
1

SRPT Optimally Utilizes Faster Machines

to Minimize Flow Time

ERIC TORNG

Michigan State University

AND

JASON MCCULLOUGH

University of Illinois Urbana-Champaign

Abstract. We analyze the shortest remaining processing time (SRPT) algorithm with respect to the
problem of scheduling n jobs with release times on m identical machines to minimize total flow time.
It is known that SRPT is optimal if m = 1 but that SRPT has a worst-case approximation ratio of
�(min(log n/m, log �)) for this problem, where � is the ratio of the length of the longest job divided
by the length of the shortest job. It has previously been shown that SRPT is able to use faster machines
to produce a schedule as good as an optimal algorithm using slower machines. We now show that
SRPT optimally uses these faster machines with respect to the worst-case approximation ratio. That
is, if SRPT is given machines that are s ≥ 2−1/m times as fast as those used by an optimal algorithm,
SRPT’s flow time is at least s times smaller than the flow time incurred by the optimal algorithm.
Clearly, no algorithm can offer a better worst-case guarantee, and we show that existing algorithms
with similar performance guarantees to SRPT without resource augmentation do not optimally use
extra resources.

An extended abstract of this article initially appeared in the Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA04) (New Orleans, LA, Jan. 11–13), ACM, New York, 2004,
pp. 350–358.

E. Torng was supported in part by National Science Foundation (NSF) grants CCR 9701679 and CCR
0105283. J. McCullough was supported in part by NSF grant CCR 9701679, an MSU professional
assistantship, and an MSU summer research internship.

This work was performed while J. McCullough was an undergraduate student at Michigan State
University.

Authors’ addresses: E. Torng, Department of Computer Science and Engineering, Michigan State
University, East Lansing, MI 48224, e-mail: torng@msu.edu; J. McCullough, Department of Math-
ematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
e-mail: jmccullo@math.uiuc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1549-6325/2008/11-ART1 $5.00 DOI 10.1145/1435375.1435376 http://doi.acm.org/
10.1145/1435375.1435376

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:2 E. TORNG AND J. MCCULLOUGH

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—sequencing and scheduling

General Terms: Algorithms, Theory

Additional Key Words and Phrases: SRPT, scheduling, resource augmentation, flow time, parallel
machines

ACM Reference Format:

Torng, E., and McCullough, J. 2008. SRPT optimally utilizes faster machines to minimize flow time.
ACM Trans. Algor. 5, 1, Article 1 (November 2008), 25 pages. DOI = 10.1145/1435375.1435376
http://doi.acm.org/10.1145/1435375.1435376

1. Introduction

In this article, we consider the problem of scheduling m identical machines to
minimize total flow time. In more detail, we are given m identical machines and an
input instance I , which is a collection of n independent jobs {1, 2, . . . , n}. Each job
j has a release time r j and a size or length p j . Note that size is commonly referred
to as processing time, but since we will consider machines that run at different
speeds, length or size is more appropriate.

For any input instance I , a schedule S(I) is an assignment of jobs to machines
satisfying the following properties. A job can be assigned to a machine only after
its release time r j . A job can run on only one machine at a time, and a machine can
process only one job at a time. We consider a preemptive and migratory scheduling
model where a job may be interrupted and subsequently resumed on any machine
with no penalty. Assuming machines have speed-1, each job must be assigned to
some machine for p j time units. For any input instance I , any job j ∈ I , any time
t ≥ r j , and any schedule S(I), let p(j, t, S(I)) be job j’s remaining length at time
t in schedule S(I). Let C j (S(I)) denote the completion time of job j in schedule
S(I); that is, the smallest time t such that p(j, t, S(I)) = 0. As with most of the
following notation, we will omit the schedule S(I) when the schedule is understood
from context, particularly in our examples. The flow time of job j in schedule S(I)
is Fj (S(I)) = C j (S(I)) − r j . When restricted to speed-1 machines, the idle time or
delay of job j in schedule S(I) is D j (S(I)) = Fj (S(I))− p j = C j (S(I))−r j − p j .
The total flow time of schedule S(I) is F(S(I)) = ∑

j Fj (S(I)). In the classic

notation of Graham et al. [1979], this is the P | pmtm | ∑
j Fj problem. Instead

of focusing on total flow time, we could equivalently consider the minimization
of average flow time 1

n

∑
Fj . Furthermore, total flow time is minimized when

we minimize total completion time, C(S(I)) = ∑
j C j (S(I)), or total idle time,

D(S(I)) = ∑
j D j (S(I)).

We focus our attention on the Shortest Remaining Processing Time (SRPT)
algorithm that, at any time, schedules the m jobs with shortest remaining length
(processing time) breaking ties arbitrarily. SRPT is an online scheduling algorithm.
An online scheduling algorithm must construct the schedule up to time t without any
prior knowledge of jobs that become available at time t or later. When a job arrives,
however, we assume that all other relevant information about the job is known. In
constrast, an offline scheduling algorithm has full knowledge of the input instance
when constructing a schedule.

Example 1. Consider an input instance I = {(0, 1), (0, 1), (0, 1), (0, 4), (3, 3),
(3, 3)} where a job i is specified by the ordered pair (ri , pi), and suppose we have two

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:3

speed-1 machines. SRPT will schedule the two machines as follows. On machine
1, SRPT will execute and complete job 1 in the time interval [0, 1), job 3 in [1, 2),
be idle in [2, 3), and execute and complete job 5 in [3, 6). On machine 2, SRPT
will execute and complete job 2 in [0, 1), job 4 in [1, 5), and job 6 in [5, 8). At
time 3, the remaining length of job 4 is 2, so job 4 is not preempted by either job
5 or job 6 when they are released at time 3. It follows that D1 = D2 = D5 = 0,
D3 = D4 = 1, and D6 = 2. Thus, D(SRPT(I)) = 4 and F(SRPT(I)) = 17.

When the number of machines m = 1, SRPT is known to be an optimal algorithm
for this problem. One proof of its optimality is given by Schrage [1968]. When
m ≥ 2 but all jobs are released at time 0, SRPT is again optimal [Conway et al.
1967]. Note, this implies SRPT minimizes total completion time, total flow time, and
total idle time. When m ≥ 2 and there are an unbounded number of release times,
this problem is known to be NP-complete. Leonardi and Raz [1997] showed that the
SRPT algorithm has a worst-case approximation ratio of �(min(log n/m, log �))
for this problem, where � is the ratio of the length of the longest job divided by the
length of the shortest job. They also showed that �(min(log n/m, log �)) is the best
possible approximation ratio for any deterministic or randomized online algorithm.
A simpler analysis of SRPT is given in Leonardi [2003]. No offline algorithm with
a superior approximation ratio is known for this problem.

Kalyanasundaram and Pruhs [2000] popularized the usage of resource aug-
mentation as a method for analyzing online algorithms, in particular online
scheduling algorithms. Using this technique, we compare the performance of
an online algorithm to an offline algorithm when the online algorithm is given
extra resources in the form of faster machines or extra machines. In this ar-
ticle, we ignore extra machines and consider only faster machines as well as
stretched input instances, a concept related to faster machines introduced in Phillips
et al. [2002]. A job with length p j takes p j/s time to complete if run on a speed-s
machine.

We use the terminology introduced by Phillips et al. [2002]. Let I be an instance
of an m machine minimization scheduling problem with optimal solution value V .
An s-speed ρ-competitive algorithm finds a solution of value at worst ρV using m
speed-s machines. For any input instance I , define I s to be the s-stretched input
instance where job j has release time sr j instead of r j . An s-stretch ρ-competitive
algorithm finds a solution to I s of value at worst ρV using m speed-1 machines.
The relationship between faster machines and stretched input instances is captured
by the following speed-stretch theorem from Phillips et al. [2002].

THEOREM 1.1. If A is an s-speed ρ-competitive algorithm for minimizing to-
tal flow time in any model (preemptive or non-preemptive, clairvoyant or non-
clairvoyant, online or offline), then A is an s-stretch ρs-competitive algorithm for
minimizing total flow time in the same model.

PROOF. For any input instance I , I s is the identical input instance except job
i has release time ri s for 1 ≤ i ≤ n. Thus, at any time ts, the situation faced by
1-speed A on I s is identical to the situation faced by s-speed A on I ; that is, the
same jobs with the exact same remaining lengths are available.

Let C j and Fj denote the completion time and flow time, respectively, of job j
when s-speed A schedules input instance I , and C ′

j and F ′
j denote the completion

time and flow time, respectively, of job j when 1-speed A schedules input instance

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:4 E. TORNG AND J. MCCULLOUGH

I s . We have C ′
j = sC j for 1 ≤ j ≤ n. Combining this with the above release time

relationship, we see that F ′
j = s Fj for 1 ≤ j ≤ n, and the result follows.

Note, the reverse holds as well. That is, any s-stretch ρ-competitive algorithm is
also an s-speed ρ/s-competitive algorithm.

1.1. OUR CONTRIBUTIONS AND RELATED WORK. Our primary result is that
SRPT optimally uses faster machines. That is, if SRPT is given speed-s machines
where s ≥ 2 − 1/m, then SRPT incurs a total flow time that is at least s times
smaller than that incurred by the optimal algorithm using speed-1 machines. More
formally, SRPT is an s-speed 1/s-competitive algorithm for minimizing total flow
time when s ≥ 2−1/m. No algorithm can use faster machines to get a better worst-
case guarantee as can be seen by considering an input instance consisting of a single
job. This improves upon the result in Phillips et al. [2002] where they proved that
SRPT is an s-speed 1-competitive algorithm for this problem when s ≥ 2−1/m. In
contrast, we also show that existing algorithms with similar performance guarantees
to SRPT without extra resources are not s-speed 1/s-competitive algorithms for any
s. We give a formal proof for the non-migratory algorithms developed by Awerbuch
et al. [2001] and Chekuri et al. [2001]. Similar arguments could be applied to the
algorithm of Avrahami and Azar [2003]. This offers some evidence in favor of
SRPT for this problem.

In addition, we hope that several of the concepts and techniques used in this
article including profiles, SRPT charging, and stretched input instances may be
helpful in proving other results concerning flow time and weighted flow time. Note,
Anderson and Potts [2004] used the concept of a double problem to help prove a
result regarding minimizing total completion time in a nonpreemptive uniprocessor
environment. In their double problem, they multiply not only release times but also
processing times by a factor of 2 to create a related input instance.

Resource augmentation has been used to study the problem of minimizing
flow time in a nonclairvoyant uniprocessor environment where the algorithm has
no knowledge of p j until job Jj completes [Kalyanasundaram and Pruhs 2000;
Coulston and Berman 1999; Edmonds 2000]. Edmonds [2000] also shows that the
round robin algorithm is an s-speed O(1)-competitive algorithm for the parallel
machine problem for s ≥ 2, but round robin is not s-speed 1-competitive for s < 4
and is at best s-speed 2/s-competitive for s ≥ 4 for a more general problem setting.
More recently, Chekuri et al. [2004] have shown that the algorithm of Avrahamai
and Azar is a (1 + ε)-speed O(1/ε)-competitive algorithm for this problem (and
others). This is an important result as it shows that with modest resource aug-
mentation, a constant competitive ratio is achievable. However, as noted earlier,
we can show that this algorithm does not optimally use extra resources as SRPT
does. Since this work, Bussema and Torng [2006] showed that the shortest job first
(SJF) and SRPT are also (1 + ε)-speed O(1/ε)-competitive algorithms for this
problem.

The rest of this article is organized as follows. In Section 2, we first show that
several algorithms are not s-speed 1/s-competitive algorithms for any s > 1. In
Section 3, we first give an intuitive overview of the proof of our main result.
In Section 4, we introduce some building blocks for the proof such as profiles,
partial schedules, and canonical schedules. In Section 5, we introduce, for analysis
purposes only, an algorithm we name Relaxed SRPT (RSRPT). We then show that

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:5

RSRPT incurs no more idle time than the optimal algorithm and that SRPT on a
stretched input instance incurs no more idle time than RSRPT on the original input
instance. We conclude with a brief discussion of open problems in Section 6.

2. Bounds on Nonmigratory Algorithms

The key idea in algorithms that eliminate migration is the idea of classifying jobs
by size [Awerbuch et al. 2001; Chekuri et al. 2001; Avrahami and Azar 2003]. In
Awerbuch et al. [2001], jobs are classified as follows: a job j whose remaining
processing time at time t is in [2k, 2k+1) is in class k for −∞ < k < ∞ at time t .
Note that jobs change classes as they execute. In Chekuri et al. [2001] and Avrahami
and Azar [2003], a job j whose initial processing time is in [2k, 2k+1) is in class k
for −∞ < k < ∞ for all times t after its release up until its completion. Note, 2 is
used to determine classes, but 2 could be c for any constant c > 1. In Chekuri et al.
[2001], they optimize their algorithm by identifying the best possible constant c.

The algorithms of Awerbuch et al. [2001] and Chekuri et al. [2001] use the
following data structures to organize available jobs at any time. Jobs not yet assigned
to any machine are stored in a central pool. Jobs assigned to machine k are stored
on a stack for machine k. The algorithms of Awerbuch et al. [2001] and Chekuri
et al. [2001] schedule jobs as follows. Each machine processes the job at the top
of its stack. When a new job arrives, if there is any machine k that is idle or
currently processing a job of a higher class than the new job, the new job is pushed
onto machine k’s stack and machine k begins processing the new job. If multiple
machines satisfy the above criteria, the job is assigned to any one of them. Otherwise,
the job enters the central pool. When a job is completed on any machine k, machine
k compares the class of the job on top of its stack (if such a job exists) with the
minimum class of any job in the central pool. If the minimum in the pool is smaller
than the class of the job on top of its stack, then any job in the pool of that minimum
class is pushed onto machine k’s stack. Machine k then begins processing the job
on top of its stack. In Chekuri et al. [2001], they also define an algorithm where
migration is allowed so that when a job completes on machine k, machine k looks
for the smallest class job on other machines’ stacks in addition to the central pool.

We formally show that the algorithms of Awerbuch et al. [2001] and Chekuri
et al. [2001] cannot be s-speed 1/s-competitive algorithms for this problem. We
use A to denote any implementation of the non-migratory algorithms of Awerbuch
et al. [2001] and Chekuri et al. [2001].

THEOREM 2.1. As m → ∞, A is at best an s-speed 3+√
13

1+√
13

1
s -competitive algo-

rithm for any speed s ≥ 1 and for any constant c ≥ 1 used to define the classes of
jobs in A.

We prove this by considering two different example input instances, one that is
more effective for small c, and one that is more effective for large c.

LEMMA 2.2. A is at best an s-speed 2c+1
c+2

1
s -competitive algorithm for any c ≥ 1

and any s ≥ 1.

PROOF. Consider the following input instance. Suppose m jobs of size c − ε
where ε > 0 arrive at time 0, and m jobs of size 1 arrive at time δ > 0. All 2m
jobs belong to the same class 0 at time δ since their initial and remaining sizes at

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:6 E. TORNG AND J. MCCULLOUGH

time δ lie in the range [c0, c1). A will process the jobs of size c − ε first on each
machine before processing the jobs of size 1 on each machine resulting in a total
flow time of (m/s)(2c − 2ε − δ + 1). The optimal strategy is to preempt the jobs of
size c − ε for the jobs of size 1 resulting in a total flow time of m(c − ε + 2). Since
ε and δ can be made arbitrarily small, the result follows. This result also holds for
migratory versions of the above algorithms.

LEMMA 2.3. A is at best an s-speed (c
c−1

− m
cm−1

) 1
s -competitive algorithm for

any c ≥ 1, m ≥ 2, and s ≥ 1. This asymptotically approaches c
c−1

1
s as m → ∞.

PROOF. Consider the following input instance. We release m − 1 jobs of size
ε at time 0. A will assign each of these jobs to its own machine. Then, we release
a sequence of m jobs at unique times in the interval (0, ε). The jobs released are
of size ck for 0 ≤ k ≤ m − 1, and the jobs are released in decreasing order of
size. A will assign each of these jobs to the machine that did not schedule any job

of size ε. Thus, A will incur a total flow time of (1/s)
∑m−1

k=0 (m − k)ck + ε(m −
1)/s = (1/s)[(cm+1 − c)/(c − 1)2 − m/(c − 1) + (m − 1)ε]. On the other hand,
the m larger jobs could be assigned to individual machines for a total flow time of
∑m−1

k=0 ck = (cm − 1)/(c − 1) + 2(m − 1)ε. As ε can be made arbitrarily small, the
result follows.

The proof of Theorem 2.1 is completed by finding the value of c where c/(c−1) =
(2c + 1)/(c + 2), and this occurs when c = (3 + √

13)/2. The lower bound on the

competitive ratio then evaluates to (3 + √
13)/(1 + √

13) ≈ 1.43.
Similar arguments can be applied to the immediate dispatch algorithm of

Avrahami and Azar [2003]. We omit a formal proof but include this informal
discussion for those familiar with that algorithm. For small c, there can exist times
where m jobs from different classes are released simultaneously and assigned to the
same machine when no other jobs are in the system, thus approaching the bound
from Lemma 2.3. On the other hand, for larger c, let x be a large even number and
assume m is also large and even. We can carefully release m2x jobs of size c − ε
and cm2x jobs of size 1 such that m/2 of the machines have 2mx jobs of size c − ε
and the other m/2 machines have 2cmx jobs of size 1. The total flow time for this
schedule with speed-s machines ignoring ε is then (1/s)((c2 + c)m3x2 + cm2x)
while the optimal total flow time where both types of jobs are evenly divided among
all m machines has a total flow time of (c2/2 + 3c/2)m3x2 + cm2x yielding a ratio
that is 1/s + ((1/s)(c2 − c)m3x2)/((c2 + c + 2)m3x2 + 2cm2x) which for large m
and x approaches 1/s + (c2 − c)/(s(c2 + c + 2)). Combining the two bounds, we
see that the algorithm is bounded away from being 1/s-competitive given speed-s
machines.

3. Overview of SRPT Upper Bound Proof

3.1. BAD EXAMPLE FOR SRPT. Before we describe the proof, it is helpful to
review an example input instance for two machines that causes problems for SRPT
without resource augmentation.

Example 2. Suppose three jobs are released at time 0 with lengths 1, 1, and 2.
An optimal offline algorithm (Opt) will execute the job of length 2 on one machine

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:7

from time 0 to time 2 while executing one of the jobs of size 1 on the second
machine from time 0 to time 1 and the other job of size 1 on the second machine
from time 1 to time 2. Thus, all jobs released at time 0 are completed by time 2.
SRPT, on the other hand, will schedule the two jobs of size 1 on the two machines
from time 0 to time 1 and the job of size 2 on either machine from time 1 to time
2. If no new jobs are released, SRPT will then complete the job of size 2 at time 3,
and both schedules will have a flow time of 5.

However, if more jobs are released at time 2, SRPT runs into trouble. For example,
suppose three jobs with lengths 1/2, 1/2, and 1 arrive at time 2, three jobs with
lengths 1/4, 1/4, 1/2 arrive at time 3, three jobs with lengths 1/8, 1/8, and 1/4
arrive at time 7/2, and so on. Continuing in this fashion, we can create a situation
where SRPT has arbitrarily more unfinished jobs than Opt by time 4. If we then feed
a long stream of very small jobs starting just after Opt has completed all released
jobs (a little bit before time 4) such that any algorithm must finish these newly
released jobs before any older jobs, this leads to SRPT having an arbitrarily larger
flow time than Opt.

The problem is that SRPT completes less work in interval [0, 2) than Opt does.
Intuitively, SRPT has not “kept up with” Opt. We will define a formal notion of
“keeping up” in the building blocks section. If we increase the speed s of SRPT’s
machines, it will still be behind Opt at time 2 until the speed s reaches 3/2 = 2−1/2,
at which point it will complete all three jobs released at time 0 by time 2. For
example, suppose three jobs are released at time 0 with lengths 1, 1, and 2, and
another three jobs are released at time 2 with lengths 1, 1, and 2. If SRPT has speed
s ≥ 3/2, all the jobs released at time 0 will be completed by time 2, the second
release time. SRPT will then process both batches of three jobs s times faster than
Opt which leads to SRPT having a flow time s times smaller than Opt. On the other
hand, if SRPT has speed s < 3/2, the job of size 2 released at time 0 will not be
completed by time 2. This will delay one of the jobs of size 1 released at time 2.
That is, the two batches of jobs will overlap with the first batch slightly delaying
the second batch. Thus, SRPT will not have a flow time s times smaller than Opt.

3.2. PROOF OUTLINE. Our goal is to show that with speed-s machines, where
s ≥ 2 − 1/m, SRPT not only overcomes the issues above, it actually achieves a
flow time that is at least s times smaller than that of Opt with speed-1 machines. A
key idea in our proof is to focus on SRPT with stretched input instances rather than
faster machines. Based on the speed-stretch theorem cited earlier, we need to prove
that SRPT is an s-stretch 1-competitive algorithm for s ≥ 2 − 1/m. Stated another
way, we need to prove that F(SRPT(I s)) ≤ F(Opt(I)) for any input instance I .
This is equivalent to showing D(SRPT(I s)) ≤ D(Opt(I)) for any input instance I
since any algorithm that minimizes total flow time also minimizes total idle time.
We will focus on total idle time for the remainder of this proof.

The next step is to break the input instance into intervals as defined by the release
times of input I . Let Ii be the interval defined by the i th and i + 1st release times.
Within each interval, we need to prove two things. The first is that SRPT “keeps
up with” Opt in each interval. The second is that the total idle time incurred within
each interval I s

i by SRPT is no more than the total idle time incurred by Opt within
each corresponding interval Ii . However, this second goal often is not true because
the stretched interval I s

i is s times longer than interval Ii so SRPT will often incur
more total idle time in that interval than Opt does in the corresponding interval Ii .

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:8 E. TORNG AND J. MCCULLOUGH

To overcome this issue, we define a Relaxed SRPT (RSRPT) algorithm that works
on input instance I , not I s . RSRPT is used only for analysis purposes. We will show
that RSRPT “keeps up with” Opt at the end of each interval Ii and that the idle time
incurred by RSRPT on each interval Ii is at most the idle time incurred by Opt on
Ii . RSRPT is not a real algorithm because it might use illegal schedules where some
machines run for more than the total time in an interval; this will be compensated
by some machines running for less total time in the interval. To account for this,
we will define a method for computing total idle time within an interval that works
even with illegal schedules; we call this method SRPT charging.

Finally, we need to show that the total idle time incurred by RSRPT for I is at
least the total idle time incurred by SRPT for I s . To prove this, we define a notion of
containment and then ensure that at each release time, SRPT(I s) is always contained
within RSRPT(I). Essentially, this containment property means that the number of
jobs with remaining length larger than the remaining length for a given job Jj
in RSRPT(I) at time t is at least as many as the number of jobs with remaining
length larger than the remaining length for the equivalent job in SRPT(I s) at time
st . This containment property then allows us to argue that the idle time incurred
in RSRPT(I) is at least as large as the idle time incurred in SRPT(I s). Thus, by
transitivity, we are able to conclude that the idle time and thus total flow time of
SRPT(I s) is no larger than the idle time and total flow time of Opt(I). We now
proceed to a more detailed description of this proof.

4. Building Blocks

4.1. INTERVAL AND PARTIAL SCHEDULE NOTATION. For any input instance I ,
let r (I) denote the number of distinct release times of jobs in I , and ri (I) denote the
i th release time in I for 1 ≤ i ≤ r (I). Without loss of generality, assume r1(I) = 0
for all instances I . When the input instance I is unambiguous, we use the notation
ri for ri (I). We use these release times to define time intervals as follows. Time
interval Ii is defined to be [ri (I), ri+1(I)) for 1 ≤ i ≤ r (I) − 1. Time interval
Ir (I) is defined to be [rr (I), ∞). We use Ii− to denote the time interval [0, ri (I)) for
1 ≤ i ≤ r (I). For 1 ≤ i ≤ r (I) − 1, we use |Ii | to denote the length of interval Ii .
For any schedule S(I) and 1 ≤ i ≤ r (I), we define S(Ii) and S(Ii−) to be the partial
schedules of S(I) for intervals Ii and Ii−, respectively. We will use D j (S(Ii)) to
denote the delay experienced by job j in partial schedule S(Ii) in the time interval
Ii and D(S(Ii)) to denote the total delay incurred by partial schedule S(Ii) in the
time interval Ii .

Example 3. Let I = {(0, 1), (0, 1), (0, 2), (2, 3), (2, 3)}, and suppose there are
two speed-1 machines. Then r (I) = 2, r1(I) = 0, r2(I) = 2, I1 = [0, 2), I1− =
[0, 0) which is empty, I2 = [2, ∞), and I2− = I1 = [0, 2). The partial schedule
S R PT (I1) (which is also partial schedule SRPT(I2−)) is to run jobs 1 and 2 in
interval [0, 1) and job 3 on machine 1 in interval [1, 2), and D(SRPT(I1)) = 1. The
partial schedule SRPT(I2) is to run job 3 on machine 1 in [2, 3), job 4 on machine
2 in [2, 5), and job 5 on machine 1 in [3, 6), and D(SRPT(I2)) = 1.

4.2. PROFILES. To compare how much work is left in different schedules at
various times t where t is typically a release time, we introduce profiles and methods
for comparing profiles.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:9

Definition 4.1. Let I be any input instance, and let S(I) be a legal schedule
for I . We define the profile of schedule S(I) at time t , denoted S(I, t), to be the
nondecreasing vector of remaining lengths of all jobs that were released up to but
not including time t . We use S[I, t] to denote the profile that includes jobs released
at time t . We define |S(I, t)| and |S[I, t]| to be the number of elements in profiles
S(I, t) and S[I, t], respectively.

Definition 4.2. We define S(I, t)[j] and S[I, t][j] to be the jobs with the j th
smallest remaining length in profiles S(I, t) and S[I, t], respectively. If two jobs
tie for the j th smallest remaining length, S(I, t)[j] (or S[I, t][j]) is the one that re-
ceived more processing time since the previous release time of I . If there is still a tie
in amount of processing time received since the closest release time, ties are broken
arbitrarily. We overload notation and also use S(I, t)[j] and S[I, t][j] to denote

that job’s remaining length at time t . Finally, we define S j (I, t) = ∑ j
q=1 S(I, t)[q]

and S j [I, t] = ∑ j
q=1 S[I, t][q] to be the sum of the j smallest remaining lengths

in profiles S(I, t) and S[I, t], respectively.

For most of this article, we are primarily concerned with profiles at release times.
To denote the profile at release time ri for 1 ≤ i ≤ r (I), we will typically use S(I, i)
or S[I, i]. When we do not use release times, we will use variable letter t to denote
the time.

When working with general profiles independent of a specific schedule or input
instance, we will use the notation P or Pi in place of S(I, i) or S[I, i]. For example,
P j

i denotes the sum of the j smallest remaining lengths in profile Pi .

Definition 4.3. We can compare two profiles P1 and P2 if |P1| = |P2|; that is,
they have the same number of elements. We say that a profile P1 is smaller than
another profile P2, denoted P1 ≤ P2, if the following condition holds:

—For 1 ≤ i ≤ |P1|, Pi
1 ≤ Pi

2 ; that is, the sum of the first i elements of profile P1

is no larger than the sum of the first i elements of profile P2.

Definition 4.4. We say that a profile P1 is contained by another profile P2,
denoted P1 ⊆ P2, if the following conditions hold:

(1) |P1| ≤ |P2|.
(2) For 1 ≤ i ≤ |P1|, the i th element of profile P1 is no larger than the i th element

of profile P2.

Concepts similar to a profile have been used in many other papers analyzing
SRPT and other algorithms for minimizing total flow time and other objective
functions. One key point about our definition of profiles is that we include the jobs
with remaining length 0 in the vector.

Example 4. Let I = {(0, 1), (0, 1), (0, 2), (2, 1)} and suppose there is one speed-
1 machine. Suppose schedule S(I) schedules job 3 in the interval [0, 2). SRPT will
schedule job 1 in the interval [0, 1) and job 2 in the interval [1, 2), so SRPT(I, 2) =
〈0, 0, 2〉 ≤ S(I, 2) = 〈0, 1, 1〉. Furthermore, SRPT(I, 2)[2] = 0 while S(I, 2)[2] =
1. However, it is not true that SRPT(I, 2) ⊆ S(I, 2).

Occasionally, we will use a profile P as an input instance to this problem with
a single release time. Specifically, profile P is an input instance with |P| jobs, the

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:10 E. TORNG AND J. MCCULLOUGH

i th smallest job of the instance has the size of the i th smallest element of P , and all
jobs are assumed to be released simultaneously. For convenience, we may assume
that the jobs of size 0 do not exist and remove them from the instance. Typically
this is not necessary.

We now list a few simple observations about profiles.

FACT 4.5. Let P1 and P2 be two arbitrary profiles such that P1 ≤ P2. Then
the sum of all remaining lengths in P1 is no larger than the sum of all remaining
lengths in P2.

PROOF. By the definition of P1 ≤ P2, it follows that |P1| = |P2| = n for some
non-negative integer n. The definition of P1 ≤ P2 also implies that Pn

1 ≤ Pn
2 which

is the desired result.

FACT 4.6. Let P1 and P2 be two profiles such that P1 ≤ P2 (P1 ⊆ P2, respec-
tively). If we add a job of size x to both P1 and P2 to create P ′

1 and P ′
2, then P ′

1 ≤ P ′
2

(P ′
1 ⊆ P ′

2, respectively).

PROOF. Let n = |P1|. Let i + 1 be the index where the job of size x is located
in profile P ′

1 and j + 1 be the index where the job of size x is located in profile P ′
2.

We first consider the case where P1 ≤ P2. For 1 ≤ k ≤ min(i, j), P ′k
1 = Pk

1 ≤
Pk

2 = P ′k
2 where the middle inequality holds because P1 ≤ P2. For max(i + 1, j +

1) ≤ k ≤ n + 1, we have that P ′k
1 = Pk−1

1 + x and P ′k
2 = Pk−1

2 + x and Pk−1
1 ≤

Pk−1
2 . Thus, it follows again that P ′k

1 ≤ P ′k
2 . We now consider the intermediate

range. Suppose i ≤ j . For i + 1 ≤ k ≤ j , P ′k
1 ≤ Pk

1 because P ′k
1 replaces P1[k]

with x in the sum and x is smaller than P1[k] since x has been slotted before P1[k]
in P ′

1. At the same time, we have P ′k
2 = Pk

2 and Pk
1 ≤ Pk

2 . Thus, P ′k
1 ≤ P ′k

2 . On the

other hand, suppose i > j . We have that P ′ j
1 ≤ P ′ j

2 . For j + 1 ≤ k ≤ i , P1[k] ≤ x
or else x would not be P ′

1[i + 1]. For j + 1 ≤ k ≤ i , P2[k] ≥ x or else x would

not be P ′
2[j + 1]. Thus, for j + 1 ≤ k ≤ i , P ′k

1 = (P ′ j
1 plus k − j terms of size at

most x) while P ′k
2 = (P ′ j

2 plus k − j terms of size at least x). This shows that for

j + 1 ≤ k ≤ i , P ′k
1 ≤ P ′k

2 .
We now consider the case where P1 ⊆ P2. It must be the case that j ≤ i . For 1 ≤

k ≤ j , P ′
1[k] = P1[k] ≤ P2[k] = P ′

2[k] where the middle inequality holds because
P1 ⊆ P2. Likewise, for i +2 ≤ k ≤ n +1, P ′

1[k] = P1[k −1] ≤ P2[k −1] = P ′
2[k].

For j + 1 ≤ k ≤ i + 1, P ′
1[k] ≤ x while P ′

2[k] ≥ x and thus P ′
1[k] ≤ P ′

2[k].

COROLLARY 4.7. Let I be any input instance. For any 1 ≤ i ≤ r (I) and
s1, s2 ≥ 1, and any schedules S1(I) and S2(I) such that S1(I s1, i) ≤ S2(I s2, i)
(S1(I s1, i) ⊆ S2(I s2, i), respectively), we have S1[I s1, i] ≤ S2[I s2, i] (S1[I s1, i] ⊆
S2[I s2, i], respectively).

PROOF. This follows from the previous fact by adding the jobs released at the
i th release time one by one to the profiles S1(I s1, i) and S2(I s2, i).

Continuing Example 4, this implies that SRPT[I, 2] = 〈0, 0, 1, 2〉 ≤ S[I,
2] = 〈0, 1, 1, 1〉.

Finally, we will show that if a new job j is added to an input instance I , SRPT’s
profile on the new instance I ∪ { j} is better than SRPT’s profile on the original
instance I if we ignore the last element of SRPT’s profile at any time.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:11

Definition 4.8. For any input instance I , let SRPT−1[I, t] and SRPT−1(I, t)
denote profiles SRPT[I, t] and SRPT(I, t) without their maximum element.

FACT 4.9. Let I be any input instance, and let j be any job not in I with release
time r j . Then for t ≥ r j , SRPT−1[I ∪ { j}, t] ⊆ SRPT[I, t].

PROOF. Consider time r j . It is obvious that SRPT−1[I ∪{ j}, r j] ⊆ SRPT[i, r j]
as the addition of job j can only reduce the size of the kth largest element of
SRPT−1[I ∪ { j}, r j] relative to the kth largest element of SRPT[I, r j] for 1 ≤
k ≤ |SRPT[I, r j]. Since SRPT always works on the shortest m available jobs,
this relationship will remain true until the next job j ′ in I is released. This means
SRPT−1(I ∪ { j}, r j ′) ⊆ SRPT(I, r j ′). Let P = SRPT−1(I ∪ { j}, r j ′), and let P ′
be the profile that results when job j ′ is added. Fact 4.6 then implies that P ′ ⊆
SRPT[I, r j ′]. We then observe that P ′ can only differ from SRPT−1[I ∪ { j}, r j ′]
in their maximal elements. Furthermore, this difference can only take place if j ′ is
the maximum element of SRPT[I ∪ { j}, r j ′] in which case the maximum element

of P ′ is j ′ while the maximum element of SRPT−1[I ∪ { j}, r j ′] is the maximum
element of SRPT(I ∪ { j}, r j ′) which is less than the size of j ′. Thus, we see that

SRPT−1[I ∪ { j}, r j ′] ⊆ SRPT[I, r j ′], and the same logic implies this relationship
will hold for all t ≥ r j ′ , and the result follows.

4.3. BUILDING BLOCKS FROM PREVIOUS WORK. There are two critical ideas we
need to borrow from the paper of Phillips et al. [2002] The first is the speed-stretch
theorem cited earlier. Based on this theorem, we can prove our result if we show that
SRPT is an s-stretch 1-competitive algorithm for s ≥ 2 − 1/m. Thus, we consider
SRPT with stretched input instances rather than faster machines throughout most
of this article. Also, as noted earlier, total flow time is minimized exactly when
total idle time is minimized. Thus, our goal is to show that SRPT with stretched
input instances incurs no more idle time than the optimal algorithm does with the
unstretched input instance.

The second critical idea is a generalization of the proof that SRPT is a (2−1/m)-
speed 1-competitive algorithm. That proof worked in two steps. In the first step,
Phillips et al. showed that any busy scheduling algorithm, when given speed-(2 −
1/m) machines, performs at least as much work by any given time as any other
schedule on any input instance. They extended this to also conclude that SRPT,
given speed-(2 − 1/m) machines, completes at least as many jobs by any given
time as any other schedule on any input instance. We generalize Phillips et al.’s
result to show that SRPT on I s is at least “keeping up with” Opt on I .

COROLLARY 4.10. Consider any input instance I , any legal speed-1 schedule
S(I), and any 1 ≤ i ≤ r (I). If s ≥ 2 − 1/m, then SRPT(I s, i) ≤ S(I, i).

PROOF. Suppose this result is not true. There must be some input instance
I , some release time i , some schedule S(I), and some k ≤ |S(I, i)| such that
SRPTk(I s, i) > Sk(I, i). Let t = ri . Define input instance I1 to be only the jobs
that eventually form the k smallest elements of profile S(I, i). By the result from
Phillips et al., it follows that SRPTk(I s

1 , t) ≤ Sk(I1, t). We then insert jobs from I
and I s back into I1 and I s

1 one at a time. Applying Fact 4.9, the size of each of the
first k elements in each resulting profile at time t does not increase. This implies that

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:12 E. TORNG AND J. MCCULLOUGH

SRPTk(I s, t) ≤ SRPTk(I s
1 , t). With transitivity, we get that SRPTk(I s, t) ≤ Sk(I, t)

which is a contradiction, and the result follows.

4.4. CANONICAL SCHEDULES. For any input instance I , we now define the
notion of a canonical partial schedule S(Ii) for 1 ≤ i ≤ r (I) − 1.

Definition 4.11. For any input instance I , any legal schedule S(I), and any
1 ≤ i ≤ r (I) − 1, we say that the ordered pair of jobs (j, k) is inverted in S(Ii) if

—0 < p(j, ri , S(I)) < p(k, ri , S(I))

— p(j, ri+1, S(I)) > 0

— j is processed for less time than job k in partial schedule S(Ii).

Definition 4.12. For any input instance I , any legal schedule S(I), and any
1 ≤ i ≤ r (I) − 1, partial schedule S(Ii) is compliant if there are no ordered pairs
of jobs that are inverted in S(Ii).

Definition 4.13. For any input instance I , any legal schedule S(I), any 1 ≤ i ≤
r (I) − 1, and any pair of jobs j and k such that p(j, ri+1, S(Ii)) > 0, we define
the operation swap(j, k) in partial schedule S(Ii) as follows. Find all intervals in
S(Ii) where job k is run and job j is not. It is possible that no such intervals exist.
In all such intervals, run j instead of k until there are no more such intervals or job
j completes. Finally, if there are times where job k is being processed and j is not
prior to times where job j is being processed and k is not, swap the jobs until this
is no longer true.

LEMMA 4.14. Consider any input instance I , any legal schedule S1(I), and any
1 ≤ i ≤ r (I) − 1 where partial schedule S1(Ii) contains two jobs j and k such that
p(j, ri , S1(I)) ≤ p(k, ri , S1(I)) and p(j, ri+1, S1(I)) > 0. Let S2(I) denote the
schedule up to time ri+1 that results from applying operation swap(j, k) in partial
schedule S(Ii). It follows that D(S2(Ii)) ≤ D(S1(Ii)) and S2(I, i +1) ≤ S1(I, i +1).

PROOF. We are given that p(j, ri+1, S1(I)) > 0, so swap(j, k) is well defined.
We observe that swap(j, k) effects no jobs other than jobs j and k; that is, for any
job l �∈ { j, k}, p(l, ri+1, S1(I)) = p(l, ri+1, S2(I)) and D j (S1(Ii)) = D j (S2(Ii)).
Let x denote the total amount of time spent processing jobs j and k in S1(Ii). Since
no other jobs are affected, x is also the total amount of time spent processing jobs
j and k in S2(Ii).

We now consider two possibilities for p(k, ri+1, S1(I)). The first is that
p(k, ri+1, S1(I)) = 0 which means job k was completed by time ri+1 in sched-
ule S1(I). We first show that this implies D(S2(Ii)) ≤ D(S1(Ii)). Since job j does
not complete in S1(Ii), it follows that D j (S1(Ii))+ Dk(S1(Ii)) = |Ii |+Ck(S1(Ii))−
ri − x . Since 0 < p(j, ri , S1(I)) ≤ p(k, ri , S1(I)), the amount of time that k is
running when j is not running must be sufficient to complete job j . Thus, after
swap(j, k), job j will be completed in partial schedule S2(Ii) and C j (S2(Ii)) ≤
Ck(S1(Ii)). This implies D j (S2(Ii)) + Dk(S2(Ii)) = |Ii | + C j (S2(Ii)) − ri − x .
It follows that D j (S2(Ii)) + Dk(S2(Ii)) ≤ D j (S1(Ii)) + Dk(S1(Ii)), and thus
D(S2(Ii)) ≤ D(S1(Ii)).

We now show that S2(I, i + 1) ≤ S1(I, i + 1) when p(k, ri+1, S1(I)) = 0.
As noted earlier, for any job l �∈ { j, k}, p(l, ri+1, S1(I)) = p(l, ri+1, S2(I)). We
have shown p(j, ri+1, S2(I)) = 0 = p(k, ri+1, S1(I)). Finally, since the extra
time given to job j in S2(Ii) comes from job k and not other jobs, it follows that

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:13

p(k, ri+1, S2(I)) = p(j, ri+1, S1(I)). Thus, S1(I, i + 1) = S2(I, i + 1) with jobs j
and k trading places in the two profiles.

The second possibility is that p(k, ri+1, S1(I)) > 0 which means job k was not
completed by time ri+1 in schedule S1(I). We first show that this implies D(S2(Ii)) ≤
D(S1(Ii)). Since neither job completes in S1(Ii), D j (S1(Ii))+Dk(S1(Ii)) = 2|Ii |−x .
Since the total amount of processing both jobs receive in S2(Ii) is still x , it follows
that D j (S2(Ii)) + Dk(S2(Ii)) ≤ 2|Ii |− x ; the delay of these two jobs may fall if job
j completes in S2(Ii). Thus, D(S2(Ii)) ≤ D(S1(Ii)).

We now show that S2(I, i +1) ≤ S1(I, i +1) when p(k, ri+1, S1(I)) > 0. Again,
as noted earlier, for any job l �∈ { j, k}, p(l, ri+1, S1(I)) = p(l, ri+1, S2(I)). We now
consider what happens as we transfer processing time from job k to job j . Either
job j will be completed or all the time intervals when job k was being processed but
job j was not in S1(Ii) will now be time intervals when job j is being processed but
job k is not in S2(Ii). Since p(j, ri , S1(I)) ≤ p(k, ri , S1(I)), it must be the case that
p(j, ri+1, S2(I)) ≤ p(k, ri+1, S1(I)). Let y = p(k, ri+1, S1(I)) − p(j, ri+1, S2(I)).
The above implies y ≥ 0. It follows that y = p(k, ri+1, S2(I)) − p(j, ri+1, S1(I)).
Thus S2(I, i + 1) is basically the same as S1(I, i + 1) with jobs j and k trading
places in the two profiles except that job j in S2(I, i + 1) is smaller than job k in
S1(I, i + 1) by y and job k in S2(I, i + 1) is larger than job j in S1(I, i + 1) by y.
Since any prefix sum which includes job k in S2(I, i + 1) will also include job j in
S2(I, i +1), it follows that for 1 ≤ l ≤ |S1(I, i +1)|, Sl

2(I, i +1) ≤ Sl
1(I, i +1).

Definition 4.15. For any input instance I , any legal schedule S(I), and any
1 ≤ i ≤ r (I) − 1, partial schedule S(Ii) is canonical if it has the following
properties:

(1) S(Ii) is compliant.

(2) Each machine processes at most one job that is not completed in S(Ii).

(3) On any machine, no unfinished job is processed prior to any finished job in
S(Ii).

It is important to observe we only define canonical partial schedules up to the
final release time r (I) and not after r (I).

LEMMA 4.16. For any input instance I , any legal schedule S1(I), and any
1 ≤ i ≤ r (I) − 1, there exists a schedule S2(I) such that S2(Ii−) is identical to
S1(Ii−), S2(Ii) is canonical, D(S2(Ii)) ≤ D(S1(Ii)), and S2(I, i +1) ≤ S1(I, i +1).

PROOF. We will specify schedule S2(I) up to time ri+1 because what happens
in S2(I) after time ri+1 is irrelevant. We first make S2(Ii−) = S1(Ii−). To describe
S2(Ii), we need the following definition. Any job that is processed in a schedule
S(Ii) but not finished by time ri+1 is defined to be an incomplete job. We will create
schedule S2(Ii) from S1(Ii) so that S2(Ii) is compliant, each machine processes at
most one incomplete job in S2(Ii), and the incomplete jobs will satisfy the following
containment property. Suppose we number the incomplete jobs so that j < k implies
that p(j, ri+1, S2(Ii)) ≤ p(k, ri+1, S2(Ii)). The containment property of S2(Ii) is
that whenever incomplete job k is running, incomplete job j is running as well. For
example, any time any incomplete job is running in S2(Ii), incomplete job 1 must
be running in S2(Ii). If incomplete job 4 is running in S2(Ii), then incomplete jobs
1, 2, and 3 must also be running in S2(Ii).

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:14 E. TORNG AND J. MCCULLOUGH

We next number the jobs in S2[I, i] based on their remaining processing times
at release time ri in schedule S1(I). That is, if j < k, then p(j, ri , S1(Ii)) ≤
p(k, ri , S1(Ii)). We break ties based on their remaining processing times at release
time ri+1 in S1(I). that is, if j < k and p(j, ri , S1(Ii)) = p(k, ri , S1(Ii)), then
p(j, ri+1, S1(Ii)) ≤ p(k, ri+1, S1(Ii)). Remaining ties are broken arbitrarily. For a
numbered incomplete job i , we use N (i) to denote its number in this total ordering.

We create S2(Ii) with these properties using the following process. Initially define
S2(Ii) = S1(Ii). Let j∗ be the lowest numbered job that is unfinished at time ri+1.
If no higher numbered jobs received any processing in S2(Ii), then we are done
as the schedule must be compliant and has no incomplete jobs. Otherwise, update
schedule S2(Ii) by performing swap(j∗, k) where k is a higher numbered job that
received some processing in S2(Ii) until either all swaps have taken place or job j∗
is completed. By Lemma 4.14, each swap operation reduces D(S2(Ii)) and profile
S2(I, i + 1). If j∗ is completed, then return to the top of the loop.

If j∗ is not completed, then j∗ is incomplete job 1. Perform swaps to move all
executions of incomplete job 1 to machine 1. Because we have swapped with all
other incomplete jobs, there is no time when job 1 is not running and some other
incomplete job is running. Thus, the containment property holds for incomplete
job 1.

Set k = 2. While k ≤ m and there are incomplete jobs that have not been num-
bered, let j∗ be the lowest numbered job greater than N (k − 1) that is unfinished
at time ri+1. Job j∗ will be incomplete job k. For any job j > j∗, update S2(Ii)
by performing swap(j∗, j). Again, by Lemma 4.14, each swap operation reduces
D(S2(Ii)) and profile S2(I, i + 1). Note job j∗ cannot complete because any time
it is running must be contained within the time incomplete job 1 is running, and
p(N (1), ri , S2(I)) ≤ p(j∗, ri , S2(I)). Furthermore, there is no time when an in-
complete job is running on machines k through m and job j∗ is not. Thus, the
containment property holds for job j∗. Swap all executions of job j∗ to machine k,
increment k by 1, and return to the beginning of this loop. When we exit this loop,
the schedule S2(Ii) is compliant.

Finally, we manipulate S2(Ii) so that each machine processes the completed jobs
in S2(Ii) before that machine does any processing of the at most one incomplete
job it executes in S2(Ii). Break interval Ii into maximal subintervals I (1), I (2), . . . ,
such that during subinterval I (j), the jobs being processed by the m machines are
unchanging. We call an interval I (j) a q-interval if it contains exactly q jobs that
are not completed in S2(Ii).

We now show that if I (i) is a j-interval while I (i + 1) is a q-interval where
j > q, then we can swap I (i) and I (i +1) without increasing idle time. Assume for
the moment that I (i) and I (i + 1) have the same length. We now need to identify
jobs that can swap so that I (i + 1) is now a j-interval, I (i) is a q-interval, we do
not increase idle times, and we do not increase the final profile. By our containment
property, we know that the q incomplete jobs in I (i + 1) are incomplete job 1
through incomplete job q and the j incomplete jobs in I (i) are incomplete job 1
through incomplete job j . Thus, the extra incomplete jobs in I (i) are incomplete
jobs q + 1 through incomplete job j . Furthermore, there are j − q extra completed
jobs in interval I (i +1) that are not in I (i). So, the first thing we do is update S2(Ii)
by rearranging the completed jobs in interval I (i + 1) so that the j − q completed
jobs on machines q + 1 through j are different from any of the completed jobs in
interval I (i). This has no effect on D(S2(Ii)) or S2(I, i + 1) since jobs have only

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:15

been migrated. We now update S2(Ii) by swapping the incomplete jobs in I (i) on
machines q + 1 through j with the completed jobs in I (i + 1) on machines q + 1
though j . This swap results in a legal schedule because of our precautions to ensure
that the jobs moved were not already run in the subinterval they were moving to.
Profile S2(Ii) is unaffected because the only changes made were when jobs were
scheduled, not how much time each job received. D(S2(Ii)) can only decrease since
the only jobs moved later are incomplete jobs which means their overall idle time
is unaffected. Finally, the containment property for incomplete jobs is not affected
by this operation.

Now suppose I (i) is longer than I (i +1). In this case, we divide interval I (i) into
an initial piece I (i)′ that has length identical to I (i + 1) and a second piece that has
the remainder of I (i). We now update S2(Ii) by performing the swap between I (i)′
and I (i + 1) as described above. Likewise, if I (i + 1) is longer than I (i), we divide
I (i + 1) into a second piece I (i + 1)′ that has length identical to I (i) and an initial
piece that has the remainder of I (i + 1). We then update S2(Ii) by performing the
swap between I (i) and I (i +1)′ as described above. In either case, at the end of the
swap, we have three subintervals, but all the desired properties hold for the three
subintervals.

We continue updating S2(Ii) by performing these swaps until there are no swaps
left to perform. Schedule S2(Ii) is still compliant, each machine has at most one
incomplete job, and these jobs are processed after any completed jobs on the same
machine. Furthermore, D(S2(Ii)) ≤ D(S1(Ii)) and S2(I, i + 1) ≤ S1(I, i + 1), and
the result follows.

A crucial property of canonical partial schedules is that they do not affect the
relative position of jobs ordered by remaining processing time.

COROLLARY 4.17. Consider any input instance I , any i such that 1 ≤ i <
r (I), and any schedule S(I) where S(Ii) is a canonical partial schedule. Consider
any pair of jobs j1 and j2 in profile S(I, i) where p(j1, ri) < p(j2, ri). Then
p(j1, ri+1) ≤ p(j2, ri+1).

PROOF. This follows from the fact that canonical partial schedules are compli-
ant.

4.5. OPTC. Our primary use for canonical schedules will be the following.
Given any input instance I , and any optimal schedule Opt(I), for each interval
Ii for 1 ≤ i < r (I), we associate a canonical partial schedule OptC(Ii) whose
existence is guaranteed by Lemma 4.16. Note there may be more than one such
canonical partial schedule OptC(Ii) possible. We can use any such schedule as
OptC(Ii). Finally, we define OptC(Ir (I)) = Opt(Ir (I)).

Note that the partial schedules OptC(Ii) for 1 ≤ i ≤ r (I) cannot be concatenated
to form a complete schedule for Ii . That is, when forming OptC(I2), we assume
that Opt(I) was followed exactly in the time interval [0, r2); in particular, Opt(I1)
was used for I1 instead of OptC(I1).

We will use these canonical schedules as follows. First, because of Lemma 4.16,
we know that D(OptC(Ii)) ≤ D(Opt(Ii)). Thus, we will use D(OptC(Ii)) as a lower
bound on D(Opt(Ii)). Second, also because of Lemma 4.16, we know that if we
replace Opt(Ii) with OptC(Ii), we obtain a profile P where P ≤ Opt(I, i + 1). We
use the notation OptC(I, i +1) to define this profile P . That is, for 1 ≤ i ≤ r (I)−1,
we define profile OptC(I, i + 1) to be the profile that results from concatenating

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:16 E. TORNG AND J. MCCULLOUGH

schedule Opt(Ii−1) with schedule OptC(Ii). We define OptC(I, 1) to be the empty
profile containing no jobs.

Example 5. Let I = {(0, 1), (0, 1), (0, 8), (1, 1), (1, 1), (2, 1), (2, 1), (3, 1),
(3, 1)} ∪ {(x, 1), (x, 1) | 8 ≤ x ≤ 999}, and suppose we have 2 machines. The
optimal schedule is to allocate machine one to the job of size 8 in the interval
[0, 8) and to jobs of size 1 in the time interval [8, 1000) while allocating machine
two to jobs of size 1 in the time interval [0, 1000). Opt(I1) thus is to allocate one
machine to the job of size 8 in the time interval [0, 1) and one machine to a job
of size 1 in the time interval [0, 1). On the other hand, the only canonical partial
schedule OptC(I1) is to allocate both machines to the two available jobs of size 1.
Thus, Opt(I, 2) = 〈0, 1, 7〉 while OptC(I, 2) = 〈0, 0, 8〉. Similarly, Opt(I2) also
allocates one machine to the job with remaining length 7 and one machine to a
job of size 1 while the only canonical partial schedule OptC(I2) allocates both ma-
chines to jobs of size 1. In this case, Opt(I, 3) = 〈0, 0, 1, 1, 6〉 while OptC(I, 3) =
〈0, 0, 0, 1, 7〉.

5. Proof of Main Result

We now prove the main result. Let I be any input instance. Consider any optimal
schedule Opt(I) for input instance I . We will prove that D(SRPT(I s)) ≤ D(Opt(I))
where s ≥ 2 − 1/m.

By definition, D(Opt(I)) = ∑r (I)
i=1 D(Opt(Ii)). By Lemma 4.16, D(OptC(Ii)) ≤

D(Opt(Ii)) for 1 ≤ i ≤ r (I). Ideally, we would show that for each i in the range
1 ≤ i ≤ r (I) that D(SRPT(I s

i)) ≤ D(OptC(Ii)). However, this may not be true as
I s
i is s times longer than Ii for 1 ≤ i < r (I).

In order to make such a comparison, we define for analysis purposes only the
Relaxed Shortest Remaining Processing Time (RSRPT) schedule that will work on
input instance I , not I s . We will show that for 1 ≤ i < r (I), D(RSRPT(Ii)) ≤
D(OptC(Ii)) and that RSRPT(I, i) ≤ OptC(I, i) for 1 ≤ i ≤ r (I). On the other
hand, we will also show that SRPT(I s

i) is contained by RSRPT(Ii) for 1 ≤ i ≤ r (I).
This implies that the total idle time incurred by RSRPT(I) is at least the total idle
time incurred by SRPT(I s).

5.1. RELAXED SRPT (RSRPT). We construct RSRPT(I) interval by interval.
For 1 ≤ i ≤ r (I), we create RSRPT(Ii) by combining elements of OptC(Ii) with
constraints imposed by SRPT(I s, i + 1). Some of the partial schedules RSRPT(Ii)
may be illegal, but we still concatenate them together to form RSRPT(I). It is
important to note that RSRPT is dependent on the stretch factor s. Technically, we
should include s as a parameter in the definition of RSRPT(I), but we omit s to
simplify notation.

Before we construct RSRPT(Ii), we define the following quantities based on
OptC(Ii). For 0 ≤ i ≤ r (I) − 1, let OptC(I, i + 1) denote the profile at the end
of OptC(Ii) not including jobs released at time ri+1. Remember OptC(I, 1) is an
empty profile containing no jobs. Let k be the number of jobs with zero remaining
length in OptC(I, i + 1) (some of these jobs may have been completed prior to ri).
Finally, let jobs OptC(I, i +1)[k +1] through OptC(I, i +1)[k + l] denote the jobs
that received some processing in OptC(Ii) but are not complete by time ri+1, and
let e j denote the processing time received by job OptC(I, i + 1)[k + j].

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:17

Now consider profile RSRPT[I, i], the vector of remaining lengths of jobs to be
processed by RSRPT in interval Ii . We first give enough processing time to complete
jobs RSRPT[I, i][j] for 1 ≤ j ≤ k. That is, RSRPT must complete at least k jobs
by the end of RSRPT(Ii). Note, some of these jobs may start with zero remaining
length meaning they were completed in RSRPT(Ii−). Now for 1 ≤ j ≤ l, we assign
the minimum of e j and the time required to complete job RSRPT[I, i][k + j] to
this job in RSRPT(Ii). That is, either job RSRPT[I, i][k + j] is completed or it
receives e j processing time. Let q be the largest value of j for 0 ≤ j ≤ l such that
RSRPT[I, i][k + j] is completed by the above assignment.

Let X denote the total amount of processing OptC(Ii) devoted to jobs OptC(I, i +
1)[j] for 1 ≤ j ≤ k + q minus the total amount of processing RSRPT(Ii) devoted
to jobs RSRPT[I, i][j]. We will prove later that X must be nonnegative.

The remainder of the construction of RSRPT(Ii) is characterized by the following
pseudocode. Intuitively, we apply the excess processing time to the remaining jobs
with priority given to the shortest remaining jobs. The limits on the application
of processing to a job are either the amount needed to complete it or the amount
received by the corresponding job in the profile SRPT(I s, i + 1). The second limit
ensures that SRPT(I s, i + 1) is contained in RSRPT(I, i + 1).

Let y = k + q + 1.
Define X y = X .
While X y > 0 {

Add ay processing time to RSRPT[I, i][y] until
RSRPT[I, i][y] is complete OR
RSRPT(I, i + 1)[y] = SRPT(I s, i + 1)[y] OR
We have added X y processing time.

Let X y+1 = X y − ay .
Increment y by 1

}

Example 6. Let I = {(0, 4), (0, 4), (0, 32), (4, 4), (4, 4), (4, 4), (4, 4), (10, 4),
(10, 4)} ∪{(x, 1), (x, 1) | 32 ≤ x ≤ 1000}, and suppose there are 2 machines
and s = 3/2. For I s , the first four release times are 0, 6, 15, and 48, and the last
release time is 1500.

Opt(I1) is the following: schedule the large job of size 32 on machine 1 in the
interval [0, 4) while using the other machine to complete a size 4 job. There is only
one possibility for OptC(I1) which is to use both machines to complete size 4 jobs.
Meanwhile, SRPT(I s

1) completes both jobs of size 4 on the two machines in interval
[0, 4) and then schedules the job of size 32 on machine 1 in the interval [4, 6) while
machine 2 is idle in interval [4, 6). Finally, RSRPT(I1) = OptC(I1).

Things get more interesting when we consider I2. In this case, Opt(I2) is to
schedule the large job on machine 1 in the interval [4, 10) while completing one
size 4 job on machine 2 in [4, 8) and executing another size 4 job on machine 2 in
interval [8, 10). There are several possibilities for OptC(I2) including (a) completing
3 size 4 jobs by time 10 by scheduling one on machine 1 in [4, 8), one on machine
2 in [6, 10), and the third on machine 1 in [8, 10) and machine 2 in [4, 6). Another
option is (b) completing two size 4 jobs by time 8 and finishing half of two more size
4 jobs by time 10. Suppose we go with option (b). In this case, we have OptC(I, 3) =
〈0, 0, 0, 2, 2, 4, 28〉, so k = 3, l = 2, e1 = 2, and e2 = 2. Meanwhile SRPT(I s

2)
completes two jobs of size 4 in the interval [6, 10), two jobs of size 4 in the interval
[10, 14), and, in the interval [14, 15), schedules the job with remaining length 30 on

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:18 E. TORNG AND J. MCCULLOUGH

machine 1 while idling machine 2. Thus, SRPT(I s, 3) = 〈0, 0, 0, 0, 0, 0, 29〉. So,
when we compute RSRPT(I2), we first ensure that at least three jobs are complete by
time 10. Note that two jobs of size 4 were completed in RSRPT(I1), so this means
RSRPT must complete at least one more size 4 job. So, on machine 1, RSRPT
completes one size 4 job in the interval [4, 8). Next, we take the next two shortest
jobs in RSRPT[I, 2] which are two more size 4 jobs and assign to them 2 units of
work each as e1 = 2 and e2 = 2. In this case, that means we schedule one job on
machine 2 in the interval [4, 6) and the other job on machine 1 in the interval [8, 10).
This leaves us with X = 12−8 = 4. We now distribute the X4 = X = 4 remaining
time units to the remaining jobs. We first consider the 4th job in RSRPT[I, 2],
namely the size 4 job scheduled on machine 2 in the interval [4, 6). The 4th job
in SRPT(I s, 3) has remaining length 0, so it is allowable to devote 2 remaining
time units to complete this job in RSRPT(I2), so RSRPT(I2) completes this job on
machine 2 in the interval [4, 8). The quantity X5 = X4 − 2 = 2. We next consider
the 5th job in RSRPT[I, 2], namely the size 4 job scheduled on machine 1 in the
interval [8, 10). The 5th job in SRPT(I s, 3) has remaining length 0, so it is allowable
to devote the X5 = 2 remaining time units to complete this job in RSRPT(I2), so
RSRPT(I2) completes this job on machine 1 in the interval [8, 12). The quantity
X6 = X5 − 2 = 0 and we are done. Note that RSRPT(I2) is an illegal schedule as
it extends into the time interval [10, 12).

5.2. SRPT CHARGING. For any input instance I , we define a method we call
SRPT Charging for computing D(RSRPT(Ii)) for 1 ≤ i ≤ r (I). Furthermore, we
will use SRPT Charging to compute a lower bound on D(OptC(Ii)). When working
with OptC(Ii), we use DS(OptC(Ii)) to denote the idle time incurred by canonical
partial schedule OptC(Ii) as computed by SRPT charging.

The basic idea is to take the profile at the start of interval Ii , either RSRPT[I, i]
or OptC[I, i], perform SRPT on this profile assuming no jobs are released after
time ri , and then charge jobs for the idle time they incurred in the corresponding
partial schedule. We first note that RSRPT(Ir (I)) and OptC(Ir (I)) can both be SRPT
applied to the jobs in RSRPT[I, r (I)] and OptC[I, r (I)] as SRPT is optimal when
there is only a single release time. Thus, we only need to worry about Ii for 1 ≤
i < r (I).

More formally, we first order the jobs in either profile RSRPT[I, i] or OptC[I, i]
in non-decreasing order of remaining length breaking ties arbitrarily for jobs com-
pleted in the partial schedule RSRPT(Ii) or OptC(Ii). For jobs that are not completed
in this partial schedule, we break ties by the amount each job is processed. If one job
is processed more in the partial schedule, it receives a smaller number. Otherwise,
ties are broken arbitrarily.

We use the ordering to charge idle time as follows. Suppose job numbered j is
processed for e j time units in RSRPT(Ii) or OptC(Ii). We then say that jobs j + m,
j + 2m, . . . incur e j units of idle time and we will charge these incurred idle times
to job j . We charge this way because, as we noted above, if we ran SRPT on this
instance and no other jobs arrived, job j would delay exactly jobs j + m, j + 2m,
etc. for e j time units.

Example 7. Let I be the input instance from Example 6, and consider interval
I2. The profile RSRPT[I, 2] = 〈0, 0, 4, 4, 4, 4, 32〉. We then charge idle times as
follows. Jobs 5 and 7 are delayed by job 3 for 4 time units each. Job 6 is delayed

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:19

by job 4 for 4 time units. Finally, job 7 is delayed by job 5 for 4 time units. Thus,
we compute D(RSRPT(I2)) = 16.

The profile OptC[I, 2] = 〈0, 4, 4, 4, 4, 4, 28〉. In OptC(I2), jobs 2 and 3 incur
no idle time, jobs 4 and 5 incur 4 units of idle time each, and jobs 6 and 7 incur
6 units of idle time each. Thus, D(OptC(I2)) = 20. Applying SRPT charging, we
observe that DS(OptC(I2)) = 20 as well. That is, jobs 4 and 6 are delayed by job
2 for 4 units each, jobs 5 and 7 are delayed by job 3 for 4 units each, and job 6 is
delayed by job 4 for 2 units while job 7 is delayed by job 5 for 2 units.

For some canonical partial schedules OptC(Ii), DS(OptC(Ii)) < D(OptC(Ii)).

Example 8. Let I = {(0, 1), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (2, 7)}. There are
only two possible two machine canonical partial schedules for I1. The first, denoted
by S1(I1), is the partial schedule that runs the two jobs of size 1 on one machine
and one job of size 2 on the second machine. The second, denoted by S2(I1), is
to run both jobs of size 1 on the two machines in the time interval [0, 1] and then
the jobs of size 2 and 3 on the two machines in the time interval [1, 2]. D(S1(I1))
is 7; the second job of size 1 incurs one unit of idle time, and each of the jobs of
size 3, 4 and 5 each incur two units of idle time. However, DS(S1(I1)) = 6. Jobs
3 and 5 are delayed by job 1 for 1 time unit each, jobs 4 and 6 are delayed by
job 2 for 1 time unit each, and job 5 is delayed by job 3 for 2 time units. Thus,
DS(S1(I1)) < D(S1(I1)). We now show that for all canonical partial schedules
OptC(Ii), DS(OptC(Ii)) ≤ D(OptC(Ii)) so we can use DS(OptC(Ii)) as a lower
bound for D(OptC(Ii)) which is a lower bound for D(Opt(Ii)).

LEMMA 5.1. For any input instance I , and any 1 ≤ i ≤ r (I)−1, DS(OptC(Ii))
≤ D(OptC(Ii)).

PROOF. Let J denote the set of non-zero remaining job lengths at the beginning
of the interval of Ii . Let C(Ii) be the canonical partial schedule under consideration.
Let J ′ be the set of non-zero remaining job lengths at ri+1, the end of canonical
partial schedule C(Ii), ignoring all jobs that arrive after time ri . We treat J and J ′
as input instances where all jobs are released at time 0, and the lengths of the jobs
are the remaining job lengths in J and J ′, respectively.

The first observation is that one way to schedule input instance J is to use
schedule C(Ii) in the interval [0, ri+1 − ri) and then SRPT(J ′) after time ri+1 − ri .
Another way to schedule input instance J is to use SRPT. Because SRPT minimizes
total flow time and total idle time in cases where there is a single release time,
D(SRPT(J)) ≤ D(C(Ii)) + D(SRPT(J ′)).

We can decompose D(SRPT(J)) into two components: (a) DS(C(Ii)) which
is SRPT charging of canonical partial schedule C(Ii) and (b) D(SRPT(J)) −
DS(C(Ii)). The crucial observation is that D(SRPT(J)) − DS(C(Ii)) =
D(SRPT(J ′)). This implies DS(C(Ii))+ D(SRPT(J ′)) = D(SRPT(J)) ≤ D(C(Ii))
+ D(SRPT(J ′)) which gives us the desired result that DS(C(Ii)) ≤ D(C(Ii)).

The reason D(SRPT(J)) − DS(C(Ii)) = D(SRPT(J ′)) is, because of Corollary
4.17, the relative order of remaining lengths of jobs in J ′ is identical to that in J .
Thus, each job in J ′, when run in SRPT order, will delay exactly the same jobs as
it did in J , and the result follows.

Example 9. Let I be the input instance from Example 6, and consider interval
I2. The profile OptC[I, 2] = 〈0, 4, 4, 4, 4, 4, 28〉, so the input instance J = {(0, 4),

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:20 E. TORNG AND J. MCCULLOUGH

(0, 4), (0, 4), (0, 4), (0, 4), (0, 28)}. Consider the canonical partial schedule
OptC(I2) that, when translated to operate on instance J , behaves as follows. On ma-
chine 1, it schedules job 1 in the interval [0, 4), job 2 in the interval [4, 5), and job 4
in the interval [5, 6). On machine 2, it schedules job 2 in the interval [0, 3) and job 3
in the interval [3, 6). It leaves an input instance J ′ = {(0, 1), (0, 3), (0, 4), (0, 28)}.

Now consider SRPT(J). In this schedule, job 1 will delay jobs 3 and 5. Job 2 will
delay jobs 4 and 6. Job 3 will delay job 5, and job 4 will delay job 6. When we con-
sider J ′, job i of J ′ is job i +2 of J for 1 ≤ i ≤ 4, so each job of J ′, when scheduled
by SRPT, will delay the same jobs as it would in J when scheduled by SRPT.

More specifically, DS(OptC(I2)) = 20 because job 1 delays jobs 3 and 5 for 4 time
units, job 2 delays jobs 4 and 6 for 4 time units, job 3 delays job 5 for 3 time units,
and job 4 delays job 6 for 1 time unit. In comparison, D(SRPT(J)) = 24. Finally,
D(SRPT(J ′)) = 4 as job 1 of J ′ delays job 3 for 1 time unit and job 2 of J ′ delays job
4 for 3 time units. Thus we see that D(SRPT(J)) = DS(OptC(I2)) + D(SRPT(J ′))
for this example.

5.3. RSRPT INCURS AT LEAST AS MUCH IDLE TIME AS STRETCHED SRPT. The
key to proving that RSRPT incurs at least as much idle time as SRPT does on a
stretched input instance is showing that the profiles created by SRPT on I s are
always contained within the profiles created by RSRPT on I ; that is SRPT(I s, i) ⊆
RSRPT(I, i) for 1 ≤ i ≤ r (I). To prove this containment property, we need the
following technical results.

LEMMA 5.2. Consider any set of jobs J all released at time 0, any number
of machines m, any subset of jobs K ⊆ J where |K | ≤ m, and any time t such
that SRPT completes all the jobs in J by time t. Let the jobs in K have processing
times p1 through p|K | where pi ≤ p j if i < j . Then schedule SRPT(J − K) has
the following property. All m machines are idle by time t, and there are distinct
machines m1, . . . , m|K | such that mi completes by time t − pi .

PROOF. SRPT is a greedy scheduling algorithm. In the case when all jobs are
released at time 0, we can simulate its execution in the following way. It schedules
the jobs in non-decreasing order of size placing the smallest unscheduled job (but
no smaller than any job already scheduled) on the machine that currently has the
smallest completion time. After this job is scheduled but before the next job is
scheduled, this machine will now have the largest completion time.

Let us label the machines in SRPT(J) in non-increasing order of completion
time; that is, machine 1 completes last and has the most total processing time,
and machine m completes first and has the least total processing time. Because of
the way that SRPT schedules jobs, it follows that machine 1 receives a total of
q = �J/m� jobs including the largest job in J . We label the m largest jobs to be
level q jobs, the next largest m jobs to be level q −1 jobs, and so on. Some machines
do not have a level 1 job. Also, for 1 ≤ i ≤ q, the level i job assigned to machine
1 is larger than the level i job assigned to any other machine.

We now examine what occurs when the jobs in K are removed from the input
instance. It is trivial to observe that no machine will have a completion time larger
than machine 1’s original completion time. We now show that there will be machines
with the proper holes. Assume the jobs in K are numbered from 1 to |K | with |K |
being the largest job. We will show that for 1 ≤ i ≤ K , machine i completes by
time t − pi .

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:21

Let l(i) be the level of job i . It is trivial to observe that machine i processes at
most one job from each level. The key observation is that machine i will not process
any job of level l(i). It will not process job i or any larger job from level l(i) because
i smaller jobs have been removed. That is, in place of its original level l(i) job, it
will select a level l(i) + 1 job. It cannot process a smaller level l(i) job because we
have removed at most i − 1 jobs within levels 1 through l(i) − 1. That is, in place
of its original job of level j < l(i), it must process a different level j job. Thus,
machine i’s modified completion time is at most machine 1’s original completion
time minus the largest level l(i) job. This is at most t − pi and the result follows.

Example 10. Let J = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (release times ignored because
all jobs are released at time 0), and suppose there are 4 machines. Machine 1 will
have jobs 2, 6, and 10 for a completion time of 18. Machine 2 will have jobs 1, 5,
and 9 for a completion time of 15. Machine 3 will have jobs 4 and 8 for a completion
time of 12. Finally, machine 4 will have jobs 3 and 7 for a completion time of 10.
Jobs 7 through 10 are level 3 jobs, jobs 3 through 6 are level 2 jobs, and jobs 1 and
2 are in level 1 jobs.

Suppose K = {4}; the job in K is a level 2 job in J . We need to show that in
the resulting schedule SRPT(J − K), the old machine 1 now completes by time
18 − 6 = 12, where 6 is the largest level 2 job in J , and we need to show that all
other machines complete by time 18. In SRPT(J −K), the old machine 1 is assigned
level 1 job 2 (as it was in SRPT(J)) and level 3 job 7 (it received level 2 job 6 in
SRPT(J)). Note that this machine is not assigned any level 2 job in SRPT(J − K),
but it was assigned level 3 job 10 in SRPT(J). This machine has a completion time
of 2 + 7 = 9 ≤ 12. In the proof, in place of receiving job 7, we consider the
possibility machine one might receive level 3 job 10 and thus have a completion
time of 12. The other machines all stay below 18, the original completion time of
machine 1, as they receive at most 1 job from each of the 3 levels. In particular,
the old machine 2 receives jobs 1, 6, and 10 for a completion time of 17 while the
other machines each receive only 2 jobs.

LEMMA 5.3. Consider any input instance I , any 1 ≤ i < r (I), and any canon-
ical partial schedule OptC(Ii). Let k, l, and e j for 1 ≤ j ≤ l be the constants from
the definition of RSRPT(Ii). Consider job SRPT[I s, i][k + j] for 1 ≤ j ≤ l. Either
this job has 0 remaining processing time in SRPT(I s, i + 1) or SRPT applied at
least e j processing time to this job in interval I s

i .

PROOF. Consider input instance I . Suppose at release time ri , we release l
additional jobs of size e1 through el . Let this modified input instance be denoted by
I ′ and its stretched variant as I s ′

.
We can reorganize OptC(I ′

i) to finish these l new jobs instead of processing jobs
OptC(I, i + 1)[j] for k + 1 ≤ j ≤ k + l in C(Ii). Thus, OptC(I ′, i + 1) will now
have k + l complete jobs.

By Corollary 4.10, we know that SRPT(I s ′
, i +1) ≤ OptC(I ′, i +1). This implies

SRPT(I s ′
, i + 1) must have at least k + l complete jobs. Suppose z ≤ l of these

k + l complete jobs are the newly injected jobs. If so, these z jobs are the z smallest
ones with sizes el , el−1, . . ., el−z+1. It then follows that the k + l − z shortest jobs
in SRPT[I s, i] must be complete in SRPT(I s ′

, i + 1).
These same k+l−z jobs must also be complete in SRPT(I s, i+1) since removing

the extra jobs will not cause these jobs to receive any less processing time in interval

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:22 E. TORNG AND J. MCCULLOUGH

Ii . Furthermore, by the previous lemma, there must be holes of size at least el−z+1

through el into which jobs SRPT[I s, i][j] for k + l − z + 1 ≤ j ≤ k + l can be
slotted with the slots being assigned to jobs in inverse order of size; that is, the
smallest job gets the largest slot. Thus, the result holds.

COROLLARY 5.4. SRPT(I s, i) ⊆ RSRPT(I, i) for 1 ≤ i ≤ r (I).

PROOF. This is by induction on i . The base case with i = 1 is trivially true
as the profile RSRPT(I, 1) is identical to that of SRPT(I s, 1) as no jobs have been
processed yet.

Let us now assume the result holds for 1 ≤ i < r (I) and we wish to show it
holds for i + 1. We first observe by Corollary 4.7 that SRPT(I s, i) ⊆ RSRPT(I, i)
implies that SRPT[I s, i] ⊆ RSRPT[I, i].

Let k be the constant from the definition of RSRPT(Ii). We first observe that
the first k jobs in SRPT(I s, i + 1) must be complete or else SRPT(I s, i + 1) �≤
OptC(I, i + 1). The containment property must hold after we try to assign e j time
units to jobs RSRPT[I, i][k + j] for 1 ≤ j ≤ k as Lemma 5.3 shows that SRPT(I s

i)
either finishes job SRPT[I s, i][k + j] or assigns it at least e j units of processing.
Finally, the containment property is maintained in the final stages of the RSRPT
algorithm when RSRPT assigns the final X units of processing time to jobs. This is
true because job RSRPT[I, i][y] cannot be given enough processing time to make
RSRPT(I, i + 1)[y] < SRPT(I s, i + 1)[y].

We now show that RSRPT incurs at least as much idle time as stretched SRPT.

Definition 5.5. Let I be any input instance, A be SRPT or RSRPT, and
1 ≤ i ≤ r (I). We define Incur(A, I, i) to be the idle time cost incurred by
algorithm A on input instance I in the interval [0, ri). We define Complete(A, I, i)
and Complete[A, I, i] to be the idle time cost incurred by A to finish
all the jobs in profiles A(I, i) and A[I, i], respectively. Finally, we de-
fine Cost(A, I, i) = Incur(A, I, i) + Complete(A, I, i) and Cost[A, I, i] =
Incur(A, I, i) + Complete[A, I, i].

Note that the total idle time cost incurred by either algorithm A is exactly
Cost[A, I, r (I)].

LEMMA 5.6. For any input instance I and any 1 ≤ i ≤ r (I) − 1,
Cost[SRPT, I, i] = Cost(SRPT, I, i + 1) and Cost[RSRPT, I, i] = Cost(RSRPT,
I, i + 1).

PROOF. The key observation is that for A as SRPT or RSRPT, I ncur (A, I, i +
1) − I ncur (A, I, i) = Complete[A, I, i] − Complete(A, I, i + 1).

LEMMA 5.7. For any profiles P1 and P2 where P1 ⊆ P2, SRPT(P1 ∪ { j}) −
SRPT(P1) ≤ SRPT(P2 ∪ { j}) − SRPT(P2) where j is any job.

PROOF. For any profile P , we can compute SRPT(P) by ordering the jobs from
largest to smallest where job 1 is the largest job and job |P| is the smallest job.
Given this ordering, jobs 1 through m each delay 0 jobs, jobs m + 1 through 2m
each delay 1 job, and so on. In general, job i delays �(i − 1)/m� jobs. Let j1 be j’s
index when added to P1, and let j2 be j’s index when added to P2. In case of ties, we
make j1 and j2 as small as possible. Because P1 ⊆ P2, j1 ≤ j2. The jobs that will
contribute to SRPT(P1 ∪ { j}) − SRPT(P1) are job j , and jobs with indices k ≥ j1

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:23

that are perfect multiples of m. Job j will delay �(j1 − 1)/m� jobs in P1 ∪ { j}
while it delayed no jobs in P1. The other jobs k will each delay one extra job in
P1 ∪ { j}. Likewise, the jobs that will contribute to SRPT(P2 ∪ { j}) − SRPT(P2) are
job j , and jobs with indices k ≥ j2 that are perfect multiples of m. Job j will delay
�(j2 − 1)/m� jobs in P2 ∪ { j} while it delayed no jobs in P2. The other jobs k will
each delay one extra job in P2 ∪ { j}. For the jobs k ≥ j2 that are perfect multiples
of m, since P1 ⊆ P2, the job k in P2 increases SRPT(P2 ∪ { j}) − SRPT(P2) at least
as much as the corresponding job k in P1 increases SRPT(P1 ∪ { j}) − SRPT(P1).
On the other hand, the jobs in P1 with indices j1 ≤ k < j2 that are perfect multiples
of m must be no larger than j by definition of j1. Furthermore, the number of such
k plus �(j1 − 1)/m� is no larger than �(j2 − 1)/m�. Thus, the contribution of these
jobs plus job j to SRPT(P1 ∪ { j}) − SRPT(P1) is no larger than the contribution of
job j to SRPT(P2 ∪ { j}) − SRPT(P2) and the result follows.

THEOREM 5.8. For any input instance I , D(SRPT(I s)) ≤ D(RSRPT(I)).

PROOF. The theorem can be restated as Cost[SRPT, I s, r (I)] ≤ Cost[RSRPT,
I, r (I)]. It is easy to see that Cost(SRPT, I s, 1) = Cost(RSRPT, I, 1) = 0. For 1 ≤
i ≤ r (I), Corollary 5.4, Fact 4.6 and Lemma 5.7 imply that Cost[RSRPT, I, i] −
Cost(RSRPT, I, i) ≤ Cost[SRPT, I s, i] − Cost(SRPT, I s, i). That is, introducing
the jobs released at time ri in I increases the Complete cost of RSRPT more
than introducing the jobs released at time r s

i in I s increases the Complete cost of
SRPT. This means that if we have Cost(SRPT, I s, i) ≤ Cost(RSRPT, I, i), then
we get Cost[SRPT, I s, i] ≤ Cost[RSRPT, I, i]. Combining this observation with
Lemma 5.6 allows us to go from Cost(SRPT, I s, 1) = Cost(RSRPT, I, 1) to the
desired Cost[SRPT, I s, r (I)] ≤ Cost[RSRPT, I, r (I)].

5.4. OPT INCURS AT LEAST AS MUCH IDLE TIME AS RSRPT. In this section,
let k, q, l and e j for 1 ≤ j ≤ l be the constants from the definition of RSRPT(Ii).

LEMMA 5.9. For any 1 ≤ i ≤ r (I), RSRPT(I, i) ≤ OptC(I, i).

PROOF. We prove this by induction on i . The base case with i = 1 is trivially
true as the profiles are both empty. Assume the result holds for 1 ≤ i < r (I).
We now need to show the result holds for i + 1. Transitivity along with
RSRPT(I, i) ≤ OptC(I, i) and OptC(I, i) ≤ Opt(I, i) imply that RSRPT(I, i) ≤
Opt(I, i). Corollary 4.7 yields RSRPT[I, i] ≤ Opt[I, i].

We now argue that RSRPT spends no more time on the first k completed jobs in
Ii than C does. Suppose this were not true. That would mean that RSRPT spends
Y > 0 extra time units on the first completed k jobs than C does. This would
mean that the prefix sum of the first k jobs in Opt[I, i] must be Y smaller than
the prefix sum of the first k jobs in RSRPT[I, i], but this is not possible because
RSRPT[I, i] ≤ Opt[I, i]. This also proves that the value X in the construction of
RSRPT(Ii) must be non-negative.

Suppose that RSRPT(I, i +1) is not less than OptC(I, i +1). Then there must be
a smallest integer j such that RSRPT j (I, i + 1) > OptC j (I, i + 1). We now show
that no such j exists. We first examine how RSRPT doles out the X extra processing
time it gains within the first k + q jobs. Specifically, the rules will be applied in
the order given. That is, some consecutive set of jobs will be completed, then some
consecutive set of jobs will be run until they have received as much total processing
as the corresponding job will have received in stretched SRPT’s schedule, and

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

1:24 E. TORNG AND J. MCCULLOUGH

finally at most one job will receive the remaining surplus amount of processing
time. This means in RSRPT(I, i + 1), the first a ≥ k + q jobs are all complete,
the next b jobs all have the same remaining length as the corresponding jobs in
SRPT(I s, i + 1), and one final job receives some extra processing time. Clearly,
j > a as RSRPTa(I, i + 1) = 0. Likewise, j > a + b as RS R PT a+b(I, i + 1) =
SRPTa+b(I s, i + 1), and we know that SRPT(I s, i + 1) ≤ OptC(I, i + 1). Finally,
we will argue that j cannot be greater than a + b which shows that j cannot exist.

Consider any u ≥ a + b + 1. By our inductive hypothesis, RSRPTu[I, i] ≤
OptCu[I, i]. Furthermore, by the definition of u, a, b, and RSRPT, RSRPT must
devote at least as much processing time to the first u jobs of RSRPT(I, i +1) as OptC
does. These two facts combine to show that RSRPTu(I, i + 1) ≤ OptCu(I, i + 1)
and the result follows.

This leads to the following result.

COROLLARY 5.10. For any input instance I and any 1 ≤ i ≤ r (I), the idle
time incurred by partial schedule D(RSRPT(Ii)) ≤ DS(OptC(Ii)).

PROOF. The key observation is that for any integer x , RSRPT devotes less total
processing time in interval Ii to the first x jobs in RSRPT[I, i] than OptC does
to the first x jobs in Opt[I, i]. This clearly holds for x ≤ k as both RSRPT and
OptC complete the smallest k jobs and RSRPT[I, i] ≤ Opt[I, i]. This also holds
for x ≤ k + q because for k + 1 ≤ j ≤ k + q, RSRPT uses at most e j processing
time to complete the j th smallest job in Ii while OptC devotes e j time to the j th
smallest job in Ii . This also holds for x > k + l as we ensure that RSRPT(Ii) does
no more processing than OptC(Ii) does and OptC(Ii) devotes all its processing to
the first k + l jobs in OptC[I, i].

We now show this holds for k +q < x ≤ k + l. For k +q < j ≤ k + l, we ensure
that RSRPT processes job j in RSRPT[I, i] for at least e j time units. In particular,
for x < j ≤ k + l RSRPT processes each job j for at least as much time as OptC
does. Thus, the total time spent by RSRPT on the jobs up to x cannot exceed the
total time spent by OptC on the jobs up to x .

Given that SRPT charging more heavily charges the smaller jobs that run, this
observation implies the desired result.

COROLLARY 5.11. For any input instance I , D(RSRPT(I)) ≤ D(Opt(I)).

PROOF. This result immediately follows from the previous corollary.

THEOREM 5.12. For any input instance I , m available machines, and s ≥
2 − 1/m, D(SRPT(I s)) ≤ D(Opt(I)) and F(SRPT(I s)) ≤ F(Opt(I)).

6. Open Problems

We have shown that SRPT optimally uses sufficiently faster machines with respect to
minimizing total flow time. Some interesting open problems include the following.
Do any nonmigratory algorithms also have this property? We have shown that ex-
isting nonmigratory algorithms are not s-speed 1/s-competitive algorithms for any
s ≥ 1. Also, what is the smallest s such that SRPT (or any other online algorithm) is
an s-speed 1-competitive algorithm? This question addresses the tradeoff between
faster machines and lack of knowledge of the future.

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

SRPT Optimally Utilizes Faster Machines to Minimize Flow Time 1:25

ACKNOWLEDGMENT. The authors thank the anonymous referee for his or her very
helpful comments. They significantly improved the clarity of our presentation.

REFERENCES

ANDERSON, E., AND POTTS, C. 2004. On-line scheduling of a single machine to minimize total weighted
completion time. Math. Oper. Res. 29, 686–697.

AVRAHAMI, N., AND AZAR, Y. 2003. Minimizing total flow time and total completion time with immediate
dispatching. In Proceedings of the 15th ACM Symposium on Parallel Algorithms and Architectures. ACM,
New York, 11–18.

AWERBUCH, B., AZAR, Y., LEONARDI, S., AND REGEV, O. 2001. Minimizing the flow time without
migration. SIAM J. Comput. 31, 1370–1382.

BUSSEMA, C., AND TORNG, E. 2006. Greedy multiprocessor server scheduling. Oper. Res. Letters 34,
451–458.

CHEKURI, C., GOEL, A., KHANNA, S., AND KUMAR, A. 2004. Multi-processor scheduling to minimize
flow time with ε-resource augmentation. In Proceedings of the 34th Annual ACM Symposium on Theory
of Computing. ACM, New York, 363–372.

CHEKURI, C., KHANNA, S., AND ZHU, A. 2001. Algorithms for weighted flow time. In Proceedings of
the 31st Annual ACM Symposium on Theory of Computing. ACM, New York, 84–93.

CONWAY, R. W., MAXWELL, W. L., AND MILLER, L. W. 1967. Theory of Scheduling. Addison-Wesley,
Reading, MA.

COULSTON, C., AND BERMAN, P. 1999. Speed is more powerful than clairvoyance. Nord. J. Comput. 6,
181–193.

EDMONDS, J. 2000. Scheduling in the dark. Theoret. Comput. Sci. 235, 109–141.
GRAHAM, R. L., LAWLER, E. L., LENSTRA, J. K., AND RINNOOY KAN, A. H. G. 1979. Optimization and

approximation in deterministic sequencing and scheduling: A survey. Ann. Disc. Math. 5. 287–326.
KALYANASUNDARAM, B., AND PRUHS, K. 2000. Speed is as powerful as clairvoyance. J. ACM (JACM) 47,

617–643.
LEONARDI, S. 2003. A simpler proof of preemptive flow-time approximation. In Approximation and

On-line Algorithms. Lecture Notes in Computer Science. Springer-Verlag, New York.
LEONARDI, S., AND RAZ, D. 1997. Approximating total flow time on parallel machines. In Proceedings

of the 27th Annual ACM Symposium on Theory of Computing. ACM, New York, 110–119.
PHILLIPS, C., STEIN, C., TORNG, E., AND WEIN, J. 2002. Optimal time-critical scheduling via resource

augmentation. Algorithmica 32, 163–200.
SCHRAGE, L. E. 1968. A proof of the optimality of the shortest remaining processing time discipline.

Oper. Res. 16, 678–690.

RECEIVED APRIL 2006; REVISED NOVEMBER 2006 AND JUNE 2007; ACCEPTED NOVEMBER 2007

ACM Transactions on Algorithms, Vol. 5, No. 1, Article 1, Publication date: November 2008.

