
Access Control for Collaborative Environments

HongHai Shen and Prasun Dewan

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

hhs@cs.purdue.edu and pd@cs.purdue.edu

ABSTRACT
Access control is an indispensable part of any informa-

tion sharing system. Collaborative environments introduce
new requirements for access control, which cannot be met
by using existing models developed for non-collaborative
domains. We have developed a new access control model
for meeting these requirements, The model is based on a
generalized editing model of collaboration, which assumes
that usersinteract with a collaborative application by concur-
rently editing its data structures, It associates fine-grained
data displayed by a collaborative application with a set of
collaboration rights and provides programmers and users a
multi-dimensional, inheritance-based scheme for specifying
theserights. The collaboration rights include traditional read
and write rights and severat new rights such as viewing rights
and coupling rights. The inheritance-based scheme groups
subjects, protected objects, and access rights; allows each
component of an accessspecification to refer to both groups
and individual members; and allows a specific accessdefini-
tion to override a more generat one.

KEYWORDS
CSCW, groupware, access control, protection, security,

user interface.

1 INTRODUCTION
Recently, there has been much research done in computer

applications for facilitating collaboration among multiple,

i ‘I’M researchwassupported,in part,by a grimtfrom theSoftware
EngineeringResearchCenterat PurduelJniversity,a NationalScience
Foundationlttdustry/UrtiversityCooperativeResearchcenter(NSF ~rant
EC1)-8913133),andby National Science Foundation Grant IRI-901 5442.

Permission to copy without fee all or pert of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requiree a fee

and/or specific permission,

g 1992 ACM 0-89791-543-719210010/0051 . ..$1.50

distributed users. However, there has been relatively little
work clone in controlling access to the collaboration. Most
collaborative systems give all collaborators the same rights
to all objects and expect access to be controlled by social
protocol. Thus, they do not provide computer support for
preventing mistakes, conflicting changes, or unauthorized
access. The major exception known to us is the GROVE
outline editor [5], A major reason for the lack of accesscon-
trol in collaborative applications is the absence of a generic
access control model for collaborative systems that meets
the requirements of collaborative systems.

Although generic access control models have been stud-
ied extensively in non-collaborative domains, none of them
meets the requirements of collaborative environments. We
have designed anew access control model to meet these re-
quirements. The model is based on a generalized editing
model of collaboration, which assumes that users interact
with a collaborative application by concurrently editing its
data structures. It associates fine-grained data displayed
by a collaborative application with a set of collaboration
rights and provides programmers and users with a multi-
dimensional, inheritance-based scheme for specifying these
rights. The collaboration rights include traditional access
rights such as read and write rights and several new rights
such as the right to change the shared view of a displayed
object and the right to couple with other users [3]. The
inheritance-based scheme groups subjects, protected objects,
and accessrights; allows each component of an accessspec-
ification (subject, object, right) to refer to both groups and
individual members; and allows a more specific definition
to override a more general one. We have implemented the
model as part of the Suite generic framework for supporting
editor-based collaborative applications.

In tlhis paper, we use the concrete example of Suite to
describe our access model. Section 2 describes the new
requirements for access control raised by collaborative sys-
tems. Section 3 gives an overview of our approach for meet-
ing these requirements. Section 4 briefly outlines the Suite
multi-user framework used as the basis of our access model.

Section 5 gives the details of the model, showing how we
have extended the conventional accesscontrol model to meet
our recpirements. Finally, Section 6 compares our work with

CSCW 92 Proceedings November 1992

51

http://crossmark.crossref.org/dialog/?doi=10.1145%2F143457.143461&domain=pdf&date_stamp=1992-12-01

related work, gives conclusions, and presents directions for
future work.

2 ACCESS REQUIREMENTS

We have identified several requirements that a generic
access control model for collaborative environments should
Support

Multiple, dynamic user roles: The model should atlow
users’ accessrights to be inferred from their roles [9]. More-
over, it should allow users to take multiple roles simultane-
ously and change these roles dynamically during different
phases of collaboration.

Collaboration rights: Besides traditional operations such
asread and write, all other operations whose results can affect
multiple users should be protected by collaboration rights.

Flexibility: The system should support fine-grained sub-
jects, objects, and access rights, that is, it should allow in-
dependent specification of each access right of each user
on each object. For instance, it should allow independent
protection of each line in a multi-user code viewer.

Easy specification: Users should be able to specify access
definitions easily.

Efficient storage and evacuation: The storage of access
definitions and evaluation of the accesschecking rule should
be efficient.

Automation: The model should make it easy to imple-
ment access control in multi-user applications.

These requirements are motivated in more detail in the fol-
lowing sections along with our approach for meeting them.

3 OVERVIEW OF APPROACH

The classic accessmatrix model proposed by Lampson [8]
and refined by Gmham and Denning [7] provides the basic
framework to describe protection systems. Conceptually,
the model describes what a protection state is and how state
transitions occur. A protection state is defined by the triple
(S, O, A), where S is a set of subjects (entities wishing to
access data), O is a set of objects (units of data that may be
accessed),and A is a matrix with rows representing subjects,
columns representing objects and A[s,o] denoting the access
rights (privileges that are needed to do certain operations on
objects) a subjects has over an object o. The model includes
an access checking rule which ensures that a request for
accessing object o by subjects is denied if A[s,o] does not
contain the requisite right. The rule assumesthat the subject
requesting access is uniquely identified from the running
process [1]. The model also contains a set of commands
specifying how to make state transitions, i.e., to change (S,
O, A).

The above model does not specify the exact nature of
the subjects, objects or access rights supported by the sys-
tem. Moreover, it does not require a particular mechanism to
specify elements of the accessmatrix and has been used, for
instance, to support specifications based on both capability
lists and access lists. However, it is not sufficient for meet-

ing the collaboration requirement of (i) multiple user roles,
since a process is always associated with a unique subject
at any moment (ii) easy specification, since it does not ad-
dress specification of access rights, (iii) automation, since
it does not offer an application mechanisms for managing
and specifying the accessmatrix, and implementing the state
transition commands and the access checking rule.

We have extended the conventional model in several ways
to overcome these limitations of ic

1. Collaboration Rights: We define a new set of access
rights designed for the Suite generic collaboration model.

2. Negative Rights: We support the notion of negative

rights to allow explicit denial of access.
3. Inheritance-based Specification. We support an ex-

tended access matrix that supports not only individual sub-
jects, objects, and rights but also groups of these entities.
The value of an element of the access matrix does not have
to be specified directly and can be inferred from values of
other elements of the matrix.

4. Automation: Our model includes mechanisms that
relieve an application of the task of implementing the details
of access control. These mechanisms are based on the Suite
multi-user framework, which relieves an application of the
task of implementing the details of the Suite collaboration
model.

We have implemented these extensions in Suite. In the
following sections, we use the example of Suite to motivate,
describe, and illustrate our accesscontrol model and compare
it with related works.

4 SUITE MULTI-USER FRAMEWORK
As discussed above, our access control model is based

on the Suite multi-user framework. The framework allows
all interaction with the system to be modeled as concurrent
editing of fine-grained data structures called active variables.

Each active variable is associated with a set of attributes,

which determine various interactive properties of the variable
such asits format and which properties of it are sharedamong
users. A system-provided structure editor called a dialogue
manager handles a user’s interaction with the system. The
framework is described in more detail in [4].

To illustrate the framework, consider the example of a
Suite application called Ctool, which allows multiple users
to edit and test C functions. The active variables of Ctool
are C programs, functions, and lines, Figure 1 shows two
users, rxc and hhs, interacting with the tool. In this session,
theusershave settheValueCoupled and ViewCoupled
attributes [3] of the active variables to True, thereby sharing
both their values and views. As a result, when user rxc

changed the view of the min i t procedure by “eliding” it2,
the result was shared by both users, as shown in the figure.

The model described above does not include access con-
trol. It allows, for instance, user rxc to elide arbitrary pro-

2elide is an operation used to condense ttre visual representation of a

data strwtnre.

52

1
exit(i);

>

3: name: getvalue

AU
* getualue -- get element L, J
./ IL

2: <mmt... >
3: name: getvalue

/*
* getualue -- get element
*/

mt getvalue< pm, I, J)
struct matr 1X *PM;

Figure 1: Two users in a collaborative editing session: when
rxc (left) elides a function mi. nit by pressing the elide

button, hhs’s view is affected (right).

cedures being viewed by user hhs, which is not desirable if
the former is required only to play the role of an “observer”.
It even allows rxc to change or delete arbitrary functions
inserted by hhs. The model described in the next section
overcomes this problem.

5 THE SUITE ACCESS MODEL

5.1 Positive and Negative Rights

Like conventional systems, Suite supports positive rights,
that is, allows explicit granting of a right. In addition, it also
supports negative rights, that is, explicit denial of a right.
This notion is borrowed from a previous work on access
control for database systems [10]. In this work, it was used
along with the notion of strong and weak authorization to
facilitate the access specification in the presence of a large
set of data objects, which also applies to our environment.
To illustrate this useof negative rights, assume a user is to be
denied read access to one line of a 1000-line-long program.
Instead of granting him the positive read right over 999 other
lines, it is simpler to grant him a (weak) positive read right
over the program and a (strong) negative read right over
the line. We have found that negative rights can also be
used to ease the specification task for CSCW applications
supporting dynamic roles. To illustrate this use, consider the
scenario where a user hhs wants to gmnt the read access
of a private comment line to all users taking the suite
role except rxc. Supporting only positive rights would
require that hhs identify all su i t e usersand explicitly grant
each one of them except rxc the positive read right. This
approach, however, suffers from two related disadvantages.
First, it is painful for hhs to specify this definition if the
list of suite members is long, Second, since users may
take and relinquish the suit e role dynamically, the above
specification may become invalid later. With the notion
of negative rights, the above can be achieved by granting a
positive read right to su i t e and anegativeread right to rxc,

The use of negative rights can also reduce the time required
to search the inheritance space, as discussed in section 5.6.

5.2 Protection State

The Suite protection state is represented by a 4-tuple

(S,0,A,F9, where S is the set of subjects consisting of both
individual users and their groups, O is is the set of objects
consisting of individual objects and their groups, A is the
extended matrix with A[s,o] representing eqdicitly speci-
fied rights subject s has over object o, and F is an infer-
ence function allowing inference of rights that have not been
explicitly specified. F takes as arguments a (subject, ob-
ject, right, A) tuple and returns the value {True, Fa 1s e,

Undecided}. Our access checking rule is the following
modification of the conventional access rnlti

Access Checkkg Rule: To check the access privilege r

of subjects over object o, A[s,o] is first consulted. If A[s,o]

contains a positive or negative c then access is granted or

denied, respectively. Otherwise access is granted only ~

F(s,o,~?A) evaluates to true.

Sections 5.3,5.4 and 5.5 describe the three dimensions of
the extended accessmatrix and the associated inference rules
in detail.

5.3 object Dimension

mO*. ,3

2: <mwnt... >
3: name: getvalue

+

mt getvalue (pm,
:>tpuct ~~~p*~

Path: Value: ((funcs) [21)

Group:

Qttr: El ldeV1euR

Value: -rxc r#

D’
❑ b. ,11.4

ihwwtkm

IUIR
DataR

UpdateDataR
WrlteDataR

InsDataR

DelDataR
ReadDataR

9+pendDataR

V1euR
ElldeV1wR
H1deV1euR

SelectV1euR
FomatR
T1tleR
FontR
fl119nR
ColorR

.,.”

Figure 2: Fme grained specification: user hhs (right wh-

dows) denies rxc the elide right to the function getvalue.

Thus, rxc (left windows) gets an error message when he

tries eliding. The figure also shows an even finer-grained

specification: hhs protects a comment line from being read

by rxc.

Suite supports protection of fine-grained active variables.
Continuing with the example of Figure 1, it allows user hhs

to prevent user rxc from eliding a procedure he is currently
working on (Figure 2). To specify this access definition,
hhs tlrst selects the function get value from the object
window; presses the Pat h button in the attribute window,
which fills out the Pat h field of the selected object in the
window; selects the E 1 ideVi ewR right from the menu;
fills the Value field with “-rxc” and pressesthe Set button,
which enters the accessdefinition into the matrix. The figure
also shows the result of a finer-grained specification, which

53

disallows user rxc from reading a comment line.

Fine-grained specification requires users to specify and
the system to store an access specification for each active
variable, which is tedious and inefficient for most applica-
tions. To illustrate, assume that the user hhs does not want
rxc to delete any line in a procedure he has just added. In
this situation, he would have to specify an access definition
for each of these lines and the system would have to store all
of these definitions.

Therefore, Suite allows a user to specify an access def-
inition for a group of active variables catled value groups,
and allows a specific definition to override a more general
definition. Values are grouped on the basis of several prop-
erties including their structural parents and types. Because
an active variable can belong to multiple value groups, an
inheritance directive is associated with each active v,ariable
defining from which of these groups the specification should
be inherited and the order in which they should be se,arched.
This approach was tirst proposed for specifying display for-
mats and other attributes of active variables by Dewan [2]
and is described in detail there. We use this approach in the
following inheritance rule for the object dimension:

Object Inheritance and Conflict Resolution Rules: A

right r of subject s on object o is inherited from the value

groups containing o that are chosen by the inheritance direc-

tive, i.e., f’(s, V(0) r), r, A) -+ F(s, o, r, A) where V(o,r)

are the value groups specified by the inheritance directive

associated with o and K In case of conjlicts, the access

definition in the jirst value group chosen by the inheritance

directive is used.

To illustrate this rule, assume that user hhs wants to

disallow user rxc from deleting any line of the function
get value, He can achieve this control by granting rxc

a negative delete right on the function get va lue, which
causesany line within the function to inherit this definition.
In this example, access rights were structurally inherited.
They can also be inherited from types. For instance, if hhs

denies rxc the eliding right to type f unct i_on, all objects
of this type (that is, all functions) inherit this access specifi-
cation.

5.4 Access Dimension

The Suite coupling model ,allows users to share the re-
sults of all operations on an active variable [3]. To meet
the requirement of collaboration rights, our accessmodel as-
sociates each of these operations with its own access right.
For example, it defines the El ideViewR right, which de-
termines whether a user can elide a variablq the Co 1orR
right, which determines whether a user can change the color
of a variable ; the RawL i.s tenR right, which determines
whether a user can receive raw changes to a variable made by
another useu the Pars edL is t enR right, which determines
whether a user can receives yntacticall y checked changes to
a variable made by another use~ the RawTransmitR right,

which determines whether a user can transmit raw changes

to a variable to another usev the ValueCoupledR right,

which determines whether a user can share value changes to
a variable with another use~ the Format Coup 1 edR right,

which determines whether a subject can share formatting
properties of a variable with another user, and so on. In
all, Suite currently supports over 50 rights. We call these
individual rights as opposed to the right groups described
below.

A1l R

‘atvmtR
&\ I’&% . . . #“?’k

Ee.adR Wrltt?R lne R Del R AopendR

\

ElldeR HldeR select R TltleR COIOrRFOnt R A1lgnR

COUP1mgR

Valu@CoupledR FormatCoupledR L, stwm T,arlS.lt R

Raw, HtenR Pars’mL19tenR valldatedL1$tenR cmmUtted L2sten R

Figure 3: Include relationship among access rights

Introducing a large setof rights brings the associated prob-
lems of specification and storage of rights. To solve the
problem, we introduce the notion of right groups, which are
defined by classifying the individual rights into logical cate-
gories. Figure 3 gives part of the tree hierarchy of the group-
ing of rights where a transitive relationship include is de-
fined. For example, RawL i st enR and Pars edList enR

are included in the right group Li. st enR, RawTransmi-t R

and ParsedTransmitR are included in the right group

TransmitR, and ListenR and TransmitRareincluded

in the right group Coup 1 ingR. Note that unlike an individ-

ual right, a right group does not correspond to any specific

operation on an object.

The inheritance rule below defines the semantics of the
include relationship.

Right Inheritance Rule 1: A positive or negative right

r of subject s on object o is inherited porn the right

groups it belongs, i.e. F(s, o, R, A) + F(s, o, r, A) and

F(s, o, –R, A) + F(s, o, –r, A) where R includes z

Continuing with the example, assume that after some col-
laboration, hhs thinks he can trust rxc with several rights
including the DeleteR, InsertR, El ideR, and HideR

rights, but he still wants to restrict the coupling rights of rxc.

He only has to grant rxc the corresponding right groups
Dat aR and Vi ewR, Now rxc can invoke the insert, delete,

elide, etc., operations. But he still cannot change the cou-
pling. Fine-grained access rights together with right groups
gives users fine-control over collaboration while relieving
him from the task of tediously specifying all the rights.

We motivated and described above a relationship called
inc/ude for grouping rights. This relationship alone is not

54

sufficient for supporting easy specification of and maintain-
ing consistency among accessrights. Consider the following
scenario. A new user abc joins the serc role and is not
familiar with the system. To ensure security, hhs denies
abc the data rights on the function he just created. Also
assume that after some time, hhs decides that it is now safe
to allow abc to insert new lines into the function though
he still does not want him to delete anything in it. Natu-
rally, this implies that abc should get the right to read the
function. In some systems such as Unix, hhs has to grant

the read right to abc explicitly, which is unnecessary. In
our model, however, hhs does not have to do so explicitly

since read is implied automatically by insert. This is

an example of the imply relationship over individual access
types, which is used to model the fact that the right to do
a more powerful operation guarantees the right to do a less
powerful one. It is similar to the include relationship in that
it is also used to infer rights. The differences between the
include and imply relationships are as follows: The include

relationship is defined over individual rights as well as right
groups while the imply relationship is defined only over in-
dividual rights. Moreover, unlike the include relationship,
only positive authorizations are inherited from the imply rela-
tionship while negative authorizations are not. For example,
writ e implies read, but negative write does not imply
negative read, although negative read does imply nega-

tive writ e. Feruandez et al [6] suggested this approach for
database systems and identified imply relationships among
traditional accessrights. We believe this approach is crucial
for the more complex collaborative systems for two reasons.
First, it reduces the problem of specifying the l,argenumber
of rights necessary in a collaborative system. Second, in a
collaborative system, users we prone to specifying conflict-
ing rights because they have to specify, often dynamical y,
a large number of access rights. The imply relationship can
be usedby the system to detect these conflicts automatically.
For example, if a write right is to be granted to a user
who has been previously denied the read right explicitly,

the system can detect the conflict because negative read

implies negative writ e.

WrlteR

RawL Ist enR

i
Parse LlstenR

Del et eR

m

1
Val ldateL1stenR

+

AppPndR ReadR CO!mJUttedL1stenR

Figure 4: Some imply relationships among individual access

rights

Therefore, we support the notion of implication of rights
and have identified and implemented the imply relationships
among the Suite access rights. Figure 4 gives some of these
relationships. These relationships allow, for instance, the

RawLis t enR to imply the ParsedLi st enR since a user
in Suite listening for raw values of active variables can also
listen for parsed values [3].

The following inheritance rule summarize the above dis-
cussion:

Right Inheritance Rule 2: A right r of subjects on object

o, if undecided, is inherited from the rights that imply c i.e.,
F(s, o, m, A) +. F(.s, o, r, A) where rx implies z

Supporting both the include and imply inheritances allows
an access right to be inherited from multiple sources. To
illustrate, consider the situation above where user abc was

granted a negative dat a right and a positive insert right.

We have a conflict since the negative read right cm be in-

ferred from the first definition while the positive read right

from the latter. In such situations, the imply relationship is
used first. This is because the imply relationships are de-
fined over the individual rights and exist even if right groups
are not defined, From another perspective, right groups can
be regarded as mere macro conventions. Furthermore, the
imply relationship is introduced for both easy specification
and right consistency, while the include relationship only for
easy specification. Thus, rights are more tightly related by
the imply relationship than the include relationship. Thus, in
the scenario above, the imply relation is used to grant abc

the read right. Our conflict resolution rule is summarized
below:

Right Conflict Resolution Rule: The imply relationship

is used in preference to the include relationship in case of

con$icts.

5.5 Subject Dimension

Al 1

r-xc hh, Dd abc

Figure 5: Take: inherit all rights of a role

Like conventional systems, Suite allows a subject to be
a specific user. In addition, it allows a subject to be a role

and allows a user or role to “take” a role. A subject takes a
role if a take mapping is defined between the subject and the
role, which can be changed dynamically. A subject can take
multiple roles simultaneously. Moreover, multiple subjects
can take a role. As a result, the notion of a role includes the
concept of a user-group supported by traditional systems.

The take relationship allows a subject to inherit the rights
of its roles according to the following inheritance rule

Subject Inheritance Rule 1: Subjects inherit both posi-

tive and negative rights from the take relationship, i.e., ifs

takes the role of S, then F(iY, o, r, A) --+ F(s, o, r, A) and

F(,s, o, –+, A) -+ ~(S, O, –r, A).

Continuing with the Ctool example, if we allow the
f acuity role to insert new functions into the program but
explicitly deny the student role from doing so, then pd
gets the right by taking the faculty role while rxc is
denied the right by takhlg the student role.

We also support ,another inheritance relationship among
subjects which is useful in maintaining access privileges.
There are certain inheritance relationships among subjects
which take only a subset of the positive access rights (privi-
leges) of others. We define a relationship have, which treats
positive access rights as privileges and supports inheritance
of selected privileges. Formally, have is defined as a map-
ping from S x R x ,5’to { true, fulse} where S is the domain
of subjects and R is the domain of positive rights, Figure 6
illustrates some have relationships of Ctool, which aIlow a
PhDStudent to have all the data rights of MSStudent
and pd (manager) to have all the data rights of rxc and hhs

(employees). We support inheritance of selected rights rather
than all the rights becauseit reflects the “least privilege” prin-
ciple [11] more faithfully. The following inheritance rule
reflects the semantics of have:

Subject Inheritance Rule 2: Zfsubject sl has right r of

subject s2, i.e., have(sl, cs2)=true, then F(s2, r, o, A) -+
F(S1, r, o, A) where r is a positive right.

Allowing a user to take multiple roles in the above manner
introduces potential conflicts. Continuing with the Cool
example, ifs erc is granted the positive right and student
is granted theuegative right for some data object, how should
we decide the right for rxc who takes the role of both
student and serc?

MsscUdent 1-XC h]) s

,- ‘y_/
PhDstuclP1lt pcl

Figure 6: Have: inherit selected privileges

One approach to resolve this problem is to check the con-

sistency of all of the access definitions and disallow any
conflicts. However, this approach is inappropriate in a col-
laborative environment where the set of access objects can

be very large and dytmmic, and a user may take dyn,amic,
multiple roles. Whenever anew role is assigned, or a take or
have relationship is changed, or there is a change of explicit
access rights of a role to an object, potential conflicts could
result. Checking all these conflicts is costly and sometimes
even unnecessary when a particular user may need to access
only a very small part of a large set of objects. Thus, it is not
only too rigid, but also computationally expensive to adopt
the approach of simply disallowing conflicts.

To illustrate our solution, let us turn to some more ex-
amples. First, we observe that the take relationship actu-
ally defines an inheritance hierarchy which decides which
role is more “specific”. For instance, if rxc is checked
against the accesslist (+all-student+PhDStudent),
although he takes all of the three roles in the list, he should be
granted the right because PhDSt udent is the most specific
role he takes in the list. Thus, we derive our first rule in
resolving conflict:

Subject Conflict Resolution Rule 1: A more specific role

dejined by the take relationship should be used first.

However, there are cases when it is impossible to decide
which role is more specific as in the case of the access list
+s e rc –s t udent where there is no take relationship be-
tween the two roles, and the effects of +serc -s tudent
on subjects taking both roles can be interpreted as either pos-
itive or negative. In this situation, we interpret the accesslist
to be “position sensitive”, which corresponds to the heuristic
of “putting important things first”. According to this rule,
–s t udent +s erc will grant negative rights to those taking
both roles while +serc - student positive rights. This is
our second rule in resolving conflict:

Subject Contlict Resolution Rule 2: In case of conjlicts,

the access definition that appears earliest in the access list

is chosen.

By adopting the above rules, our approach provides
a simple but flexible solution to this conflict prob-
lem. In one extreme case, all the negative definitions
can be put before the positive ones to ensure maxi-
mal security (–student –capo+faculty+serc) . In
the other extreme case, all the positive ones can be
put before negative ones to ensure maximal sharing
(+ f aculty+serc-student -cape) . Between these

two extremes, users can adjust their needs by putting sub-
jects at different positions. In conventional systems such
as Unix and [10], a user is given the union of the rights
that all of his roles can have. In Multics [11], a user
is asked to supply upon login which role and compart-
ment he will take and his rights in the session is subse-
quently checked against the (individual, project,
compartment) triple. This approach, however, actually
does not allow multiple roles of a user in a session.

The above two rules specify how to resolve conflicts due to
the take relationship. Conflicts can also arise when anegative
right is inferred from the take relationship and a positive
right is inferred from the have relationship. In the algorithm
we use, the take relationship is used in preference to the
have relationship because of the following reasons: First,
the take relationship can infer both positive and negative
rights, which is safer than the have relationship as the latter
can only infer positive rights, Second, the take relationship
infers rights a user inherits directly from the roles he takes,
while the have relationship infers rights a user gets indirectly

from other users or roles which he may not take. Therefore,
we define the following rule

56

Subject Conflict Resolution Rule 3: The tuke relation-

ship is used in preference to the have relationship in case of

conjiicts.

5.6 Multi-dimensional Inheritance and Extended Ac-
cess Lists

In the above sections, we have described multiple inheri-
tances in the object, type, and subject dimensions. There is
yet another important question we have to answer: in which
order are the inheritances in the three dimensions used when
calculating a right’? The ,answerdetermines both the seman-
tics of the accessmodel and the efficiency of the lookup. It
is not currently clear to us which conflict resolution method
is the most semantically meaningful. Therefore, we choose
the method b,asedon the efficiency considerations, which
are related to the accessdata structures used to represent the
accessmatrix. Traditionally, two main data structures have
been chosen to represent the access matrix: capability lists
and access lists. The first stores the matrix by rows, i.e.,
each subject is associated with a list of pairs (object, rights)
called capabilities. The second approach stores the matrix
by columns, i.e., each object is associated with a list of pairs
(subject, rights) [7]. If we use the capability list mechanism,
we should start the search from the subject dimension be-
cause it is the most efficient way to search the underlying
data structures. If we use the access list mechanism, we
should start the search from the object dimension for the
s<amereason.

We did not choose the capability list mechanism because
we found it difficult to devise a simple way using the capabil-
ity mechanism to resolve conflicts arising from supporting
multiple roles. Consider the +s erc - student example

again in the preceding section. Assume that the capability

approach is adopted. Also {assumethese rc role has positive

rights to procedure fl and f2 and the student role has neg-

ative rights to them. Further assume that if conflicts <arisewe
want the positives erc role to win in the case of fl and the
negatives t udent role to win in the case of f2. According
to this requirement, the capability list of thes erc role must
be used when the protection object is f 1, while the capability
list of the student role must be used when the object is f2.
Thus, which capability list should be used depends on the
object being accessed. This suggests that the information for
the choice should be attached to objects, which can be more
straightforwwdly supported by an access list approach.

We have used an extended form of access list in our im-
plementation of the model. In our approach, an object is
associated with a list of pairs (r, u-list), where r is a right and
u-list is a string of the form (u1 U1wz[J2...wtUi). Here, Wj
can be either + or - indicating a positive or negative right,
and [Jj is a subject, where 1 < j < i. When a subject s

is checked against the access rights r on object o, we first
search the access list associated with o to get the (r, u-list)
pair. The u-list, which is sorted according to the topology
of the take relationship, is then used for inheritance in the

subject space. If no definite right can be calculated from the
subject space, inheritance in the rights dimension is used.
If no definite right can be inferred based on the access list
associated with the object, we use inheritance in the object
dimension to infer the right, Finally, if we still do not find a
definition for the right, we infer a negative right.

As shown above, the notion of negative rights makes the
inheritance scheme more complicated. Nevertheless, we
support negative rights for two related reasons. First, intro-
ducing negative rights can make access specification much
easier, as discussed above. Second, negative rights help
short -circuiting the search space since it is not necess~y
to do an exhaustive search of the inheritance space to infer
denial of access,

5.7 Automation

The various aspects of the accesscontrol model deseribed
above allow end-users to easily and flexibly specify access
rights, but make it difficult for programmers of collabora-
tive applications to implement access control. It requires
implementation of the user interface for specifying access
definitions, the extended access lists, and the various rules
given above, We have automated this tedious process by
implementing access control completely in Suite dialogue
managers, which are provided by the system and which con-
trol all interactions between users and applications. As a
result, the access awareness in an application such as Ctool
is kept low since it is responsible only for specifying access
control and not implementing it.

6 CONCLUS1ONS AND FUTURE WORK

In this paper, we have identified access control require-
ments for a collaborative environment and presented a new
access control model for meeting these requirements.

The main components of our model are
1. A generic set of collaboration rights.

2. IFine-grained specification of accessrights.

3. Multiple, dynamic user roles.
4. A set of inheritance rules in the subject, object, access

right dimensions,

5. A set of conflict resolution rules in the multiple dimen-
sions.

Some of the ideas in the model are based on a variety
of previous works. The idea of imply relationship among
access rights has been suggested in [6] which is extended
by us to support collaboration rights. The concept of the
include relationship among rights has not been discussed in
other works to the best of our knowledge. Inheritance among
objects takes its origin from the work in this area to support
flexible displays and flexible coupling [3, 2], which has not
been used before for access control. The idea of inheritance

among subjects hasbeenproposed by databaseresearchers[6,
10]. We have extended their work by providing two kinds of
inheritances: take according to user roles and have according
to user privileges, and comparing these two relationships for

57

inheriting access rights. By allowing inheritance of have to
be based on a selected subset of rights, the “least privilege”
principle is reflected more faithfully in our model. We have
also developed rules for resolving role conflicts that employ
the “position first” rule to resolve conflicts.

Our model in its complete form is complex. We believe
any flexible model for collaborative systems will have this
property. However, we have provided several methods for
incrementally using and le,arning it. In particular, we have
provided multiple dimensions of inheritance, which can be
learned and used independently, as illustrated by our exam-
ples.

It hasbeen observed in [5] that “Groupware’s requirements
can lead to complex access models, a complexity that must
be managed, there must be lightweight access control
mechanisms that allow end-users to easily specify changes.
User interfaces should smoothly mesh the accessmodel with
the user’s conceptual model of the system. Changing an
object’s access permissions should, for example, be as easy
as dragging the object from one container to another”. Our
accesscontrol model is a first-cut effort at meeting this goal.
It is important to mention that while our model is designed
for a collaborative environment, parts of it are also suitable
for non-collaborative domains in which the set of objects,
subjects, and rights are large.

A current limitation of our model is that its set of protected
objects includes only active variables. We are investigat-
ing mechanisms for protecting other shared objects such as
windows, sessions and subjects. We are also investigating
policies for using our model. We plan to devise rules for
checking consistency of accessrequirements based on these
policies.

Acknowledgments: Discussions with Rajiv Choudhary,
John Riedl and Tim Korb have been helpful in developing
the model.

References
[1]

[2]

[3]

[4]

[5]

D.E. Denning. Cryptography and Data Security.

Addison-Wesley Publishing company, 1982.

Prasun Dewan. An inheritance model for supporting
flexible displays of data structures. Software – Practice

and Experience, 21(7):7 19–738, July 1991.

Prasun Dewan and Rajiv Choudhary. Flexible user
interface coupling in collaborative systems. In Proc. of

ACM CHI’91 Con., pages 41-49, April 1991.

Prasun Dewan and Rajiv Choudhmy. Primitives for
programming multi-user interfaces. Proc. of the 4th

ACM SIGGRAPH Symp. on User Interface Sojiware

and Technology, pages 69–78, November 1991.

Clarence A. Ellis, Simon J. Gibbs, and Gail L. Rein.
Groupware: Some issues and experiences. CACM,

34(1):38–58, huary 1991.

[6]

[7]

[81

E. B. Fernandez, R. C. Summers, and C. Wood.
Database Security and Integrity. Addison-Wesley,
1981.

G.S. Graham and P.J.Denning. Protection – principles
and practice. Proc. SpringJt. Computer Confi, 40:417–

429, 1972.

B ,W. Larnpson. Protection. ACM Ope~ Syst. Rev.,,

8(1):18–24, 1974.

[9] John F. Patterson. Comparing the programming de-
mands of single-user and multi-user applications. In
Proc. of the 4th ACM SIGRAPH Con. on User Inter-

face Sojlware and Technology, pages79-86, November

[10]

[11]

1991.

Fausto Rabitti, Elisa Bertino, Won Kim, and Darrell
Woelk. A model of authorization for next-generation
database systems. ACM TODS, 1(16):88–131, March
1991.

J.H. Saltzer. Protection and the control of information
sharing in multics. CACM, 17(7):388--402, July 1974.

58

