label (F), lb,12 $ nB2: it is true at, the beginning of

the algorithm, it trivially remains true after a swap and

it can be established [18] after a weak reduction with

lPij I S ~ ~ For the Gram-Schmidt coefficients, we have
initially, lb~ 12 ~ l/~, therefore, applying the lemma,

we know that this remains true during the algorithm.

We now deduce that at label (F) and during a swap,

p~j < nfiBz:

Following the idea of Kaltofen [9] we know that during

a weak reduction the bi can be computed modulo fiB,

and it can be shown by induction that the Ipij I stay of

binary length O(n log n~B). This last bound instead of

O(n + log n@B) for the L3 reduction: coefficients lp~j \,

1 < k < i which are needed to reduce lflij I are not

necessary lower than 1/2 but only bounded as 0(n/3B2).

The conclusion then comes immediately: at each of

the 0(n2 logt B) steps, the algorithm performs at most

0(n2) arithmetic operations on integers of binary length

O(nlogn,f?B). ❑

Corollary 1 (General case) The integers on which

the operations are performed durang the any swap re-

duction are of binary length 0(n2 log B).

Proof. Let d,, 1 < i < n, denote the Gram’s determi-

nant of the lattice generated by bl, b2, . . . . bi. We have

initially,

It suffices to apply the proposition with ~ = B2n. ❑

For most of the lattices used by the applications (for in-

stance those cited in the introduction) the proposition
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can be applied with much better values of ~. Espe-

cially, for the subset sum lattices we have the following

corollary.

Corollary2 (Particular lattices) The integer~ on

which the operations are performed during the any swap

reduction of a subset sum lattice are of binary length

O(nlog nil).

Proof. Such lattices are given by a matrix of the fc)rm:

L=

1 0 . . . 0 –al

O 1 . . . 0 –a~

. . . .. . “.. . (12)

The Gram-Schmidt orthogonalization of L leads to the

[

.,.

0 0 ... 1 –an

00... OA4

relations:

{

B2~[b;12~l, l<i~n -1,

B2 ~ lb;12 ~ l/nB2.
(13)

Looking at the p~,j, we may derive that,

We can take ~ = n2B4 in the proposition. n

This also proves that throughout the algorithm but ,dur-

ing the weak reductions, the bit length of the numera-

tors and denominators of the rationals are bounded as

O(log n + log B). This remark could be useful for metdl-

ods based on floating-point arithmetic.

4 Parallel basis reduction

We now present two parallel algorithms for basis re-

duction and study their comple~ities. The first one is

a direct parallelization of the sequential L3 algorithm:

we will point out the limits of such an approach. ‘The

second one is based on an original idea of simultaneous

swaps of the vectors. We will not discuss the parallel iza-

tion of the Gram-Schmidt process which is of lower cost,

Our abstract-machine model consists in P processors.

The network topology is a ring or a 2-dimensional torus.

Each processor has a private memcxy an can communi-

cate by a message passing protocol with its neighbors.

We assume that the binary cost for communicating an

integer of length O(l) is also bounded as 0(1). The ma-

chine operates in an asynchronous MIMD mode and the

communications are by rendez-vous.

4.1 L3 parallel reduction

The first parallel algorithm is the parallel version of the

original L3 reduction (algorithm 1). It is simply based

on the parallelization of each swap of pair of vectors and

of each translation, using a ring topology. The number

of processors is given by P = ~n, O < y ~ n. The

processors are numbered from O to P – 1 (we operate

modulo P on those numbers). The S steps of the se-

quential reductions are preserved.

Data repartition, The three matrices which give the

vectors bi and b;, and the coefficients Pij have to be

distributed among the processors. Simply by notic-

ing that each swap (bi _ 1, bi) involves O(n) coefficients

whilst each translation involves O(n i) coefficients, we

decide to minimize the communication cost of the trans-

lations. Precisely, a distribution of the rows of the ma-

trices (thus of the vectors of the basis) would induce

O(ni) data transfer for each of these translations. Our

solution consists in a column distribution of the matri-

ces: it limits the number of data transfer to O(i) for each

translation. The column j of the matrices (thus the co-

ordinate j of the vectors) is allocated to the processor

cdloc(j). Furthermore, we assume that if j = j’+ 1 then

alioc(j) = alloc(j’) * 1,

Communications. At each step i, the processors

aiioc(i – 1) and allot(i) take the decision to swap or

to translate and inform the other processors, After

that, a swap will have a communication cost bounded

as 0(n2 log B): only two neighbour processors need to

communicate. They exchange at most O(n) coefficients

of bit length O(n log B). Concerning the translations,

let us detail a weak reduction of the vector bi. For j < i,

the processor allot(j) has to send rj (the integer nearest

to pij ) to every processors. This can be achieved by us-

ing either a broadcast or a pipeline strategy. Many par-

allel algorithms use these techniques, especially Gaus-

sian elimination. The reader will refer to [4, 25, 30] for

detailed explanations. The cost is also bounded by the

cost of n transfer of a coefficient of length O(n log B).

Arithmetic. Following the previous authors concern-

ing the broadcast or pipeline techniques, we equidis-

tribute the calculus by chosiug a wrap repartition i.e.

allot(j) G j mod P. Consequently, for each swap

each processor performs at most, O(n) arithmetic oper-

ations on coefficients of length O(n log B), and at most

0(n2/P) for each translation.

Proposition 2 Using O(n) processors, a busts may

be reduced in 0(n5 log3 B) binary arithmetic steps and

0(n4 log2 B) binary communication steps.

This assertion directly comes from the communication

and arithmetic costs study (using classical arithmetic
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procedures), and from S = 0(n2 logt B) . ❑

Both this algorithm and the next one have been inl-

plemented under the PA C project [38, 26]. The perfor-

mance results will be discussed in section 5.

Remarks. Each arithmetic operation could also be exe-

cuted on many processors. It is shown in [29] that the al-

gorithm would run in 0(723 log2(n13) ) binary arithmetic

steps on 0(n2 log2(nB)) processors. But because of the

communication cost, such an approach is not thinkable

for a practical algorithm,

To use either the original L3 reduction or one of the

improved algorithms presented in the introduction will

always preserve the factor S in the complexity. The

main problem in a parallel point of view is thus to by-

pass this difficulty.

4.2 Heuristic for parallel reduction

The basic idea we use for the second algorithm is that

probably several swaps may be done simultaneously at

each step of the reduction. We can formulate the fol-

lowing heuristic for a parallel basis reduction,

Heuristic 1 (All swaps reduction) We use P pro-

cessors, 1 ~ P ~ n. A baszs can be reduced tn

T phases, each consisting in at most P/2 sin~ultane -

ous swaps among all the posstble swaps (bi, bi~l) for i

odd, next P/2 simultaneous swaps among all the possi-

ble other swaps (b, _l, hi). Each phase clearly consists i71

at most (n — 1) simultaneous swaps thus T satisfies in

the worst case:

Smin = (Ii/2) logt B < T < S. (15)

Let o(k), 1 ~ k ~ ‘T, be the number of swaps performed

at the phase k. We do not yet know how to show, in

particular situations, that a(k) is strictly greater than 1

and/or near to P. This would justify our heuristic and

above all, give the complexity of our parallel algorithm,

However, we can give some basic em~irical observations

on a(k). Using the test lattices of the section 2 we have

obtained the results presented in the tables 5,(5,7. We

first compare the empirical average number of swaps per

phase (say actual) to P which is the theoretical largest

possible number of swaps per phase (say maz). We have

thus measured the ratio

actual/maz = [~ r(k)] / 7P. (16)

k=l

Always many swaps can be done in parallel.

I max 4\6\ 15120130

actuallmax 0.98 I 0.97] 0.85 I 0.87I 0.77

Table 5: number of swaps per phase

for subset sum 60-lattices (section 2)

max 4 6 8 12

actuallmax 0.94 0.88 0.87 I 0.74

Table 6: number of swaps per phase

for dense 12-lattices (section 2).

Our main observation comes from table 7. For our test

lattices, the average value of a(k) using n/2 processors is

nearly equal to 2n/3. That is to say, the heuristic leads

to the empirical value T = O(n log B) in the worst case

and to an empirical efficiency of 2/3.

12 I 20 28 36 40

E(&)) I 8.4 I 13 I 16 \ 23.4 26 1

Table 7: the average number of swaps per phase

as a function of n for subset sum n-lattices (section 2).

It is finally important to remark that using a all swaps

reduction we generally perform less swaps than using the

L3 reduction. For instance, a test with a subset sum 60-

lattice have asked for 1347 swaps using the L3 strategy

while only about 1100 swaps was needed using a all

swaps sfrafegy. In the same way for a dense 12-lattice we

have obtained 2220 swaps using L3 versus about 1500.

4.3 All swaps parallel reduction

The all swaps parallel reductzon algorithm is based on

the previous heuristic. We will now use a 2-dimensional

torus in order to benefit both of simultaneous swaps and

of the parallelization of each vector operations (swaps

and translations). The number of processors is given by

P = yn x &n, O < -y, 6 ~ n and -y z 6. The processors

are labelled (p~, pv) with ph from O to ph = yn — 1 in

the first dimension, say horizontal, and pV from O to

P. = &n – 1 in the second dimension, say vertical.

Data repartition. We proceed as ia section 4.1 by

first distributing the columns of the matrices accord-

ing to the horizontal dimension of the torus. Each

of the pV horizontal rings will thus manage n/pV rows

(vectors of the basis) and perform the associated op-

erations. In particular, p. translations will be feasi-

ble simultaneously. In the same way, we distribute

the rows of the matrices according to the vertical di-

mension. Consequently, each of the ph vertical rings

Will lnanage n/ph cOIUmll operations during the swaps.

Like above, ph /2 swaps will be done in parallel. Us-

ing the wrap repartition of section 4.1 in one dimen-

sion, we have in two dimensions for a coefficient (ij),
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alioc((i, j)) = (allot(i), allot(j)). Furthermore, the

sub-diagonal elements pi_l,i are duplicated: they i~~e

also stored and updated by the processors (p~, O) of the

first horizontal ring in order to take the swap decisions.

The parallel reduction. The heuristic directly leads

totheparallel algorithrnwhich consists in swappingas

much as possible in parallel as long as the basis is Ilot

reduced. Let usgivean overall description ofeach of the

Tphases ofthis iterative process. A phase implements

P simultaneous any swap reductions of section 3. Six

main

1.

2.

3.

4.

5.

6.

successive steps may be distinguished:

The processors of the first horizontal ring (labelled

(Ph, 0)) PairWise exchange the data necessary to

the searches and to the swap decisions: processor

(P~, 0) with processor (P~+l, O) then with proces-

sor (p~-1, O).

A total exchange communication allows every pro-

cessor of the torus to know all the swaps of the

phase.

The swaps are performed. Communications on the

horizontal rings allow the column operations, ;af-

terwards, communications on the vertical rings al-

low the row operations. From the data allocation

function, those communications simply consists in

swaps between neighboring processors.

The columns of the matrices are vertically dupli-

cated. At the end of this step, every processor

(Ph, 2%) of a given vertical ring stores the complete

columns j with allot(j) = p~.

The previous duplication allow to perform the

translations in parallel using a broadcast or a

pipeline strategy on every horizontal ring.

End detection: after a total exchange connnunica-

tion, every processor knows if it still remains any

swap to perform.

Before the complexity study, let us give a simplified ver-

sion of the algorithm.

Algorithm 3: all swaps reduction

For the processor (p~, p. )

Input

P2j

while

0

0

data : bl, . . . . bn a basis, the by, . . . . b; and the

the basis is not reduced

if (pV = O)

then pairwise searches and swap decisions

involving vectors bi with allot(i) = PII,.

else wait for the swap decisions

swap

o duplicate the columns j with a~ioc(j) = ph

communicating with processors (p~, .)

o weak reduce the swapped rows i with allot(i) = pti

communicating with processors (., p.)

o if (p. = O)

then take and send a local end decision

else wait for the end decision

output data : bl, bz, . . ., b~ a t-reduced basis.

Communications. The algorithm widely uses the to-

tal ezchange (also called all to all) communication pat-

tern. Many authors have worked on the subject in mesh

topologies, the reader may refer to some recent papers

[5, 36, 22] to get a good insight. For our asymptotic

analysis (communications are of a lower cost compared

with arithmetic) we just need an easy result: pu pro-

cessors need O(pU n 1) binary communication steps in

order to exchange n integers of binary length 1. The

two major communication costs come from step 4 and

step 5 of each phase. At step 4 every processors stores

~2/(PhPu ) Coefficients of length O(72 log ~) that are to
be exchanged. Since the vertical rings are of length

PO, 0(n2/P~) steps or 0(n3 log B/pi, ) binary steps are

necessary. Concerning the Step 51 d lT)oSt ph/2 Swaps

has been done, equivalently at most ph /2 weak reduc-

tions has to be performed. Since p. such reductions can

be done simultaneously using a pipehne strategy (see

section 4.1) on each horizontal ring, it can be done in

O(?lPhl/pV ) binary steps. The length I will be either

0(n2 log 1?) or O(n log nB) (see the previous section and

the proposition below).

Arithmetic. From the choice of the allocation fuction

of the matrices, the computations are equidistributed.

The major cost still comes from the weak reductions

(step 5). We have seen that each phase induced at

most ph /2 such reductions. Since they are distributed

on the horizontal rings, PU reductions can be performed

in parallel. Each reduction (O(n2 ) operations on inte-

gers) being itself distributed on ph processors, we get

O((Ph/p. ) x (n2/ph), that is O(n2/pti ) arithmetic op-

erations on integer per phase. For integers of length

1 we finally have 0(n212/pv ) for the binary arithmetic

complexity (using classical arithmetic procedures).

Proposition 3 Using O(n2) processors and assuming

that the imtegers involved in the computations are at

most of length 0(1), each phase of the all swaps par-

allel reduction needs at 1710st 0(n!2) binary aritltmetic

steps and O(nl) binary communtcalzon steps. In par-

ticular, for the subset sum lattices or those used by

the applications, the arithmetic btnary comp[exzty is

0(n3 log2 nB). ThM lead to 0(774 log3 nB) for the whole

reduction tf T =O(n log B).
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The assertion can be directly deduced from the previ-

ous study with ph = p“ = n, and from the corollary 2

concerning the particular lattices. D

Remark. If 0(n4 log2(nB)) processors are available, it

is shown in [29] that each phase of the all swaps reduc-

tion runs in O(rz logz(n log B)).

5 Performance results

We have implemented the two algorithms L3 parallel

reduction, say L3-PR, and all swaps parallel reduction,

say AS-PR. This work has been done in the frame of

the PA C project [27, 26, 38]. Let us briefly recall that

the target machine is a M4ganode [38] based on 128 In-

mos transputers T800. Each processor has a lMb pri-

vate memory and communicates by rendez-vous with at

most four neighbors. This makes the Mlganode exactly

correspond to our abstract model.

As noticed by several authors (see [1] for instance) a

closer look at the algorithms shows that we only need

integer arithmetic. This has been applied for our imple-

mentations. As usual let us now discuss the measured

speed-ups of the algorithms: the ratios of the sequential

execution time over the execution times on P processors.

Even in an empirical point of view, the cases P << n are

definitely not interesting: the speed-ups are nearly to

P for both algorithms and no conclusion can be made

concerning the complexity. In the case P = n for a sub-

set sum 36-lattice, the speed-ups of L3-PR stay lower

than 6. Those bad performances are essentially due the

communication cost which tends to predomine as P in-

creases. Consequently, although its implementation is

easy, the algorithm L3-PR presents no interest but for

a small number of processors.

Ph 1 6 20 30

p.=1 1 5.3 18.4 23,9

pv=2 1.4 9.2 32.5 52

P.=3 1.6 11.3 43.7 59.6

Figure 8 : AS-PR, speed-ups for subset sum 60-lattices.

Contrary to that, AS-PR on a similar subset sum 36-

lattice leads to a speed-up of 17.4 on a ring of 18 proces-

sors (case P % n). And the table 8 summarizes the good

results obtained with AS-PR in the case P > n. It can

be seen that on a 90 (ph = 30, p. = 3) processors torus

an efficiency of (55% is obtained for the dimension 60, To

motivate the conclusion and our further studies, we may

finally precise that the limits of AS-PR are reached for

large values of pu. This is mainly due to a bad distribu-

tion of the arithmetic computations: the operations on

infinite precision integers are not appropriate to a static

mapping.

6 Conclusion

The all swaps parallel reduction that we propose leads to

the time bound 0(n2 log B log2(n log l?)) for the reduc-

tion of “good” lattices of dimension n. Furthermore,

the basic idea we have used in order to achieve this

bound, can be easily combined to the improved sequen-

tial methods cited in the introduction and give better

results. The implementations are still under test and

development. Studies on dynamic load-balancing [28]

should permit to go beyond the current limits imposed

by the static mapping of the tasks on the processors.

Note added on April 27: We have obtained the time

bound O(n log B logz(n log B)).
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