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The neighborhood relation in a self-organizing neural
network is discussed. A friendship concept is introduced
to describe the connection structure of the network. In
particular, a self-organizing neural network with high di-
mensional lattice connection is given with a convergence
result for the associated learning algorithm.

Introduction

Self-organizing maps[5] can discover the topological re-
lations and other abstract structures in the input sig-
nals. It is extremely effective in creating spatially orga-
nized representation of the various features in the input
patterns on a one- or two-dimensional array of neurons
[7]. The idea of self-organizing topological map was pro-
posed originally by Willshaw and von der h4alsburg [1 1],
[12]. The convergence properties and dynamical stabil-
ity of the Willshaw and Malsburg model was analyzed
by Amari and Takeuchi [1] and [10]. Kohonen[5] gener-
alized this idea and proposed a simplified model in which
the topologically correct feature map reveals abstract
and conceptual structures in the input patterns. In [7],
the simulation results demonstrate the usage of the fea-
ture maps in the self-construction and self-ordering of
the neural maps. An example is the self-organizing for-
mation of a frequency map which provides a model for
the tonotopic map[fl. Some convergence results of the
self-organizing algorithms (SOA) are in [9] and [8]. In
this paper, we will consider some issues regarding the
neighborhood relation in the self-organizing maps and
present some new results on the convergence of SOA.
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Structure of self-organizing map

Let IV be a set of n formal neurons which is called repre-
sentation layer or neural network in this paper. Let U be
the input sample space which is an m-dimensional space
Rm and there is an array of m input nodes. There is a
connection weight between every input node and every
neuron in N. These connection weights can be modified
by using Kohonen self-organizing algorithm[fl.

Suppose that N is a subset of a metric space Ikf and
the neurons in N are numbered with an index i. The
activity of the i-th neuron in N is ~i. Let (~ij )~ x~
be the connection weight matrix between input nodes
and the neurons in N. Given a connection matrix, we
have a map from Rm to R“: F = (fl(u)) . . . ,fn(u))
which is the response of the neurons in N corresponding
to the input pattern u. After the model is trained by

using Konhonen self-organizing algorithm [6], this map
can find important features in the input patterns and

preserve the neighborhood relations in the input space,
where the concept of the neighborhood relation in the
space N is specified by the distance in the space Al.

Friendship and neighborhood

For the purpose of discussing friendship and neighbor-
hood relation in N, it is useful to observe that there are
connect ions among the neurons in N. The connection
structure of the neural network N can be described by
a directed graph G = (V, ~), where V = {ui} is N. The
directed edge from the vertex vi to the vertex vj is rep-
resented by an ordered pair (vi, vj ). Here, it should be
noted that there are two kinds of directed edges connect-
ing vertices: excitatory edge and inhibitory edge. We

can also define the length of the edge (vi, uj ), which is

denoted by [(vi, ~j )1, to be the distance d(~i, vj) between

the points vi and Vj in M. The connection cost of the

directed graph G is defined by the following summation:

C(G) = ~ 4vi,vj)
(v,,u, )EE
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If only the connection structure is considered, there is
no need to consider the locations of the neurons. But,
when the connection cost is considered , we must con-

sider the positions of the neurons in the space M. In

order to decrease the connection cost, one can rearrange
the vertices. However, there are several constraints in
rearranging the vertices, such as: keeping the same con-
nection structure in the rearranged network, and leaving
certain distance between any two neurons because each
neuron will take some physical space in the layout of the
network. The optimal layout is the one with minimum
connection cost,

There are five kinds of connection patterns as shown
in Figure 1. We call the one-edge pattern aa a
single-connection and the two-edge pattern as a double-
connection.

In this paper, two neurons are called friends if they are
linked by a double-connection. This defines the friend-
ship relation between two neurons. To minimize the con-
nection cost, the friendly neurons should be put as close
as possible in the layout of the network because there
are two edges in one double-connection.

0-0
single-connections double-connections

Figure 1: Connection patterns

If all single-connections are deleted from the graph

G , we may get a disconnected graph G’. A maximal

connected subgraph of the graph G’ is called its compo-

nent. In each component of the graph G:, the neurons

are linked by double-connections. Two neurons will be

in the same component of G’ if they are friends. Tak-

ing each component as one vertex, we can form a new

graph G“ = (V”, E“) from G’. In G“, V“ = (v:) are
all components of G’. An edge efi = (v:’, v;) in G“ is

a bundle of single-connections which link the neurons in

u;’and the ones in v;. The length of the edge e; is de-

fined ~ ~v~c.:I,vl~w;I l(v~, v,)!, which is the summation

of all lengths of the edgea in the bundle. One way to
minimize the total connection cost for G is to do it for
each component first then do it for the inducted graph
G“, This method may not find the optimal solution in
minimizing the connection cost for G, but it can find a
satisfactory one.

In the following sections, we assume that G’ has only
one component. Graphically, an edge without direction

represents a double-connection. Given a layout of the
network G in the space M, the neighborhood of a neuron
is a small region around it. All neurons in the region are
its neighbors. A neuron may have more than one nearest
neighbor in the space M.

Figure 2: Friends and non-friends

In Figure 2, the node a and b, b and c, and d and e
are friends, but a and d, and b and e are not friends.
There are two components in this graph: one formed by
the nodes a, b and c, and the other formed by the nodes
d and e.

In Figure 3, the friendship and neighborhood relation
coincide, but these two relations are different in Figure 4.

Figure 3: Neighbors are also friends

Figure 4: Neighbors are not friends

The friendship relation is important for the training
of the self-organizing map as it brings the cooperation
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of the neurons into the network.

Neighborhood on a lattice

In this section, we introduce a lattice connection struc-
ture in which the two relations, friendship relation and
the neighborhood relation coincide.

The neighborhood relation in the input space U is well
defined because U is a metric space. If there is a distance
in space &f, we can define the neighborhood relation.
However, the distance in space M can be defined in sev-
eral ways. For example, if the neurons in N are arranged
in a one-dimensional array we can use an integer index
i to number the neurons as N = {0,1, . . . ,n – 1}. In
this case, iV is called an one-dimensional lattice. The
distance between i-th neuron and j-th neuron is defined
by Ii – j 1. Two neurons are neighbors if the dist ante
between them is 1. In the one-dimensional lattice, ev-
ery neuron has two neighbors except the neurons on the
boundary which have only one neighbor. Similarly, if
the neurons in N are arranged into a two-dimensional
array, which is called two-dimensional lattice, then each
internal neuron which is not on the boundary has four
neighbors. A pair of integers (i, j) is used to label the
neurons. The distance between neuron (i, j) and (k, 1) is
]i-kl+lj-q.

o 1 n-1

00000

On*dlmensional lattice

o 1 2

00 0 0

10 0 0

L&&&v&L
Figure 5: One- and twc-dimensional lattice

In these two cases, the neighborhood relation is deter-
mined by the positions of the neurons in space M.

If some neurons need to have more than four neigh-
bors, then we need higher dimensional lattice to repre-
sent the neighborhood relation. Let us assume that there
are n = Lk neurons in N. Then, the k-dimensional lat-
tice is defined by the following:

N={(il, . . ..ik). ()~il,...,ik<L }.

We can also define the distance on the lattice N. If
a neuron is an inner node, it has 2k neighbors in a k-
dimensional lattice.

The friendship relation or the connection structure of
N in one-, two-, three- and four-dimensional lattices is
characterized by the graphs in Figure 6.

2-D c@@

Figure 6: Connections on the cubes

Suppose that there is a connection structure of N
which can be represented by a directed graph. If a node
in this graph firea, its activity will be propagated to the
the nodes which have connections from this node. The
behavior of a neuron is strongly affected by its friends.
In the Kohonen algorithm, if one neuron becomes active,
then the weights pointing to this active neuron and its
friends will be updated after competition. The coopera-
tion effect is brought into the system in this way.

Suppose that the neurons are physically located in
some space M in which the connection structure speci-
fies the friendship relation. Without changing the con-
nection structure or the friendship relation, any network
on M can be rearranged into one-dimensional array, the
1-D layout of the neurons in M. In Figure 7, two graphs
represent the same connection structure. However, the
1-D layout needs much more connection cost. For non-
linear connections, it is better to pack the neurons into
two- or three-dimensional array to minimize the connec-
tion cost.
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Figure 7: I-D layout for a two-dimensional lattice

In the following sections, we will assume that N is a
k-dimensional lattice. For each neuron i in A’, its neigh-
borhood is a set Ni. It is a set value function from IV
to 2N which is used in the self-organizing algorithm. We
will call the function IVi a neighborhood function.

Self-organizing algorithm

For each node i in IV, there is a weight vector Wi =

(w,, , ~im) pointing to the neuron i, where m is the
dimension of the input space U. Figure 8 shows the
structure of the self-organizing map. The connection
plate realizes the lattice connection in IV

Connuthm plate
------

●rmy

xl . . . Xm

Figure 8: The structure of the self-organizing map

Let N, be a neighborhood set around a neuron c which
is an active node in N at the moment. The Kohonen
self-organizing algorithm is :

{

i$Nc,
‘:+1 = ~: A(t))kV~ + A(t) S(t), i E N.,

(1)

where S(t) = (sI(t), ,, -, sm(t))T is the input vector. In

this paper, if Y is a vector or matrix, Y“ means trans-

position of Y.

In this learning algorithm, if a weight vector W’: points

to the active node or its neighbors in Nc at time t, then
this vector will be updated at the time t+l.

Let us assume that only one neuron is active at time t.

Denote N(t) = Nc if the neuron c is active at time t. We
call N(t) the neighborhood movement. We can change
the neighborhood function Ni to improve the training.

But we can not control the neighborhood movement, as
it depends on the sequence of the inputs and the initial
connection weights (~ij ). In this paper, we assume that
the learning rate {~(t)} satisfies the following:

A(t) >0, ~A(t) = co, and ~A2(t) <00, (2)
t t

Convergence of the algorithm

The system expressed in equation (1) can be considered
for each input dimension. However, here we only analyze
the convergence of this algorithm with the input S(t)
being in a one-dimensional space.

In (1), (w~) is a random process because the input
process S(t) is In order to get convergence of the alg~
rithm, we need the following convergence result for the
Robbins-Monro algorithm [3]:

Gladyshev’s Theorem (see Theorem 2.2
in [3] ) Assume h(z) : Rn ~ Rm is a function
with a unique zero point Z“, i.e. h(z”) = O.
Let Y~+l = h(.l’t) + nt+l be the observed vahte
of the function h(. ) at Xf with a mndom er-
ror nt+l. The approximation of Z“ is X~+l =
Xt – A(t) Y~+l, where {A(i)} satisfies (2). SUp-
pose there is a positive dejinite matriz U, such

that (z – rO)’Uh(z) >0, V z # Z“, and

[h(z)[z + Eln,[2 S K(I + ]Z1’),

where Eln~12 is a mathematical expectation and
K is a constant. Then Xt - Z“ as. as t ~

00.

Assume that the representation layer N is a k-
dimensional lattice,

N={(il, ,i ~): O<il,...,i~<L }.

Define an index map 1 from {O, 1,.. ~,L – l}K to
{0,1,, L~-l}as

f(il, ,i~)=il *Lk-1+i2*Lk -2+ +i~.

By using this index map, we can put a k-dimensional

array (~il,., ik ) into a vector
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(ZO,O,...,O,ZO,O,l,,I,~~~,Ziu...,ikl ~~~,zL-1,..,L-I). Denote

this vector as Zor (Za,,...,i~ ). Thel(il,,, z’k)-thcom-

ponent of the vector F is ~i,,.. .,i&. If the neuron c =
(il, ~~, i~) is active at time t, let N(c) denote its
neighborhood. We define a k-dimensional array G =

(g(il,, i~)),,whe reg(il,”, i~)=lif(il,””,i~) isin
IV(c), otherwise g(il, ~~., i~) = O.

Let (11 (t), . . ~, lk (t)) be the movement of the active
node. Set G(t) = (g(ll(t),. . ~, ~k(t)). The equation (1)
can be rewritten as

w-*+1 = tit – A(t)H(qtit + Ad,

where H(t) is a diagonal matrix. The diagonal of H(t)

is the vector ~(t) whose elements are zero or one. Both

H(t) and ~(t) are stochastic processes because they de-
pend on the movement of the active node. Let the ele-
ments on the diagonal be ho(t), hi(t), . . . . h~k _ l(t).

Assume
Lk-1

‘~-h’hi(t)>0,
i=O

where the llhi(t) is the mathematical expectation of

hi(t). This assumption is true if the active node moves
evenly on N. In addition, suppose the input process S(t)
is stationary, then we can prove that w- is convergent to
a vector .$ which is a solution to the following equation:

EH(t)~ = Es(t) d(t).

Here the meaning of the convergence is the almost sure
convergence of stochastic process.

We can prove this by applying Glady~hev’s Theo-
rem. Set U = EH(t) and b = ES(t) G(t), let < =

U-lb, tit+l = tit — ~(t)~t+l, where ~~+1 = H(t)d —

S(t)~{t) = Uti’-6~nt, where n, = (H(t)–EH(t))ti’+

(S(t)G(t) – EGG). Choose h(z) = Ux – b. ~
is the unique zero point of the function h(x). Then
(Z–~)71.Jh(Z) = (z–U-lb)’U(Uz-b) = (l.Jr-b)’(tJz–
b) > 0, for any z # ~. So by Gladyshev’s Theorem,
tit + f, as., aa t + m, where as. means almost sure

convergence.

Conclusions

The friendship and neighborhood relations are intro-
duced in this paper to characterize connection structure
of the representation layer in the self-organizing maps.
The lattice structure is introduced in such way that the
two relations coincide. When the connection structure in
the representation layer is described by a lattice, the con-
vergence result is given for the Kohonen self-organizing
algorithm.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

S.Amari(1980), Topographic Organization of
Nerve Fields. Bull. Math. Biol. 42, 339-364.

G. A.Carpenter and
S.Grossberg( 1987), ART2:Self-organization of
Stable Category Recognition Codes for Analog
Input Patterns. Vol. 26, No.23, Applied Optics,
pp.4919-4930..

Han-m Chen( 1985), Recursive Estimation and
Control for Stochastic Systems, John Wiley 8z
Sons, Inc.

M. Cottrell and J. C. Fort (1986), A Stochastic
Model of Retinotopy: A Self-organizing Pro-
cess, Biol. Cybern. 53, 405-411.

T. Kohonen(1982a), Self-organized Forma-
tion of Topologically Correct Feature Maps,
Biol.Cybern. 43, 59-69.

T. Kohonen(1990), The self-organizing Map,
Proceedings of The IEEE, VO1.78, No.9,
September.

T. Kohonen(1989), Self-organization and As-

sociative Memory, Third Edition, Springer-
Verlag.

Chung-Ming Kuan and Kurt Hornik, Conver-
gence of Learning Algorithms with Constant
Learning Rates, IEEE llan. on Neural Net-
works, VO1.2, No.5, September 1991.

H .Ritter and K. Schulten(1989), Convergence
properties of Kohonen’s topology conserving

maps: fluctuations, stability, and dimension se-
lection, Biol. Cyb. 60, pp.59-71.

A. Takeuchi and S. Amari, Formation of to-
pographic maps and columnar microstructure,
Biol. Cybernetics, VO1.35, pp.63-72. 1979.

D.J .Willshaw and C. von der Malsburg(1976),
How patterned neural connections can be set
up by self-organization, Proc. Roy. Sot., vol.B-
194, pp.431-445.

D.J .Willshaw and C. von der Malsburg(1979),
A marker induction for the establishment of or-
dered neural mapping: its application to the
retino-tectal problem. Philos Trans. R. Sot.
London, 287: B1021.

416


