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Abstract

Distributed memory parallel processors (DMPPs) have no

hardware support for a gtobal address space. However, con-

ventional programs written in a sequential imperative lan-

guage such as Fortran typically manipulate few, large arrays.

The Oxygen compiler, developed as part of the h’2 project,

translates conventional Fortran code, augmented with code

and data distribution directives, into C programs including

SEND/RECEIVE communication primitives. The compiler di-

rectives, which are either supplied by the user, or for simp-

le programs generated automatically, support a global name

space through a run-time mechanism called data consistency

analysis. We report in this paper the performance of seven

parallel programs generated by Oxygen for three DMPPs,

narnelg for a Parsytec Superc!uster, an i WARP, and for the

Fujitsu APIOOO. All machines were configured as 8 x 8 tori.

1 Introduction

Programming distributed memory parallel processors

(DMPPs or mzdticomputers) with imperative, standard lan-

guages enhanced with compiler directives for data and pro-

gram decomposition and distribution and for support of

global name space is becoming a widely accepted approach.

The ongoing effort to define the characteristics of “High Per-

formance Fortran (HPF)” will increase the awareness of the

users for this programming practice. HPF consists of For-

tran 90 enhanced with compiler directives, and its definition

is being worked out by a group including most major parallel

processor manufacturers and some universities.

As part of the K2 project [1], we have developed the paral-

lelizing compiler Oxygen. It generates parallel DMPP code

from Fortran 77 with compiler directives; the directives allow

data and code distribution and support a global name space.

We have used Oxygen to generate code for the following plat-

forms: (1) the DMPP simulator K9 [2], (2) a Parsytec Su-

percluster SC256 [3], (3) an iWARP [4], and (4) the Fujitsu

AP1OOO [5]. This paper summarizes results obtained from
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parallel programs generated for the latter three machines. A

detailed description of the compiler and collection of simu-

lated performance measurements can be found in [6, 7].

The paper is organized as follows: First we relate our

research to similar ongoing efforts. Then we will give an

overview of the compiler and describe the SC256, iWARP,

and AP 1000 machines, emphasizing on architectural param-

eters important for the compiler. Finally we will describe the

benchmark programs and present the results.

2 Related work

Many research groups are currently developing paralleliz-

ing Fortran compilers, among them Parafrase II ([8], CSRD

University of Illinois), PTRAN ([9], IBM), Parascope and the

Fortran D compiler ([10], Rice University), the Kali compiler

(ICASE), and SUPERB (University of Vienna).

Three of the above groups specifically address the prob-

lem of generating code for DMPPs. The user defines

data distributions explicitly and the compiler then gener-

ates parallel code based on these distributions. Callahan

and Kennedy [11] first defined Fortran directives for a vir-

tual DMPP with an arbitrary number of processors and

asynchronous message-passing. The physical platform used

was an iPSC hypercube; directives (DISTRmUTE and DECOM-

POSE) determined the distribution of variables. Gerndt [12]
defines partitions for nonlocal arrays and partition classes

to solve aliasing problems with the SUPERB compiler which

generates code for the Suprenum DMPP. Expressions access-

ing nonlocal array elements are masked statically according

to the ownership of the elements. Koelbel at al. [13] define

Kali Fortran which allows the explicit distribution of arrays

and the parallelization of DO loops on message-passing ar-

chitectures. The Kali compiler can compile parallel loops

into an inspector and an ezecutor. The inspector consists of

a loop which checks the locality of data referenced inside a
parallel loop body. An algorithm performing neighbor relax-

ation on an unstructured grid is compiled for the iPSC/2 and

the NCUBE/7, and performance measurements are provided.

Koelbel at al. conclude that run-time analysis is efficient for

iterative algorithms which can reuse communication patterns

after they have been generated in a first, expensive iteration.

Rogers and Pingali [14] present a method which, given

a sequential program and its data partition, performs task

partitions to enhance locality of references. Saltz and his

colleagues [15] have also addressed the issue of testing lo-

cality of distributed array elements dynamicdly, when static

array subscript analysis fails; a program is presented which
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generates communication patterns at run-time, from data

structures produced at compile-time.

SeveraJ groups have described methods to estimate stat-

ically the quality of a given data distribution, Li and

Chen [16] and Gupta and Banerjee [17] base their work on

pattern matching, Balasundaram et al. [18] describe a train-

ing set of kernel routines to estimate costs of communica-

tions and computations, similar to (but more sophisticated

than) the measurements done in section 4.1. Because of the

assumed high communication latency, all three papers em-

phasize the generation of collective communication routines.

All of the above research is based on the following assump-

tions:

The target DMPP uses memory communication (SJSO

called message passing) with high latency and trans-

parent routing implemented in hardware,

The data distribution is given at compile-time and the

code distribution is derived implicitly from the data dis-

tribution.

Only the owner of a data item is allowed to compute on

that item.

If a statement depends in its control-flow on non-locaJ

variables it is not allowed to access non-local variables.

The control-flow dependence may be caused either ex-

plicitly with an if statement, or implicitly through non-

local variables used in index expressions.

As an example let us consider the following loop:

do 10 i=l, n

a(i) = b(q(i))

10 cent inue

Similar code can be found in important scientific applica-

tions such as finite-element based algorithms. The above as-

sumptions require a, q and the loop to be distributed with

the same static partition and mapping. This is not efficient

for many c~des which have this structure, as for instance

the PGMFI,ES code presented in section 5. Therefore, we in-

cluded in Oxygen a mechanism to determine ownership of

distributed data dynamically (namely MULTICOPY variables

as explained in the next sectioq).

Most of the work on compilation for DMPPs featuring sys-

tolic communication has been done by H ,T. Kung and his col-

leagues. Tseng, Lam, and Kung define a language extension

to the Warp language W 2 [19] called AL [20]; communica-

tion is hidden and the programmer chooses between different

data and loop distribution primitives. Tseng’s doctoral dis-

sertation describes the implementation of AL on Warp using

the DARRAY primitive for data distribution and the ALIGN

primitive to distribute loops [21]. That research concen-

trates on static dependence analysis and on the generation

of communication patterns that best exploit the topology

and architecture of Warp. Parallelization happens strictly at

compile-time and the automatic generation of the compiler

directives is not tackled. Tseng’s performance measurements

of compiler-parallelized LU and QR decomposition, 2DFFT,

different SOR methods, and various LINPACK routines are

of absolute excellence [22]. However, it is not known how

they would scale to a machine with more than the ten pro.

cessors of Warp.
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Figure 1: The machine model of Oxygen is a two dimensional

torus of processing elements communicating through send and

receive primitives. Oxygen has been ported to two classes oj

DMPP systems: DMPPs featuring systolic communication

(Parsytec SCA56 and i WARP), and DMPPs featuring rnern-

ory communication (Fujitsu API OOO).

3 An overview of the compiler

In what follows, we will define a target DMPP model for

Oxygen and introduce the term data consistency anaiysw.

Then we will explain how the compiler is used and describe

the programming paradigm implemented in Oxygen through

directives.

3,1 The machine model

The machine model assumed by Oxygen is a two dimen-

sional torus (see Fig. 1) of processing elements (P Es). Plat-

forms such as the SC256, iWarp, the AP1OOO, and K9 imple-

ment this topology. Studies by Dally and Johnsson support
the choice of a torus[23, 24] for a limited number of proces-

sors. To summarize their results, a torus outperforms other

topologies when the number of PEs is no greater than 256

(Dally) or 64 (Johnsson).

When implementing Oxygen on the SC256, iWARP, and

K9, we assumed systo2ic communication PEs communicate

through raw data send and receive primitives. No message-

passing is involved: data are simply dispatched from a sender

to a receiver using memory-to-queue (or register-to-queue)

transfers, flow control is enforced by the queues connecting

the PEs. PEs can only communicate to their four nearest

neighbors. If information is to be sent along a route with

more than one communication hop, explicit forward stat e-

ments have to be executed by all PEs traversed by the route.

The AP1OOO implements memory communication (also

called message passing). A routing controller computes

rout es between message senders and receivers. P Es can not
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only communicate to their nearest neighbors, but to any pro-

cessor in the system. Computation on intermediate PEs on

a route is not disturbed by storing and forwarding messages,

which is taken care of by the routing controller and done

in parallel to the computation. Although this hardware mes-

sage passing increases programming comfort for both the user

and compiler implementor, it is generally associated with

higher communication latency. Raw data communication

can be implemented with a latency of only a few proces-

sor cycles. In message passing systems, time has to be spent

on managing routing buffers and on computing the route;

communication latency is therefore higher,

3.2 Data consistency analysis

Let us introduce the following definition:

Ownership (of read/write shared variables): A

processing element (PE) in a DMPP is said to be

the OWNER of o read/write shared variable if the

variable’s latest update is stored in the PE’s local

memory. A FE in a shared memory tnultiproces-

sor is said to be the owner of a read/write shared

variable if the variable’s latest update is stored in

the PE’s cache memory.

On bus connected, shared memory multiprocessors, owner-

ship is dynamically determined by the machine’s cache co-

herency protocol. Parallelizing compilers for this class of

systems (e.g. Parafrase-11) can therefore ignore the problem

of determining the dynamically varying ownership.

Parallelizing compilers for DMPPs decompose the prob-

lem’s domain, allocate the subdomains to the local memories

oft he P Es, organize the interprocessor communication activ-

ities, and enforce data consistency across the local memories.

We have the following definition:

Data consistency analysis is the process of de-

termining ownership in a DMPP. Enforcing data

consistency requires run-time activities capable of

dynamically tracking ownerships.

On DMPPs, data consistency analysis becomes part of the

parallelizing compiler responsibilities, and requires in the

general case that extra run-time activities are generated by

the compiler. This issue is independent of the machine in-

terconnection and the interprocessor communication mech-

anism: it is the lack of a global address space that creates

the need for consistency analysis. On Hypercubes like the

iPSC/2 and NCUBE/2, systolic computers like WARP and

iWAllP, Transputer based DM P Ps like the SC256, array pro-

cessors like the Fujitsu AP 1000, or Thinking Machines CM5,

a parallelizing compiler has to perform run-time data consis-
tency analysis.

Oxygen directives allow the explicit partitioning and map-

ping of loops and arrays. However, any processor may access

any element of a distributed data structure. Communication

primitives (SEND/RECEIVES) are generated, transparently to

the user. The compiler generates code to perform data con-
sistency analysis at run-time.

3.3 User view of the compiler

Fig. 2 gives an overview of the

consists of two major components:

compiler. The compiler
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Figure 2: The front end generates an intermediate repre-

sentation from the Fortran code which is then used by Oxy.

gen’s major two components: (1) the code generator which

transforms the intermediate representation into C/C++ and

sendlreceive statements, and (2) the advisor which, based on

dependence information, suggests modifications to the For-

tran source to increase performance.

1.

2.

The code generator, which translates Fortran with Oxy-

gen directives into parallel C programs including com-

munication primitives. Before the code generator is in-

voked, the source is translated by the front end into an

intermediate representation, consisting of a control flow

graph and a symbol table.

The advisor, which suggests a collection of source

patches, i.e., modifications to improve the performance

of the generated parallel program. Given the interme-

diate data structures generated by the front end, a de-

pendence analysis will be carried out to generate a de-

pendence graph, The advisor uses this dependence in-

formation to detect parallel loops and tries to partition

and map these loops and the main data structures used

inside the loops onto the torus.

In addition to the tasks performed by a conventional com-

piler, Oxygen’s code generator must also generate code to

ensure data consistency at run-time. This will be explained

in more detail in the next section. A detailed description

of the advisor is out of scope of this paper. The interested

reader is referred to [25]. At the moment the advisor cor-

rectly proposes patches for the three linear algebra bench-

marks described in section 5.

3.4 Programming paradigm

Oxygen assumes that a Fortran program can be decom-

posed into a sequence of code blocks which by default run

in parallel on all PEs, (Compiler directives may restrict the
execution of a code block to one or more PEs. ) Code blocks

may be either ‘local” or “public.” Local blocks, hereafter re-

ferred to as L-LOCKS, may or may not run in parallel on the

PEs, but in either case their computation is local and does

not activate interprocessor communication. Public blocks,

hereafter referred to as P_BLOCKS, always run in parallel and

activate interprocessor communication because they operate
on data structures allocated across PE boundaries.

The model of the program structure embedded in Oxy-

gen is shown in Fig. 3. The leftmost column shows how

the uniprocessor code is decomposed, via compiler direc-

tives, onto the various blocks. The center column shows the



Uniprocessor

Code

&
mPUBLIC BLOCK

h

c1PUBLIC BLOCK

c1PUBLIC BLOCK

Parallel Code Public Block

symbal handler

‘LOcALr]Ami~$ datsconslstency #

P\

Figure3: Themodel ofuniprocessor andpara[[eiized code em-

bedded in Oxygen. The urzipr-ocessor- code is decomposed, via

compiler directives, into local and public blocks. Local blocks

may run in parallel, but do not require any implicit interpro -

cessor communication. The symbol handier performs data

consistency analysts in public blocks, and is extra code m-

inserted by Oxygen during compilation. The executor performs

the par-t of the original public block computation present in

the uniprocessor code and exchanges data with the appropri-

ate processors based on the data consistency analysis of the

symbol handler.

structure of the source code—common to all P Es—generated

by Oxygen. Every P_BLOCK is decomposed into a symbol-

handier and an executor, whose structure is shown in the

rightmost column; the symbol-handler is a sequence of data

consistency analysis and routing phases to interrogate P Es

about ownership of shared variables, while the executor is a

sequence of computation phases intermixed with communi-

cation checkpoints. Data consistency analysis in the symbol-

handler constructs the data structures that will be used by

the executor to execute interprocessor communication prim-

itives at the communication checkpoints.

The checkpoints that separate blocks of local computation
within the executor do not synchronize the entire machine,

but only the specific PEs involved in the data exchange. It

follows that we can not restrict storage class qualifiers to be

either “privat e“ or “shared. ” An association of a data item to

a storage class (declared through a compiler directive) should

define the degree of locality, i.e: (1) which processor (the

owner) allocates the item, and (2) which processor is allowed

to access (fetch or update) it. We defined three storage class

qualifiers:

● LOCAL data are only known to and may only be accessed

by their owner.

●

●

3.5

SINGLECOPY data. Their ownership is defined at

compile-time as part of a directive and it remains the

same throughout the lifetime of the program, and it

refers to one PE, All other PEs may access and update

the data through interprocessor communication.

MULTICOPY data. The ownershtp changes dynamically.

A PE becomes the owner when either it updates or it

fetches a data item and no update of the same item

is executed by other PEs at that time. In the latter

case, an item may have multiple owners. P Es that are

not owners can access the latest update of the variable

through interprocessor communication. The lat ter is al-

ways performed toward the closest owner (in the topo-

logical sense).

The direct ives

Communication primitives are usually generated dynam-

ically when nonlocal data are accessed inside P_BLOCKS.

P-BLOCKS are enclosed bet ween START PARBLO CK and

END PARBLOCK directives. There are also a few collective

communication primitives, to broadcast a local variable to all

other processors, or to perform global reduction operations,

for which communication primitives are statically generated.

A special directive (COPY) can be used to copy dis-

tributed arrays declared with the same Fortran statements

but mapped and partitioned with different directives. This

is useful when different algorithms used in an application op-

erate on the same data structures but require different array

distributions to perform efficiently. The 2DFFT benchmark

of section 5.1 is such an application: first a t we-dimensional

mat rix is scanned column-wise, than it is scanned row-wise.

Most directives refer to the decomposition of the data

structures and to the decomposition of the program struc-

ture. The overall goal was to keep them as simple as possible

in order to ease their automatic generation. Because of this,

and because they are rather conventional, we skip most of

the details in this paper. The interested reader is referred

to [26].

Oxygen decomposition directives, which apply equally to

data arrays and control loops, serve two purposes, namely

partitioning and mapping of data elements or loop indices.

Partition directives are SPLIT and SCATTER, mapping direc-

tives are RING, ROWWISE, and COLWISE.

Data distribution

As an example, let dz be the number of PEs, and ~(i)

(i = 1,2,..., n) an array variable to be decomposed on

the torus. Let also m be the number of subdomains SJ

(j= l,..., m) into which the array index t must be par-

titioned. We have m = d for ROWWISE or COLWISE, and

m D dz for RING. SPLIT and SCATTER perform the following

array index decomposition:

SPLIT

S1 = {A(l),..., A(k)},

S2 = {A(k+ 1),..., A(2k)},

Sm = {A((rn- l)k+l),..., A(n)}.
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Figure 4: Different domain decompositions via compiler di-

rectives. The same matrix a is decomposed and altocated onto

a 3 x 3 torus in two different wags. The * indicates that the

first dimension of a is not decomposed across PEs.

SCATTER

S1 = {A(l), A(rn + 1), . . .},

S2 = {A(2), A(7n+ 2),.. .},

.$rn = {A(?n), A(2771),...}.

where k = [n/m] + 1. One of the three mapping direc-

tives can then be applied to the subdomains. Two domain

decomposition examples together with their corresponding

compiler directives are shown in Fig. 4 for a 3 x 3 torus and

a two dimensional matrix a.

Code parallelization

Loop indices are treated similarly to array indices, i.e., they

are partitioned and mapped using the same five directives.

Index strides different from one are handled by Oxygen trans-

parently. ROWWISE and COLWISE mapping directives can be

used in two different cent exts: (1) to map the indices of dou-

ble nested loops on the torus, and (2) to map a simple loop

on all rows (columns) of P Es. In the latter case all P Es in

the same row (column) perform the same index computation.

Let us assume we want to map a double nested loop on

a torus. ROWWISE applied to the outermost loop maps the

same ~ = d index sub domains onto the d P Es in the same

torus column; COLWISE applied to the innermost loop maps

the same m = d index subdomains onto all PEs in the same

torus row. Finally, rectangular blocks of the two-dimensional
index space are decomposed on each P E with SPLIT:

C$ LOOP SPLIT ROWISE

dolOi=l, n

C$ LOOP SPLIT COLWISE

do20j=l, m

20 cent inue

10 c ont irme

A Characteristics of the target machines

4.1 The q parameter

To characterize the target machines, let us define the PE

local communication/computation ratio g as follows:

~=:,
c

where tiois the time for a PE to send or receive a doubl~

precision quantity to or from a neighbor PE, and t. is the

time the PE takes to perform a double-precision multiply-

add operation as in DAXPY [27]. We have

~io = toh + tdpfkf

M’

where toh is the communication start-up latency, tdP is the

time to transfer a double, and J4 is the message length (in

doubles). Speedup obtained by parallelizing any non-trivial

program on a DMPP will depend on the value of q on that

machine, because the smaller q, the lower the communication

overhead is. On an architecture with systolic communication

we assume M = 1, and on an architecture with memory

communication M = cc (i.e., communications are performed

with maximum message length). Note however, that q is not

an absolute figure of merit for a given architecture, it only

compares local floating point performance to communication

performance.

An exact value of g on a specific architecture can not be

measured, because (1) execution time of programs is also in-

fluenced by other operations than communications or floating

point multiply-additions, and (2) the time to access operands

depends on where the operands are stored. We have com-

puted an estimate of q by measuring the execution time of

communication primitives and double precision floating point

add and multiply operations. As shown in Fig. 5, tc was es-

timated for both scalar and indexed computation.

4.2 I?arsytec cluster

We have

tion at the

used the Parsytec Supercluster SC256 installa-

RWTH in Aachen, Germany. On such system,

I* scalar computation: *I

double a, b, c;

for (l=NRIT-l; i >= O; 1--) {

b=a+b *c;

}

/# indexed computation: */

double a, *b, *C;

for (i= NRIT-1; i >= O; i--) {

b[i] = b[i] + a x c[i,];

3

Figure 5: Loops to measure the computation speed.
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the user can configure arbitrary DMPP networks of trans-

puters (with a maximum of four incomming and outgoing

communication channels per processor). We have performed

our measurements on a network configured as 8 x 8 torus of

T800 processors. Each processor runs at 25 MHz clock speed

and is configured with 4 MBytes dynamic memory. As back-

end C compiler we have used the INMOS toolset compiler

version 1.0.

stack, code on SRAM, indexed

stack, code on SRAM, scalar

stack on SRAM, indexed

stack on SRAM, scalar

DRAM only, indexed

DRAM only, scalar

t. I t,o(kf = 1)

3.8 I 12.7

2.4 12.7

4.8 13.0

3.3 13.0

6.4 13.5

4.8 13.5

&

-IT
5.3

2.7

3.9

2.1

2.8

Table 1: Measurements of g on 64 processors of a Pars@ec

cluster: the costs of a double precis[on rntdtiply ~nd add (t.)

are given for both vector and scalar operations in psec. Both

communication costs (t,o) and computation costs (t=) depend

on the use of the inter-raal memor-y of the T800.

The T800 processor features 4 KBytes of fast on-chip

RAM. The user can store data and instructions in this RAM.

Table 1 summarizes estimates of tc and t,o(kf = 1) on the

SC256 for different memory mappings. Programs compiled

by Oxygen allocate the program stack in on-chip RAM.

4.3 iWARP

t= I tio(kf= 1) I q I

with bindirw, indexed I 24 19 0.81-.
without binding, indexed 24 11 0.5

with binding, scalar 8 19 2.4

without blndirw. scalar 8 11 1.4

Table 2: Measurements of q on i WARP: the costs of a double

precision multiply and add (tc) are given for both vector and

scalar operations in processor cycles. Communication costs

(t;o) for each double precision send or receive are given with
and without gate binding.

iWARP is a parallel architecture developed jointly by

Carnegie Mellon University and Intel Corporation. The

iWARP communication system supports two interproces-
sor communication styles: both memory communication and

systolic communication. Although we would expect higher

performance for some of our benchmark programs, when

using iWARP’s memory communication mechanism (which

provides rather low communication latency), we have only
used the systolic mechanism. Our results wiU show, that

generated code performs efficiently even if the compiler han-

dles route computation and message forwarding.

Our measurements have been collected on a 64 processor

system installed at

system runs at 16

500 KBytes static

Carnegie Mellon. Each processor of that

MHz clock speed and is configured with

memory. We have used the pre-release

20
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Figure 6: Delay (t%O) and throughput (8 x M/tio) of neigh-

bor to neighbor communication in the” AP1OOO for variabie

message size.

soft ware version 2.5.21

Although an iWARP processor features four incomming

and four outgoing physical communication channels, commu-

nications refer to two Gates (i.e. processor registers). The

Gates must be bound explicitly to a channel. The execution

of such bind instruction effects the communication bandwidth

but can often be avoided (for instance when sending several

times to the same channel). Table 2 summarizes estimates

of t=and t,o(Ikf= 1)for iWARP.

4.4 The AP1OOO

I t= I tto(kf= co) ] q 1
in cache, indexed I 1.15 I 0.94 0.8 1

Iout of cache, indexed II1.91 I 0.94 0.5
scalar 1.00 0.94 0.9 I

Table 3: Measurements of q on 64 processors of an AP1OOO,

under the assumptions that messages have injinite length.

The costs of a double precision multiply and add (t=) are

given for both vector and scalar operations in psec. The vec-

tor- operation speed is dependent on the operands being in

cache or not. For long vectors a DAXPY iteration will be

almost twice as slow as for short vectors stored in cache.

The AP1OOO is not a commercial system, but an experi-

mental multiprocessor with 64 upto 1024 PEs. The AP1 000

is hosted by a SUN4-330. Each PE consists of a 25 MHz

SPARC with FPU, 16 MBytes DRAM (organized in four

interleaved banks) and 128 KB ytes dkect mapped cache

memory. An additional message controller (MSC) and a

routing controller (RSC) manage interprocessor communi-

cation. Three communication networks are available: the

1 This software works on an engineering prototype (B-step)
which does not fully support Long Instruction Word optimization.



Torus network (T-net) for point-to-point communication be-

tween PEs, the Broadcast network (B-net) for host to PE

communication, and the Synchronization network (S-net ) for

barrier synchronization. We used for all our measurements

the AP1OOO operating system CellOS1.1 and the SUN C com-

piler SC1.0 as backend for Oxygen.

Memory communication built in the AP1OOO system has

relatively higher startup latencies than the systolic mecha-

nisms used on the other platforms. We measured in Fig. 6

communication delay (tCO) and throughput (8x M/t;O) of the

AP1OOO when doing point-to-point communication using the

T-net. Throughput reaches its maximum, when messages

are longer than 1024 Bytes. In the ideal case the compiler

can pack information and communicate long messages. Ta-

ble 3 summarizes t,., t., and the q value for infinite message

length.

5 Benchmark Programs and Results

Seven test programs have been used to evaluate the per-

formance of the compiler: three dense linear algebra prob-

lems, two signal processing algorithms, one successive over-

relaxation, and the solution of a sparse linear system of

equations stemming from the simulation of semiconductor

devices.

5.1 Benchmark description

Linear algebra

GAUSS. A linear system of equations is solved using Gaussian

elimination with partial pivoting. The program uses

double precision arithmetic.

ORTHES. A real square matrix is transformed through House-

holder similarity transformations to an upper Hessen-

berg matrix. The algorithm is used to compute all

eigenvectors and eigenvalues of an unsymmetric ma-

trix [28]. The program uses double precision arithmetic.

SVD. The EISPACK [29] singular value decomposition sub-

routine. All singular values of a rectangular matrix are

computed using a QR iteration. The program uses dou-

ble precision arithmetic.

Signal processing

GFFT. The generalized FFT processes complex vectors the

size of which may not be a power of two, and is based

on the prime factor decomposition of the vector size.

The prime factor decomposition and the access pattern

to the distributed vectors are therefore not known at

compile-time. The program uses double precision com-

plex arithmetic.

2DFFT We have implemented the 2 dimensional FFT of an

image of IV x N pixels. In a first step, an FFT of each

column of the input matrix is computed. Then the ma-

trix is transposed using the COPY directive, and another

FFT is applied to each column of the transposed matrix.

This algorithm is often used to compute a fast correla-

tion of two pictures. The program uses single precision

arithmetic.

SOR

In FLUID, the analysis of the behavior of airfoils in subsonic,

transonic, and supersonic regime is carried out by solving

Figure 7: Finite element grid representing a subrnicron

DRAM cell with trench capacitors.

a two-dimensional, steady-state transonic small disturbance

equation. A finite difference method solves the problem iter-

atively with a successive over-relaxation (SOR) scheme. The

results refer to 20 iterations of the SOR algorithm. Commu-

nications are generated dynamically in the first iteration and

then reused in each iteration of the algorithm. The program

uses double precision arithmetic.

PGMRES

Large, sparse systems of equations arise from the applica-

tion of discretization schemes (e.g., finite elements) to par-

tial differential equations, and may exhibit irregular sparsity

~atterns. While direct solution techniques based on Gaus-

~ian elimination have proved to be extremely robust and sta-

ble, they are no longer competitive with iterative methods

for problems with large numbers of unknowns, as in three-

dimensiomd applications [30]. The efficient parallelization of

such iterative methods on D M P Ps is still an open research

topic; preliminary results are, however, promising [31].

The Fortran package SPARSKIT [32] has been implemented

by Y. Saad to provide basic subroutines to handle sparse

matrices. The package also includes the preconditioned it-

erative sparse system solver PGMRES [33]. We parallelized

PGMRES with Oxygen directives and applied it to a system

of equations stemming from the finite-element simulation of

a semiconductor. The system of equations has 15,564 un-

knowns and 133,663 nonzeros. The finite element grid is

shown in Fig. 7. As already mentioned in section 2, PGMRES

was parallelized using MULTICOPY variables because of the

low density of the system of equations. The program uses

double precision arithmetic.

5.2 Results

Some large problems—among others PGMREs-could not

be benchmarked on the iWARP system, because of their

memory requirements. Note also, that for large data sizes,

we had to estimate the serial execution time of the programs.

This was done by measuring the execution time on one T800

(respectively iWARP or AP1OOO) processar for small data

sizes, and then extrapolating these numbers using serial ex-

ecution times of the same programs for larger problem sizes
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on a workstation with more memory (a SUN Spare Station

1+). Fig. 8 displays Speedups achieved when running the 6

first programs described above on the three systems.

In PGMRES the precision achieved depends on the number

of iterations of the algorithm. Communications to fetch and

update nonlocal elements of vectors are generated at run-

time, at the beginning of the first iteration. All iterations

reuse these communications. Therefore speedup depends on

the number of iterations and the precision to be achieved.

Table 4 summarizes our results for increasing precision of

the solution computed. We also present simulated numbers

in the right two columns of the table.

SC256 and iWARP

The difference in speedup between the SC256 and iWARP

can be justified as mentioned in section 4.1 by the slower

relative communication speed of the SC256. To further em-

phasize the effect of q on speedups, we have benchmarked all

seven programs on our architectural simulator for DMPPs,

K9. K9 is written in C++ and simulates C or C++ pro-

grams at the C statement level. We have used the PE

model of K2, based on an AMD 29000 processor with float-

ing point co-processor. We have simulated 7 different ar-

chitectures which differ only in communication speed, i.e.
q = 0,0.25,0..5,1,2,4,8.The results were reported in [7];

here, we will only show one example, namely speedup mea-

surements for GFFT w shown in Fig. 9 for the 7 q values

and different problem sizes. K9 simulates systolic communi-

cation. Therefore we can not immediately compare results

achieved on the AP 1000 with the simulation results. The

iWARP measurements match fairly well with K9 simulations

for q = 2, the SC256 measurements for q = 4. The difference

in q is the main reason for the different measures on the two

platforms.
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Table 4: Speedup of PGMRES for- increasing precision of the

computed solution. The third and fourth column shows mecs-

sured speedups on the SC256 and the APIOOO, and the right-

most two columns speedups measured with K9 simulation sfor-

q=2aradq =4.

GFFT

“~

Problem size

Figure 9: Simulation of GFFT running in parallel on an

8 x 8 K2 machine; speedups are shown for ~ diflerent prob-

lem sizes and 7 q values, i.e.: (from right to left) q =

0,0,25,0.5,1,2,4,8. .

AP1OOO

The communication mechanism built in the AP1OOO system

is different than that implemented in K9. The AP 1000 uses

memory communication instead of the systolic communica-

tion used in K9, the SC256, and iWARP. Therefore not all

results achieved on the AP1OOO in Fig. 8 can be immediately

compared to K9 measurements. The speedups in 2DFFT,

GFFT, FLUID, and PGMRJ3S can be explained by the smaller

q ratio of the AP1OOO. At least for medium and large prob-

lem sizes communication latency is negligible, because mes-

sages are packed into large enough chunks. Speedups in the

GFFT case for instance are higher than what was measured

on iWARP, because as shown in Table 3, q < 1 even if all

data are in cache.

The three linear algebra problems use explicit communica-
tion directives, i.e. column broadcasting in both GAUSS and

SVD, and global reduction operations in both ORTHES and

SVD. Global reduction operations are much more expensive

on the AP 1000, than on a machine with systolic communica-

tion, as the results for ORTHES show. For large problem sizes

vector broadcasting is quite efficient on the AP1OOO as the
results for GAUSS show, because such operation is supported

by the routing controller.

Absolute measures

So far we have only shown speedup figures to evaluate

GeometricmesnO!relativeexecutiontime

GAUSS I
SVD

FLUID

GFH

20FH

PGMRES
/02

Figure 10: Execution t$mes of the 6 programs compiled with

SUNf77 relative to the execution time of the same programs

compiled with Oxygen for a one processor SUN Spare Sta-
tion 1+ workstation. For each program we show geometric

averages for diflererat problem sizes.

the performance of parallel programs generated by Oxygen.

The parallel Fortran sources were constructed using the serial

sources and adding compiler directives. Both the execution

times of serial and parallel programs are affected by ineffi-

ciencies of Oxygen’s code generator. Although the overall

performance of both parallel and serial programs will gain

when adding optimizations to the code generator, speedups

will decrease, if those optimizations do not affect the paral-

lelization overhead (e.g. communications and idle times). To

quantify inefficiencies of Oxygen’s code generator, we have

used Oxygen to generate serial programs for a SUN Spare

Station 1+ and compared the execution times to the perfor-

mance achievable with the SUN f 77 compiler under SUNOS

4.1.1. Fig. 10 shows the results. Serial code generated by

Oxygen is between 0.2 and 13.0 % slower than code gener-

ated by f77.

6 Conclusions

The work on Oxygen has so far provided original contri-

butions regarding the following aspects:

●

●

b

●

Remote updates of non-LOCAL variables.

Transparent (partly dynamic) generation of sys-

tolic communication primitives and routes (for the

SC256and iWARP), and of message passing primitives

(for the AP1OOO). Because of the underlying machine

model, Oxygen manages the entire communication

mechanism, i.e., fetching and updating of data shared

between two PEs and (on the SC256and iWARP) for-

warding between symbol-owning and symbol-requesting

PE. Communication statements need no longer be

“hardwired” in the Fortran source.

General solution to the problem of generating a symbol-

handler. Oxygen generates a correct symbol-handler

even for PmLOCKS in which the control-flow depends

on nOn-LOCAL variables. This control-flow dependence

may be arbitrarily nested. In related projects ([13, 15])

accesses to nOn-LOCAL variables shonld not be control-

flow dependent on non-LOCAL variables.

MULTICOPY symbols.

to share data among

ownerships. Without

Oxygen provides a mechanism

PEs with dynamically defined

this mechanism, programs like
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PGws—that can be parallelized on shared memory

multiprocessors—could not be executed efficiently.

The results have shown that a D MPP compiler that includes

above four features can generate parallel code of satisfactory

performance, even for codes more complicated than those

considered in the literature presented in section 2. The com-

munication channels of the target D M P P should feature a

neighbor to neighbor communication bandwidth compara-

ble to the local computation speed. As in [7] we have mea-

sured acceptable performance for g < 4 on platforms Sup-

porting systolic communication. For the relatively high la-

tency memory communication architecture of the AP1OOO,

q was an important parameter to estimate the performance

of most of our benchmark programs. On this platform, two

of the seven programs could have benefited from hardware

supporting global scalar reduction operations.
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