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Breakpoints are user-specified rules that trigger debug-

ging actions when certain conditions arise in an execut-

ing program. To support source-level debugging, pro-

grammers should be able to specify breakpoint condi-

tions in terms of programming language control and

data abstractions. Support for breakpoints specified

in terms of control conditions, known as contro! break-

points, is ubiquitous. The analogous data breakpoint, a

breakpoint specified in terms of a data condition, is dif-

ficult to implement efficiently and has only limited sup-

port in most current debuggers. A number of authors

have speculated that efficient data breakpoints require

hardware support.

In this paper we examine hardware and software

strategies for implementing data breakpoints. We use

a simulation experiment to estimate the performance of

four representative implementations, we conclude that

while hardware-based solutions are able to deliver the

best overall performance, they are expensive and can

simultaneously support only a limited number of break-

points. In contrast, a software solution based on modi-

fying the code of the program being debugged to mon-

itor all instructions that might affect the data break-

point condition is simple and portable, and provides for

any number of breakpoints. Further, we show that its

expected performance is acceptable for most debugging

applications.
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1 Introduction

Breakpoints are user-specified rules that trigger debug-

ging actions when certain conditions arise in an execut-

ing program. To support source-level debugging, pro-

grammers should be able to specify breakpoint condi-

tions in terms of programming language control and

data abstractions. Support for breakpoints specified

in terms of control conditions, known as control break-

points, is ubiquitous. An example control breakpoint

is to print the value of a variable whenever control en-

ters and exits a certain function. The analogous data

breakpoint, a breakpoint specified in terms of a data con-

dition, is difficult to implement efficiently and has only

limited support in most current debuggers. An example

data breakpoint suspends execution whenever a certain

object is modified. Such a breakpoint would help iden-

tify pointer uses that are inadvertently modifying an

otherwise unrelated data structure.

Interpreted environments can provide data break-

points by enhancing the evaluator. However, for rea-

sons of compatibility and efficiency, many programming

tasks require that code be debugged in compiled form.

For example, interpreted ANSI C using the Saber-C

system runs approximately 200 times slower than com-

piled code [KLP88]. The semantics of a source language

may differ in its compiler and interpreter implementa-

tions. Compilers for popular languages like C, C++,

and FORTRAN are more widely available than inter-

preters, providing further incentive for supporting effi-

cient data breakpoints in compiled environments.

Several authors have speculated that providing ef-

ficient data breakpoints requires hardware support

[Kes90, Joh82, MCL89, CL87]. One of the crucial is-

sues is how to implement a write monator service etf -

ciently. A write monitor service provides a notification

to interested clients each time the program writes to a

distinguished region of memory. The notification may

occur after the write has succeeded, distinguishing write

monitors from write barriers.

Proposed approaches to providing write monitors fall

into three categories. We list each approach briefly; they

are described in detail in Section 3.
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Specialized Hardware. One hardware approach

is to provide monitoring support directly in the pro-

cessor. Another hardware solution is to use an ex-

ternal analyzer to monitor bus activity. Because

the functionality and performance of external ana-

lyzers depend so heavily on the details of the target

architecture, we do not consider external analyzers

further; we mention them here only for complete-

ness.

Virtual Memory. The virtual memory system

can be used to monitor writes. All pages on which

the monitored object resides are write protected.

The breakpoint condition is checked from the vir-

tual memory fault handler.

Software. Software approaches modify, either be-

fore execution begins or dynamically at run-time,

the program being debugged to check the target lo-

cation of all writes that might affect the data break-

point condition.

The above approaches differ significantly in their imple-

ment ation cost, portability y, and performance. To date,

there has been very little discussion in the literature of

their relative merits. Even though performance is a key

issue in evaluating a strategy, we have been unable to

find detailed data on any of the approaches examined

in this paper.

Data breakpoints represent an important debugging

service. Given well-established trends in architecture,

does doing without specialized hardware support mean

doing without efficient data breakpoints? If not, what

approaches are preferable and under what conditions?

This paper addresses these issues.

The remainder of the paper is organized as follows.

Section 2 frames the problem and defines our terminol-

ogy. Section 3 provides a description and qualitative

anal ysis for each of the approaches outlined above. Sec-

tions 4, 5, 6, and 7 detail the simulation experiment we

used to assess the performance of four representative im-

plement ations. Section 8 presents the results from our

experiments, and Section 9 summarizes our conclusions.

2 Framework

It is sufficient for our purposes to identify only three

components of a debugging system: the de buggee, the

debugger, and the write monitor service (WA4S).1 The

debuggee is the program being debugged. The debugger

is the high-level application with which the programmer
interacts. The write monitor service, discussed below,

provides the low-level support necessary for data break-

points.

1T,he~e components do not necessarily fall along process ‘r

address space boundaries.

Before we define the write monitor service’s interface,
we first define some terms. A write monitor is a descrip-

tor that specifies a contiguous region of memory. For

convenience, we use this term to refer to both the de-

scriptor and the memory it describes. A write monitor

is active if the WMS has guaranteed that clients will

be notified of all writes that affect the write monitor.

The region of memory specified by an active write mon-

itor is said to be monitored. Any machine instruction

that writes to memory is a write instruction. A write

instruction that writes to one or more write monitors is

a monitor hit; otherwise, it is a monitor miss. There is

a single monitor notification for each monitor hit.

A monitor session characterizes the write monitor ac-

tivity with respect to one run of the program. For exam-

ple, a high-level description of a monitor session might

be: “Monitor all heap objects allocated by a particular

function”. We rely heavily on the concept of a mon-

itor session when we attempt to assess an approach’s

performance.

The interface to a write monitor service is quite sim-

ple. While particular implementations might require

slightly different interfaces, a similar set of services must

be provided by any system. The interface consists of

the following functions (BA = Beginning Address, EA =

Ending Address):

●

●

●

3

InstallMonitor (BA, EA)

Installs a new write monitor.

RemoveMonitor (BA, EA)

Removes an existing write monitor.

140nitorNotif ication (BA, EA, PC)

Called by the monitor system for each monitor hit.

PC is the program counter of the monitor hit.

Approaches

This section briefly describes and analyzes each of the

approaches mentioned in the introduction. Note that

system calls, shared memory, and objects stored in reg-

isters pose additional problems for all approaches.

3.1 Specialized Hardware

A small number of processors provide direct support

for write monitors, including the Intel i386 [Int86] and

the MIPS R4000 [KH92]. Typically, specialized regis-

ters, called monitor registers, are used to specify the
region of memory to be monitored. A hardware trap

is generated when a write occurs to a monitored re-

gion of memory. The monitor registers are part of an

address space’s state and require operating system sup-

port. The biggest disadvantage of this approach is the
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extremely limited functionality that is provided by ex-

isting or proposed hardware. No widely-used chip to-

day supports more than four concurrent write monitors

[Int86, KH92, Joh82].

3.2 Virtual Memory

A conceptually elegant approach to implementing write

monitors is to use the virtual memory system [Bea83,

SS91, Dig]. When a write monitor is installed, the WMS

protects all pages the monitor resides on. The WMS can

register a fault handler, allowing it to detect monitor

hits when the debuggee attempts to write to a protected

page. The WMS must arrange for execution to continue

while insuring that the page is protected for subsequent

writes. This may be accomplished by unprotesting the

necessary pages, single-stepping the program, and re-

protecting the pages. An alternative is for the WMS

to emulate the faulting instruction. A disadvantage of

using virtual memory is a potential lack of portability.

Current operating systems have varying levels of sup-

port for user-level virtual memory services [AL91].

3.3 Software

Software approaches modify the debuggee to check the

target location of all write instructions [Kes90, DMS84,

HJ92]. This may be done before execution begins, in a

way that supports all possible write monitors, or at run-

time as write monitors are installed and removed. A hy-

brid approach might be used, such as leaving space be-

tween functions or strategically placing “nop” instruc-

tions, to make dynamic modification simpler [Kes90].

Which approach one employs depends on the language

being monitored and the performance penalty of exe-

cuting unused monitor code. In type-unsafe languages

such as C, where almost any write instruction could cor-

rupt memory, dynamic modification is less appropriate.

If the modifications are done at compile time, detecting

monitor hits in standard libraries requires that special

versions of the libraries be used.2

Two methods can be used to transfer control to the

WMS support code responsible for detecting monitor

hits. The first is to replace the write instruction with

a trap instruction. This method is used by the UNIX

debuggers gdb and dbx. A user-level trap handler deter-

mines if the corresponding write instruction is a monitor

hit. Control breakpoints are typically implemented in

a similar fashion, thus minimizing the need for new de-

bugging mechanisms. Using traps in this way requires

the WMS to be integrated with the operating system

signal facility. We refer to this approach as trap patch-

ing.

2This is similar to the gprof facility [G KM82], which also re-

quires special versions of the libraries.

The second approach, which we call code patching, is
to transfer control directly via either an inline check or a

function call. Direct control transfer has the advantage

of being operating system independent.

3.4 Discussion

Both virtual memory- and software-based approaches

must maintain a mapping between virtual addresses and

active write monitors. If these data structures reside in

the debuggee’s address space, two issues must be ad-

dressed. First, the mapping must be protected against

corruption. Second, the debuggee’s behavior might be

perturbed.

One solution to protecting WMS data structures for

virtual memory-based approaches is to have the WMS

dynamically unprotect and protect the necessary data

pages. An alternative is to assume that these data struc-

tures are shared with a program executing in a different

address space, possibly the debugger, with read-only

access for the debuggee, and read-write access for the

debugger. Updates could be performed via interprocess

communication. In the UNIX environment all signals

may be intercepted via the ptrace system call, allow-

ing the structures to be maintained in a separate ad-

dress space, but imposing considerable overhead due to

context swit thing on each fault.

Because software-based approaches check every write

instruction, no additional mechanism and very little

overhead is required to insure the integrity of WMS

data. For both virtual memory- and software-based ap-

proaches, we conjecture that the impact of maintaining

a small amount of read-only data in the debuggee’s ad-

dress space will be acceptable for debugging.

4 Experiment Overview

Section 3 identified and discussed a number of strategies

for implementing a WMS. We now turn to the perfor-

mance characteristics of implementations based on four

strategies: specialized processor support, virtual mem-

ory, trap patching, and code patching. To carry out this

study, we devised a simulation experiment, depicted in
Figure 1 and described in detail in the next three sec-

tions. The experiment consists of two logical phases.

Phase 1 generates a program event trace. In phase 2,

the simulator uses that trace and a description of the

objects to be monitored to output detailed data about

program behavior with respect to the monitored ob-

jects. Using simple analytical models, we combine this

data with operating system and hardware timing infor-

mation to estimate the overhead imposed by the WMS

implementation under study. Logically, phase 1 is done

once per program, phase 2 once per monitor session.
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Figure 1: Experiment Overview

Wechose simulation foranumber of reasons. We are

interested in comparing the approaches, and no easily-

available system had all the necessary architecture and

operating system services, Comparing prototype imple-

ment ations across different platforms would be difficult.

Secondly, we are interested in how page size affects the

performance of strategies based on virtual memory pro-

tection, and a simulator allows us to change the page

size easily. As will be described in the next section, we

ran the experiment on a large number of monitor ses-

sions. For a number of the test programs, running a

WMS prototype implementation for each monitor ses-

sion would be impractical.

5 Monitor Sessions

To assess the performance of each approach, we esti-

mate the overhead incurred on a wide variety of monitor

sessions for five C programs. For the purposes of this

study, the goal in defining a monitor session is to reflect

a ‘(typical” debugging scenario. Ideally, these monitor

sessions would be replays of actual debugging runs from

a wide variety of programmers tackling a wide variety of

problems. We compromise by defining a large number

of program-independent monitor sessions that together

provide evidence for how a particular approach will per-

form in practice.

We study the following types of monitor sessions:3

● OneLocalAuto Monitors a single local automatic

3The monitor sessions are s~ecified in high-level terms but they

can easily be translated into the operations Inst allnonit or and
RetnoveMonitor defined in Section 2.

●

●

●

●

variable. All instant iations of the variable belong

to the same monitor session.

AllLocalInFunc Monitors all local variables of a

single function, including local static variables. All

instantiation of the local variables belong to the

same monitor session,

OneGlobalStatic Monitors a single gIobal static

variable.

OneHeap Monitors a single heap object.4

AllHeapInFunc Monitors all heap objects created

by a function f and any other functions executing

in the dynamic context of f.4

Except for A llHeapInFunc, the above monitor session

types are somewhat obvious. We wanted a monitor

session type that reflected monitoring related heap ob-

jects, for example, all nodes in a particular data struc-

ture. AllHeapInFunc was chosen based on the assump-

tion that each function, ideally, exports one or more

abstractions, and that heap objects allocated by it and

functions on its behalf have a reasonable chance of being

logically related. For any program there are bound to be

abstraction levels, i.e., functions, that are at the wrong

granularity with respect to debugging. For example,

monitoring all heap objects allocated on behalf of the

top-level (e.g., main) function is an unlikely debugging
request. Our expectation is that, for sufficiently large

programs, a significant number of functions do create

4Heap objects whose size is changed via a call to reallot are
considered to be the same object.
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and manipulate related heap objects that a program-

mer might want to monitor.

6 Programs

We use the following C programs for our analysis:

GCC v1.4 An ANSI C compiler provided by the

Free Software Foundation. Input was the 811 line

GCC source file rtl. c.

Common’I)jX v2.9 ( C’I)jX) An implementation

of the TQX document processing system. Input was

a document producing four pages of text and com-

plex mathematical equations.

Spice V3C1 Computer-aided circuit analyzer.

Transient analysis for a simple differential pair cir-

cuit was computed for 20ns at 5ns intervals.

QCD Quantum chromodynamic simulation

[Uni88]. Input was the test simulation provided

in the distribution.

BPS Bayesian problem solver using a tree search

to arrange 8 numbers on a 3x3 grid into ascending

order by sliding them in Manhattan directions us-

ing the empty grid element [HM89]. Input was an

arbitrary initial grid configuration.

All programs were compiled with GCC v1.4, with the

“-g” option, on a SPARC station 2. No variables were

allocated to registers. Non-ANSI features of GCC, such

as inline declarations, were disabled.

For each program, the assembly code was post-

processed so that at run-time a program event trace was

generated. The trace consisted of the following three

events and their arguments (BA = Beginning Address,

EA = Ending Address):

InstallMonitorEvent EObj ectDesc, BA, EA]

Object Des c identifies the program object corre-

sponding to the write monitor. This is used by

the simulator to determine which write monitors

are active in the current monitor session.

RemoveMonitorEvent [Obj ectDesc, BA, EAI

WriteEvent CBA, EAI

The event trace is independent of any particu-

lar monitor session. InstallMoni.torEvent and

RemoveMonit orEven$ events are generated for every

program object that is of interest to one of our mon-

itor sessions. Write monitors for automatic variables

are inst ailed and removed on function boundaries. Sys-

tem calls, standard libraries, and implicit writes (e.g.,

register spilling) do not appear in the trace.

7 Analytical Models

The analytical models used in our experiment are nec-

essarily architecture and operating system dependent.

For example, an accurate model must take into ac-

count whether hardware services are directly accessible

by user programs. Ideally, we could base our models

on an existing platform, but no readily available system

meets our requirements. Our solution is to use a pop-

ular workstation, the SPARC st ation 2 running SunOS

4.1.1, and estimate the cost of non-existent services in

terms of existing ones.

The SPARC station 2 does not provide any hard-

ware monitoring registers. We logically extend the

SPARC station 2 by assuming that there are enough

monitor registers for the monitor sessions that we are

interested in. Our hypothetical monitor registers are

readable and writ able by user programs. While exe-

cuting in the kernel we assume that the monitor regis-

ters are disabled, avoiding any operating system secu-

rity problems. Monitor hits result in a trap which may

be caught by user-level handlers via the SunOS signal

mechanism. The time for a monitor hit trap is esti-

mated to be the same as that of a virtual memory write

fault for a resident page.

Our experiment relies on the SPARC station 2 in

three ways. First, it defines an architecture and a set of

operating system services. Second, we use it to obtain

the timing data required by our models, Third, it serves

as the compilation target for our benchmark programs.

7.1 Models

We now present the analytical models used for cal-
culating monitor session overhead. Each model con-

sists of equations for calculating the overhead in-

curred inst ailing monitors ( Inst allMon it or~~), remov-

ing active monitors (.RemoveMonitorOV), handling mon-

itor hits (MonitorHitOV), and handling monitor misses

(MonitorilIissOU). The total overhead for a particular

monitor session is simply their sum.

As stated in Section 4, the models combine simulator-

generated information about a program’s run-time be-

havior with timing data for the important primitives

necessary to implement the approach. A program’s run-

time behavior is captured by a number of counting vari-

abies, which are subscripted with u. Timing data is cap-

tured by timing variables, which are subscripted with T.

The models ignore secondary effects such as cache be-

havior, pipeline stalls, and virtual memory paging be-

havior,

Figure 2 lists a number of timing and counting vari-

ables used in more than one model. Three of the
four implementations that we investigate must main-

tain a software mapping between virtual addresses and

act ive write monitors. These approaches rely on es-
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The following timing variables are used repeatedly:

SoflwareLookup,: Time to determine if a virtual address range intersects an active

write monitor.

Software Update,: Time to update the mapping when a write monitor is installed or

removed.

The following counting variables are used repeatedly:

MonitorHitO: The number of monitor hits.

MonitorMisso: The number of monitor misses.

InstallMonitorO: The number of write monitors installed.

RemoveMonitoro: The number of write monitors removed.

Figure 2: Shared timing and counting variables.

sentially the same software data structures, though

small optimization might be possible for certain plat-

forms or certain impIementations. SofiwareLookupT and

Soflware UpdateT are used to characterize this overhead.

The models uniformly assume that these support data

structures reside in the debuggee’s address space. For

convenience in further discussion, the section heading

provides a name and abbreviation for each approach.

7.1.1 NativeHardware (NH)

In NativeHardware a monitor hit triggers a monitor reg-

ister fault. The monitor hardware is accessible to user

programs and we assume the cost to update it can be

safely ignored. The model for Nat iveHardware is shown

in Figure 3.

7.1.2 VirtualMemory ( VM)

In VirtualMemory a monitor hit triggers a write fault.

In addition to software lookup costs, Virtudlfemory

incurs additional overhead continuing past the faulting

instruction. Execution is continued by unprotesting the

appropriate page(s), emulating the faulting instruction,

reprotecting the page(s), and arranging for execution to

continue after the fauIting instruction. Monitor misses

which write to a page containing an active write mon-

itor must go through the same process. Installing or

removing a write monitor might require the permis-

sions of the page(s) on which the monitor resides to be

changed. The W MS-support data structures reside in

the debuggee’s address space, Whenever a write mon-

itor is inst ailed or removed, the appropriate page5 of

this data structure must be unprotected, updated, and
reprotected. The model for Virt ualikfemory is shown in

Figure 4,

5The model assumesthat each update affects only one virtual
memory page.

7.1.3 TrapPatch ( TP)

TrapPatch, at compile time, replaces all write instruc-

tions with trap instructions. In the trap handler, as

in Virt ualMemory, the faulting instruction is emulated,

and execution is continued after the faulting instruction.

The model for TrapPatch is shown in Figure 5.

7.1.4 CodePatch ( (7P)

CodePatch, at compile time, patches the assembly code

so that the target of every write instruction is checked.

The check is done in a subroutine with the target ad-

dress passed via an available register. The model for

CodePatch is shown in Figure 6.

8 Results

For each benchmark program, we discovered all in-

stances of the monitor session types described in Sec-

tion 5. For example, there was a monitor session of type

OneLocalAuto for each local automatic variable found

in a program. Monitor sessions that had no monitor hits

were discarded under the assumption that they are un-

likely candidates during debugging. Table 1 shows, for

each of the programs, the type and number of monitor

sessions studied. In addition, Table 1 shows base pro-

gram execution times. These times were obtained us-

ing the UNIX time command on the SPARC station 2

described in Appendix A. This timing method had a

resolution of 20 milliseconds.

The timing variable data for the SPARC station 2 is

shown in Table 2. A detailed discussion of how these
numbers were obtained is provided in Appendix A.

Table 3 lists mean counting variable data for all mon-

itor sessions of a program. The differences between

Insta!lMonitorc and RemoveMonitoro are too small to

warrant space in the table, and similarly for VMProtectm
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The following timing variable is unique to NativeHardware:

NHFaultHand!er, g Time required to receive a user-level monitor register fault and

cent inue execution.

NativeHardware is defined as follows:

MonitorHitoV = MonitorHitO * NHFaultHandler7

MonitorMissOV = O

InstallMonitorov = 0

RemoveMonitorov = O

Figure 3: Analytical model for NativeHardware.

The following timing and counting variables are unique to VirtualMemory:

VMFaultHandler,: Time required to receive a user-level write fault, emulate the fault-

ing instruction, and continue execution.

VMProtect,: Time required to protect a page of virtual memory.

VMUnprotect,: Time required to unprotect a page of virtual memory.

VMActivePageMissO: Number of monitor misses that wrote to a page containing an active

write monitor.

VMProtectO: Number of times the count of active write monitors on a page

changed from zero to one.

VMUnprotectO: Number of times the count of active write monitors on a page

changed from one to zero,

I Virtua/Memory is defined as follows: I
MonitorHitOU = MonitorHitO * ( VMFaultHandierT -I- SoflwareLookup, )

Monit orMissoV = VMActivePageMissm * [ VMFaultHandlerT + SoflwareLookupT)

InstaliMonitorov = InstallMonitorO * ( VMi7nprotectT + Soflware Update, + VMProtect.) +

( VMProtectQ * VMProtectr)

RemoveMonitorOV = RemoveMonitorO * ( VMUnprotectT -I- Software Update, + VMProtect,) -t-

( VMUnprotectO * VMUnprotectT)

Figure 4: Analytical model for VirtualMemory,

The following timing variable is unique to TrapPatch:

TPFauWlandler.: Time required to receive a user-level trap fault, emulate the faulting
instruct ion, and cent inue execution.

I TrapPatch is defined as follows: I
MonitorHitOW = MonitorHitQ * ( TPFaultHandlerT + SoflwareLookup7)

MoniiorMissou = MonitorMissO * ( TPFaultHandler, + SoflwareLookup, )

Insta!{Monitorou = InstallMonitorO * Sofiware Update,

RemoveMonitorov = RemoveMonitoro * Sofiware Update.

Figure 5: Analytical model for TrapPatch.
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CodePatch is defined as follows:

MonitorHitOv = MonitorHitO * SofiwareLookupT

Monit orMissov = MonitorMissO * SoftwareLookupT

InstallMonitorou = InstallMonitorO * Soflware Update.

Remove Monitorou = RemoveMonitoro * Sofiware Updater

Figure 6: Analytical model for CodePatch.

and VMUnprotectO. We include this summary of count-

ing variable data so that readers wanting to change one

of our models to reflect different requirements can esti-

mate the results. Further, this data reveals the relative

frequency of the various implementation primitives.

Using the models from Section 7 and the above data,

we have calculated, for each program and each ap-

proach, the overhead of all monitor sessions listed in

Table 1. We normalize overhead results to the base ex-
ecution time of the program and refer to this as the

relative overhead. Table 4 provides statistics about the

relative overhead of all monitor sessions studied for each

benchmark program and approach. For NativeHard-

ware, VirtualMemory-4K, and VirtualMemory-8K, this

data contains a number of extreme points. To help un-

derstand its distribution, Table 4 lists the 90th and 98th

percentiles.

To help visualize some of the important results from

Table 4, we have provided three graphs. The maximum

and 90th percentile relative overhead over all the mon-

itor sessions for each program is graphed in Figure 7

and Figure 8, respectively. Figure 9 graphs the mean

for monitor sessions whose relative overhead is between

the 10th and 90th percentiles.

As mentioned above, the relative overhead data for

NativeHardware and VirtualMemory contain a number

of extreme points. For NativeHardware, since all over-

head is due to handling monitor hits, monitor sessions

with high overhead correspond to frequently updated

program objects. While each program had a unique set

of these hot spots, the majority of expensive sessions

for NativeHardware monitored induction variables and

functions that allocated large numbers of heap objects.

For VirtualMemory, the majority of expensive sessions

monitored local variables, often for functions toward the

root of the call graph.

Another important facet of the performance data is

a breakdown of where the time was spent. This pro-

vides insight into how changes to the cost of various
services might affect the results presented here. For

each program we calculated the mean, over all moni-
tor sessions, of the percentage of time taken by each

of the operations corresponding to our timing variables.

We present here a summary of that data. For Native-

Hardware, aa can easily be predicted from our model,

100% of the overhead was due to NHFaultHandler. For

VirtualMemory-4K, VMFaultHandler contributed be-
tween 86% and 97’?ZOof the total overhead. The re-

sults for Virtu alMem ory-8K were similar. For Trap-

Patch, TPFaultHandler consistently accounted for 97%

of the overhead. Finally, SoflwareLookup accounted for

between 98% and 99% of the total overhead for Code-

Patch.

A final note concerns the space requirements of Code-

Patch. For each write instruction, CodePatch must in-

sert a call to a WMS routine responsible for detect-

ing monitor hits. For the SPARC architecture this re-

quires a minimum of two additional instructions. Us-

ing the percentage of write instructions found in each

benchmark program we estimated the code expansion

for CodePatch. We found that only a modest increase

of between 12% and 15% is expected.

9 Conclusion

Of the approaches we studied, NativeHardware deliv-

ered the best overall performance. Code Pat ch was sig-

nificantly more efficient than the other two approaches

and, for the most demanding monitor sessions, provided

better performance than even NativeHardware. Code-

Patch exhibited extremely low variance, a desirable user

interface characteristic. For a large number of monitor

sessions VirtualMemory was unacceptably slow. Trap-

Patch shares with CodePatch a low variance but was

unacceptably slow for most debugging applications.

While specialized processor support is attractive, it
has the overwhelming disadvantage that support for

only a small number of simultaneous write monitors can

be expected. Consider monitoring a large central data

structure with thousands of constituent elements. Re-

call that no existing processor could have supported all

of the monitor sessions used in our experiment. Fur-

ther, given the encouraging performance estimate for

code pat thing, expensive monitoring hardware will be
difficult to justify.

Code patching is the most likely choice for providing
efficient data breakpoints. It is simple, portable, and

provides for any number of simultaneous write moni-
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Program OneLocal AllLocal OneGlobal OneHeap AllHeap Execution
Auto InFunc Static Inl?unc Time (ins)

GCC 2328 493 347 323 138 3900

CTEX 583 157 230 0 0 1067

Spice 989 161 32 416 68 833

QCD 145 21 19 0 0 2900

BPS 193 54 12 4184 33 1100

Table 1: Base program execution time in milliseconds and type and number of monitor sessions studied. Does not

include monitor sessions that had no monitor hits.

Table 2: Timing variable data in microseconds.

VM-4K VM-8K

Program Install/Rernoue Monitor Monitor VMProtecto/ VMActiue VMProtecto/ VMActive

MonitorD Hito Misso VMUnprotectO PageMissO VMUnprotectC PageMissO

GCC 937 2231 3185039 416 32223 414 53500

CTEX 916 2141 1459769 543 35551 542 37924

Spice 98 1323 508071 55 21022 54 32119

QCD 4645 31120 3305221 2921 835091 2920 835091

BPS 37 583 559202 21 3701 21 5137

Table 3: For each program, mean counting variable data over all monitor sessions studied for that program.

Program Statistic NH VM-4K VM-8K TP CP

GCC Min Max o 10.45 0 102.76 0 287.90 85.61 87.94 2.25 4.58
T-Mean Mean .01 .07 2.48 5.21 3,16 8.29 85.61 85.62 2.25 2.26
90% 98% .09 .62 15.31 37.08 17.37 37.09 85.63 85.69 2.27 2.33

c~ Min Max o 29.30 0 339.88 0 343.64 143.52 146.17 3.77 6.42
T-Mean Mean .07 .26 11.77 20.78 13.03 22.05 143.53 143.56 3.78 3.81
90% 98% .49 2.24 48.93 116.66 48.93 117.86 143.58 143.96 3.83 4.21

Spice Min Max o 27.87 0 213.52 0 223.33 64.06 65.05 1.68 2.68
T-Mean Mean .01 .21 7.15 15.24 11.94 22.75 64.06 64.06 1.68 1.69

90% 98% .16 1.19 53.55 118.56 72.34 215.32 64.07 64.09 1.69 1.72

QCD Min Max o 61.98 0 636.44 0 636.44 120.51 123.19 3.16 5.84

T-Mean Mean .36 1.41 158.99 170.05 158.99 170.05 120.53 120.58 3.19 3.23

90% 98% 2.56 15.11 459.63 636.44 459.63 636.44 120.65 120.88 3.31 3.53 [

BPS Min Max o 28.16 0 158.96 0 158.96 ~ 53,31 53.99 1.40 2.09
T-Mean Mean o .07 .56 2.23 1.02 2.97 53.31 53.31 1.40 1.40
90% 98~o .02 .14 2.31 14.30 4.45 18.98 53.31 53.32 1.40 1.41

Table 4: Relative Overhead Statistics. T-Mean refers to mean of monitor sessions whose relative overhead is between

the 10th and 90th percentiles. 90’%0and 98% refer to the 90th and 98th percentiles, respectively.
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Figure 9: Mean relative overhead over all monitor ses-

sions whose relative overhead is between the 10th and

90th percentiles.

tors. For performance reasons, code patching requires

that data structures mapping virtual addresses to write

monitors be maintained in the debuggee’s address space.

Because all write instructions are already being checked,

however, protecting this data requires no additional

mechanism and very lit tle overhead. Our expectation

is that the impact of having a small amount of read-

only WMS data in the debuggee’s address space will be

acceptable.

As described and studied, the performance of code

patching is acceptable. Our approach was to uniformly

check the target location of every write instruction. A

simple optimization reduces the overhead for candidate

instructions inside loops. A preliminary check outside

the loop may be applied for write instructions whose

target is a loop-invariant memory range. If the prelim-

inary check determines that the instruction will be a

monitor hit, the loop body can be dynamically patched

so that each iteration correctly results in a monitor no-

tification. Our expectation is that this and other opti-

mization will significantly reduce the overhead of code

pat thing.

This work was motivated by the need for an efficient

WMS in the context of the Ensemble software devel-

opment environment being built at the University of

California, Berkeley. Ensemble will provide a number

of novel services for managing the dynamic behavior of

programs, including a sophisticated high-level debug-

ging system called QEI.6 An implementation of a WMS

based on code patching is underway. As this technology

6 QEI is a Latin abbreviation for the phrase “which was to be
found out .“
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is demonstrated, our hope is that data breakpoints will

be routinely supported in future debuggers.
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A Timing Data

This section provides high-level pseudo-code and where

necessary a short discussion for the timing data shown

in Table 2. All tests were executed three times and

their mean taken on an unloaded 32 megabyte 40 MHz

SPARC station 2, running SunOS 4.1.1.

The code fragments below use the following data and

functions:

WorkingSet Two megabytes of data pages con-

sisting of every other page of a contiguous memory

region.

WorkingMonitorSet 100 non-overlapping write

monitors with random size and location allocated

from a 2 megabyte contiguous memory region.

Protect (Pages, Mode) Changes virtual memory

protection for Pages to Mode via the rnprot ect

system call. For each page of Pages an access of

type Mode is performed.

TimerOno, TimerOffo Multiple calls to

TimerOn and TimerOff are cumulative. Timing

is done via the system call getrusage and has a res-

olution of 10 milliseconds on the SPARC station 2.

All results include both system and user time.

Read(VMPage)/Write(VMPage)

Reads/writes the first word of page VMPage.

RandYesReplace( Set),

RandNoReplace(Set) Chooses a random ele-

ment from Set with replacement in the case of

RandYesReplace and without replacement in the

case of RandNoReplace. The random values are

precomputed so that this operation is a simple ar-

ray lookup.

RandInit (Set) Used in conjunction with Rand-

NoReplac’e. ‘Logically initializes RandNoRe-

place state so that all elements are available from

Set.

A.1 NHFaultHandler,

Main:

Protect(WorkingSet, Read)

TimerOno

Iterate

VMPage + RandYesReplace(WorkingSet)

Write(VMPage) /* Causes write fault. */

TimerOffo

/“ Invoked by operating system upon write fault. */

NHFaultHandler (FaultingAddr, FaultingInstr):

SklpInstruction( FaultingInstr)

1

A. 2 VMFaultHandler,

Main:

Protect(WorkingSet, Read)

TimerOno

Iterate

VMPage +- RandYesReplace(WorkingSet)

Write(VMPage) /* Causes write fault. */

TimerOffo

/“ Invoked by operating system upon write fault. “/

VMFaultHandler( FaultingAddr, FaultingInstr):

Protect (Page(FaultingAddr), ReadWrite)

Protect (Page(FaultingAddr), Read)

SkipInstruction (FaultingInstr)

A.3 VMProtect, / VMUnprotect,

The numbers for VMProt ect, and VMUnprotectT differ

significantly. Unprotesting a page, unlike protecting it,

does not require that the hardware mapping be updated

synchronously with respect to the mprotect system call.

Rather, the mapping may be updated lazily in response

to a write fault on the page. This lazy updating, we con-

jecture, is adding to the time of VMUnprotectT. Our

efforts to verify this have not been successful. Be-

cause VMFauliHandler dominates the overhead for Vir-

iua!Memory (see Section 8), this idiosyncrasy does not

significant y affect our results.

A.3. I VMProtect,

Main:

Iterate

Protect (WorkingSet, ReadWrite)

RandInit (WorkingSet)

TimerOno

Iterate Cardinality(WorkingSet)

VMPage i-- RandNoReplace(WorkingSet)

Protect(VMPage, Read)

TlmerOffo

A.3.2 VMUnprotect,

Main:

Iterate

Protect(WorkingSet, Read)

RandInit( WorkingSet)

TlmerOno

Iterate Cardinality(WorlcingSet)

VMPage +- RandNoReplace(WorkingSet)

Protect(VMPage, ReadWrite)

TlmerOffo

A.4 TPFaultHandler.

Main:

TimerOno

Iterate

ExecuteTrapInstro /* Causes trap. */
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TimerOffo

/* Invoked by operating system upon trap jault. “/

TPFaultHandler (FaultingInstr):

SkipInstruction (FaultingIn;tr)

A.5 Software Updaie~ / SofiwareLookup~

Numbers for Software UpdateT and SoftwareLookup, re-

quired us to design and implement a data structure on

which to base our timing information, For each page

that has an active write monitor we maintain a bitmap;

each bit corresponds to a word of memory. 7 Using the

page number as a key, the bitmaps are stored in a hash

table.

A.5. 1 Software Update,

Main:

TimerOno

Iterate

RandInit ( WorkingMonitorSet)

Iterate Cardinality(WorkingMonitorSet)

Monitor + RandNoReplace(WorkingMonitorSet)

InstallMonitor( Monitor)

RandInit (WorkingMonitorSet)

Iterate Cardinality(WorkingMonitorSet)

Monitor + RandNoReplace(WorkingMonitorSet)

RemoveMonitor(Monitor)

TimerOffo

A.5.2 SoflwareLookup,

Main:

InstallMonitor( WorkingMonitorSet)

TimerOno

Iterate

Addr + RandomAddro

LookupMonitor(Addr)

TimerOffo

7This restricts write monitors to word-aligned boundaries.

Higher-level clients can easily compensate for this restriction.
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