
Parallel SAS Multicluster Algorithms for Solving

Linear Systems with Reflexive Coefficient Matrices

Hsin-Chu Chen

Center for Supercomputing Research & Development

University of Illlinois at Urbana-Champaign

Urbana, Illinois 61801

The SAS
efficient scheme

Abstract

domain decomposition is an
for the numerical solution of a

wide class of discretized physical problems on

either sequential or vector computers. It is also

an amazingly parallelizable approach for mul-

tiprocessors like the Cray X–MP, the C]ray-2,

and the Alliant FX/80, or for multic,luster

machines of the Cedar type. The efficiency and

parallelizability of this scheme for solving sym-

metric elasticity problems and slightly perturbed

asymmetric problems have been demonstrated

using an Alliant minisupercomputer which has

only two levels of parallelism. For multiprocess-

ors with parallelism of three levels such as the

Cedar, this method offers much more freedom for

the problem to be solved using all levels of paral-

lelism, In this paper, we provide some strategies

for the implementation of this domain decompo-

sition method on multiprocessors of the Cedar

type. Three parallel multicluster algorithms for

solving linear systems with reflexive coeiticient

matrices are presented. The main difference

among these algorithms lies in the use of the glo-

bal memory and the cluster memories of the

Cedar multicluster processor. The performance

of these algorithms on the Cedar using the linear

system derived from a 3D elasticity problem with

two planes of reflexive symmetry is reported.

Permission to copy without fee all or part of this material is
granted provided that the copies ere not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ICS ‘92-71921 D. C., USA

e 1992 ACM 0-89791 -485-61921000710447 . ..$1 .50

1 Introduction

Domain decomposition methods have
recently been a research area under intensive stu-

dies (see [GGMP88, CGPW89] for references).

Among all the methods, the SAS (symmetric-

and–antisymmetric) domain decomposition is an

efficient scheme for the numerical solution of a

wide class of discretized physical problems on

either sequential or vector computers. It is also

an amazingly parallelizable approach for mul-

tiprocessors like the Cray X–MP, the Cray–2,

and the Alliant FX/80 or for multicluster

machines of the Cedar type. Unlike other

approaches that use the same ideas of symmetry

and antisymmetry [NoPe87a, NoPe87b, BrDM88,

DoSm89], the SAS decomposition method

exploits special properties of reflexive matrices

and takes advantage of them to decompose a

physical problem with reflexive symmetry into

several independent subproblems. The efficiency

and parallelizability of this scheme for solving

symmetric and slightly perturbed asymmetric

elasticity problems [ChSa87, Chen88, ChSa89a,

ChSa89b] have been demonstrated using an Alli-

ant FX/8 which has only two levels of parallel-

ism. For multiprocessors with parallelism on

three levels such as the Cedar, this method offers

a great deal of freedom for a problem to be

solved using all levels of parallelism. In this

paper, we provide some general strategies for the

implementation of this domain decomposition
method on multiprocessors of this type.

Although multicluster algorithms can be

developed for essentially the entire analysis,

including the generation of element stiffness

(mass) matrices, the assemblage of the system

stiffness (mass) matrix, and the solution process

447

http://crossmark.crossref.org/dialog/?doi=10.1145%2F143369.143449&domain=pdf&date_stamp=1992-08-01

of the linear system or the generalized eigenvalue

problem resulting from the finite element discret-
ization, we shall emphasize only the solution pro-

cess of solving the linear system in this paper.
Three parallel multicluster algorithms for solving

linear systems with reflexive coefficient matrices

are presented. The main difference among these

algorithms lies in the use of the global memory

and the cluster memories of the Cedar multiclus-

ter processor. The performance of these algo-

rithms on the Cedar for a 3D elasticity problem

with reflexive symmetry is reported.

2 SAS Decomposition Method

The basic idea of the SAS domain decompo-

sition method originates from the traditional

symmetric-and–antisy mmetric approach where

structure engineers take advantage of the sym-

metry of physical problems by imposing proper

boundary conditions along the line or plane of

symmetry [BlKa66, Szi174, WeJo87]. The appli-

cation of the SAS approach to problems which
are SAS-decomposable but yet do not have clear

physical meaning is made possible by the intro-

duction of a special class of matrices referred to

as reflexive matrices. Furthermore, this

approach can also be applied to problems which

are not SAS–decomposable via decomposing or

splitting techniques. One way of doing this is to

decompose the matrix, obtained from some sort

of discretization, into a reflexive matrix and an

antireflexive one, the counterpart of the reflexive
matrix. Note that a matrix A e C“x” is said to

be reflexive (or antireflexive) with respect to P if

A = PAP (or if A = –PAP) where P is some

reflection matrix (symmetric signed permutation

matrix) of order n. A linear system AZ =b or an

eigenvalue problem Av = kv is also said to be
reflexive if the coefficient matrix A is reflexive.

Since it is not our main focus to discuss these

matrices in this paper, we only state three simple

but important properties associated with the SAS

approach. Let P be some reflection matrix of

order n.

Property 1: Given a nonsingular linear sys-

tem AX = f; A EC”X”, and f,-x EC”,
reflexive with respect to some reflection

P, then z =Px (or z = –Px) if and

f =Pf (or f =–Pf).

if A- is

matrix

only if

Property 2: Any vector b c C‘ can be

decomposed into two parts, u and v with

u =Pu and v =—Pv, such that U+V = b.

Property 3: Any matrix A E C“x” can be

decomposed into two parts, U and V with

u = PUP and v = –PVP, such that

U+V=A.

Properties 1 and 2 provide all the important

information we need to decompose a linear sys-

tem Ad = f with A reflexive with respect to P

into two subsystems once P is given. Property 3

is useful for certain problems whose coefficient

matrices, though not reflexive, are very close to

reflexive matrices.

The SAS decomposition of the reflexive

linear system Ad = f into two subsystems is

equivalent to applying a linear transformation

with an orthogonal matrix X (X depends on the

form of P) to the o~~gina~ reflexiv~ system to
yield a new system Ad = f where A = XTAXe,

~ = XT f, and ~ = XT d such that the matrix ~
consists of two disjoint diagonal sub matrices, A 1

and ~ ~ for example. If the decomposed subsys-

tems are also reflexive, further decompositions

can be performed to yield more independent sub-

systems. See [Chen88] and [ChSa89a] for more

information.

In the context of elasticity problems, the

SAS decomposition of a reflexive linear system

into subsystems corresponds physically to that of

a single domain into subdomains with proper

boundary conditions imposed implicitly on the

interfaces. An example of this decomposition for

3D elasticity problems with reflexive symmetry

will be shown in section 4. Now let N~ be the

number of subdomains decomposed by the SAS
domain decomposition method and Ai, i = 1, N,,

be the decomposed submatrices. The three

major steps involved in this approach for solving

the reflexive linear system Ad = f arising from

the static analysis of elasticity problems with

reflexive symmetry can be described in the fol-

lowing basic algorithm:

1. the decomposition of the matrix A into ~i and

the right–hand side vector f into ~i;

448

2. the solution of the decomposed subsystems

~i~i c ~i; and

3. the retrieval of the solution vector d from ii

where ii and -~i) i = lj ~,, are the ith lparti-

tion of d and f, respectively.

~ SAS Multicluster Algorithms

on the Cedar

The Cedar computer system developed at

the Center for Supercomputing Research and

Development at the University of Illinois is a

cluster–based multiprocessor [DKLS86]. This

multiprocessor currently consists of 4 clustws of

processors with 8 computation elements (CE’S) in

each cluster and of a global memory system.

Each cluster is a modified Alliant FX/8 with a

cluster memory and a data cache shared by all 8

CE’S and is equipped with a global interface

hardware. The 8 CE’S in each cluster are! con-

nected to the global interface units and to the

data cache through a cross-bar switch. The glo-

bal interface units in each cluster are then con-

nected to the global memory system via the glo-

bal network system and the data cache is con-

nected to the cluster memory via a memory bus.

One of the main features of the Cedar architec-

ture is its hierarchical memory system. Dlue to

the hierarchical nature of its structure, the Cedar

allows for exploitation of parallelism on three

different levels: large-grain parallelism a,mong

clusters, medium–grain parallelism among pro-

cessors within each cluster, and fine-grain :paral-

lelism using vectorization in each processor,, The

SAS approach is well suited for the (Cedar

machine when the number of subdomains is a

multiple of the number of clusters because it

exploits the parallelism on the large–grain level.

To implement the three main steps men-

tioned in the previous section on Cedar, we need

first to decide where to generate and w@e to

store the initial data: the matrix A (or A) and

the vector ~ (or .?) since the memory system is
not centralized. This gives rise to several

options. The first is to have all data generated

and stored in the global memory. The second

option is to generate and store all initial data in

the cluster memory of the master cluster (a mas-

ter cluster is defined in this paper ae the cluster

that initiates the process of the job). The third is

to have each cluster generate and store its own

data ii and ~i. There are other options. For

instance, the mixed use of global memory and

cluster memory.

Each option has its own advantages and

disadvantages. The first option allows for direct

access to the data by each cluster without the

need of explicit copying. However, it may be

more desirable for a cluster to fetch the data

from its own cluster memory so that the cache

structure can be exploited. Storing the data ini-

tially in global memory of course does not

prevent us from copying them to the cluster

memory of any particular cluster before compu-

tations in that cluster actually begin. The second

option is useful when the third option is difficult

to apply and when the cluster memory is much

larger than the global memory. The third option

is likely to be the most efficient one since each

cluster avoids fetching the data, to a very large

extent, from locations outside its own cluster

memory. The need of synchronization among

clusters during the generation of the data, how-

ever, makes the program more dMicult to
develop.

In the following, we present three multiclus-

ter algorithms implemented on the Cedar

machine: SDOGM, SDOGC, and CTSKDB.

These algorithms implement only the first two

options of memory allocations. The implementa-

tion of the third option is still under development

and will be reported later. For the sake of illus-

“th cluster by Ci with Cltration, we denote the t

being the master cluster. The cluster memory of

Ci is denoted by CMi and the global memory

denoted by GM. We also assume that the

number of subproblems, lV8, decomposed by the

SAS approach is the same as that -of clusters

available for simplicity. The matrix A and \ are

assumed already generated and available in GM

for the algorithms SDOGM and SGOGC and

available in GMI for the algorithm CTSKDB.

The first algorithm presented is SDOGM.

This algorithm employs the idea of the first

option of memory allocations and uses the Cedar

Fortran constructs SDOALL [Guzz87, EHJP90]

to assign one linear subsystem to one cluster.

449

Algorithm SDOGM:

1. Cl decomposes f into ~ with data in GM.

2. Ci solves ~i ii = ~i in parallel using multiple

clusters, with Ai, fi, and ~i in Gilf,

i = 1, N,.

3. Cl retrieves d from ii with data in GM.

Similar to SDOGM, the algorithm SDOGC

shown below uses SDOALL to fork all indepen-

dent tasks among clusters. The difference

between SDOGC and SDOGM is in the second
step of the algorithms where SDOGC explicitly

copies the data needed before and after solving

the subsystems and then solves the linear subsys-

tems using only cluster memory.

Algorithm SDOGG:

1. Cl decomposes f into ~ with data in GM.

2. Ci copies ~i and ~i from GM to CMi in paral-

lel using multiple clusters, t’ = 1, N,;

Ci solves ii ;~ = ~i in parallel using multiple

clusters, with Ai9 fij and ii in CMiY

i = 1, Nr; and

Ci copies ~i from CMi to GM in parallel using

multiple clusters, i = 1, Ng.

3. Cl retrieves d from ii with data in GM.

Unlike SDOGM and SDOGC, the algorithm

CTSKDB uses mainly the cluster memory. The

global memory is used only for data transfer

between the master cluster and other clusters.

The Cedar Fortran constructs CTSKSTART and

CTSKWAIT, instead of SDOALL, are employed

to spread tasks among all clusters.

Algorithm CTSKDB:

1. Cl decomposes f into ~ with data in CMI.

2. Cl writes ~i and ~i from CMI to GM, while

Ci copies at almost the same time xi and ~i

from GM to CMi block by block using a dou-

ble buffering technique, i = 2, N,;

Ci solves li ~i = ii in parallel using multiple

clusters, with ~i and ii in CMi and ~i in GM,

i = 1, Na; and

Cl copies ~i from GM back to CMI.

3. Cl retrieves d from ii with data in CMI.

Note that in these three algorithms, the

decomposition of the right–hand side vector and

the retrieval of the solution are not performed in

multicluster mode because the computations in

these two steps are negligible compared to solv-

ing the linear subsystems. It should also be men-

tioned that the decomposition of A into ~ does

not enter the algorithms because the matrix A
need not be actually formed. Instead, we assem-

ble the system stiffness matrix ~ directly from

the decomposed element stiffness matrices. Were

it not the case, the decomposition of A into ~

would be included.

4 Performance of the SAS Multicluster

Algorithms

4.1. The problem. To test the perfor-

mance of the multicluster algorithms that

employ the SAS approach on the Cedar for 3D

elasticity problems with reflexive symmetry, we

consider the static finite element analysis of an

isotropic prismatic beam with Young’s modulus

equal to 1000.0 and Poisson’s ratio equal to 0.3.

The beam, as shown in Figure 1, is fixed on the

plane x = O and free on all other surfaces. Let

the displacement and body force vectors be

denoted by 6 and b, respectively, where

Here the subscripts 1, 2, and 3 represent the

z

4.4 I

z

Fig.1. A prismatic beam.

450

three Cartesian directions z, y, and z respec-

tively. The governing differential equations for

such a problem [TiGo70, Breb83] can be

expressed as

LTDLi$+b=O in R3

where D is the material property matrix, of

order 6x6, of the elastic beam [Wang53, Sege76]

and L is the differential operator:

The beam with dimensions 30.0x3 .3x4.4 is

discretized into a 16x11x11 uniform grid lwhere

16, 11, and 11 are the numbers of grid spacings

along the z, y, and z axis respectively. This

beam, assumed to be subject to some asymmetric

external loadings, is implicitly partitioned, into

four subdomains: I, J, K, and L, along the two

planes of symmetry as shown in Figure 2. Note

that we do not place any node on the planes of

symmetry in our grid. Note also that the SAS

decomposition does not depend on the symmetry

of external loadings. Let m be the number of

nodes in each subdomain. Let further Ii be the
~th node in subdomain 1, i = 1, m, and its

corresponchg reflexive nodes in subdomains J,
K, and L be denoted by Ji, Ki, and Li rmpec-

tively. For the sake of easy decompositions, we

employ the following reflexive ordering far the

nodes: Ii =i, ~. =i +m, Ki =i +2m, and

Li = i + 3m. With this reflexive ordering, it can

be shown [Chen88, ChSa89a] that the system

z

Fig.2. Implicitly partitioned subdomains.

stiffness matrix A has the following properties:

A = PAP and A =QAQ where P and Q are

some reflection matrices. If the displacements in

the vector d, including the boundary degrees of

freedom whose displacements are zero, are

“th degree of free-ordered in such a way that the J

dom, j=l,2, and 3, at the ith node,

i = 1, 4m, is represented by dk, the kth com-

ponent of d where k = 3(i–l)+j, then P and Q
take the following forms

[00F0]

II
000F

‘= Fooo’ ‘=]” @D’ (1)

OF OO

and

[04? 3001

Eooo
Q=

000E ‘
E= I@Dv (2)

100E0 I
where

and 1~ is the identity matrix of dimension m.

Now by uniformly partitioning the matrix A into

Aij, i, j = 1, 4 (a matrix of block order 4) and by

taking

‘“h

and

10–FO

010–F

FOIO
(3)

II
I–l?oo

EIOO

‘=& OOI–EY
(4)

OOEI

it is not difficult to show that

~ = YTXTAXY

‘Al@ ’@i3@i4

where @ is the direct sum and

451

(5)

Xl = (A1l+A#’) + (A12+A14F’) E ,

iz = (A22+A@) – (A21+A23F) E ,

13 = (A33–A31F) + (A34–A32F) E,

i,= (A44–A4#) – (A43–A41F’) E .

To take advantage of this uncoupling struc-

ture resulting from the decomposition in solving

the linear system At ~= f,- we solve instead the

transformed system Ad = f or, equivalently,

(ZTAZ)(ZTd) = (Z’~) (6)

where Z = XY. In other words, this decomposi-

tion allows the solution process of the linear sys-

tem to be handled in parallel by all four clusters

on the Cedar, one subsystem per cluster. Note

that the matrix Z is orthogonal because X and Y

are both orthogonal. Therefore, the retrieval of

the solution d from ;, Z T d = ;, does not require

a linear system solver since d is simply equal to

Z~. Furthermore, by inspecting the nonzero

entries of X and Y it is clear that this step does

not even involve any arithmetic multiplications

or divisions except the factor of 2, which can be

dropped from both sides of the equality sign of

Eq. (6) as well. This decomposition method is

thus multiplication (division) free in both the

decomposition and retrieval steps. Note also

that the decomposition is performed by similar-

ity transformation. Accordingly, this approach is

immediately applicable for solving the eigenvalue

problem Av = Xv or the generalized eigenvalue

problem Av = Mh if the matrix B has the same

reflexive nature as A.

4.2. Performance results on the Cedar.

The finite element discretization described in the

previous subsection yields an algebraic linear sys-

tem of order 7344 which includes the boundary

degrees of freedom whose displacements are zero.

The linear system is decomposed into 4 indepen-

dent subsystems using the SAS approach. The

bandwidth of each subsystem depends only on

the ordering of the nodes in subdomain 1. Recall

that once the ordering of nodes in subdomain 1 is

determined, the ordering of nodes in all the other

subdomains is fixed. In our experiments, a

natural ordering of the nodes in subdomain 1

that yields a half-bandwidth, (bandwidth+ l)/2,

of the stiffness matrix of each SAS–decomposed

subsystem equal to 132 is employed.

In the following, we report the performance

related to the three important steps stated in the

Cedar algorithms presented in Section 3. These

three steps account for more than 80% of the

total CPU time consumed on the Alliant FX/80

when only one CE is employed. The performance

of the algorithms is tested using a direct band

solver which is parallelized and vectorized during

the Gaussian elimination process. The vectoriza-

tion in the elimination step is performed on the

update of the entries in a given row and the

parallelization is carried out by updating multi-

ple rows in parallel, one row per processor. We

compare the results obtained from the three mul-

ticluster algorithms run on the 4x8 Cedar (the

first number is the number of clusters and the

second the number of processors in each cluster)

with 64 MB of global memory and 32 MB of clus-

ter memory in each cluster.

The wall-clock time spent in the three main

steps, including data transfer from the global

memory to each cluster memory or from one

cluster memory to the others, if any, for the mul-

ticluster algorithms SDOGC, CTSKDB, and

DOCM is shown in Table 1. As seen from Table

1, the best 4-cluster algorithm is SDOGC which

runs 1.46 times as fast as CTSKDB and 1.27

times as fast as SDOGM, using all 32 processors

Table 1

Wall–clock time in seconds

No, of Algorithm

I CEDAR I Proc- l~t

essors SDOGM CTSKDB SDOGC

1*1 1 167.69 62.75 66.94

1*2 2 91.51 35.59 41.70
I I I I

1*8 8 34.47 16.52 23.69

2*8 16 17.76 14.70 11.95
i

4*8 32 9.52 10.98 7.50

452

Table 2

Concurrency speedup for each

individual algorithm

No. of Algorithm

CEDAR Proc-

essors SDOGM CTSKDB SDOGC

1*1 1 1.00 1.00 1.00

1’2 2 1.83 1.76 1.61

1*3 3 2.54 2.34 2.05

1*4 4 3.13 2.81 2.32

1*6 6 4.12 3.43 2.65

I*8 8 4.86 3.80 2.83

2*8 16 9.44 4.27 5.60

4*8 32 17.14 5.71 8.93

available. The superiority of employing the mul-

ticluster approach is clearly shown in the last

three rows in Table 1, in which the wall--clock

time spent using 1 clusters of all 8 proces~iors is

reduced by a factor of more than 1.94 using 2

clusters and reduced by a factor of more than

3.15 when all 4 clusters are used for algorithms

SDOGC and SDOGM. The slowdown c~f the

reduction in the wall–clock time for the algo-

rithm CTSKDB using more than one cluster is

mainly due to the data transfer from the master

cluster to the other cluster(s). Note that there is

no data transfer either between the global

memory and the cluster memories or between

cluster memories in CTSKDB when only one

cluster is employed. This is also the reason why

CTSKDB is the most efficient one among these

three algorithms when only one cluster is used.

For the algorithm CTSKDB to be more efficient,

the speed of data transfer must be improved.

The concurrency speedup, defined to be the

ratio of the wall-clock time spent using one CE

to that using multiple CE%, for each individual

algorithm is shown in Table 2, From Table 2, we

notice that the parallel execution of the algo-

rithm SDOGM yields a concurrency speedup of

17.14, a satisfactory parallel performance.

Although

rithm on

this high

SDOGM is not the most efficient algo-

the Cedar machine in this experiment,

speedup clearly indicates the potential

of the multicluster algorithm for a shared

memory multicluster processor that haa very

small cluster memory or has no cluster memory

at all. Figures 3 and 4 plot the results of the

wall–clock time and the concurrency speedups

respectively for each of the three algorithms.

Wall-clock time in seconds

180
170 :4
160 ::
150 :~

SDOGC

140 :!
--------CTSKDB

130 ::
●0.w..0000OOSOOOOSDOGM

120 ::
110 ,-;

60

%
30
20
10

“O 2 4 6 8 101214161820222426283032

Number of processors

Fig.3. Performance of the SAS method

(wall-clock time).

Concurrency speedup

32

30 ~
28 ~ SDOGC

--------CTSKDB
:: : SDOGM
22 -
20 :
18 :
16 ~

! A

‘O 2 4 6 8 101214161820222426283032

Number of processors

Fig,4. Performance of the SAS method

(concurrency speedup).

453

S Summary REFERENCES

In this paper, wehavepresented three mul-

ticluster algorithms for solving linear systems

obtained from the application of the SAS decom-

position method to 3D elasticity problems with

reflexive symmetry. The algorithms all employ

the SAS approach to decompose the reflexive

linear system into several smaller and indepen-

dent subsystems and solve them via a direct

linear system solver. The main difference among

these algorithms lies in the use of the global

memory and the cluster memories of the Cedar

multicluster processor. The advantages and

disadvantages of these algorithms and their

potential have been discussed. The parallel per-

formance of these algorithms has also been tested

on the 4x8 Cedar multiprocessor using a 3D elas-

ticity problem with reflexive symmetry.

Among the three algorithms tested, the one that

stores and solves the linear system in the global

memory yields reasonably good concurrency

speedup. Although it is not currently the most

efficient one in our experiments on the current

Cedar configuration, this is an indication to the

high potential of this algorithm for multicluster

parallel computers that have a large shared glo-

bal memory and small cluster memories, In the

case of a small shared global memory and large

cluster memories, one can still take full advan-

tage of the architecture by generating and assem-

bling the subsystems directly in cluster

memories in parallel, one subsystem per cluster.

This is likely to be the most efficient one because

most of the the data transfer can be eliminated.

The computer code employing this approach is

currently under development.

6 Acknowledgments

This research was supported primarily by

the U.S. Department of Energy under Grant No.

DOE-DE-FG02-85ER25001, with additional

support from the National Science Foundation

under Grant No. NSF-CCR-87-17942. The

author would like to thank Rudolf Eigenmann,

Jay Hoeflinger, and Greg Jaxon for many helpful

discussions on the Cedar Fortran language.

~lKa66]

S. Blaazkowiak and Z. Kaczkowski, Iterative

Methods in Structural Analysis (translated by A.

Kacner and Z. Olesiak), Pergamon Press, Oxford,

1966.

[BrDM88]

F, Brezzi, C.C. Douglas, and L.D. Marini, “Parallel

Domain Reduction Method,” IBM Research Report

RC 13778, 1988.

~reb83]

C.A. Brebbia, “Basic Principles,” in C.A. Brebbia,

T. Futagami, and M. Tanaka (editors), Boundary

Elements, Spring-Verlag, New York, 1983.

Proceedings of the Fifth International Conference,

pp.3–28, Hiroshima, Japan, November 1983.

[CGPW89]

T. Chan, R, Glowinski, G.A. Meurant, J. Periaux,

and O. Widlund (editors), Domain Decomposition

Methods, SIAM, Philadelphia, 1989. Proceedings of

the Second International Symposium on Domain

Decomposition Methods, Los Angeles, California,

January, 1988.

[Chen88]

H-C. Chen, The SAS Domain Decomposition

Method for Structural Analysis, CSRD Tech. Rept

754, Center for Supercomputing Research and

Development, University of Illinois at Urbana-

Champaign, 1988.

[ChSa87]

H-C. Chen and A. Sameh, “Numerical Linear Alge-

bra Algorithms on the Cedar System,” Parallel

Computations and Their Impact on Mechanics (Ed.

A.K. Noor), The American 5’ociety of Mechanical

Engineers, AMD-VO1.86, 1987, pp. 101-125.

[ChSa89a]

H–C. Chen and A. Sameh, “A Matrix Decomposi.
tion Method for Orthotropic Elasticity Problems, ”

SIAM J. Matrix AnaL AppL, VO1,1O, No.1, pp. 39-

64, January 1989.

[ChSa89b]

H-C. Chen and A. Sameh, “A Domain Decomposi-

tion Method for 3D Elasticity Problems,” Applica-

tions of Supercomputers in Engineering: Fluid Flow

and Stress Analysis Applications (Ed. C.A. Brebbia

and A. Peters), Computational Mechanics Publicw

tions, Southampton University, UK, Sep. 1989, pp.

171-188.

454

[DKLS86]

E. Davidson, D. Kuck, D. Lawrie, and A. Sa~meh,

‘(Supercomputing Tradeoffs and the Cedar Sye-

tem,” CSRD Tech. Rept 577, Center for Supercom-

puting Research and Development, University of

Illinois at Urbana-Champaign, 1986.

~oSm88]

C.C. Douglas and B.F. Smith, “Using Symmetries

and htisymmetries to Analyze a Parallel Multigrid

Algorithm: the Elliptic Boundary Value Problem

Case,” SIAM J. Numer. AnaL, VO1.26, No.61, pp.

1439-1461, December 1989.

[EHJD90]

R. Eigenmann, J. Hoeflinger, G. Jaxon, amid D.

Padua, “Cedar Fortran and Its Compiler,” OSRD

Tech. Rept 966, Center for Supercomputing

Research and Development, University of Illinois at

Urbana-Champagin, 1990.

[GGMP88]

R. Glowinsld, G.H. Golub, G.A. Meurant, and J.

Periaux (editors), Domain Decomposition Methods

for Partial Differential Equations, SIAM, Philadel-

phia, 1988. Proceedings of the First International

Symposium on Domain Decomposition Methods for

Partial Differential Equations, Paris, France, Janu-
ary 1987.

[Guzz87]

M.D. Gu~zi, “Cedar Fortran Programming lFland-

book,” CSRD Tech. Rept 601, Center for Super-

computing Research and Development, University

of Illinois at Urbana–Champaign, 1987

~elo63]

R.J. Melosh, “Structural Analysis of Solids,” .ASCE

J. of Structural Divisiot+ Vol.89, No.ST4, August,

1963, pp. 205-223.

[NoPe87a]

A.K. Noor and J.M. Peters, “Preconditioned (lonju-

gate Gradient Techniques for the Analysis of Sym-

metric Anisotropic Structures”, IJNME, VO1.24, pp.

2057-2070, 1987.

[NoPe87b]

A.K. Noor and J.M. Peters, “Model-size Reduction

for the Nonlinear Dynamic Analysis of Quasi–

symmetric Structures, ” Engineering Covnput~ztions,

VO1.4, No.4, pp. 178-189, September 1987.

[Sege76]

L.J. Segerlind, Applied Finite Element Analysis,

Wiley, New York, 1976.

[Szi174]

R. Szilard, Theory and Analysis of Plates—

Classical and Numerical Methods, Prentice Hall,

New Jersey, 1974.

[TiGo70]

S.P. Tlmoshenko and J.N. Goo&ler, Theory of Elas-

ticity, McGraw–Hill, New York, 1st ed. 1934, 2nd

ed. 1951, 3rd ed. 1970.

[Wang53]

C.T. Wang, Applied Elasticity, McGraw-Hill, New

York, 1953.

~eJo87]

W. Weaver, Jr. and P.R. Johnson, Structural

Dynamics by Finite Elements, Prentice-Hall, New

Jersey, 1987.

455

