
Ada: Still Our First Choice

Harold Youtzy, Jr.

Briar Cliff College

Abstract

Ada was first used at Briar Cliff in 1986.

Its use continued and settled as the

language of choice for the Data Structures

course. An NSF grant was pursued and

received for changing the Ada platform to

386s. The eventual success of that move has

solidified Ada’s place in our curriculum

and may precipitate its move as the first

language.

Historical perspective. In the spring of 1986, we

fielded our first Ada course, after purchasing a

Telesoft Ada compiler with Title III grant funds.

The first course was an one hour mini-course,

allowing myself and the students the opportunity

to get acquainted with the syntax of the

language and the operation of the compiler.

Programming assignments were rudimentary and

we considered basically the syntax differences

between Ada and Pascal. The students’

programming language experience to this point

was fairly limited and given the “get- acquainted”

objective of the course, we concentrated on

converting rough draft program solutions in

Pascal into more complete Ada programs. The

objective of the course was met and we decided

to continue our investigation of Ada the

following year.

Permission to copy without fee all or part of this material is granted
pmv!~~that the copks are not made or distributed for dueet commercial
advantage, the ACM copyright notice and the title of the publidion and ifs
date appear, and notice is given that copying is by permission of the
Association for Computing Maclunery. To copy otherwwe or qubh.sh,
requkes a fee and/or specific permission.

This time, we taught Ada as a full three hour

course utilizing Cohen’s text Ada as a Second

LanEuaEel. Much of this course was still devoted

to language syntax, but much more was covered

than we were able to cover in the previous

course. Indeed, we were able to cover Cohen’s

entire text, with the exception of the last chapter

on low level programming. The response of the

students was favorable, as it had been for the

first course. The valuative distinction between

the two classes was that more detailed programs

were written in the second class. Also noted
with the increased program size was that

response time was less than encouraging. We

were running our Telesoft Ada compiler on a

VAX 111750, and the students had been

accustomed to the efficiency of the VAX Pascal

compiler. . Improvements were made in

subsequent versions of the compiler, but our

first version was quite slow. Still, we had set out

to determine where Ada might fit within our

computer science curriculum and this course had

satisfied that objective. We concluded that Ada

would be best introduced to our students within
the Data Structures course. (Limited resources,

such as textbooks, and compiler inefficiency

precluded its use as the introductory

programming language. Introducing it beyond

Data Structures would limit its use to perhaps a

single course). We then began teaching Data

Structures using Ada as our programming

language during the 198711988 school year.

Our initial failures and subsequent successes in

that course for the first several years have been

detailed elsewhere. We agree wholeheartedly

with Michael Feldman and others who claim

allegiance to Ada in the Data Structures course.

The topics addressed in this course match very

well with the properties of Ada. The students

01992 ACM 0-89791-529-1/92/0011--0135 1.50 135

http://crossmark.crossref.org/dialog/?doi=10.1145%2F143557.143708&domain=pdf&date_stamp=1992-12-01


within the course often become disgruntled over

the fact that little time is spent on the syntax of

Ada, but even so, they readily acknowledge the

advantages Ada offers over Pascal. To help

address their frustrations, we submitted an NSF

Instrumentation and Laboratory Improvement

Grant proposal.

NSF Grant. The impetus behind our grant

proposal was to improve the student computer

lab, which would hopefully better facilitate the

use of Ada, not only within the Data Structures

course, but in additional upper level computer

science courses as well. As with many small,

private liberal arts colleges, funding for

improving hardware and software is, at best,

limited. Indeed, it was with federal Title III

Grant monies that our initial Telesoft Ada

compiler was purchased. Additionally, we have

a small number of majors in computer science,

graduating five or less students each year, so

courses which are taken solely by majors and

minors in computer science usually have 5-10

students enrolled.

We have been teaching Pascal as the primary

programming language in our entrance level

courses in computer science. Turbo Pascal has

been used for the last several years, and student

performance has improved as a result. Turbo

Pascal’s operating environment has enhanced

student interaction with the computer, reducing

the number of errors associated with compiling

and running programs, errors that are external to

language syntax and programming logic. Or if

not reducing these errors, then at least providing

quicker solutions to them. Consequently, more

attention could be devoted to developing

principles for problem solving and less time was

time needed with “administrivia,” reciting, ad

nauseam, all the “how- to’s” associated with

interaction of the student and the computer.

The Inclusion of the above paragraph is not

intended to provide an unconditional

endorsement for Turbo Pascal, but rather to

demonstrate that an user-friendly operating

environment contributes substantially to the

success of the student within the programming

courses. This is particularly true when previous

student use of a computer has been limited, and

especially true if previous use included common

software applications like word processing and

spreadsheet. Most of our students fit within

these categories.

Given the aforementioned student

disgruntlement over spending little time dealing

with the Ada language syntax, our objective

became to improve the hardware and software in

the computer lab. We felt that an improved

operating environment could assist the student

with learning the language syntax, or at least

minimize the amount of time spent correcting

compilation errors, Secondly, improved

hardware and software could significantly

improve turn- around time for the students. As

the usage of the VAX by the faculty and student

body increased, performance, in like fashion,

decreased. Using Ada only worsened the

performance. Although we were committed to

using Ada, its advantages were being

overshadowed by the symptoms common to a

computer system that was quickly becoming

outdated and overextended.

Our modest proposal, which was awarded, was to

move Ada off the VAX onto 386-based

machines. Eight machines were purchased for

student use and two were purchased for faculty

use. Additionally, a Micro VAX 3100 was

purchased and serves as a network file server

linking the grant purchased machines as well as

other 386-based machines recently procured by

the college. The Meridian Ada compiler was

initially selected for the 386s to be run as stand

alone, and the machines were later networked to

the Micro VAX. Compiler upgrades were also
installed as they became available.

Initial response. We would like to be able to

inform our readers of the tremendous success we

initially achieved as a result of the grant, but

unfortunately, such was not the case, In the

Data Structures course where we had hoped to

have the most success, we have had the least
success. When the 386s were purchased in the

fall of 1990, the stand alone version of

Meridian’s compiler was installed. The class

reaction was positive. Turn around time was

dramatically improved. Although we felt the

operating environment was not at the same ease-

of- use level as that of Turbo Pascal, it was a

significant improvement over what previously

existed. The students took longer to adjust to the

environment than they had with Turbo Pascal,

136



but that may or may not be a reflection of the

familiarity with that environment.

Our dissatisfaction with the system emanated

from two specific instances. First, the students

were using a floppy to store their programming

files, and would frequently lose updates to their

programs. An investigation yielded no

explanation. Numerous cases were tried in an

attempt to discover the reason for the loss.

Different machines were tried in an attempt to

isolate it as a hardware error, but our attempts

were unsuccessful. The lost update files remain

a mystery. Lack of familiarity with the

software no doubt contributed to being unable to

solve this mystery. Students were advised to

save their work to the hard drive and then copy

it over to their floppy. This obviously left the

students with a poor impression of the software.

This class of students, most of whom were

computer science majors, had their first full

taste of a software product whose delivery

should have been delayed.

The second instance was compiler specific. A

programming assignment was given to write a

generic B-tree package, where the size of the B-

tree would serve as the parameter to the generic

package. However, when the package was

instantiated, the value of the parameter was not

available within the package. To be sure, the

error may appear to be minimal, unless, as in our

case, pronounced use of generic packages was to

be made in the latter portion of the course.

Even so, we remained committed to Ada for the

Data Structures course. We follow Feldman’s

text Data Structures with Ada3. The students are

readily able to grasp the material in the text.

The programming examples in the text are

straight- forward and can be easily understood

by those not familiar with the language (our

students don’t complain about not being able to

read the language, just about writing it!!). The

concept of packages fits very well with many of

the principles taught in the course. Its use in

later coursework is even more of an advantage,

and all the more reason to include it as the

language of choice for the Data Structures

course.

In the spring of 1991, the system was used for

our software engineering course. This was the

second time Ada had been used in software

engineering. The Software Engineering course is

one of several upper-level courses that are

offered on alternate years. The major

improvement noted from our first try with Ada

in Software Engineering was the turn-around

time. The course is programming intensive and

used exercises from the Software Engineering
Institute the first time4. At the time this was

taught, our VAX 11/750 was showing signs of

being overtaxed and outdated. As a result,

compilation was relegated to batch mode and

given a lower priority, When we taught it for

the second time using Ada, the students were

glad to have exclusive use of a 386. A turn-

around time of a minute or two was quite an

enhancement from an hour or more. An in-house

programming project was assigned the second

time, and although neither class completely

finished their respective assignment, our second

effort allowed for more opportunity to pursue

principles of software engineering.

In addition to running Ada on the 386s, two

additional changes had occurred with our new

system since the Data Structures course was

taught the previous trimester. First, the 386

machines were placed on the network. Second,

NSITE Ada, a tutorial for software engineering

and Ada was installed.

Numerous difficulties with the networked

machines ensued. The Meridian compiler

required a substantial amount of base memory,

which was less than what was available after the

machines were networked. As a result, several

machines were pulled off the network for use by

the students in the software engineering class.

On a more positive note, the NSITE tutorial

began to assist students who needed additional

instruction on the syntax of Ada. Most, if not

all of the software engineering concepts

presented in the tutorial are also presented in the

class. But the reinforcement of those concepts

together with the language assistance was a

major benefit for those in the class.

Again, the advantages offered by Ada for the

Software Engineering course far outweigh those

of Pascal. The program library maintenance

facility helps to demonstrate to the students the

effect of change to other compilation units.

137



Separate compilation, problem solving using

packages, and re - use of generic packages are all

advantages and sound arguments for using Ada

in the Software Engineering course.

Second wave. In addition to purchasing the

Micro VAX and the associated networking

soft ware, we have entered into Digital

Equipment’s Campus Wide Software License

Grant Program. As a result, we have access now

to the VAX Ada compiler. We have just

completed teaching Data Structures utilizing the

VAX Ada compiler. Other operating

environment tools/resources are also available,

but lack of time to become familiar with them

precluded their use during the course. As such,

we utilized only the language sensitive editor

and compiler during the course.

Unfortunately, the level of skill present in the

class just completed was significantly less than

that of the previous class taught with the new

hardware and software from the grant. The

students, . with very few exceptions, seemed

disinterested in Ada. Programming assignments

frequently went undone. Given the small

number of students in our class, the difference

between an excellent class and a poor one may be

the attitude or ability of just 3 or 4 students. It

would no doubt have worked much better to

have had the classes reversed. In our estimation,

the first class could have adapted much easier to

the VAX environment, and the second class

would have been better off using the operating

environment of the Meridian compiler.

Consequently, in our effort to move to the VAX

compiler and avoid the generic package

parameter problems we previously had, we lost

the advantage of having a known operating

environment (students from the previous class

were now unable to provide help, although

students in the present class did little to seek

help). Ironically, as a result of the poor skill

level manifested by the class, we ended up not
assigning programs utilizing generic package

parameters, which was a primary reason for

moving to the VAX Ada compiler!

The very first time we utilized Ada in the Data

Structures course (1987/1988), the results were

very discouraging, though no fault of the

language. We had possibly one of our brightest

classes of students (two valedictorians and a

salutatorian were in the class). But poor

preparation on our part and poor compiler

performance on the VAX 11/750 combined to

make it a less than memorable class. Now the

shoes have been reversed, so to speak. A good

compiler and sufficient preparation have led us

to a group of students whose abilities are less

than what we previously had. Perhaps this is

their way of getting even for that first class!

Current trends. We are about to begin teaching

our Operating Systems course utilizing Ada. It

too, is taught on an alternate year basis. The

previous time it was taught, students were given

the freedom to select the language of their

choice for their programming assignments.

Although not all students chose Ada, our better

students did. And although we expected better

programs from the better students, we felt that

the use of Ada allowed them to complete the

assignments with less effort than the students in

the class which opted not to use Ada. For the

class presently before us, we plan to limit their

language choice to Ada. We may, however,

provide them with their choice of operating

environments. We look forward to seeing what

choices they’ll make and the underlying

rationale for them.

Into the future. We are very encouraged by the

performance of our students in the just

completed introductory programming course. We
have seen both an increase in numbers and in

student ability. The improved hardware has, no

doubt, contributed to their fine efforts.
Although the primary impetus behind the grant

focused on the Data Structures course, we are

pleased to see ancillary goals being met by the

grant. We hope that the student performance

and the hardware are the rain to end our

drought.

We plan again to use Ada in the Data Structures
course next year. Our goal is to make greater

utilization of the resources at our disposal. The

VAX Ada compiler has given us excellent

performance. And it remains an advantage for

the students to be exposed to different operating

environments. Whereas we were, for a time,

starting on the VAX using Pascal and then
moving to PCs, our students will now be starting

on the PCs utilizing Turbo Pascal and then

moving to the VAX for Ada. But however they

138



move, we feel that our best move has been to

Ada. It remains our language of choice for the

Data Structures course and beyond. And as

teaching resources (i.e. textbooks) become

available for Ada in the first programming

course, we may give greater consideration to

teaching Ada as our first language. That

possibility was rather remote several years ago,

but now it is at least on the table for

consideration. The progress we yearned for six

years ago when we first began teaching Ada, is

now becoming reality.

Addendum. The operating system class alluded

to in Current Trends above, proved to be very

successful. Students chose three programming

assignments from a selection of five options.

Assignments were to be completed in Ada, but

could be written on the Micro Vax or with 386s

using Meridian’s Ada compiler. The result came

as a surprise to us. We anticipated favoritism of

one environment over the other, but the result

was favoritism of Ada over Pascal! Students did

not seem partial to one system. But they did

share their preference, however, for using Ada

rather than Pascal. As the students had gained

more familiarity with the language during the

course of their studies, they recognized, to a

greater extent, the versatility and potential of

Ada as a programming tool.

We, too, have recognized that versatility and

potential of Ada. Our use of Ada as the first

language may only be a year away. The

textbook resources are now available and the

Ada platforms for PCs have had numerous

improvements, Although the NSF grant was not

the immediate panacea we hoped for, the long

term effects have been very beneficial. Ada

remains our first choice in the Data Structures

course and may soon become our First language

choice as well.

This material is based upon work supported

by the National Science Foundation under

Grant No. USE-9051O68. The Government

has certain rights in this material. Any
opinions, findings, and conclusions or

recommendations expressed in this material

are those of the author(s) and do not

necessarily reflect the views of the National

Science Foundation.

REFERENCES

1 Norman H. Cohen, Ada as a Second Larwuaze.

(New York: McGraw-Hill, Inc., 1986).

~ Youtzy, Harold P. Jr. “A Healthy Marriage: Ada

and Data Structures, ” Proceediruzs of the Fourth

Annual ASEET Symposium, 13- 15 June 1989, 59-

64.

3 Michael B. Feldman, Data Structures with Ada,

(Reston, Va: Reston Publishing, 1985).

4 Charles B. Engle, Gary Ford, and Tim Korson,

Software Maintenance Exercises for a Software

Engineering Project Course, Software

Engineering Institute, Carnegie Mellon

University, 1989.

Harold Youtzy, Jr. is an Assistant Professor

of Computer Science at Briar Cliff College

in Sioux City, located in northwest Iowa.

He has been a member of the

Math/Computer Science department since

1985.

139


