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Abstract

[n this paper, a cache coherence strategy with u combinzd

sofhvare and hardware approach is proposed for large-scale mul-

tiprocessor systems. The new strategy has the scalability advan-

tages of existing software strategies and does trot rely on shared

hardware resources to maitiain coherence. it exploits as much

intra-task temporal locality as previously propo,red low-cost, com-

piler–based strategies such as Simple Invalidation and Fast Selec-

tive Invalidation. With a small amount of additional hardware and

a small set of cache management irr.rtructions, the rww strategy

preserves more inter-task-level temporal locali~y than ~hese stra~e-

gies. It is an economical alternative and has potential performance

close to that of more elaborate strategies such m Version Control

and Time Stanp. Also, the new strategy is easily exterrdable to

include Doa c ross loops.

Keywords: Compiler-based cache coherence, parallel task

execution, inter-task-level temporal locality, simple invalida-

tion, fast selective invalidation, version control, time-stamp

approach, life span strategy, Doacross loop.

1 Introduction

Compiler-based cache coherence strategies have been pro-

posed by various researchers [l&8] to maintain cache coherence

for multiprocessor computers with either private or partially shared

caches or both. Cache coherence is important to preserve cor-

rect program execution if nonshared caches are used to hide the

long access latency between the processor and the main memory.

While compiler-based cache coherence strategies are not restricted

by shared hardwere or global communication overhead found in

conventional hardware-based strategies (directory schemes [9–1 1]

or bus schemes [ 12–16] ) and are thus attractive solutions in

large-scale multiprocessor systems, it has alsu been shown that

compiler-based strategies can deliver performance comparable to

hardware-based strategies in systems with even a moderate num-

ber of processors [17].

Compiler-based coherence strategies suchl as Simple (Indis-

criminate) Invalidation [2] are unable to utilize temporal locality

that extends across parallel code boundaries. (This locality will

be referred to as “inter-task-level temporal locality” and will be
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discussed in the next section.) The Fast Selective Invalidation

(FSI) [6], the Version Control [18], and the Time Stamp strategies

[19] were proposed to allow better utilization of such a locality in

order to improve performance. The failure to capture this locality

and the resultant performance degradation were demonstrated by

the cache ping-pong problem of the hardware-based strategies. In

order to tackle the cache ping-pong problem, an algorithm [20] has

been proposed to schedule a processor to execute tasks that access

approximately the same set of variable elements (scafar variables

or array elements). Such an algorithm will also benefit the FSI,

the Version Control, and the Time Stamp strategies. Among these

strategies, Version Control and Time Stamp have higher cost than

FSI, but can utilize the most inter-task-level temporal locality pre-

served by task scheduling. On the other hand, the FSI strategy has

a much lower hardware cost. These conditions motivate the search

for a solution that can offer increasing utilization of this locality

with incremental hardware costs while maintaining the simplicity

of the compiler algorithm in these strategies.

In this paper, a new compiler-based strategy is introduced.

The minimum implementation of this strategy, with little addi-

tional hardware to each private cache, can utilize more inter-task-

level temporal locality than the FSI strategy. With the incremental

addition of hardware when cost allows, it can be shown that the

utilization of this locality can also be increased. The paper is or-

ganized as follows. In section 2, the assumptions are presented

and existing compiler-based strategies are examined. In section

3, the problems of the existing strategies are described, and the

objective of the new strategy is introduced. In section 4, the basic

ideas of the new strategy are presented with some examples. The

compiler algorithm to utilize the hardware for coherence control

and preservation of inter-task-level temporal locality is discussed

in section 5. Section 6 contains a correctness proof. The extended

version of the strategy is presented in Section 7. An extension of

the strategy to include Do across loops is given in Section 8.

2 Existing Compiler-Based Strategies

2,1 Assumptions and models

In this section, some related existing compiler-based strate-

gies are described briefly, and the assumptions of a parallel ex-

ecution model are introduced. Then, the problem of coherence

maintenance and the solutions provided by the existing strategies

are discussed using such a parallel execution model.

For the existing and the new compiler-based strategies, we

assume a multiprocessor system with a shared global memory and

a weakly ordered access model. The global memory modules and
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the processors can either be connected as in a dance-hall organ-

ization or can be distributed among the processors. However, a

logicafly shared memory is assumed. For simplicity, in the fol-

lowing discussion only one level of private cache memories with

the write-through policy is covered, even though some strategies,

such as Version Control, can be applied to multilevel caches with

different degrees of sharing [21]. Synchronization variables are

assumed to be noncacheable in these strategies. A cache coher-

ence block [22] of one cache word is assumed.

Numerical programs with Deal l-type loop-level parallelism

are assumed to be executed on systems with the above system

model. Doa 11 loops are parallel loops with no cross iteration

dependence [23]. Iterations are scheduled to each processor, and

synchronizations are carried out at the beginning and the end of

each parallel loop.

To facilitate the following discussion, the execution of a

program is modeled as an execution task graph which is a directed

graph. Each node in the graph is a task that is either a sequential

portion of a program or a group of iterations scheduled to a

processor. Each task is executed by one processor. A directed

edge from one task to another represents all the dependence

between the two tasks. Figure 1 shows a portion of an execution

task graph and the code corresponding to each task. A Start task

and an End task are used to represent the beginning and the end

of the program. Each task also belongs to a task level that denotes

the set of tasks at the same distance from the Start task, measured

by the length (the number of edges) of the longest directed path.

By the definition of the execution task graph, a processor can

only execute tasks in a nondecreasing order of level numbers.

Multiple tasks on the same level can be executed in parallel. By

our model of Doa 11 loops, the sets of variable elements written

by parallel tasks are mutually exclusive. For convenience, we can

draw a line between two adjacent levels as the level boundary.

Synchronization operations are required at each level boundary,

and therefore, these level boundaries correspond to the beginnings

and/or the ends of Do a 11 loops and can be detected at compile-

time by a compiler.

With the execution graph, the problem of memo~ incoher-

ence can be easily described. For a processor PI with a copy of

X~] in its cache, a write to Xlj] on a task level L by another

processor will turn the existing cache copy of Xti] in P, stale

(out-of-date). When processor P, executes a task on a subsequent

level, using the stale copy of X~] will produce an incorrect result.

Therefore, an access on a level and a write to the same variable

element on a subsequent level can potentially cause an access to

use a stale copy of that element on a later level. This sequence of

an access followed by a write (to the same element) on a different

task level will be referred to as the condition for stale accesses

at later levels.

2.2 Existing strategies

The existing compiler-based strategies and their limitations

can be described using the execution graph. Within tasks on the

same level, cache words can be accessed as in a uniprocessor cache

as long as they afready contain the up-to-date values at the start of

a level. (It is impossible for a task to use a value produced from

another task on the same level in our parallel execution model.)

The first fetch of a variable element after the beginning of each

level will be referred to as the new fetch of the variable element on

that level. If a new fetch of a variable element detects a stale value

in the cache word, a cache miss can be issued and the up-to-date

value from the globaf memory can be loaded into the cache word.

Compiler-based strategies rely on the compiler to keep track of

which new fetches may access stale cache words. When a new

fetch accesses an up-to-date cache word, the hit is credited to

inter-task-level temporal locality if the cache word is not loaded

in earlier in the same level. All hits by fetches other than the

new fetch are the result of intra-task temporal locality (same

as conventional temporal locality) or spatial locality. It should

be noticed that the inter-task-level temporal locali~ depends on

how the tasks are scheduled to processors, while intra-task-level

locality does not.

The Simple Invalidation strategy takes a conservative view

in that at every level N, the cache copy of any shared read-

write variable element can be potentially stale. Therefore, the

compiler inserts an I nva 1 id at e instruction at code location

corresponding to a level boundary, and each processor executes

the Invalidate instruction to invalidate simultaneously the

entire private cache before crossing a level boundary. Then, a

new fetch will miss on the invalidated cache word and will load

from the global memory copy which is kept up-to-date by the

write-through policy, The advantage of this strategy is that the

Inva 1 idat e instruction can be a simple reset operation on the

bits, each corresponding to a cache word, and invalidation is thus

very fast. The disadvantage of this strategy is that inter-task-level

temporal locality cannot be exploited.

The FSI strategy is based on the observation that not all new

fetches are preceded by the condition for stafe accesses. Therefore,

not afl new fetches need to miss and to load from global memory.

The FSI strategy uses the compiler to identify these fetches. These

fetches are marked Cache Read. All fetches from read-only

variables or private variables are marked Cache Read, so are

the fetches not preceded by the condition for stale accesses. The

compiler backend will generate an appropriate fetch according to

the marking. A Cache Read fetch is treated as a conventional

memory access by the cache controller because it will not access

potentially stale cache copies.

The rest of the fetches, which may access stale cache copies,

are marked Memory Read. Different codes to distinguish these

two different types of fetches need to be supported by the in-

struction set and by the compiler. An extra status bit, called the

Change bit, is associated with each cache word. The cache con-

troller checks the Change bit for each Memo ry Read. If the

Change bit is set, a miss is issued. If it is not set, the cache copy

is guaranteed to be up-to-date. An Invalidate instruction is

executed by each processor to set all the Change bits when the

processor crosses each level boundmy. This forces all new fetches

that are Memory Read to use the up-to-date copy from globaf

memory. The Change bit of a cache word is reset upon a load

due to a miss or a write operation. A reset Change bit preserves

the intra-task level temporal locafity of the cache word.

For shared read-write variables, this strategy can exploit

inter-task-level temporal locality for Cache Read accesses. This

is an improvement over the Simple Invalidation strategy. How-

ever, once a fetch to a shared read-write variable is preceded by

the condition for stale accesses, all fetches in succeeding levels
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are marked as Memory Read, and their inter-task-level tempo-

ral locality cannot be exploited. Limited information about task

scheduling forces the compiler to mark the fetches Memory Read

in these cases. The Version Control and the Time-Stamp strate-

gies will further relax this limitation. (Only the Version Control

strategy will be described below, but the Version Control and

Time-Stamp strategies are based on the same idea.)

The FSI strategy has better performance than the Simple

Invalidation strategy and schemes similar to S1 that were pro-

posed by different researchers [3, 5]. However, a recent paper

[24] showed that the reference-marking [5] has better simulated

performance than the FSI strategy. Verification with the authors

confirmed that, in their simulation of the FSI fstrategy, each pro-

cessor executes the Invalidate operation per iteration instead

of per level boundary as proposed. This misunderstanding of the

FSI strategy destroyed a large part of the intra-task-level locality

which makes both the S1 and FSI strategies useful.

The Version Control strategy considers that the writes to a

variable on each level create a new version of a variable in the

execution. Each processor will keep a current version number

(cvrs) for each shared read-write variable in each program execu-

tion (each array is treated as one vwiable). The version numbers

are kept in a local memory accessed in parallel with the cache

accesses. Each cache word will have an extra field called the

birth version number (bvn). At the time the cache word is loaded

or written, the value of the cvn (for read misses) or ctm + 1 (for

writes) will be written into the bvn. At the end of each level, the

processor increments the cvn for each variable that might have

been written in that level. Code to increment the cvn can be eas-

ily generated once the level boundmy is detected, and the writes

to variables are identified in a level. A cache miss is issued when

the cvn of a variable accessed is larger than the bvrz of the cache

word accessed, By keeping track of the versions, stale copies are

avoided.

3 Exploiting Inter-task-level Locality

3.1 Inter-task-level temporal locality

The following metric of estimating inter-task-level temporal

locality will be used in the discussion. Only variables that are

accessed on more than one level in the task execution graph have

nonzero inter-task-level temporal locality. Let us suppose that

there are M levels in a task execution graph (from level 1 to M),

and there are K levels containing accesses to X. The sequence of

values 1~

represents the level numbers that correspond to these K levels. A

useful quantity, next inter-task-level access distance of a variable,

can be defined as the number of levels from a task level containing

accesses to the variable to the next task level containing accesses

to the same variable. The next inter-task-level access distance of

the variable X at each of the K levels is:

Then, over those levels that contain accesses to X, we can make

use of a quantity 7X which measures the average inter-task-level

temporal locality and is defined as:

A variable that it is accessed on every task level between level

1~ and l; is called a variable with full itier-task-level temporal

locality of accesses over these levels (ZX is 1). When the distances

between levels with accesses to X are large, the variable has lower

inter-task-level temporal locality. Notice also that the chance

that a cache copy will be replaced increases with such distances.

Therefore, for levels 11 through 1}–1, the reciprocal of the next

inter-task-level access distance

em=-
is called the immediate inter-task-level temporat locality for the

variable X on that level. When a variable X always has immediate

inter-task-level temporal locality of value 1, the variable has the

best possible immediate inter-task-level temporal locality.

The quantities above can be estimated from flow analysis or

measured in program execution through tracing, These metrics

are useful for a first-cut evaluation for strategies 10 exploit inter-

task-level temporal locality.

3.2 Inefficient use of the available locality

In the existing compiler-based cache coherence strategies,

it is quite costly to take advantage of even the best available

inter-task-level temporal locality. For example, let us examine

the following scenario. Suppose on level N task i, t~, writes

amay X[i], and on each of the levels N+l through N+k, there are

tasks t~+l and t:+ k respectively that read X[i], which should

have the value written by t:. Further, suppose that in each task

from t~+l to ty+~, the new fetch will load the up-to-date copy

from the global memory if the cache copy is determined to be

stale. If it can be detected that processor P, has executed t~+’,

when Pj is scheduled to execute t~+’,where O 5 i < j 5 k, the

cache copy of X[i] in Pj will contain the up-to-date value written

on level N. However, in a nonstatic scheduling environment, the

above scheduling condition is expensive to guarantee and to detec~

‘+’, the cache copytherefore, when F’, is scheduled to execute t,

of X[i] in its cache may still contain a value written on a level

prior to level N. In this case, if Pj is scheduled to execute any

t‘+k on the respective level, the new fetch inof the t~+l, ... , ,

each level is forced to load the up-to-date value from the global

memory. This is why the FSI strategy forces each new fetch

to a variable element to load from the global memory once the

compiler detects the condition for stale accesses.

The Version Control and the Time Stamp strategies provide a

solution, but it is not as economical as one would hope. The ver-

sion number associated with each cache copy will indicate whether

the cache copy contains the value by the most recent write. But the

version number is expensive to implement when space is precious

such as in the case of on-chip caches. Furthermore, for variables
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that have very little immediate inter-task-level temporal locrdity

(long next inter-task-level access distance), the Version Control

and the Time Stamp strategies are even less cost effective. If a

smafl version number field is implemented, overflows will become

more frequent, and the time spent to have all the processors reset

the version numbers will be unbearable.

4 The Life Span Strategy

The Life Span strategy targets the highest possible inter-

task-level temporal locali~. With little additional hardware (one

more status bit per cache word than the FSI strategy) in its basic

implementation, it can outperform the FSI strategy in utilizing

inter-task-level temporal locality. It can be shown that the Life

Span strategy can inexpensively exploit the full inter-task-level

temporal locality of accesses to variable elements. At the same

time, it can exploit intra-task-level temporal locality as well as

any other strategy. In this section, we describe the basic ideas of

the strategy. Let us first discuss the architectural support required

for the strategy and illustrate the algorithm to maintain coherence

with an example.

4.1 Architectural support

4.1.1 Cache Status bits

Each cache coherence unit is associated with three status

bits: Valid, Change, and Stale.

Valid bit (V). This is the same as the valid bit in a conventional

cache. If set (logic value 1), the cache item is present; otherwise

the cache item is not present. Storing into the cache as a result

of a fetch from the memory or a write to the memory will set

the valid bit.

Change bit (C). The Change bit of a cache copy is ex-

amined by the cache controller upon a Memo r y_re ad or a

Memory read_reset_stale fetch (defined below). A reset

Change tit indicates that the associated cache copy is up-to-date.

If the Change bit is set, a cache miss is issued to load the globaf

memory copy. The Change bit is reset when a v altte is stored in

the cache copy by a write or by a fetch from the global memory

on a miss. The setting of the Change bit is a possible outcome

of the I nva 1 id at e operation discussed in the processor/system

support section, and the Change bit is individually addressable

along with the associated cache copy and is writable.

Stale bit (S). The Stale bit of a cache copy is used to de-

termine the new vafue of the Change bit before the start

of each task level. The Stale bit is reset by the Mem-

ory read reset stale instruction (defined in the Proces-

sor/S—ystem~upport ~ection) and the write instruction. When

a value is stored into the cache copy by a write or by a cache

miss due to a Memory_read_reset_ stale fetch, the Stale

bit is reset. It is set by a Memory_read (see below) instruction,

a Write set stale instruction, or an Invalidate opera-

tion inser=d be~ore the next task level boundary. The reset Stale

bit indicates that the cache copy has acquired an up-to-date vahre

through a write or a miss in the current level. This information

is used to guide the fetches in the next task level. A Stale bit

is also individually addressable along with the associated cache

copy and is writable.

4.1.2 Processor/System support

The processor is required to issue three kinds of memory

fetches. The operations of these fetches and the responses from

the cache controller are described below. Also, the support to

write and Invalidate will be discussed.

Cache_read. Cache read is the same as the conventionrd

memory fetch operation. T~e cache controller only tests the valid

bit to determine a cache miss or cache hit.

Metnory_read. Upon receiving a Memory read fetch, the

controller examines the value of the Change b;. If the Change

bit is set, a miss is issued, the global memory copy is fetched,

and the Change bit is reset when the copy comes back from the

global memory. If the Change bit is reset, the fetch is serviced as

a conventional cache access that is concerned only with the status

of the valid bit. Also, the Stale bit of the addressed word is set

in both cases. For multiple words prefetched upon a miss, the

Change bit of each prefetched word is reset. Memo ry_read is

used only in the extension with Doa cross loops

Meamry_read_reset_stale. This is almost the same as

Memo ry read except that the Stale bit of the addressed word

is reset. ‘For multiple words prefetched upon a miss, only the

word addressed by the fetch has its Stale bit reset. When a Mem-

ory read_re set_stale hits, the Stale bit of the addressed

word—is reset. This resets the Stale bit of a prefetched word when

it is actually referenced.

Write. The writ e operation resets the Change bit, resets the

Stale bit, and sets the Valid bit of the word addressed by the write

operation. The write-through policy is assumed even though it is

not strictly required.

Write set stale. Same as write except that the Stale bit—.
is set in the operation (used only in the extension with Doa c ross

loops).

System support is also needed to perform the Invalidate

operation. This support can be in the form of an additional

processor instruction or as a write to an output port to trigger

the operation. The goaf of the Invali. dati.on operation is to

have each Change bit value reflect the stale status of the associated

cache copy in the next task level. An Inva 1 i dat e is carried out

once at the end of a task level by each processor. For the cache

copies that might contain stafe values, their Change bits should be

set. Recall that a set Change bh value will cause a miss and a load

from the globaf memory in the next task level. Therefore, the set

Change bit effectively invalidates the cache copies to be accessed

by a Memory_read or a Memory_read_reset_ stale on

the next level. For the cache copies that are written or for those

whose up-to-date vafues are used during the task level, the Change

bit should be reset for the next task level. The ability to reset the

Change bit for these cache copies is the major distinction between

the Life Span strategy and the FSI strategy. To accomplish this,

Invalidate uses the value of the Stale bit to determine the

value of the Change bit for the next task level. The Inva 1 i dat e

operation affects both the Stale bit and the Change bit and is

carried out in parallel on the entire cache.

Invalidate The Stale bit value is stored into the Change bit,

and Stale bit is set for all cache words.
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4,2

4.3

Notation

The following notation is used in the discussions below:

INV – Invalidate

R(X[i]) - read X[i]

W(X[i])- write X[i]

WSS(X[i]) –write_set_stale X[i]

CR(X[i]) – Cache_read from X[i]

MR(X[i]) – Memory_read from X[i]

MRRS(X[i]) -Memory_read_reset_stale from X[i]

t?- Taski on task level N.

Example

Let us assume for the time being that the compiler has

correctly generated code for the different kinds of fetches. The

basic ideas for generating such code are discussed in the next

section. In Figure 1, tasks in four task levels are shown, and the

code ineachtask islisted inacolumn next tothe task graph. The

read/write operations to anarray variable Xareshown in the code.

For clarity, letusassume that task ion each level accesses array

element X[i]. Also, the corresponding fetches and writes to X[i]

as generated by the compiler are listed adjacent to the task code.

1 L
Level N

Level N+]

Level N+2

Leve/ N+3

:“’’’:”*
code executed cOmPiler-generated

=x[l\.. MRRS(XII])

X[$]= ,,. W(x[l])
I

INV
~N+l

..=x[l] MRRS(X[i])

,,, =x[l] .,. MRRS(X[t])

,
INV

N+2 1~.
=X[i/. MRRS(X[Z])

X[l] = W(X[i]J
,,. =x[t] ,.. MRRS(X[i])

I
INV

~N+3

=X[ij MRRS(X[i])

I [NV

Figure 1. Example of LifeSpan strategy: task graph and code.

The ability of the Life Span strategy to maintain cache

coherence can be illustrated with the following task execution,

Let processor PI be scheduled to tasks t?,ty+l,ty+2,and

t~+3 ontasklevels N, N+l, N+2, and N+3 respectively. Table 1

shows the status bits of X[l] snd X[2] in PI’s cache and atso the

cache responses, Forclarity of presentation, let us assume a cache

coherence block of one word and a prefetched line of one word.

Thestatus bits affectedly the operations will be represented by

two numbers separated by a slash (old value/new value), and the

unaffected status bits are represented by a single number, such as

thestatus bits for X[2] on rows 1,2, andll, andthosefor X[l]

on rows 4, 5, 7, 8, and 9, The Invalidate operation affects the

status bits of all cache copies, as shown on rows 3, 6, 10, and 12.

On level N, PI executes task t~ and it misses on X[l]. The

change of the Stale bit on row 1 records the result of the MRRS, On

the other hand, because PI does not access its cache copy of X[2],

the Stale bit of X[2] does not change. After task t:,the processor

executes the I nva 1 i dat e operation (row 3) on its entire cache

— the Change bit takes the value of the Stale bit, and the Stale bit

becomes 1. The Inva 1 idat e operation is depicted as a separate

task that is executed once by each processor before going on to

the next level. The resultant zero Change bit of X[l] indicates its

up-to-date status, but the Change bit of X[2] (value 1) indicates

a stale copy, In our Deal 1 program model, the execution of

task t: on level N by another processor will very likely write

the up-to-date copy of X[2] in a different cache. Therefore, the

Change bits of X[l] and X[2] in PI’s cache correctly signal the

status of the cache copies. The resultant Change bks on row 10

can be explained similarly with the roles of task 1 (t~+z ) and

task 2 (tfl+z) reversed.

When P1 executes task t:+ 1 on level N+l, the cache con-

troller generates a cache miss (see row 4) on the access according

to the Change bit. Also, since the fetch is an MRRS, the Stafe bit

is reset. The zero Stale bit indicates that the copy is an up-to-date

one from the global memory. And the copy of X(2] will be known

to be up-to-date on task level N+2. Therefore, the new fetch by

PI on level N+2 is a hit (row 7).

On level N+l and N+2, intra-task-level temporal locality

is also preserved by the zero Change bit. On rows 5 and 9, the

fetches result in a cache hit due to the zero Change bits previously

reset in the current level.

To see the advantage of the Life Span strategy, notice that

the fetch from X[ 1] on row 7 is also a new fetch. The FSI strategy

will generate a Memory Read for this access. Without the Stale

Table 1. Example of Life Span strategy: case 1.

Task X[l] cache X[2] cache Operationsthat Cache. Row
no status bits status bms affsct status bits ssponse

s c s c

tlN 1/0 1/0 1 1 MRRs(x[l]) miss 1

0/0 0/0 1 1 W(x[l]) 2

INV 0/1 0/0 1/1 1/1 INV 3
Task

t2N+’ 1 0 1/0 1/0 MRRS(X[2]) miss 4

1 0 0/0 0/0 MRRS(X[2]) hit 5

NV 1/1 0/1 0/1 0/0 INV 6
Task

t2N+2 1 1 1/0 0/0 MRRS(X[2]) hit 7

1 1 0/0 0/0 W(X[2]) 8

1 1 0/0 0/0 MRRS(X[2]) hit 9

INV 1/1 1/1 0/1 0/0 INV 10
Task

II
N+3 1/0 1/0 1 0 MRRs(x[l]) miss 11

[w 0/1 0/0 1/1 0/1 INV tz
Tmk
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bit, this fetch will find the Change bit set. (The Change bits are

always set to 1 by INV in the FSI strategy.) Therefore, a cache

miss will be issued. In the Life Span strategy, this access is a hit.

For the best-case performance of the Life Span strategy, let

us suppose that processor Pl happens to be scheduled to execute
‘+1, t~+2, t~+3, on levels N, N+l, N+2, and N+3,tasks t:,tl

respectively. As in Table 2, the new fetches on rows 4, 7, and

11 are all hits due to the reset Change bit. This would otherwise

be impossible in the FSI strategy. Only in the Version Control

strategy can these new fetches be hits in this particular processor

schedule.

Notice that the Invalidates for task levels N+l (row

6) and N+3 (row 12) are not necessary for array X, given that

every processor executes the I rival idat e on level N (row 3)

and level N+2 (row 10). However, because an Invalidate is

carried out on the entire cache instead of only on the cache copies

of variables written, it could have been inserted for other variables

presumably written on levels N+l and N+3. For task levels that

contain no write to any shared global variable, an I nva 1 i dat e

should not be required.

The Life Span strategy with one Stale bit per cache word can

keep the up-to-date status of cache copies for at least one extra

level. Therefore, such an implementation is called the One-Level

Life Span strategy. If a variable element is accessed every level

for a number of consecutive levels, the resetting of the Stafe bit

in each level can sustain the up-to-date status of the cache copy

throughout these levels. For variable elements with full inter-task-

level temporal locality, this is a remarkable cost-saving advantage

over the fixed-length version numbers or time stamps.

Table 2. Example of Life Span strategy: case 2.

Task no,

hN

Ilvv
Tmk

hN+’

Ilvv
Tmk

Cl
N+ 2

INV
Task

tIN+3

INV
Tark

X[l] cache Operations that affect Cache ~ponse Row

status bits status bits

s c

t/0 1/0 MRRs(x[l]) miss 1

0/0 0/0 W(x[l]) 2

0/1 3

1/0 0/0 MRRs(x[l]) hit 4

0/0 0/0 M_RRs(x[ll) hit 5

0/1 0/0 INV 6

1/0 0/0 MRRs(x[t ]) hlt 7

0/0 0/0 W(x[l]) s
—

0/0 0/0 MRRs(x[l]) h,t 9

0/1 0/0 INV 10

1/0 0/0 MRRs(x[l]) hit 11

o/t 0/0 INV 12

5 Compiler Support

The compiler afgorithm to identify and generate code for

different kinds of fetches is based on the one introduced in the FSI

strategy. A flow algorithm is used in the FSI strategy to identify

Cache Reads from Memory Reads. The mechanism of the

original algorithm will be briefly described, and the extension to

further divide Memo ry Read fetches into Memo ry_read and

Memo ry_read_re set_st a le fetches will be discussed. (For

a more detailed description of the originaf algorithm, refer to [7].)

After the different types of fetches are identified and marked, it

should be straightforward for the compiler backend to generate

appropriate code for them.

5.1 Cache Read identification

The compiler algorithm requires that the program has already

been parallelized by a restructurer. The flow algorithm tries

to detect, for each variable X (scalar or may), the sequential

occurrence of {read(X) or write(X), , level boundary, ... ,

write(X), .. , level boundary) before any read(X). This sequence

is the condition for stale accesses; the level boundary is either the

beginning or the end of a Deal 1 loop. Notice that this test does

not require checking of index expressions. To a shared variable,

any read(X) that is preceded by such a sequence is identified

as Memory Read and marked for later code generation; any

read(X) not preceded by such a sequence is identified and marked

as Cache Read.

5.2 Invalidate insertion

Next, Inva 1 idat es must be inserted for the proper task

level. Recall that the purpose of the Invalidate operation is to

make potentially stale cache copies known to the cache controllers

on the next task level. The only condition that can cause cache

copies of a variable stale is to have a write to the variable in a

task level. Therefore, the algorithm needs to identify a write to a

variable in order to insert an Invalidate before the next level

boundary. However, because an I nva 1 i dat e affects all cache

copies (this is more efficient than seeking out all cache copies of

variables written during run-time), a write to any shared variable

on a task level will cause the compiler to insert an Invalidate

before the next level boundary.

A boundary level is identified whenever the beginning or

the end of a Doall loop is found. A back-to-back Doall-

end and Doall-begi.n pair of two adjacent Doall loops is

considered to form only one boundary. Also, multiple Deal 1-

ends (or Deal 1-begins ) of perfectly nested loops constitute

one boundary. At run time, when a processor attempts to take

a task from the task pool, it should check whether a task level

boundary has been crossed. If it has, the processor will execute

the inserted Invalidate operation.

5.3 MRRSidentification

In our parallel execution model (i.e., no data dependence

exists across Doall loop iterations) only MRRS is needed. The

function of MRRS implies that cache copies written or used by a

processor will stay up-to-date in the next level. In this case, afl
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fetches marked Memo ry Reads in the FSI compiler algorithm

can be marked MRRS. In parallel program execution models that

include data dependence across iteration, Memo r y Reads iden-

tified by the FSI algorithm will be further divided into MRRS and

Memory reads and this will be discussed in an extension in a

later sec;on.

6 Correctness Proof

For the One-Level Life Span strategy to function correctly,

a fetch should deliver only up-to-date copies of variable elements

to the processor. In the following sketch of a proof, the caches

are assumed to start out clean, and the Stale bits start out all set,

Cache misses. If a fetch misses, the copy from the globaf

memory must be up-to-date due to the write-through policy and

the weakly ordered consistency model.

Cache hits. A Ca che_read fetch does not have preceding

accesses that match the pattern of the condition for stale accesses;

that is, either no writes to the same variables occur in a previous

task level, or previous writes only modified the variable element

that had no existing cache copy. Therefore, the cache copies

accessed by a Cache_read fetch must be up-to-date.

For MRRS fetches, a hit occurs when the Change bit is found

reset. It is sufficient to show that when a cache copy with a reset

Change bit is accessed, the cache copy must be up-to-date. There

are two cases in which the Change bit is reset in a task level.

Either the Change bit is reset due to a write or a miss in the

current task level or has afready been reset at the beginning of the

current task level. In the first case, a write or a load from global

memory due to a read miss was the cause, and the resultant cache

copy must be up-to-date.

Let us cafl the reset Change bit in the second case “initially

reset Change bif” and present the following proof. The program

model of Doall loops is assumed.

Hypothesis: A cache copy with an initially reset Change bit,

is always up-to-date.

Proofi Let a task level M contain a fetch that accesses a cache

copy with an initially reset Change bit. There exists a task level

L, prior to level M, with the following properties. To task level

M, level L is the closest level that contains a write to the variable

of the cache copy accessed in M. Level L exists because fetches

other than Cache reads must be preceded by a Write due

to the condition fo~ stale accesses. Because there is no write

between level L and level M, the cache copies written on level L

must still be up-to-date.

From the compiler and system supports, Stale bits reset

during a task level (by an MRRS or a Write) are always set again

before the next level by an Invalidate; existing cache copies

of the variable produced prior to level L must have their Stale

bits set before the start of level L. Therefore, the Invalidate

between level L and level L+l must have set the Change bits

(using the Stale bits) of the variable’s cache copies not written by

the processors on level L. A subsequent access to any potentially

stale copy will result in a miss, A cache copy with a set Change

bit after level L could only have its Change bit reset by a miss.

All subsequent hits are either hits on the copies produced on level

L or on copies loaded from global memory between level L and

level M. Therefore, the cache copy with an initially reset Change

bit is an up-to-date copy. ❑

A cache copy with an initiafly reset Change bit or a Change

bit reset in a task level has been shown always to contain an

up-to-date COPYwhen accessed; therefore, the proof is complete.

7 Extension — N-Level Life Span Strategy

The One-Level Life Span strategy works best for variable

elements whose next inter-task-level access distance is one, es-

pecially for variable elements that are accessed in every one of

a sequence of adjacent levels. Variable elements with next inter-

task-level access distance longer than one can afso be exploited

provided an Inva 1 idat e is not needed for every task level.

However, we assume the worst case, in which an Invalidate

is needed for each task level. In the worst case, the strategy can-

not preserve inter-task-level temporal locality for variables with

inter-task-level access distance larger than one because the basic

implementation uses only one Stale bit per cache word. If the vari-

able element is accessed every J task levels (J > 1), at the level in

which the variable element is not accessed, the Stale bit will not be

reset during the task level. As a result, the Change bit will be set

by an Invalidate operation possibly inserted at the end of the

level. Therefore, in the next task level, even though the cache copy

may be perfectly up-to-date, a Memory read reset stale— — —
will cause a miss because of the set Change bit. Of course, for

a large J, the opportunity that the cache copy of the variable ele-

ment will be replaced is also large. However, for a smaller J, it

may be worthwhile to keep the up-to-date status of a cache copy

for J levels.

It should be pointed out that the Version Control and the

Time Stamp strategies keep the up-to-date status until the variable

is modified again. By doing that, the cost of the version control

is paid even for variable elements that have very low intermediate

inter-task-level temporal locality. Also, with the Stafe bits in

the Life Span strategy, there is no execution time overhead in

overflowing a finite version number or time stamp.

To exploit the high intermediate inter-task-level temporal

locality of variable elements, additional architectural and compiler

support are needed. The basic idea is to increase the number of

Stale bits from 1 to N. Each cache copy is associated with { SN.1 ...

SO) Stale bits which are addressable and writable as a unit. There

exist different ways to support the manipulation of the Stafe bits.

In the following list of requirements in the N-Level Life Span

strategy, only one way is shown.

ProcessorlSystem Support. Only the additional functionalities

required on top of the One-Level Life Span strategy are discussed.

Memory read. The Memo ry_read type fetch will set all

the Stale-bhs of the addressed cache copy.

Meumw_read_reset_skale (MRRS) . The MRRS re-

quires an extra field that specifies the number of low-order Stale

bits to reset. The compiler will generate the field value as the

minimum number of Invalidates in subsequent levels through

which the cache copy needs to keep its up-to-date status. Instead

of resetting only one Stale bit associated with the addressed cache

word, the specified number of Stale bits in the field starting from
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SOwill be reset in the N-Level implementation. The notation used

is MRRS (X, f) , where f is the extra field.

Write. The same extra field in the MRRS fetch is required,

and the Stale bits of the addressed cache word are reset in the

same manner. The notation W (X, f ) is used. WS S sets the Stale

bits of a cache copy.

Invalidate. An Inva 1 i dat e affects the status bits of

every cache word as follows:

{C =S(l Sj = Sj+l for O <j< N-1, SN.1 = 1).

The shift decreases by one the number of reset stale bits which

are needed to keep the remaining I nva 1 i dat es from rendering

the cache copy stale.

Extended Compiler Support. In addition to the functions required

in the basic implementation, the compiler needs to identify the

minimum number of Invalidates from a Write or an MRRS

of a variable to its next Write access on a different task level

on a flow path. This number is used by the Write or the MRRS

to reset the number of Stale bits.

For each Write or MRRS, flow analysis is used to find the

Writes, to the same variable, reachable from the write or

the MRRS. As reachability is established, the minimum number

Inva 1 idat e inserted on each path is determined. Then, the

minimum of these numbers is selected among all the possible flow

paths. If no such reachable Writes are found, the maximum

number of bits allowed in the field is used instead.

The chosen number will be used for the extra field in

MRRS (X, f) and W (X, f ) to reset the appropriate number of

Stale bits of a cache copy. The reset Stale bits ensure that a cache

copy will maintain its up-to-date status beyond such a number of

Invalidates. The minimum is used because any additional

reset Stale bit can erroneously extend the up-to-date status of a

cache copy even though it might have indeed become stale.

8 Extension to Include Doacross

In parallel execution models that include data dependence

across parallel loop iterations such as those in Doa cross loops,

the combination of proper synchronization, Memo ry_read, and

Write set stale, will ensure cache coherence.— In such—
cases, the reference-marking algorithm further divides the fetches

into Memo ry read and MRRS fetches. This extension focuses

locally on the_iteration body of a Doacross loop which consti-

tutes a task in our execution model. In the following discussion,

we assume the One-Level Life Span strategy first and that the

Doac zoss loops are automatically restructured from sequential

loops.1

The fetches and writes that are either the source or the sink

of a dependence arc across iterations [23] are of concern. For

clarity, let’s call them sinl-fetches, source-fetches, si~-writes,

and source-writes. Proper synchronization is assumed to guaran-

tee that the dependence is satisfied. Furthermore, a source-write

in a cross -iteration jow-dependence (read- aj2er-write) is required

to deposit the written value into the global memory before the nec-

essary synchronization is carried out to satisfy the dependence.

1 ‘fhis assumption excludes loops wlttr backward dependence from a
later iteration to a previous one.

8.1 Source-fetches

For a source-fetch, the dependence is an anti-dependence

(write-after-read) with a sink-write in a later iteration in the orig-

inal sequential loop. The variable element of the cache copy

used will be written later by another processor in the same task

level. In such a case, the cache copy fetched is made stale by

this later write and should not be used beyond the current task

level. Therefore, the Stale bit should be set instead of reset when

such a copy is accessed. For this reason, such fetches must be

marked Memo ry_read. The compiler support to identify them is

easy provided the Doa c ross loops and the cross-iteration depen-

dence are identified by the restructuring front end. Even though

most snti-dependences can be eliminated by restructuring compil-

ers [25], those involving complicated index functions will likely

remain, The simple index expressions in the example below are

used for the purpose of clarity.

The example in Figure 2 shows a simplified view of such a

Doacross loop, Notice, by the Change bits, that X[2] in PI’s

cache will be treated as stale after the task level whereas the up-

to-date copy in P2’s cache will be recognized as a fresh copy.

Task execution graph
Snapshots of cachs staaa
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Figure 2. Doacross example: Source-fetches

Sink-fetches

For a sink-fetch, the dependence is a flow-dependence (read-

write) with a source-write in a previous iteration in theafter-

original sequential loop. The fetch must use a new value produced

by another processor in the same task level, and the copy used

can also stay up-to-date beyond the current task level boundary.

However, because the copy used must be produced by another

processor on the same task level, the existing cache copy at the

beginning of the current task level must be avoided. This requires
that all existing copies of the same Yariable element must have

set Change bits in the current level.

Therefore, neither writ es nor fetches to the same variable

on the last task level should reset the Stale bits of the cache

copies. With write accesses marked Write_ set_stale and

fetches Memory read in the last task level, a sink-fetch to the—
same variable element is guaranteed to access the up-to-date vahre

produced on the current level by another processor.

In order to mark correctly an access immediately before a test

level corresponding to a Do across loop, compile-time analysis

is needed to look into the Do across loop body to find sinlc-

fetches to the same variable. If found, write and fetches in the

last task level will be marked as above.
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It remains unanswered how to mark the sink-fetch in ques-

tion. Because the sink-fetch uses the most up-to-date copy pro-

duced on the same task level by another processor, the copy loaded

in the cache by the sink-fetch is up-to-date. If the fetches in the

next task level will use these up-to-date copies, their up-to-date

status should be maintained by the zero Change bit in the next task

level. Hence, the sink-fetch in question should be marked MRRS.

However, in case sink-fetches to the same variable exist in the next

task level, the copies produced on the current level must not be

allowed to stay up-to-date into the next task level. Therefore, the

sink-fetch in question should be marked Memory_read which

will result in the stale status for such copies in the next task level.

For a fetch that is both a sink and a source, it is marked

Memory_read.

Level boundary

f,

P 1’stask & P2 2S wk
1 I I

Task execution graph Snapshots of cache statm
AfterM:(;$])

H
X[2] :;a ‘ss(~:(x[ll)‘MR(X,21

WSS(X[2])

“ MRRS(X[2]) misses due to ttss Change -,

After ltW

bit.

Figure 3. Doacross example: Sink-fetches

Figure 3 illustrates an example of Doa cross with sink

fetches. The snapshot of cache status shows the Stale and the

Change bit corresponding to cache copy X[2]. Due to the sink-

fetch on X[i], the write and the fetch to X in the last task

level (corresponding to the Doall loop) are marked MR and

Writ e set_st al e (WSS) which result in the set Change bit

of X[2]% PZ’s cache after the middle level boundmy. Therefore,

the fetch by P2 from X[2] in the Doacross loop will result

in a miss. Our assumption of cross-iteration flow-dependence

guarantees that PI has written the new value of X[2] into the

global memory before the synchronization operation. The miss

by Pz will then be satisfied by the up-to-date copy of X[2] in

the global memory. In the illustration, we assume that the next

task level after the Doac ross loop contains no sink-fetch of

X in a cross-iteration flow-dependence. Therefore, the write and

the fetch of X in the Doacross loop are marked Write and

MRRS respectively.

8.3 Sink-writes and source-writes

A sink-write and a source-write constitute an output-

dependence across iterations. By proper synchronization, the

sink-write must overwrite the value produced by the source-

write. Therefore, in such a case, the cache copy produced by

the source write must not be used in the next task level, and

the source write should be marked Write set stale. The

setting of the Stale bit will make sure tha~the ~et Change bit

of the cache copy will force a miss in the next task level. The

sink-write in a cross-iteration output-dependence can be marked

either as write set stale or Write for reasons similar to

the case of sink-~etche;. For a write access that is both a sink

or a source in cross-iteration output-dependence, it is marked

Write_ set_stale. The writes in cross-iteration anti- or ilow-

dependence are marked Write set stale only if there ex-

ists a sink-fetch of the same v=iable—in a cross-iteration flow-

dependence in the next task level.

8.4 N-Level Life Span strategy

To support Doacross loops with the N-Level Life Span

strategy, the only modification of the above is the method to select

the number for the extra field in MRRS (X, f) and W (X, f) . This

is needed to cover the sink-fetch case. Recall that in the case

without Doacross, the number selected is the minimum number

of Invalidates between the access in question and any of its

reachable write accesses in a different task level.

In the case with Doacross, for any of the above flow

paths that yield the same minimum number of Invalidates,

the algorithm should check for sink-fetches to the same variable

in the task level containing the reachable writes. If such a

sink-fetch exists, the number used for the extra field should be

the minimum number minus one. This ensures that the sink-

fetch will not use any cache copy extended from a previous

task level. The number is guaranteed to be nonnegative. Also

notice that MRRS (X, O ) and Write (X, O ) are equivalent to

Memory_read and Write_ set_stale respectively.

9 Summary and Future Work

This paper introduces a new compiler-based cache coherence

strategy that offers attractive cost-performance potentials. This

coherence strategy requires no run-time shared resource which

may become a potential bottleneck and limit scalability. Avoiding

the cost of implementing version numbers and the overhead of

version number overflow in the Version Control and Time Stamp

strategies, this strategy can exploit the inter-task-level temporal lo-

cality which has eluded low-cost compiler-based cache coherence

strategies. The addition of a few Stale bits can potentially utilize

inter-task-level temporal locality of short next inter-task-level ac-

cess distances, which accounts for most of the hits from this kind

of locality. Although a large field of Stale bits intuitively may

not result in substantially large additional improvement in a finite

cache with replacement problem, future work will be required to

determine a practical number of Stale bits.

Successful utilization of inter-task-level temporal locality

depends on many factors such as next inter-level access distances,

granularity of tasks, and the scheduling algorithm. The first factor

varies among programs. Granularity of tasks can inversely affect

the significance of the inter-task-level temporal locality. In the

absence of algorithms to exploit such a locality, coarse grain tasks

with good spatird locality tend to reduce the number of misses by

new fetches, while fine grain tssks tend to have more misses.
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Also, if tasks that access approximately the same set of variable

elements are scheduled on the same processor, it will enhance

the potential of cache coherence strategies that aim at exploiting

inter-task-level temporal locality. In the worst case, in which

tasks with very few accesses in common are scheduled on the

same processor, none of these strategies will perform much better

than the Simple Invalidation strategy. With this in mind, a low-

cost coherence strategy that can exploit inter-task-level temporaf

locality is important, and scheduling strategies to exploit this

locality deserves future research efforts. Previous simulations [6,

18, 20, 26] showed different results on the amount of performance

gain from inter-task-level temporal locafity. Whether such gain is

significant will require further study on a broader spectrum of

programs.
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