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Abstract

The performance evaluation process for a massively

parallel clktributed memory SIMD computer is de-

scribed generally. The performance in basic compu-

tation, grid communication, and computation with

grid communication is analyzed. A practical per-

formance evaluation and analysis study is done for

the Connection Macldne 2 and conclusions about its

performance are drawn.

1 Introduction

High-speed computing in scientific/engineering environ-

ments can be done using many kinds of computing hard-

ware. Massively parallel computers have become popular in

solving highly parallelizable applications. We define a mas-

sively parallel computer as a computer whose architecture

does not limit strictly the number of processors. Currently,

two computer categories fulfill this definition, namely dis-

tributed memory SIMD and MIMD computers. A massively

parallel SIMD computer is a set of processors which all exe-

cute the same instruction at the same time whereas a mas-

sively parallel MIMD computer is a set of independent pro-

cessors which can execute different instructions at the same

time, On both computers the processors are connected to-

gether with some kind of network topology, such as tree,

ring, mesh, or hypercube. SIMD computers which belong

to data-parallel computers are generally considered easier to

program than MIMD computers because the programmer

must not take care of the synchronization between the pro-

cessors. On the other hand, this limits the suitability of the

computer to specific applications and can also cause inef-

ficient use of resources. MIMD computers, or instruction-

parallel computers, are considered more difficult to program

than SIMD computers because the programmer has to take
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care of ithe synchronization but also being more suitable for

a larger application area than SIMD computers. In Table 2

some of the current commercially available masaively parallel

computers are described [1].

In this paper we explain how to analyze the basic perfor-

mance of massively parallel SIMD computers. We have dl-

vialed the performance analysis into three parts: basic com-

putation, basic communication, and computation with com-

munication. Different tests developed for these parts have

been applied in practice to measure and analyze the perfor-

mance of the Connection Machine 2 and the tests can be

easily alpplied to all the SIMD computers described in Table

2. The ~study continues the performance analysis work done

on the shared memory high-speed computers [2] and on the

distributed memory message passing MIMD computers [3].

2 Connection Machine 2

Connection Machine 2 (CM-2) from Thinking Machines

Corp. ifs currently the most massively parallel computer in

the market. Two models exist: CM-2 with 16K, 32K, or 64K

processors and CM-2a with 4K or 8K processors. Like many

massively parallel computers CM-2 is an attached processor,

that is, a host computer is needed. The CM-2 can be con-

nected e.g. to the VME bus of a Sun-4 running SunOS or

to the VAXB1 bus of a VAX running Ultrix. The program

development soft ware package including CM Fortran, C*,

and *Lisp compilers and a Paris (PARallel Instruction Set)

assembler runs on the front end. The compilers extract par-

allel portions of the program and generate Paris instructions

from them to be broadcasted at execution time to the CM-2

through the host bus. The scalar portions of the program are

executed on the front end. The “macro instructions” issued

by the front-end are decoded on the CM-2 by a micro-coded

sequencer which in turn broadcasts” nano instructions” to all

CM-2 data processors. The CM data processors are custom

designed bit-serial l-bit AL Us packaged 16 processors per

chip. Eilch processor has 64 or 256 Kbit of bit-addressable lo-

cal memory. The processors within a chip are connected to-

gether with a special permutation network whereas the chips

are connected together by a hypercube network. Three types

of communication have hardware support: general routing,

grid communication (also known as NEWS or North-Eaat-

West-Scmth communication), and scanning. Actually, the

scanninig takes advantage of the NEWS grid communication
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System

All’ Iant G am pus
AMT DAP
BBN TC2000
CM-2
CM-2OO
CM-5
Intel iPSC/860

Intel Deltab
Intel Paragon XP/S
Kendall Square KSR1
MasPar MP-1
Meiko M40
nCUBE-2
Parsytec GC-2C
Wavetracer DTC

Archi-
tecture

SIMD
MIMD
SIMD
SIMD
MIMD
MIMD

MIMD
MIMD
MIMD
SIMD
MIMD
MIMD
MIMD
SIMD

Pn
min–max
25 — 800

1,024-4,096
8-512

4,096-65,536
2,048-65,536

n/a -16,000
8 – 128

8-528
66-4,000

8-1088
1,024 – 16,384

2-78
32-8,192

64-256
4,096 – 16,384

a32-bit computing.

bprotot ype, not commercially available.

Cavailable probably late ’92.

z990r

t~pe
Intel 1860
custom 8-bit
MC881OO
custom l-bit
custom l-bit
SPARC
Intel i860

Intel i860
Intel i860XP
custom 64-bit
custom 4-bit
Intel i860
custom 64-bit
T9000 transputer
custom l-bit

Peak MFLOPS
min–max

,—, 00
n/a

160-10,240
1,792- 28,672a
1,280-40, 960a
n/a – 2,000,000

480 – 7,600

480 – 31,680
5,000-300,000

320-43,520
41-600

120 – 4,680
77 – 19,660

1,600-6,400
nla

Network
topoIogy
cluster
3D mesh
multistage
hypercube
hypercube
nfa
hypercube

2D mesh
2D mesh
cluster
3D mesh
hypercube
hypercube
3D mesh
3D mesh

Table 1: Some commercially available massively parallel computers.

stract version of the CM-2 hardware: one data item can bemechanism. A CM-2 processing node consists oft wo chips, or

2x16 data processors, their associated memories, hypercube

interfaces and an optional 32-bit or 64-bit FPU. In Fig. 1

the architecture of the CM-2 processing node is described.

bus instr.
(

I 11 nodes 11 nodes
bus

1

EIEIEIIZI
EIEIEIEZI
EIEIIZIEI
EIEIEZIEI

I 1
Ellzl EIEl
EIEIEIEI
IZIEIEIEI
II EIIEIEIEI

I 1

I
I

16+6 16+6
(

) I I
I

I

Memory

H

18

k

FP U-Memory 32 FPU.64 or

Interface FPU-32

—~ I I

Figure 1: The architecture of the CM-2 processing node [4].

CM-2 operates at 7 MHz. Because the FPU is able to

produce theoretically two 32-bit results per cycle, or two

FLOP at 7 MHz, its peak performance is 14 MFLOPS. Thus,

a full 64K machine having 2K FPUS has a peak performance

of 28.7 GFLOPS in 32-bit arithmetic.

Since the CM-2 is a SIMD processor every data proces-

sor executes the same instruction at the same time although

each processor has a flag bit which can be used to disable

the processor from executing the instruction. Parallel data,

that is, arrays and matrices, are allocated to processing e2e-

ments (PE). A PE is a data processor or a processing node

depending on the two execution models (see Section 3). If

there are more data items

(VP) mechanism is actived

,
than PEs the virtual processor

and it presents the user an ab-
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allocated per every VP. A program can be written assuming

any appropriate number of PEs and the VPS are mapped

then onto actual hardware. How many VPS are mapped

onto a PE defines the VP ratio (VPR). Since a complete

program usually consists of parallel data of different sizes,

or different VP set sizes, the VP ratio can vary during the

program execution. However, only one VP set can be active

at the same time. Due to VP mechanism the same program

can be executed on the CM-25 having different number of

PEs.

The tests were done during 1991 on three different CM-2S

(see the Acknowledgment) using CM operating system version

6.0 and CM Fortran compiler version 1.1. The microcode

version was 6002.

In June 1991 Thinking Machines Corp. announced the

CM-2OO series of massively parallel computers which became

available in Fall 1991. The clock speed is now 10 MHz com-

pared to 7 MHz of the CM-2 [5]. According to TMC the

sequencer has also been redesigned and the communication

speed has been improved. A new 2K entry model exists.

The tests we descr;be next to evaluate the ‘performance of

the CM-2 can be directly applied without any modifications

to the CM-2OO.

3 Basic computation perfor-

mance

Two execution models exist for executing CM-2 programs:

Paris and slicewise and they can be selected on CM Fortran

level by a compiler option. The slicewise model is available

only on machines equipped with 64-bit FPUS whereas the

Paris model is available on all the machines regardless of

the FPU type. In the Paris model each l-bit processor is

considered as the basic processing element for which the data

elements are allocated. On the contrary, in the slicewise

model each processing node (32 data processors and a 64-



bit FPU) is regarded as the basic processing element. Under

Paris rdl the dimensions of a VP set must be powers of two

but under slicewise only the product of the dimensions of a

VP set is constrained. If we denote nproc as the number of

l-bit data processors we have for the VP set sizes (VPSS):

VPSS =
{

2P* nproc, p = 0,1,2,,.. if Paris

p*nprocf8, p= 1,2,... if slicewise
(1)

The VPSS under the slicewise model comes from the fact

that the 64-bit FPUS have a vector length of 4 and thus

VPSS = p* 4 * nproc/32. The performance difference of the

models can be seen executing a simple parallel arithmetic

operation, such as the vector addition on a CM-2 equipped

with 64-bit FPUS, Sun-4 is used w the host computer in

this and in all the following tests. The results are described

in Fig. 2.
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Figure 2: The performance of the z, = z, + y~ operation on

an 8K CM-2 using Paris and slicewise execution modeIs.

The slicewise model performs good on short vectors and

the performance becomes stable quite soon. On the other

hand, in the Paris model it is necessary to use exact dimen-

sioning (2P * npToc) otherwise up to 5070 of the performance

can be lost even on long vectors. In Fig. 3 we describe the

peak performance curves for the same operation using vec-

tor lengths up to 256K. The difference of 32-bit and 64-bit

hardware is also demonstrated.

We can see from Fig. 3 that on the CM-2 equipped

with 64-bit FPUS the highest performance, 250 MFLOPS,

is achieved by the Paris execution model whereas only 205

MFLOPS is achieved by the slicewise execution model. How-

ever, the half-performance vector length nl /2 is smaller for

the slicewise execution model: about 3K compared to 7K of

the Paris execution model. In 64-bit arithmetic the CM-2

equipped with 64-bit FPUS can achieve only 56~o of its per-

formance in 32-bit arithmetic. The reason for this is that

even if the FPU can operate with 64-bit operands the data

path between the memory and the FPU is only 32-bit wide

Figure 3: The performance of z, = z, + y, operation on 8K

CM-23.

(see Fig. 1). On the CM-2 equipped with 32-bit FPUS 64-

bit arithmetic is done by the software and the performance

is only 8.1 MFLOPS which is about 3% of its 32-bit perfor-

mance, 235 MFLOPS.

Next we measured the maximum or asymptotic perfor-

mances r~ in MFLO PS and half-Performance vector

lengths n1j2 for a set of kernels using- 8K processors of a

CM-2 and one processor of an 8-processor Cray Y-MP/832

[6]. Thus, the test configurations represented 1/8 of possible

full configurations on both computer systems. The calcu-

lations were performed on the CM-2 using 32-bit accuracy

whereas on the Y-MP we used 64-bit accuracy because Crays

do not support 32-bit floating-point data format. The FLOP

weights on different vector operations have been calculated

according to F. McMahon from Lawrence Livermore Labo-

ratories: a multiply and an add are 1 FLOP, a reciprocal is

3 FLO~PS, a divide and a square root 4 FLOPS, and a SIN,

EXP etc. are counted as 8 FLOPS [7]. The results are given

in Table 3 where we use 7’2561(- as rm.

Generally, the Paris execution model performs better than

the slicewise model on large vectors. The third column in

Table 3 describes the communication mechanism (none, grid

communication, or general routing) used on the CM-2 and

we discuss more about them in the next section. The nl p

values in Table 3 are not available for the operations in which

general routing is used because the router network becomes

a bottleneck at higher vector lengths when more communi-

cation is needed. Usually the highest performance in these

operations is achieved already at vector length 8K or at VP

ratio 1. For example, at 8K the performance in the opera-

tions involving routing (the last three lines for the FPU-32

in Table 3) are 0.07, 2.33, and 11.8 MFLOPS, respectively.

Since the performance scales linearly on the CM-2 if no
communication is involved we can calculate that the peak

execution rate of the 64K CM-2 in 32-bit arithmetic is about

4.4 GFLOPS on the CM Fortran level (FPU-64, Paris exe-
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Kernel FLOP Computer
per CM-2, 8K processors Cray Y-MP

iter. comm. FPU-64 FPU-64 FP U-32 1 proc
cmj 1.1 cmf 1.1 cmf 1.1 64-bit

paris slicewise paris cp7 5.0

nM rca nIn Tcm nm rw w2 r-
Z,=Z*+Y[ 1 none 7K 250 3K 206 6K 235 35 135
Za = Zjya 1 none 7K 251 3K 206 6K 269 35 131

/Z: = Zi Y* 4 none 5K 438 lK 359 4K 232 16 169
Zi=fi 4 none 5K 304 lK 294 4K 173 17 57
Z, = Sinzi 8 none 4K 203 lK 135 4K 274 10 43

Y, = Yt + a~i (DAXpW 2 none 8K 464 3K 401 6K 431 20 216
Zi = a~i 1 none 8K 304 4K 282 6K 322 17 112
.zi=a~i+b 2 none 9K 554 4K 486 6K 440 36 295
7th degree pol. 14 none 8K 434 4K 371 7K 357 0 16.1
Zi = $i+l — Z, 1 NEWS llK 147 9K 61.9 8K 141 40 130
IDAMAX 1 NEWS 9K 68.5 50K 454 8K 68.4 450 69.5

K

.= ~z: 2 NEWS 109K 218 70K 195 46K 4.54 650 298

s= Z:y$ 2 NEWS 78K 419 37K 294 45K 445 490 271
Matrix x vector 2 NEWS 5K 8.73 4K 6.76 4K 9.40 20 164

‘i= (k:-zsO@ki-lOa)la ; ~: n/a 0.01 nl a 0.01 n/a 0.01 20

[

243
zi = Zi~d, + a gather) n/a 1.80 nfa 1.51 n/a 1.80 20 86.7
zi~d; = x, + a scatter) 1 router n/a 4.16 n/a 3.70 n/a 4.15 21 93.2

Table 2: T~ and nllz values for some kernels.

cution model, operation za = aZi +b). Furthermore, if we de- maps consecutive ranges of virtual processors to each phys-

fine the eficiency as the actual performance divided by the

theoretical performance we get for the maximum efficiency

on the CM-2 only 15y0 (4.4/28.7), It should be noted that

the maximum efficiency on a single-processor Cray Y-MP is

89% (298/333).

4 Communication performance

On distributed memory computers the communication per-

formance can be considered as important as the computation

performance, Therefore, we have paid special attention to it

in this section.

The communication bandwidth of a massively parallel

SIMD or MIMD computer can be measured as follows: con-

nect all the processors using a ring topology and perform

a circular shift on all processors in parallel. The operation

can be done several times in order to measure the time more

accurately. Fig. 4 describes the test arrangement on the

CM-2.

proc. chip 1 proc. chip 2

I \

1.+ 2+ . . P

Figure 4: The measurement of the CM-2 communication

bandwidth.

Since the CM-2 supports the virtual processor mechanism

we have executed the test using different ring sizes. CM-2

ical processor [8]. CM Fortran provides two intrinsic func-

tions for shifting array elements in regular patterns along

array dimensions. CSHIFT is a “wrap-around” shift which

causes values that move off the edge of the array to reap

pear at the opposite edge (see Fig. 4). On the contrary,

EOSHIFT is a “end-of” shift which discards values that

move of the edge of the array and moves some specified

value into the positions vacated at the opposite edge. Ei-

ther the faster NEWS or the slower router communication

can be used for shifting. Using the CSHIFT and Paris execu-

tion model NEWS transfers are used only if the dimensions

of the argument array are powers of two and the shift dis-

tance can be broken into a few power-of-two distances. We

executed the test using 4K processors of a CM-2a and ring

sizes 4K, 8K, 16K, . . .. 512K or VP ratios 1, 2, 4, . . .. 128,

respectively. The shift distance was always one. In order

to measure the bandwidth with the router network the ring

sizes were selected not to be powers of two. The results are

shown in Fig. 5.

When EOSHIFT is used the results are the same regard-

less of the fact whether the ring size is a power of two

or not: NEWS transfers are always used. The CSHIFT

with router network can achieve only about 4.3 Kbyte/s

but when the NEWS communication mechanism is used

the maximum communication bandwidth per a single vir-

tual processor increases to 180 Kbyte/s. Paris instruc-

tion .CM_get-fromnews.l L is generated by the compiler.

This will give 11.8 Gbyte/s as the total grid communication

bandwidth on the 64K machine. However, since this value is

reached using a high VP ratio almost all the communication

is done between the virtual processors which are mapped on

the same physical processor and the transfer operations can

be done simply rearranging data within the local memory of

a processor. Let us next study how much data is actually

transferred between the physical processors.

The maximum bandwidth rate of 180 Kbyte/s is achieved

48



wocanar bandwidth (Kbyfa/c)

190 . ...... . ........ . ...... . . . .... . ...... . ...... . ...... . ........ . ...... . .... . . ... . ........ . ...... . ........ . ...... . .... ..

I
160 . ...... . .. ..... . ...... . .... .. . ...... . ........ . ...... . ........ . ...... . ........ . .... . . .....-
170 -.....-–-...-- .....---”7-

, _ . — . - . . . . ... .. ... ..

160
. --.-.- .... . ...... . ........ . ...... . .... ... . .."..ww..w__""

. ...... . ........ . ...... . .. ..... . ..... . ........ . ...... . ........ . .. ... . ........ . ...... . ........ ...... . .. . . . .. .. ....

150 . ...... . ...... . . ..~ . ........ . ... .. . ........ . ...... . ..... ...8 .. . . ........ . ...... . ........ . ..... . .... . . . . .. . .. . ..
140 ..........d ..................."............................ ...+...............................m.......... ..........
130 .................................. .............................. . .."............

H

120 ...../.OO...... ....................... . ..................................... ........... _ ~HI~ n
110 ...A................ ......................... .................................... .... NEW2 ..........
100 .{ .... ..................... .........................................................
90 .r ................................. ................................ .......... - E@~~ :::
80 . ............................................... ................................ .. .6. ~Hn

1
....”.”

70 ............................. .....................". ......................"......... ~w —_
60 ~............................. ....................... .................................
50 .................................... .. ......................."" ... ........... .......................... . . .
40

i

. ...... . .... ... .... . ........ . ...... . . . .. . ...... . ........ . ...... . ........ . ...... . ........ . ...... . ........ . ... . . . .....

30 ..+-- .......--...--. . ...--....--.... . ----- .... . ........ . ...... . ........ . ...... . ........ . ...... . ........ . ..... . ....
~------ ------- ------- -----

20- 4:.s...................s.""...................... ............................. . . ............ ..-
lo- .. ..".................... ......................."...... ..............................."..... ......".
0

...... ......... ...... .... ......... ... ........ ......... ...... .......... .... .....
1 I I I 1 1 1 I I r 1 I I 1 I [ 1 I I 1 I 1 1 I 1 I I 1 t 1 1 1

061632 64 128
w ratio

Figure 5: Processor communication bandwidth of the CM-2.

using a VP ratio of 128 which means that 128 VPS are

mapped on every physical processor. This means that during

our test within each group of 128 processors 127 must” sendn

data serially to another virtual processor that is within the

same physical processor (see Fig. 4). Let us denote tp aa
the time per 32-bit word it takes to “transfer” data between

VPS belonging to the same physical processor.

As we can see horn Fig. 1 there are 16 processors on each

CM-2 processor chip. The processors within a chip use a

special permutation circuit which can organize the proces-

sorsas 1x16, 2x8, 4x4, 4x4x2, 1x2x2x4, etc. grid.

In our l-dimensional ring test the permutation circuit orga-

nizes the processors automatically as a 1 x 16 grid. Thus,

15 processors of the 16 can send data in pamllel to another

physical processor that is within the same chip. Let us de-

note tr as the time per 32-bit word it takes to move data

between processors internally within a chip.

Finally, on every chip one processor must send data to

another processor which is on a different chip. Let us de-

note tE as the time per 32-bit word it takes to move data

externally bet ween processors which are on different chips.

In order to measure the hardware parameters tp, tI,
and t,IJ using the ring test we must first measure all the

possible overheads. They include the overhead caused by the

measurement loop, the CS HIFT call, and the code inside the

CSHIFT intrinsic before any data is transferred. Measuring

the sum of all of them can be done easily by timing first a

CSHIFT call and using a shift distance of O. Running next

the actual test with VP ratios 1, 2, 4, and 8 and using shift

distance 1 we get after subtracting the overheads:

{

tI+tE = 56.3 jLs (VPR = 1)

tp+tI+tE = 78.1 p (VPR = 2)

Stp+ tI+ tE = 120.7 /bS (VPR = 4)

i’tp+ tI+ tE = 208.4~s (VPR = 8)

Subtracting the equations pairwise and averaging the re-

sults we get tp = 21.6 #s and t~+ t,q= 56.5 ps . h order

to find out tr and tE we have to change our test arrange-

ment slightly. We can use the same ring test but instead of

always using shift distance 1 we use distance 16 with the VP

ratio 1, dist ante 32 with the VP ratio 2, distance 64 with

the VP ratio 4, etc. This forces all the processors within a

chip to communicate externally to the processors within the

next chip in the grid, that is, t~ = O and tp = O . Because

for the external communication between the chips only one

wire exists the external communication must be done seri.

ally [~]. For example, using shift distance 16 and VP ratio 1

the time to send the data of the 16 processors within a chip

to the next chip takes 16tE . Executing now the test with

a few different VP ratios and averaging the results we get

t.lj= 26.3 ps and thus tx= 30.2 ps. Eq. (2) summarizes

our result=

{

tp = 21.6 ps

tI = 30.2 /.bS (2)

t.lJ= 26.3 flS

Earlier Levit developed a grid communication model for

the CM-2 [9] , However, he considered that the grid com-

munication time is only a function of tE and tr . He also

measured tB = 28.0 ps and tx = 31.0 ps on a CM-2 run-

ning at 6.7 MHz. However, based on our measurements (on a

CM-2 running at 7.o MHz) it is obvious that a third compo-

nent, tp,must exist. Therefore, we have modified the grid

communication model developed by him. We present next

only the summary and the interested readers are referred to

the pa,per presented by Levit [9].

If the 16-processor chips are configured with n-

dimensional grid geometry C = {CO, .. . . C.-I } (~j C, = 16)

and each physical processor with a VP geometry V =
{w, .... On_l } (~j v, is the VP ratio) the total time for grid

communication of dist ante d = 2P (nearest neighbors) along

axis i is given by:

tgri,j =

{

The difference to the model developed by Levit is the sec~

ond fc)rmula in Eq. (3) which he considered to be valid

always when d < civi . Instead we have added a formula

which should be used when d < vi (communication within

the saline physical processor exists) and the second formula

only when vi~d < civi .

As lpointed out by Levit, the communication time is al-

ways constant when d > ci vi. The re~on for this is that

the NEWS communication takes advantage of the Gray-

code cmdering of addresses. Using Gray-coding the maxi-

mum distance between addresses having a difference of 2P is

two [9, lo].

In Fig. 6 we show the CM-2 communication bandwidth as

the function of shift distance. The compiler generates NEWS

instructions for the CSHIFT and EOSHIFT functions if the

shift dist ante can be broken into a few power-of-2 dist antes,

We can see from Fig. 6 that NEWS instructions are gen-

erated for all the shift distances 1–64 except 63. At shift
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Figure 6: Virtual processor communication bandwidth of the

CM-2 as a function of shift distance in a ring of processors

(VPIt = 128).

distance 63 the router network is used, The peak values in

the CSHIFT curve represent nearest neighbor communica-

tion and they fulfill Eq. (3) quite accurately.

5 Computation with Communi-

cation

How well the computation and communication performances

of a distributed memory computer system are in balance can

be studied by the balance factor [3, 11]

b=- (4)
Ca

in which t=omm and t=.lc are defined as the typical time

to communicate a word between two processing elements

and as the typical time to do a generic calculation, such as

a = b + c or a = bc . A distributed memory system can be
defined to be well-balanced if lJ<1.

Let us study the balance factors for the grid communica-

tion, i.e. t=omm= I!grid.If we divide Eq. (3) by the time it

takes to do the add operation (from Fig. 3: FPU-32, real*4)

we can easily get b as the function of shift distance d, shift

dimension or direction i, VP geometry ~j Vj , and chip ge-

ometry H, Cj . In Table 3 we have chosen some values for

these parameters and calculated the balance factors.

In Table 3 we have got 0.65< b <17. We can see that

the balance factor is very sensitive to all the four parame-

ters. Unfortunately, on CM Fortran level the user can not

directly modify the VP or chip geometries; this is done by

the compiler. On the Paris assembly language level the user

has a direct access to configure the geometries, too. We can

also notice that when the VP ratio ~j Vj increases the

16x1x1x1
16x1x1x1
16x1x1x1
16x1x1x1
16x1x1x1
16x1x1x1
16x1x1x1
16x1x1x1

4X4X1X1
4X4X1X1
4X4X1X1
4X4X1X1
4X4X1X1
4X4X1X1
8x2x1x1
8x2x1x1
8x2x1x1
4x2x2x1
2x2x2x2
2x2x2x2

1X1X1X1
1X1X1X1
1X1X1X1
1X1X1X1
4X1X1X1
8x1x1x1

16x1x1x1
32x1x1x1

1X1X1X1
1X1X1X1
1X1X1X1
1X1X1X1
2X2X1X1
4X4X1X1
8x2x1x1

16x1x1x1
4X4X1X1
2X2X2X1
1X1X1X1
2x2x2x4

d i

1 1

4 1
32 1

1: :
1

: 1
1 1
1 1
1 1

1
3; 1

128 1
1 1
1 1
1 1
1 1

: ;

: :

+C.lnm

56-
135
841
841
841
121
207
380
726
135
841
841
841
313
800
467
406

3R
841

13465

~cate

49
49
49

1%
290
564

1113
49
49
49
49

152
564
564
564
584
290

49
1113

b

-IT
2.7

17

17

0.:;

0.72
0.67
0.65

2.7
17
17
17

2.1
1.4

0.83
0.’72

1.1
12
17
12

Table 3: Balance factors for the grid communication usiruz
some shift distances and dimensi&s and chip and VP ge~

omet ries,

balance factor b decreases and at some VP ratio the opera-

tion becomes balanced. The reason to this is that on higher

VP ratios the relative amount of communication compared

to computation decreases. For example, using a VP ratio

of 16 the sum of all the 16 array or matrix elements within

a physical processor can be calculated before any outside

communication.

Earlier we have computed balance factors on some dis-

tributed memory MIMD computers [3]. Generally speaking,

although the CM-2 is unbalanced at lower VP ratios it seems

to be much more balanced than e.g. Intel iPSC/860 on which

we have measured 17< b <430.

The concept of the balance factor can be extended to oper-

ations involving more computation and communication than

defined in Eq, (4). A more general way to compare how

well the computation and communication performances are

in balance is to time the whole operation itself and then the

computation and communication separately. Next we stud-

ied how well balanced are two such more complex operations,

namely scanning and solving Laplace’s equation. Scanning

is an operation on NEWS grids that combhes communica-

tion and computation. It can be used to compute e.g. the

partial sums or products along a specified dimension in a

grid. Special cases of scanning include e.g. finding the sum,

product, largest value, etc. over all elements of a row of a

matrix. We tested the efficiency of scanning by summing the

columns of a 64VPR x 128 matrix on an 8K CM-2 first

by scanning and then by shifting and adding the elements

separately. Since there are 128 columns 210g128 = 8 steps

are needed in the latter method. The results are described

in Fig. ‘i’.

If scanning is used b decreases from 11 to 1.4 at VP

ratios from 1 to 16. On VP ratios higher than 16 the bal-

ance factor is below one and the operation can be considered

balanced. If the columns are shifted and summed separately

(upper curve in Fig. 7) the relative amount of communica-

tion compared to computation does not decrease as in the
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to 0.48 at VP ratios from 1 to 128. At VP ratios larger than

eight the operation becomes balanced because of the reasons

explained earlier in this section. We can also calculate that

the performance of the kernel is about 193 MFLOPS. Lin-

early c!xtrapolating this would give about 1.5 GFLOPS on a

full 64K machine.
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Figure 7: Elapsed time in summing the columns of a

64VPR x 128 matrix on an 8K CM-2 (32-bit FPU, Paris

execution model). ‘:-
1 2 4 8 16 32 64 126

VP ratio

case of scanning but remains about constant and therefore

13< b< 26.

From Fig. 7 we can also calculate that the performance

of the scanning kernel is about 27 MFLOPS. Linearly ex-

trapolating this would give about 216 MFLOPS on a full

64K machine. However, possibly this will not be the actual

performance because, as we have shown, when the operation

includes NEWS communication the elapsed time is a func-

tion of VP and chip geometries. Because the user can not

set them directly on Fortran level thev can be different when.
the operation is run on a larger machine.

Solving a 2D Laplace’s equation using CM Fortran is de-

scribed in Fig. 8 (the handling of the boundaries is not

considered):

x = (Cshift(x,l ,-1) + Cshlft(x,l,l) +

cshift(x,2,1) + cshift(x,2,-1)) /4.o

Figure 8: Solving a 2D Laplace’s equation.

The results can be seen in Fig. 9: b decreases from 2.4

Figure 9: Elapsed time in solving the 2D Laplace’s equation

using ZL 64 VF’RX128 grid on an 8K CM-2 (32-bit FPU, Paris

execution model).

6 ‘Conclusions

In this paper we have explained how to test and analyze

the basic performance of a massively parallel SIMD com-

puter. The basic computation performance can be studied

executing kernels which do not include any communication

between processors. The communication bandwidth can be

measured configuring the processors using a ring topology

and performing a circular shift between all the processors,

The ;almmunic;tion hardware parameters can be- estimated

and the grid communication model can be developed. The

performance in computation with communication can be an-

~yzed by measuring the balance factors in different kernels.

About the CM-2 used in the study several conclusions

can be drawn. First, we found the host systems to be too

powerless for the performance of the CM-2. As we have

;hown its peak performance on Fortran level can be up to 4.4

GFLOPS on a full 64K machine but if the performance of the

host is 1–5 MFLOPS the scalar and parallel performances

are badly in unbalance. The problem becomes even worse on

the CM-2OO which, assuming its 43Y0 faster clock frequenzy,

will have a peak performance of 6.2 GFLOPS. Also the CM-2

computation vs. router communication performance is very

unbalanced and we suggest not to use the router network if

it can lbe avoided. The total grid communication bandwidth

of a full 64K CM-2 was evaluated to be 11.8 Gbyte/s. The

computation vs. grid communication performance was found
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to be unbalanced at lower VP ratios but at higher VP ratios [11] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,

it became balanced. Finally, we found the CM-2 easy to use D. Walker: Solving Problems on Concurrent Processors,

and potential in highly parallelizable applications. Vol 1. Prentice Hall, Englewood Cliffs, NJ, 1989.
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