
Fast Mutual Exclusion for Uniprocessors

Brian N. Bershad

School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

David D. Redell and John R. Ellis

Digital Equipment Corporation

Systems Research Center

130 Lytton Avenue

Palo Alto, CA 94301

Abstract

In this paper we describe restartable atomic sequences,

an optimistic mechanism for implementing simple

atomic operations (such as Test-And-Set) on a unipro-

cessor. A thread that is suspended within a restartable

atomic sequence is resumed by the operating sys-

tem at the beginning of the sequence, rather than

at the point of suspension. This guarantees that the

thread eventually executes the sequence atomically. A

restartable atomic sequence has significantly less over-

head than other software-based synchronization mech-

anisms, such as kernel emulation or software reserva-

tion. Consequently, it is an attractive alternative for

use on uniprocessors that do not support atomic op-

erations. Even on processors that do support atomic

operations in hardware, restartable atomic sequences

can have lower overhead.

We describe different implementations of restartable

atomic sequences for the Mach 3.0 and Taos operating

systems. These systems’ thread management packages

This research was sponsored in part by The Defense Ad-
vanced Research Projects Agency, Information Science and Tech-
nology Ofiice, under the title “Research on Parallel Computing”,
ARPA Order No. 7330, issued by DARPA/CMO under Contract
MDA972-90-C-O035, by the Open Software Foundation (OSF),
and by a grant from the Digital Equipment Corporation (DE C).
Bershad was partially supported by a National Science Foun-
dation Presidential Young Investigator Award. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of DARPA, OSF, DEC, the NSF, or
the U.S. government.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commeroird advantage, the ACM oopyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ASPLOS V - 10 1921MA, USA
@ 1992 ACM 0-89791 -535.6 /92/0010 /0223 . ..$1.50

rely on atomic operations to implement higher-level

mutual exclusion facilities. We show that improving

the performance of low-level atomic operations, and

therefore mutual exclusion mechanisms, improves ap-

plication performance.

1 Introduction

In this paper we describe restartable atomic sequences,

an optzmisiic mechanism for implementing atomic op-

erations on a uniprocessor. Our approach assumes that

short, atomic sequences are rarely interrupted. If a

thread is interrupted during an atomic sequence, we

rely on a recovery mechanism provided by the ker-

nel that resumes the thread at the beginning of the

sequence. We have implemented restartable atomic

sequences in the Mach 3.0 [Accett a et al. 86] and

Taos [Thacker et al. 88] operating systems, using a dif-

ferent method in each. We show that restartable atomic

sequences are significantly more efficient than other

software techniques. We have measured performance

improvements of up to 50$Z0for some applications on the

MIPS R3000-based [Kane 87] DECstation 5000/200,

which does not have hardware support for atomic op-

erations. In addition, we show that restartable atomic

sequences outperform hardware mechanisms on proces-

sors that do provide explicit support for atomic opera-

tions.

1.1 Motivation

Multithreaded programs use mutual exclusion to guar-

antee consistency of shared data structures. Mutual ex-

clusion mechanisms such as P, V [Dijkstra 68a] and ac-
qutre-mutex, re~ease-mut ex [Birrell 91] are implemented

using lower-level operations such as Test-And-Set that

grant one of several threads mutually exclusive access

to some data structure. Even on a uniprocessor, mutual

223

http://crossmark.crossref.org/dialog/?doi=10.1145%2F143365.143523&domain=pdf&date_stamp=1992-09-01

exclusion is necessary to protect shared data against

an interleaved thread schedule, Interleaving can oc-

cur when a thread is suspended (due to asynchronous

fault or an asynchronous preernption),or when athread

blocks (due to the thread voluntarily relinquishing the

processor).

Efficient mutual exclusion mechanisms are becoming

increasingly important on uniprocessors for two rea-

sons. First, modern applications use multiple threads

as a program structuring device, as a mechanism for

portability to multiprocessors, and as a way to man-

age 1/0 and server concurrency even when no true

CPU parallelism is available. Second, many operating

systems today are built on top of a microkernel that

supports relatively few services; for example thread

scheduling, virtual memory and interprocess commu-

nication [Mullender et al. 90, Cheriton 88, Rozier et al.

88, Accetta et al. 86, Thacker et al. 88}. Other services

such as the file system and networking are implemented

as multithreaded user-level applications. The micro-

kernel approach exposes the performance of a system’s

mutual exclusion primitives; even single threaded pro-

grams rely on basic operating system services that are

implemented outside the kernel using multiple threads,

The performance of all applications is therefore ulti-

mately influenced by the performance of the underlying

mutual exclusion mechanisms.

The mechanisms that have been used to implement

atomic operations on a uniprocessor (i.e., those de-

scribed in every undergraduate operating systems text-

book) can be characterized as pessimistic. That is,

their design assumes that atomicity may be violated

at any moment (e.g., with an interrupt), and therefore

guards against this potential violation every time the

atomic operation is executed. This approach, though,

can incur a high overhead that affects the performance

of applications relying on mutual exclusion, either di-

rectly or indirectly.

In contrast, the optimistic mechanism described in

this paper assumes that atomic sequences are rarely

interrupted, and adopts an inexpensive solution for this

assumed common case. We show that this assumption

is both accurate, and effective at reducing the overhead

of mutual exclusion.

1.2 The rest of this paper

In the next section we describe restartable atomic se-
quences after reviewing several pemirnistic techniques

for ensuring mutual exclusion on a uniprocessor. In

Section 3 we discuss implementations of restartable

atomic sequences for the Mach and Taos operating sys-

tems, In Section 4 we discuss some of the kernel de-

sign issues that arise when implementing restartable

atomic sequences. In Section 5 we show the perfor-

mance impact of using restartable atomic sequences in

the Mach operating system. In Section 6 we show that

restartable atomic sequences have less overhead than

equivalent hardware mechanisms on several processor

architectures. In Section 7 we discuss related work. In

Section 8 we present our conclusions.

2 Implementing mutual exclu-

sion on a uniprocessor

This section describes four techniques for implementing

atomic primitives suitable for use by mutual exclusion

mechanisms on a uniprocessor. We concentrate on the

specific atomic primitive Test-And-Set, although other

primitives, such as Fetch-And-Add, Load-Ltnked/Store-

Conditional, and Memory-Register-Exchange could be

similarly constructed. Each of these primitives per-

forms an atomic read-modify-write of a single mem-

ory location. Three of the techniques, memory inter-

locked instructions, software reservation and kernel em-

ulation, are pessimistic. The fourth, restartable atomic

sequences, is based on the optimistic approach.

2.1 Menlory-interlocked instructions

Memory-interlocked instructions (or instruction se-

quences) require special hardware support from the

processor and bus to ensure that a given memory loca-

tion can be read, modified and written without inter-

ruption. Memory-interlocked instructions are primarily

intended to support multiprocessing, but can be used

on uniprocessor systems as well. Unfortunately, not

all processors support memory-interlocked instructions,

and many that do, do so reluctantly; i.e., the cycle time

for an interlocked access is several times greater than

that for a non-interlocked access. The reasons for the

higher cost are increased complexity [Inte1860 89], an

overly rich set of atomic operations [Leonard 87, In-

te1386 90], support for atomic updates on arbitrary bit

boundaries [Leonard 87], and the fact that atomic op-

erations may bypass the on-chip cache [Motorola 88100

88]. A good survey of memory-interlocked instructions

and their implementations can be found in [Glew &

Hwu 91].

2.2 Software reservation

Atomic operations can also be constructed using soft-

ware reservation algorithms, such as Dekker’s [Dijkstra

68 b], Peterson’s [Peterson 81] or Lamport’s [Lamport

87]. Roughly speaking, with software reservation algo-

rithms, a thread must register its intent to perform an

atomic operation and then wait until no other thread

has registered a similar intent before proceeding. We

use Lamport’s fast mutual exclusion algorithm to eval-

uate software reservation schemes since it has been

proven correct and shown to be optimal. If one is will-

ing to put an upper bound on the duration of the crit-

ical section, then it is possible to implement multipro-

cessor mutual exclusion with fewer instructions than

required by Lamport’s algorithm. Such a limitation,

224

though, is generally not feasible on a multiprocessor,

and would be nearly impossible on a uniprocessor.

In Lamport’s algorithm, shown in Figure 1, each

thread has a unique identifier i which is used to place

reservations into the variable x, and to indicate own-

ership of the lock via the variable y. In the normal

case (no contention, no collision), Lamport’s algorithm

requires two loads and five stores, executing in order

the lines [1,2,3,9,10,19,21,22]. If a thread reaches line

3, though, and finds that the lock is held by another

thread, there is contention, and the thread must wait

until the lock is released. The array b is used to resolve

collisions, which occur whenever two or more threads

find that the lock is free at line 3 and proceed to line 9

simultaneously (or through an interleaved schedule on

a uniprocessor). A collision by n threads will be de-

tected at line 10 by n – 1 of them; those n – 1 will enter

the loop at line 12 and wait until the collisions have

settled out (lines 12 through 15). The await used at

lines 5, 12 and 14 is necessary when there is contention

or collision, and can be implemented on a uniprocessor

by having the awaiting thread yield its processor to the

scheduler.

start:
1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

b[i] := true;

x :=i.

if y ~> O then

b[i] := false;

await (y = O) ;

goto start;

end;

:=i.
Y*
if x <> i then

b [i,] := false;

{ Contention 3

{ Collision }

for j := 1 to N await (b[j] = false);
ify<>i then

await (y = O) ;

goto start;

end;

end;

CRITICAL SECTION

:= o;
~[i] := false;

Figure 1: Lamport’s fast mutual exclusion algorithm.

Although reservation-based algorithms such as Lam-

port’s are correct in principle, they are in practice un-

wieldy, having storage requirements that are O(n x i),

where n is the maximum number of threads that may

be simultaneously active, and i is the maximum num-

ber of synchronization objects.

The space requirement can be reduced to O(n) with

a single “meta-atomic object” which is used to control

access to all “regular atomic objects. ” In this case,

the critical section at line 19 in Figure 1 becomes a

function Mets-Atomic-Test-And-Set (var p: integer)
: integer;

var result: integer;
begin

[lines 1-18 from Lamport’s algorithm I

if (p = O) then

result := O;
~=l;

else
result := 1;

end;

[lines 21-22 from Lamport’s algorithm]
return result;

end Mets-Atomic-Test-And-Set;

procedure AtomicClear(var p: integer)
begin

P 0;
:=

end Atomic Clear;

Figure2: Bundled

rithm.

Test-And-Set using Lamport’s algo-

code sequence to access the “regular atomic object.”

For example, we can bundle the reservation algorithm

insidea Test-And-Set procedure (see Figure 2).

Even though bundling reduces the space requirement

for an atomic Test-And-Set variable to one bit (space

for the meta variables z, g, and b can be counted as

constant system overhead), it increases the number of

memory accesses to enter and exit a critical section

to at least three loads and seven stores. Additionally,

bundling serializes all atomic operations, even those

forunrelated synchronization objects. Onauniproces-

sor, for example, a thread preempted during the func-

tion Mets-Atomi.c-Test-And-Set would prevent other

threads from executing any atomic operation.

2.3 Kernel emulation

Memory-interlocked instructions and software reserva-

tion protocols work on both uniprocessors and multi-

processors. Astrictly uniprocessor solution hastheker-

nel export its ability to perform atomic operations to

applications by means of a system call that does an

atomic read-modify-writeon a memory location in the

caller’s address space. In the kernel, processor inter-

rupts are disabled during the execution of the atomic

operation.

Although kernel emulation requires no special hard-

ware, its runtime cost is high. The kernel must be

invoked on every synchronization operation, requiring

that strap be fielded and dispatched, state saved and

restored, and arguments checked. On the MIPS R3000,

for example, building a Test-And-Set with kernel emu-

lation takes about 100 instructions.

225

function Test-And-Set(var p: integer): integer;
var result: integer;

begin
1 result := 1;

2 BEGIN RESTARTABLE ATOMIC SEQUENCE
3 if p = 1 then

4 result := O;
5 else

6 p := 1;

7 end;

8 END RESTARTABLE ATOMIC SEQUENCE

9 return result;

end Test-And-Set;

Figure 3: Generic Test-And-Set using a restartable

atomic sequence.

3 Implementing restartable

atomic sequences

Restartable atomic sequences require kernel support to

ensure that a suspended thread is resumed at the be-

ginning of the sequence. This section describes two

strategies for implementing that kernel support. The

first strategy, used by the Mach 3.0 kernel, places

a restartable atomic sequence at a designated code

range within a program. The second strategy, used

by the Taos kernel, constructs restartable atomic se-

quencesout of unique code fragments against which a

suspended thread’s current instruction stream is com-

pared. Both strategies have been implemented in ver-

sions of the operating systems running on the MIPS

R3000-based DECstation 5000/200.

2.4 Restartable atomic sequences 3.1 Explicit registration in Mach

The three mechanisms described so far are pessimistic.

A memory-interlocked instruction implicitly delays in-

terrupts until the instruction completes; a software

reservation algorithm explicitly guards against arbi-

trary interleaving; kernel emulation explicitly disables

interrupts during operations that must execute atomi-

cally.

On a uniprocessor, an atomic read-modify-write op-

eration can be performed optimistically. Instead of us-

ing a mechanism that guards against interrupts, we can

instead recognize when an interrupt occurs and recover.

For any read-modify -write sequence, the recovery pro-

cess is straightforward: restart the sequence. In this

way, when the sequence eventually completes, it will

have completed without interruption, i.e., atomically.

An atomic Test-And-Set operation is shown in Fig-

ure 3. As long as statements 3 through 7 execute with-

out interruption on auniprocessor, this code will atom-

ically read and write the variablep. If an interrupt oc-

curs that would allow another thread to possibly mod-

ify the variable p, then the interrupted thread must

resume execution at line 3 when it is next scheduled.

The corresponding clear operation can store a zero into

p as long as single-word memory accesses execute atom-
ically.

Restartable atomic sequences are attractive because

they do not not require hardware support, have a short

code path with one load and one store per atomic read-

modify-write (in the common case of no interruptions),

and do not involve the kernel on every atomic opera-

tion. Only when an atomic instruction sequence might

not have executed atomically is it necessary to perform

a recovery action to ensure atomicity. In the next sec-

tion we describe two recovery strategies.

The Mach operating system implements a strategy

based on explicit registration. The kernel keeps track

of each address space’s restartable atomic sequence. If

a thread is suspended within that sequence, it is re-

sumed at the beginning. An application registers the

starting address and length of the sequence with the

kernel. ” The registration is done automatically during

program initialization by C-Threads [Cooper & Draves

88], Mach’s thread management package.

An address space may register only one restartable

atomic sequence at a time. This restriction simplifies

the kernel’s task of determining if a suspended thread

was executing within a restartable sequence. When

the thread management system attempts to register

a restartable atomic seGuence with a kernel that does

not support such seque~ces, the registration fails. In

response to the failure, the thread management sys-

tem overwrites the restartable atomic seauence with.
code that uses a conventional mechanism. Overwrit-

ing ensures binary portability between uniprocessors

and multiprocessors, and binary compatibility with

older kernels that do not support restartable atomic

sequences.

A registered Test-And-Set function can be imple-

mented- with a single four-word (and four cycle) se-

quence on a load/store RISC architecture. For exam-

ple, the assembly code for this function on a MIPS

R3000 is shown in Figure 4. Line 1 loads the current

value of the Test-And-Set location, passed in register

ao, into the return value register, VO. Line 2 loads a

temporary register with the value 1. Line 3 returns

control back to the caller, Line 4, which executes in

the branch delay slot following the return, stores a 1

into the Test-And-Set location. Lines 1–4 form the

restartable atomic sequence: when the store jinaily oc-

curs at the end of line 4, no other thread will have

executed since the thread’s most recent load at line 1.

226

Test-And-Set procedure.

Test-And-Set:

1 lw VO, (aO) #vO = contents of aO

2 li tO, 1 #temporary tO gets 1

3 j ra #return to caller, result in VO
4 sw tO, (aO) #store 1 in Test-And–Set

#location

Figure4: Restartable Test-And-Set procedure usingex-

plicit registration in Mach 3.0.

Costs of explicit registration

There are two runtime costs associated with explicit

registration. Because the kernel identifies restartable

atomic sequences by a single PC range per address

space, they cannot be inlined. The inability to inline

slightly increases the overhead ofatomic operations be-

cause of the cost ofsubroutine linkage.

The second cost comes frornhavin gtocheckthe re-

turn PC whenever a thread is suspended. Although

this test adds a few tens of cycles to the kernel’s thread

suspension path (which is already several hundred cy-

cles long), thread suspensions occur far less often than

atomic operations, making the additional scheduling

overhead worthwhile.

3.2 Designated sequences in Taos

Taos uses designated code sequences torecoguize when

a thread has been suspended within an atomic se-

quence. The kernel compares the instruction stream

of a suspended thread against a designated sequence.

Thecomparison allows restartable atomic sequences to

occur anywhere in a program, enabling inlining and

eliminating the branch overhead of explicit registration.

Thekernel’s comparison must recognize every inter-

rupted sequence and reject any other similar looking

sequence since mistakenly changing the PC in such a

situation could cause code to malfunction. Taos uses

a two-stage check to unambiguously recognize atomic

sequences.

The first stage is a fast test which rejects most in-

terrupted code sequences that are not restartable. The

opcode of the suspended instruction is used as an in-

dex into a hash table containing instructions eligible to

appear in a restartable atomic sequence. If the opcode

matches the contents of the indexed entry, the test pro-

ceeds to the second stage. The first check is quite fast,

yet succeeds in rejecting a large majority of the non-

atomic cases and none of the atomic ones. The few that

pass this check, comprising all of the suspended atomic

sequences, plus a much larger number of false alarms,

move on to the second stage of the check.

The second stage uses another table, again indexed

by opcode, to determine the expected offset from the

suspended instruction to a “landmark” no-op, The

landmark no-op is never emitted by the compiler un-

der normal circumstances, but is present within every

restartable atomic sequence. On the R3000, the land-

mark no-op is a non-destructive register move which

fills an otherwise useless branch delay slot. If the sec-

ond stage finds the landmark in the expected position,

it recognizes the sequence as atomic and restarts it.

Otherwise, the sequence is rejected as a false alarm.

The designated sequence for acquiring a mutex is

shown in Figure 5. The sequence is optimistic in two

distinct senses: it assumes both that it will not be in-

terrupted, and that it will find the mutex unlocked.

Both assumptions model the frequent case, but either

or both can fail independently. The sequence is es-

sentially a Test-And-Set of an entire word, where the

unlocked value of the mutex is O, and the locked-but-

no-waiters value is 0x80000000. Typically, the sequence

finds that the mutex has the former value and atomi-

cally sets it to the latter. The infrequent case is handled

with an out-of-line kernel call via SlowAcquire. The

sequence for mutex release (Test-And-Clear) is similar.

i lW vO, (aO) #get value of snrtex

2 lui tO, 8000H #temporary tO=Ox80000000

3 bne VO, SlowAcquire #branch if not common case

4 no-op #special landmark value

5 Sw tO, (aO) #store locked value

Figure 5: A restartable atomic sequence for mutex ac-

quisition using an inlined designated sequence.

Costs of designated sequences

Designated sequences have several costs. There is the

measurable cost of the two-stage check on every thread

switch. The check is currently implemented in Mod-

ula2+, the language in which the operating system is

written [Rovner et al. 85]. As with Mach’s explicit reg-

istration, the check adds a few tens of instructions to

the kernel’s context switch path (counting instructions

in the generated code shows that the check adds about

2 psecs on a MIPS R3000 in the common case).

Unlike explicit registration, which uses only one se-

quence that can be overwritten at runtime if restartable

atomic sequences are not supported on a given system,

designated sequences are not portable between unipro-

cessors and multiprocessors. The compiler must gener-

ate a different code sequence for each.

More generally, the use of a designated sequence

requires a strong alliance between the compiler and

the operating system, since changes in the way that

one handles atomic operations must be reflected in the

other. The global design properties of the Taos oper-

ating system make this linkage feasible, however. The

crucial property of Taos is that both the kernel and
its multithreaded clients are written in Modula-2+. In

this context, the kernel and the compiler can cooperate

closely to support fast mutual exclusion using desig-

nated inlined sequences. In contrast, for Mach, which is

227

not intended to be used with any one language and any

one compiler, such a close alliance between the compiler

and the operating system kernel is not feasible.

4 Kernel design considerations

Section 3 described two kernel techniques that support

fast mutual exclusion with restartable atomic sequence.

The implications of these techniques for the inner work-

ings of the kernel depend both on the exact technique

chosen (explicit registration, or designated sequences)

and on the design details of the specific kernel involved.

In this section we discuss some of these implications.

4.1 Placement of the PC check

The most obvious question about kernel structure is:

when should the kernel check/adjust the PC of a sus-

pended thread? The two points at which the thread can

be checked are when it is first suspended, and when it

is about to be resumed. One could consider intermedi-

ate points, but they are less natural than either point

where the kernel already has the thread in hand.

When using designated sequences, checking the PC

can cause a page fault since it involves reading arbitrary

user memory. If the kernel path leading to suspension

is restricted in its ability to incur additional faults, as

it is in Taos and many other systems, early checking

of the PC with designated sequences can be problem-

atic. Checking the PC late solves this problem, since

there are generally fewer restrictions on kernel excep-

tions when coming out of a context switch.

In Mach, the PC is checked when the thread is sus-

pended rather than when it returns to user level, Since

only the PC, but not its contents, are inspected, there

is no concern about touching user memory at inoppor-

tune times, The check is done early because the return

PC and reason for entry into the kernel are conveniently

available at that point.

Detection at user level

Explicit registration and designated sequences place

with the kernel the responsibility for detecting and cor-

recting atomicity violations. An alternative approach

places that responsibility with the application itself:

whenever a suspended thread is resumed by the kernel,

it returns to a fixed user-level sequence that determines

if the thread was suspended within a restartable atomic

sequence. If so, the user-level recovery code branches

to the beginning of the sequence, otherwise it branches

to the suspended instruction.

User-level detection is attractive because the kernel

provides only the mechanism to ensure atomicity. The

policy lies with the application. Since the kernel is not

involved in either detection or correction, those pro-

cesses can be made as rich as necessary to satisfy the

atomicity constraints of any instruction sequence, such

as those that manipulate wait-free data structures [Her-

lihy 91], as well as the more conventional Test-And-Set.

The user-level approach is not without problems,

however. Transferring first to a fixed instruction se-

quence, and then to the suspended instruction involves

more complexity and overhead than the simple check

made by the kernel in either of the other two strate-

gies. There is a level of control indirection requiring

that the real return address be saved and restored on

the thread’s user-level stack at each suspension. Be-

cause of these problems, and because there is little mo-

tivation to create a clean policy/mechanism separation

when there is only one policy, neither Taos nor Mach

provide for user-level detection. 1

4.2 Mutual exclusion in the kernel

The kernel is itself a client of thread management facil-

ities in both Mach and Taos. It is tempting to regard

the kernel’s ability to disable interrupts as a sweeping

solution to the mutual exclusion problem on a unipro-

cessor. Mach implicitly adopts this approach as the ker-

nel is non-preemptive, but is compiled for uniprocessors

with all low-level synchronization operations removed.

The Taos kernel, however, is preemptive, and uses des-

ignated sequences just as applications do. There are

two reasons for this. The first is a minor performance

gain, since explicit disabling and reenabling of inter-

rupts would more than double the cost of synchroniza-

tion operations. The second reason is a desire to use

the same Modula-2+ compiler for all code, whether it

be user code or kernel code.

The use of restartable atomic sequences in both user

programs and the kernel raises the question of system

structuring due to potential recursion. Two events, a

page fault or a thread preemption, can trigger a thread

switch in the middle of a restartable atomic sequence.

Since the sequence may be in either user or kernel code,

there are then four events that must be considered in

the light of recursion: user page fault, user preemp-

tion, kernel page fault, and kernel preemption. The

kernel uses mutexes while handling these events, so it

is important to ensure that recursion does not lead to

deadlock. For example, a thread could incur a user

page fault, be preempted while handling it in the ker-

nel, and upon resuming from the preemption, incur a

second page fault when trying to do its PC check. If

the preemption happened while holding a lock in the

virtual memory system, the recursion could cause the

thread to deadlock with itself.

The problem here is that careless ordering of the

PC check could lead to mutual recursion between the

thread scheduler and the virtual memory system. Such

1At CMU, we rely on user-level restart in a preemptive corou-
tine package for Unix systems that is used in teaching an under-
graduate operating systems course. We examine the interrupted
PC within the Unix signal handler, and roll it back if necessary.
With this, we avoid disabling and enabling Unix signals during
every synchronization operation.

228

problems are avoided in Taos because the system is

structured toimpose a strict ordering onthe four events

listed above. Thehandling ofany event can cause only

lower-level events. A user page fault can incur kernel

page faults and kernel preemptions, but a kernel pre-

emption (including the PC check at restart) can not

incur kernel page faults. Resuming from a user pre-

emption, by contrast, is allowed to incur page faults.

By consistently ordering the PC checks, Taos is able

to use restartable atomic sequences at all levels of the

system without risk of deadlock or endless recursion.

5 The performance of three

software techniques for mu-

tual exclusion

In this section we compare the performance of

restartable atomic sequences, kernel emulation and

software reservation on a RISC-based DECstation

5000/200 running the Mach 3.0 kernel (version MK42)

and CMU’s Unix server (version UX23) [Golub et al.

90]. The DECstation 5000/200 has a 25 Mhz MIPS

R3000 processor which does not support atomic read-

modify-write memory accesses in hardware.

We discuss performance at three levels. First, we

examine the basic overhead of the various mechanisms.

Next, we examine their effect on the performance of

common thread management operations. Finally, we

take a system-wide perspective and look at the effect

that mutual exclusion overhead has on the performance

of several applications. In brief, we show that:

● Using restartable atomic sequences instead of

kernel-emulation, the performance of multi-

threaded applications can be improved substan-

tially.

● Even single threaded applications, because they

deal with multithreaded operating system servers,

can benefit indirectly from inexpensive mutual ex-

clusion.

● Thread suspensions occur much less frequently

than atomic operations, justifying the small

amount of extra work done during thread switch

in order to improve the performance of atomic op-

erations.

. Restartable atomic sequences are almost never in-

terrupted, validating the optimistic approach.

Although we have not collected detailed performance

information in Taos, we believe that the results would

be similar.

5.1 Microbenchmarks

We compare the performance of the three software-

based mutual exclusion mechanisms with a test that

enters a critical section using a Test-And-Set lock, in-

crements a counter, and leaves the critical section by

clearing the Test-And-Set lock. The test uses only one

thread, so the Test-And-Set always succeeds. Conse-

quently, we are not measuring the performance of the

thread management system itself (context switching,

scheduling, etc.), but rather that of the basic proces-

sor architecture, memory system and mutual exclusion

mechanism. The update to the counter is included so

as to model a real critical section: interactions between

the atomic operation, the code in the critical section,

and the memory system should be considered when

evaluating a mutual exclusion mechanism. For exam-

ple, a scheme requiring several writes will not work well

on a memory system with a write-through cache and a

shallow write-buffer [Bershad et al. 92].

The elapsed times to execute the various software-

based mutual exclusion algorithms are shown in Ta-

ble 1. The values in the table were determined by ex-

ecuting the test in a tight loop 1,000,000 times, com-

puting the average elapsed time of each pass through

the loop, and subtracting off the loop overhead. There

was only negligible variation in times over several runs

of the benc~m%ks on an unloaded system.

Software hlechanisrn

Restartable Atomic Sequences (branch)

Restartable Atomic Sequences (inline)

Kernel Emulation

Software-reservation (a)

Software-reservation (b)

Time

(psecs)

.64

.51

4.15

1.51

1.16

Table 1: Microbenchmark results for the DECstation

5000/200.

Restartable atomic sequences were measured with

branches to an explicitly registered sequence, and also

with inlined code. The performance difference between

the two approaches is due to the subroutine linkage

overhead on the MIPS. Kernel emulation and both

reservation schemes use out-of-line calls to implement

the atomic operations. For these mechanisms, the over-

head is sufficiently high that there is little to be gained

by inlining. Software-reservation protocol (a) is an im-

plementation of Lamport’s fast mutual exclusion al-

gorithm in which each lock is represented by a data

structure containing an owner and a reservation field

(one word each), and an array of booleans indexed by

a thread identifier. It is the most direct implementation

of the algorithm, but suffers from the high storage re-

quirements described in Section 2.2. Protocol (b) uses

Lamport’s algorithm to implement the “meta” mutual

exclusion function shown in Figure 2. Protocol (b), de-

spite an increase in the number of memory accesses over

Protocol (a), executes more quickly on the DECstation

5000/200 because of the cost of having to compute a

thread’s unique identifier and the address of its “busy”

bit. With protocol (a), these must be computed on en-

try and exit to a critical section, whereas with protocol

229

(b), they need only be computed on entry. A dedi-

cated per-thread hardware register would reverse this

disparity.

The table shows that kernel emulation is by far the

most expensive approach; the trap and exception dis-

patch in the kernel are the main sources of overhead.

Both software reservations schemes are faster than ker-

nelernulation,but much slower than restartable atomic

sequences due to the number of instructions and nlem-

ory accesses required. Despite their better perfor-

mance, both reservation strategies have practical prob-

lems that make them difficult to use (see Section 2.2).

Consequently, in the rest of this section, we restrict our

comparisons to systems using only restartable atomic

sequences and kernel emulation.

5.2 Thread management overhead

Mach’s user-level thread management system, C-

Threadsj like other thread management packages [An-

derson et al. 89, Bershad et al, 88, Weiser et al. 89],

relies heavily on simple atomic operations to implement

higher level facilities such as threads, locks and condi-

tion variables. We looked at several benchmarks to

understand the influence that atomic operations have

on the performance of these higher level facilities using

two different versions of C-Threads. One version re-

lies on kernel emulation for synchronization, The other

uses restartable atomic sequences, The benchmarks,

which contain the kinds of operations typically found

in multithreaded programs, are:

Spiniock. One thread repeatedly acquires and re-

leases a spinlock. The spin lock is implemented

with a Test-And-Set sequence.

Muteziock. One thread repeatedly acquires and

releases a relinquishing mutex. Unlike a spinlock,

if a thread tries to acquire a held mutex, it relin-

quishes the processor. The mutex is implemented

using a spinlock and a queue of waiting threads.

Forktest. Threads are recursively forked in suc-

cession; i.e,, thread 1 forks thread 2 which forks

thread 3, etc.. After forking, a thread immediately

terminates.

Pingpong. Two threads “pingpong” off one an-

other in a tight loop, using a mutex and condition

variable to execute alternately.

The performance of these benchmarks running on a

DECstation 5000/200 is shown in Table 2. Each entry

in the table represents the elapsed time per operation

(i.e, one spinlock acquire and release, one mutex lock

and unlock, one fork and exit, one ping and pong). The

table shows that the performance of thread manage-

ment operations depends upon the performance of the

underlying synchronization mechanism. when using

kernel emulation for Test-And-Set, thread management

functions spend the majority of their time in the ker-

nel executing synchronization code. With restartable

atomic sequences, synchronization overhead becomes

negligible. Even PmgPong, with its profligate synchro-

nization (26 Test-And-Sets per cycle), spends less than

10% of its time synchronizing when using restartable

atomic sequences.

Benchmark Emulation R.A.S.

(psecs) (psecs)

Spinlock 4.3 .58

MutexLock 4.6 .91

ForkTest 43.7 23.8

PingPong 230.8 115.2

Table 2: The effect of synchronization on thread man-

agement overhead under Mach 3.0 on a DECstation

5000/200.

5.3 Application performance

The microbenchrnarks and thread management bench-

marks indicate that restartable atomic sequences can

have a large effect on individual operations. Ultimately,

though, we are concerned with performance system-

wide. In this subsection we examine the effect that

restartable atomic sequences have on the performance

of several applications running on Mach 3.0. The ap-

plications are:

text-form at. Format a version of this paper using

LATEX.

afs- bench. A script of file system intensive pro-

grams such as copy, compile and search that

execute out of the Andrew File System [Satya-

naranyanyan et al. 85].

parthenon-n. A resolution-based theorem prover

that uses n threads to exploit or-parallelism [Bose

et al. 89].

proton- 61. A producer-consumer application in

which one consumer thread coordinates with one

producer thread to read data from a large file into

a 64 byte buffer.

Table 3 shows the behavior of the applications when

run under two different versions of the operating sys-

tem. The columns labeled “Emul” reflect runs using

kernel emulation for the application and for Mach’s

user-level Unix server. The columns labeled “R, A. S.”

reflect runs using restartable atomic sequences for the

applications and for the Unix server. Each program

was run several times and the average values for mea-

surements taken during the runs are given in the table.

Restartable atomic sequences have the greatest ef-

fect on applications that use threads explicitly, such as

parthenon with 1 or 10 threads, and proton-64 which

230

Program Elapsed Emulation Restarts Thread

Time (sees) Traps Suspensions

Emul. R.A.S. Emul, R.A.S.

text-format 10.1 9.8 57305 0 295 317

afs-bench 239.4 231.1 2191276 42 8856 9876

parthenon-1 25.8 18.5 1395534 4 412 354

parthenon-10 26.1 18.6 1576714 7 610 499

proton-64 30.4 15.7 2738168 4 106969 91494

Table3: Effect ofsynchronization overhead on application performance.

improve by about 309f0 and 50% respectively. Single-

threaded “vanilla Unix” applications also benefit in-

directly through the improved performance of multi-

threaded user-level operating system services. For ex-

ample, the performance of the text-formatter and the

file system benchmarks, which are themselves single

threaded but rely on the multithreaded Unix server,

improves by about 3’ZO.

The column labeled “Emulation Traps” reflects the

number of synchronizations that occurred when atomic

operations were implemented in the kernel. The col-

umn labeled “Restarts” shows the average number of

atomic sequence restarts that had to be performed

when Test-And-Set was implemented with explicit reg-

istration. The restart count demonstrates that the like-

lihood of a thread being suspended during a restartable

atomic sequence is extremely small.

The last two columns show the number of times that

the kernel suspended a thread. For restarta.ble atomic

sequences, it indicates how many times a thread’s ex-

ecution state had to be checked to ensure that atomic

operations eventually execute atomically. Comparing

this column to the number of emulation faults justifies

the small amount of extra work required by the restart

strategies whenever a thread is rescheduled. The more

compelling justification, of course, is the reduced exe-

cution time for the applications.

The number of emulation traps can be used

to account for the performance difference between

the two versions of the system. For example,

par-then on- 10, with its 1.57 million kernel emulations,

should improve by about 1.57 million x 3.7 psecs

(4.3 psecs– .58 psecs), or about 5.8 seconds, The actual

improvement, is slightly greater than this for two rea-

sons. First, the correlation between elapsed time and

number of emulation traps is neither strictly negative

nor strictly positive. Hence, the number of emulation

traps is only a good, but not exact, predictor of per-

formance improvement, Second, some of the improve-

ment is due to the reduction in scheduling overhead

that comes with a decrease in critical section service

time.

For even very short critical sections (10 to 20 in-

structions) restartable atomic sequences add little ex-

tra overhead, and much of that overhead comes before

the critical section has actually been entered. Conse-

quently, a short critical section remains short, and the

likelihood of the critical section itself being suspended is

small. With kernel emulation, though, each Test-And-

Set takes about 100 instructions, and nearly all are ex-

ecuted with processor interrupts disabled. When con-

trol returns out of the kernel, interrupts are reenabled

and any pending interrupts are delivered. If the de-

livered interrupt causes a preemption, then the thread

that just performed the atomic operation will be re-

scheduled and another thread will run. If that thread

attempts to enter the same critical section, it will find

the Test-And-Set variable already set and will relin-

quish its processor to the scheduler.

We looked more closely at parthenon--l(l to determine

the influence of inflated critical sections on program

behavior. The program synchronizes often, but most

synchronization operations guard short critical sections

that simply increment a counter, or dequeue an item

from a. linked list. In running the program, we counted

the number of times that a thread was unable to en-

ter a critical section because of a lock held by another

(suspended) thread. When using kernel emulation in

parthenon-10, a thread found a Test-And-Set lock held

about twice as often as with restartable atomic se-

quences.

6 Software vs. hardware sup-

port for mutual exclusion

The lack of hardware support for atomic operations of-

fered the initial motivation to investigate efficient soft-

ware solutions [Anderson et al. 91]. Most processors,

however, do support some type of atomic read-modify-

write instruction. In this section we evaluate the use of

restartable atomic sequences on such processors.

We measured the overhead to acquire and release

a Test-And-Set lock using memory-interlocked instruc-

tions and restartable atomic sequences on eight proces-

sor architectures. The results are shown in Table 4.

For the interlocked cases, the times do not include any

linkage overhead, as the Test-And-Set and subsequent

release instructions can be executed inline. In the cases

of explicit registration, linkage overhead is included for

the Test-And-Set, but not for the release, which can

be inlined. The fourth column of Table 4 shows the

call linkage overhead. Even with the linkage overhead,

restartable atomic sequences are more efficient than

memory-interlocked instructions on the DEC CVAX,

231

Processor

DEC CVAX

Motorola 68030

Intel 386

Intel 486

Intel 860

Motorola 88000

Sun SPARC

HP 9000 Series 700

Interlocked Explicit Linkage Designated

Instruction Registration Overh~ad Sequence

(psecs) (psecs) (,usecs) (psecs)

2.8 2.2 .6 1.6

1.1 2.0 .8 1.2

1.0 1.6 .7 .9

.7 .6 .3 .3

.3 .4 .2 .2

.9 .3 .1 .2

.8 1.0 .3 .7

.94 .17 .08 .09

Table 4: Hardware and software overheads of Test-Arid-Set using different implementation strategies.

the Intel 486, the Motorola 88000, and the Hewlett

Packard 9000 (PA-RISC) Series 700.

Using designated sequences, the software approach

outperforms the hardware in all cases (subtract the

overhead of linkage from that of an explicitly registered

sequence). As processor speeds increase relative to bus

and memory speeds, we expect the optimistic software

solution to continue its dominance. For interlocked in-

structions to outperform optimistic software techniques

on uniprocessors, they must be implemented so that

they exploit the simpler single processor case.

The table demonstrates that one should not neces-

sarily rely on an architecture and memory system to

provide functions that may be provided more cheaply

with a combination of operating system, compiler, and

runtime support.

7 Related work

The Trellis/Owl object-oriented language [Moss &

Kohler 87] used optimistic synchronization techniques

similar to those described in this paper. The Owl

runtime system provided concurrency among several

threads sharing a single VMS process, and used soft-

ware interrupts from VMS to drive its multiplexing It

provided atomicity for its own needs and those of user

programs by backing out of certain registered runtime

routines, and by emulating forward through designated

sequences. The most important difference between Owl

and the work described in this paper is our integration

of restartable atomic sequences with the operating sys-

tem kernel.

User-level detection and restart is similar to the ap-

proach taken in [Anderson et al. 92] to support user-
level thread management on shared memory multipro-

cessors. In that system, when a thread is preempted

inside a critical section, it is immediately resumed not

where it left off, but within code that gives the thread

management system the opportunity to recover from

the preemption. This machinery is sufficient for imple-

menting restartable atomic sequences on a uniproces-

sor.

The Intel i860 processor [Inte1860 89] provides hard-

ware support for restartable sequences. A thread be-

gins a multi-instruction atomic sequence with a special

instruction that sets a bit in the processor status word,

disables iuterru~ts. and locks the bus. The bit is cleared
1,

and the bus lock is automatically released on the next

write to memory, after 32 cycles, or on a processor ex-

ce~tiou. The release on write covers the common case.
of a successful read-modify-write sequence. The kernel

must check the bit on every transfer from the kernel

to user level. If the bit is set. the kernel must back

the thread u~ to the special instruction. DesRite the

i860’s hardwire suppor~ for restart able sequen~es (the

bit in the processor status word eliminates the need

to ~erform ex~licit registration or instruction stream

ins~ection aft& every-context switch), it offers little

performance advantage over software techniques on a

uniprocessor (see Table 4).

8 Conclusions

Restartable atomic sequences represent a “common

case” approach to mutual exclusion on a uniprocessor.

In the common case, an atomic operation runs unin-

terrupted. The uncommon case can be detected after

it occurs and can be handled by means of a simple re-

covery process. As such, restartable atomic sequences

are appropriate for uniprocessors that do not support

memory-interlocked atomic instructions. Moreover, on

processors that do have hardware support for syn-

chronization, better performance may be possible with

restartable atomic sequences.

Acknowledgements

Richard Draves, Hank Levy, Chris Maeda, Dan Stodol-

sky and Terri Watson provided valuable feedback on

earlier drafts of this paper. The use of restartable

atomic sequences in Taos benefitted from discussions

with Butler Lampson and Mike Burrows. The system

structuring ideas in Section 4 were clarified during dis-

cussions with Jerry Saltzer.

232

References

IAccetta et al. 861 Accetta, M. J., Baron, R. V., BoIoskY,

[Anderson

[Anderson

W., G’olub, D. B., Rasllid, R. F., Tevauian, J;.;

A., and Young, M. W. Mach: A New Kernel

Foundation for UNIX Development. In Proceerl-
ings of the Suvnmer 1986 USENIX Conference,

pages 93-113, July 1986.

et al. 89] Anderson, T., Lazowska, E., and Levy,
H. The Performance Implications of Thread

Management Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Conz-

puters, 38(12):1631-1644, December 1989.

et al. 91] Anderson, T., Levy, H., Bershad, B.,

and Lazowska, E. The Interaction of Architec-

ture and Operating System Design. In Proceed-
ings of the Fourth Symposium on Architectural

Support for Programming Languages and Oper-
ating Systems (A SPLOS), April 1991.

[Anderson et al. 92] Anderson, T. E., Bershad, B. N., La-

zowska, E. D., and Levy, H. M. Scheduler Acti-

vations: Effective Kernel Support for the User-

Level Management of Parallelism. ACM Trans-

actions on Computer Systems, 9(l), February

1992.

[13ershad et al. 88] Bershad, B. N., Lazowska, E. D., and

Levy, H. M. PRESTO: A System for Object-

Oriented Parallel Programming. Software:
Practice and Experience, 18(8):713-732, August

1988.

[Bershad et al. 92] Bershad, B. N., Draves, R. P., and

Forin, A. Using Microbenchmarks to Evalw

ate System Performance. In Proceedings of the

Third Workshop on Workstation Operating Syst-
ems, April 1992.

[Birrell 91] Birrell, A. An Introduction to Programming
with Threads. Prentice Hall, 1991.

[Bose et al. 89] Bose, S., Clarke, E., Long, D., and

Michaylov, S. Parthenon: A Parallel Theorem

Prover for Non-Horn Clauses. In Proceedings of
the Fourth Annual Symposium on Logic in Com-

puter Sctence, 1989.

[Cheriton 88] Cheriton, D. R. The V Distributed Sys-

tem. Communications of the ACM, 31(3):314-

333, March 1988.

[Cooper & Draves 88] Cooper, E. C. and Draves, R. P.

C threads. Technical Repo~t CMU-CS-88-54,

School of Computer Science, Carnegie Mellon

University, February 1988.

[Dijkstra 68a] Dijkstra, E. W. The Structure of the “THE”

Multiprogramming System. Communications oj

the ACM, 11(5), May 1968.

[Dijkstra 68b] Dijkstra, E. W. Cooperating Seguentzal Pro-

cesses, pages 43–112. Academic Press, New

York, 1968.

[Glew & Hwu 91] Glew, A. and Hwu, W. A Feature Tax-
onomy and Survey of Synchronization Primi-
tive Implementations. Technical Report UILU-
ENG-91-2211, Center for Reliable and High-
Performance Computing, University of Illinois

at Urbana-Champaign, February 1991.

[Golub et al. 90] Golub, D., Dean, R., Forin, A., and

Rashid, R. Unix as an Application Program. In
Proceedings of the Summer 1990 USENIX Con-
ference, pages 87-95, June 1990.

[Herlihy 91] Herlihy, M. Wait-free Synchronization.

ACM Transactions on Programming Languages,

13(1), January 1991.

[Inte1386 90] 386 Programmer’s Reference Manual. Intel,

Mt. Prospect, IL, 1990.

[Inte1860 89] i8606J-bit Microprocessor Programmer)s Ref-

erence Manual. 1989.

[Kane 87] Kane, G. MIPS R2000 RISC Architecture.
Prentice Hall, Englewood Cliffs, N. J., 1987.

[Lamport 87] Lamport, L. A Fast Mutual Exclusion Al-

gorithm. ACM Transactions on Computer Sys-

tems, 5(1):1–11, February 1987.

[Leonard 87] Leonard, T. VAX Architecture Reference

Manual. Digital Equipment Corporation, 1987.

[Moss & Kohler 87] Moss, J. and Kohler, W. Concurrency

Features for the Trellis/Owl Language. In Eu-
ropean Conference on Ob]’ect- Oriente$ Program-

ming, June 1987. Appears in Springer-Verlag’s

Lecture Notes in Computer Science #276.

[Motorola 881oo 88] MCS 88100 RISC Microprocessor
User’s Manual. Phoenix, AZ, 1988.

[Mullender et al. 90] Mullender, S. J., van Rossum, G.,

Tanenbaum, A. S., van Renesse, R., and van

Staveren, H. Amoeba: A Distributed Operating

System for the 1990s. IEEE Computer Maga-

zzne, 23(5):44–54, May 1990.

[Peterson 81] Peterson, G. Myths About the Mutual Exclu-

sion Ploblem. Information Processing Letters,

12(1), June 1981.

[Rovner et al. 85] Rovner, P., Levin, R., and Wick, J. On

Extending Modula-2 for Building Large, Inte-

grated Systems. Technical Report # 3, Digi-

tal Equipment Corporation’s Systems Research

Center, Palo Alto, California, January 1985.

[Rozier et al. 88] Rozier, M., Abrossimov, V., Armand, F.,

Boule, I., Giend, M., Guillemot, M., Her-

rmann, F., Leonard, P., Langlois, S., and

Neuhauser, W. The Chorus Distributed Oper-

ating System. Computing Sgstems, 1(4), 1988.

[Satyanaranyanyan et al, 85] Satyanaranyanyan,

M., Howard, J., Nichols, D., Sidebotham, R.,

and Spector, A. The ITC Distributed File Sys-

tem: Principles and Design. In Proceedings of

the 10th ACM Symposium on Operating Systems
Prznczp2es, pages 35-50, December 1985.

[Thacker et al. 88] Thacker, C. P., Stewart, L. C., and Sat-

terthwaite, Jr., E. H. Firefly: A Multiprocessor

Workstation. IEEE Transactions on Computers,
37(8):909-920, August 1988.

[Weiser et al. 89] Weiser, M., Demers, A., and Hauser, C.

The Portable Common Runtime Approach to
Interoperability. In Proceectings of the 12th

ACM Sympos~um on Operating Systems Prin-

ciples, pages 114–122, December 1989.

233

