& HIERARCHICAL SINGLE-KEY-LOCK ACCESS
CONTROL USING THE CHINESE
REMAINDER THEOREM

By
KIM SIN)/_EE
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma
1988

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the degree of
MASTER OF SCIENCE
December, 1991

I Cr. 6., §7.° ,
Okiahoms Sicte Gy, Library

A HIERARCHICAL SINGLE-KEY-LOCK ACCESS
CONTROL USING THE CHINESE
REMAINDER THEOREM

Thesis Approved :

Heigle o
4 T,hc,e7sis Adviser

} (‘/{\—44—2’1/6;2./
{

Dean of the Graduate College

AR

ii

PREFACE

The key-lock-pair mechanism based on the Chinese remainder theorem
was modified and implemented on the single-key-lock system. The single-
key-lock system associates each subject(i.e, user) with a key and each
object(ie, file) with a lock.

The modification is inspired by Chang's method of key-lock-pair
mechanism using the Chinese Remainder Theorem. In addition to using the
key-lock-pair (KLP) mechanism based on the Chinese remainder theorem, we
introduce a hierarchical key storage structure which not only implies the
relationship between the subjects, but decreases the number of
recalculations of keys substantially when objects are added or deleted.

This hierarchical key storage structure also requires fewer files or lock
numbers to be involved in the key calculation. It also reduces the
verification time to O(logon), instead of O(logoN) which the old SKL system
needs. Morever, during the calculation of keys for the subjects, faster
computation speed 1s achieved by using the modulus congruence of a D,

n
where Dj=IILi for 1=jandj=1,2,...,n
i=1

where L; denotes the lock on the file i fori=1,2,3,...,n.

A simulation of the single-key-lock access control was perfomed on a

Vax/Unix machine and time complexity of the key calculation was discussed.
I wish to express my sincere gratitude to the individuals who

assisted me in this project and during my coursework at Oklahoma State

iii

University. In particular, | wish to thank my major adviser, Dr. Huizhu Lu,
for her intelligent guidance, inspiration, and invaluable aid. | am also very
grateful to the other committee members, Dr. William D. Miller and Dr. John
P. Chandler, for their advisement during the course of this work.

My deepest appreciation is extended to my mother, who provided

constant support, moral encouragement, and understanding.

iv

TABLE OF CONTENTS

Page

INTRODUCTION . o L . o]

Protection System L o]

Problem and Research Ob 1eutwe 2

Graham and Denning's Monitor Model 2

LITERATURE REVIEW 8

Current Protection System . o 8

Capability System 9

Access Controlling List System I
Single-Key-Lock System Using the Chinese

Remainder Theorem [IS;

RESEARCH PROCEDURES 17

Research Objective L 17

Research Methodology 17

The Chinese Remainder Theorem 21

Research Steps 24

Greatest Common Divisor and Euclid's Algorithm . . . 27

Algorithm on the Chinese Remainder Theorem 3

Various Binary Operations 31

Algorithms on Various Binary Tree Operations 33

Example on the Application 47

V. ANALYSIS OF RESEARCHRESULTS 35

Program Correctness 55
Time Complexity of the Chinese Remainder

Theorem S7

Chapter Page

Comparison of the Improved Methods with the

Key-Lock-Pair Mechanism 59
V. SUMMARY OF RESEARCH THESIS N
SUMMANY 65
Future Work o 66
BIBLIQGRAPHY 68
APPENDICES 71
APPENDIX A - PROVE OF A COMPLETE RESIDUE SYSTEM
MODULOM 72
APPENDIX B - PROVEOF (a+b)modc={[a(modc)]+b])
(modc¢) 75
APPENDIX C - FIGURES 77
APPENDIX D - SIMULATION OF A HIERARCHICAL

SINGLE-KEY-LOCK ACCESS CONTROL
USING THE CHINESE REMAINDER THEOREM 85

vi

Table

.

LIST OF TABLES

Basic ProtectionRights

Graham and Denning's Secured System Commands

vii

I

S

€l

9]

~J

LIST OF FIGURES

Figure A Page
System View of the SKL 78
Access Control Matrix 79
Directory Access Control, 80
Access Control List, 81
Structure of the Key-Lock-Pair Mechanism ., 82
Hierarchical User Structure with Local Binary Directory 83
System View of the Example File Structure 84

viii

CHAPTER |
INTRODUTION

Protection System

Protection systems in a computing environment are developed to
prevent information stored in a computer from being destroyed, altered, or
“even disclosed or copied without being detected. With various resources in
a computing environment, there is always a need to ensure that each user or
process uses system resources only in ways consistent with the stated
policies of the system administrators. Research in protection systems
continues to grow as more sensitive information is stored and processed by
computers and transmitted over computer communication networks. As more
small businesses and even personal home computer systems become part of
larger networks, the security of individual data becomes a growing concern.

There are three major areas of computer protection in a computer
system, namely, the external protection, interface protection and internal
protection. External protection is concerned with physical access to the
overall computer facility. While interface protection deals with the
authentication of a user once a physical access to the computer becomes
feasible; the internal protection deals with the control of access to the
computing resources, and safeguarding of information [Rusby and Randell,
83]. This research thesis will examine only the internal protection
mechanism in the computer system, particulariy on the access control of

file in an operating system or file server.

1

Problem and K rch O lve
Proplem

Most current operating systems and databases make use of a
combination of user list directory and file access control list. This
combination works great as far as user access control is concerned.
However, each request made by the user requires the monitor to do a lot of

searching for the correct file and verify the validity of the request.
Research Oblective

This research project aims to improve the speed of user verification
when an access request is made to reduce the storage requirements imposed
by the current linked list problem. Since the arithmetic computation
generally takes up less computer time as compared to searching time, thig
research thesis aims to take advantage of that. It uses a unique Key K; to
represent each user in the system and a system identification number L; for
each file, and only through the system verification of K; mod Lj which gives
the access right of @, and the system decides on the legality of the access

attempt.

oran n ing] I

There are two main reasons of studying a model.

I. By studying the security model, we have references to guide us in
the design and implementation of secured database and system. especially in
the area of determining the secured policies of the system. Therefore,

before going on to explain the actual research methodology and objective, it

is important to clarify the security model this research work closely
relates to.

2. Only through studying the properties of the models can a secured
system designer differentiate the essence of the model from other
secondary functions the system is entitled to provide. Figure 1 on the
appendix shows the organization of the Graham and Denning's monitor model.

The Granam and Denning's model was first introduced by Lampson
[Lampson, 71] and later modified by Graham and Denning [Graham and
Denning, 1972]. Their major work was on the expansion of the generic
protection properties of the model. There are four basic elements of the
moael.

1. Asetof subjects S; where O <i<NandN is the number of users in

the system.

2. Asetof objects 0; where 0 < j<MandM is the number of files

In the system.

3. A set of user defined access rights R,

4. A set of system stored Access Control Matrix A

The Access Control Matrix has an attribute for each subject, which is
identified as a row. It also has an attribute for each object and is
recognized as a column in the Access Control Matrix. The content of each
matrix Aj; is the access right Rij. For each object Oj, where j is any file in
the directory, asubject S;designates an “owner” in Ajj, then S has absolute
control over object Oy For each subject Sj, if another subject Sy,

(where h < j), designates a controller attribute, then Sy has more rights
than 5;. There are eight basic protection rights described in the model.
These protection rights are 1ssued by varfous subjects and are taken by the

system as commands. The commands will have effects on other subjects and

objects. They are as tapulated as in taple 1.

TABLE |

BASIC PROTECTION RIGHTS

W Cregre object: This command allows the 1ssued subject to introduce a
new object into the system.

2 Create subject: This command allows the issued subject to create
another subject or directory in the system.

3oelete otyect: This command allows the 155ued subject Lo delete
an unwanted object from the system.

4. Delete subject: This command has the rights to delete some directory or
any other subject under 1ts hierarchy.

D Read access right: This command allows a subject to determine the
current access rights of a subject to an object.

6 Grant access right: This command allows the owner of an object to allow
other subjects to have the access rignts designated by
him.

7 Delete access right: This command allows a subject to delete a right of
another subject for an object, provided that the deleting
subject is either the owner of the object or controls the
subject from which access should be

TABLE 1(Continued)

8. 7ransrer access rights: This command allows a subject to transfer one of
its rights of objects to another subject. (Each right can
be transferable or nontransferable. If a subject receives
a transferable right, the subject can then transfer that
right ---either transferable or not --- to other
subjects. If a subject receives a nontransferable right, it
can user the right, but cannot transfer that right to other
subjects.). This set of eight rules provides the
properties necessary to model access control
mechanisms of a secured system,

This set of eight rules provides the properties necessary to model
access control mechanmisms of a secured system. Tabulated in Table I, is
the Secured System Commands with various conditions and consequences

when these commands are carried out.

TABLE 11

GRAHAM AND DENNING'S SECURED SYSTEM COMMANDS

1 Command: create object O;
Condition: nil
Consequence: add column for object in Ay place owner

right in Alx,0l.

TABLE 11 (Continued)

2 Command: create subject s;
Condition: nil
Consequence: add row for subject s in Ajj, place control in
Alx,s]
3 Command: delete object o;
Condition: owner of object oy
Consequence delete column j for subject 1

4 Command: delete subject s
Condition: control in Ali, j]

Consequence: delete row s;

5 Command: Subject s;read access rights of object o;
Condition: Control subject s; or owner of object o;
Consequence: Retrieve access rights Aj;.

6 Command: Delete rights of s;jon o;,

Condition: Control subject s; or owner of object o;
Consequence: remove access rights from Ali, j]
7.Command: grants access rights r to s; on o;
Condition: owner of o;
Consequence: add r to Als,0]
8 Command: transfer right r or r* from subject s to
object o
Condition: r*in Alx,0]

Consequence: add r or r* to Als,0]

The most important contributions this model towards the secured
system are:

1. Each object has a unique identification number which 1s attached by

the system to each acéess attempted by any subject.

2. Each and every attempted access by a subject to an object 1s

validated by the system.

This research thesis closely follows Graham and Denning's model. In
the implementation of the model, we assume that the files are the only
objects protected by the system and the users in the system are the only
subjects. The access rights of users towards the files constitute the access
matrix A. This research thesis is implementing the basic protection rights

Ina Vax/unix computer.

CHAPTER 11
LITERATURE REVIEW

Current Protection System

It 15 the intention of every system administrator that every user can
only be allowed to access those information files that he is authorized to
access. When a user has intention of accessing any informational resources
in any computing environment, the protocol that takes care of the file
access control will verify the access requests issued by the user.

To date, most commercial and military computer systems make use of
the access matrix to exercise their access control. The access matrix uses
eachrow (i) torepresent an accessor and uses each column (j) to
represent the informational files. Each entry towards the access matrix
(1, J) represents the access rights authorized [Graham and Denning, 1972].

The use of the access matrix is straight forward and simple where
direct method is concerned. The most straight-forward way of
implementing the access matrix is having a global two-dimensional array as
a matrix table [Peterson and Silberschatz, 1983] Each user of row (/) has
a separate entry of access rights towards each file which is represented by
a column(/). Figure 2.0 in the appendix shows the diagram for the access
matrix table. However this system of protection has a probiem when the
system is large with numerous users and files in the system, the access
matrix is sparse and the matrix table has to be kept in the auxiliary memory

and therefore needs additional input and output [Pfleeger, 1989]

8

ility System

In 1966, Dennis and Van Horn [1966) came out with an idea to solve
the sparse matrix problem. They suggested using a linked list of users
called Directory Access Control, in which each user has a separate entry of
file identifiers and their corresponding access rights. There are both
hardware and software implementations of this linked list of users' records
[Figure 2.1). The software implementation of this notion is to create a
record for each user in the system. Each record contains various entries for
the file or resources that a user is capable of accessing. Each entry for a
file contains the name of the file, the access rights of the user on the file
as well as a file pointer that tells the operating system the location of the
file. The hardware implementation of this idea in inter-user protection
called capability where each word in the memory is tagged with an extra
bit. If the bit is off, then the word is an ordinary instruction or data, else
the word can be loaded into the protection descriptor register[liffe and
Jodeit, 1962]. This particular tag architecture is called & capabi/ity system
and it gives rise to two sets of data values and two sets of instructions,
narmely the ordinary data values in computation and protection descriptor
values and ordinary instruction to load protection descriptor values. This
system aims to differentiate the two sets of instructions and data values
and prevent misprocessing of data values. Thus each user is provided with
one segment as a record to store the capability or file pointer he is
authorized to use, Each capability then contains separate read, write or
execute permission bits so that different users have different access rights
or capabilities towards the same files [11iffe and Jodeit, 1962]

Though this capability system solved the problem of having the

access rights implemented in a global table, 1t has many implementational

10

disadvantages. One of them 1S the problem of revocation, namely, if user A
allows user B to have the capability to read one of his files, he can not
disable the file pointer or capability that user B has stored away
somewhere in the computer memory. His only option is to destroy the
original file, an action that affects other users who have the capability to
access the same file [Kain and Landwehr, 1986]. The second disadvantage of
the capability system is the problem of propagation that user B may copy
the capability and distribute them to users to whom user A does not want
the file to be exposed. There were certain controls that restricted the
possibility of propagation, which the original capability system did not
provide. These measures were devised to solve the problem of propagation
and one of the example is using exhaustive searching for all users that have
access towards the file. However, this requires X*Y number of sequential
searchs for X numbers of users and an average of Y number of records in the

system[Saltzer and Schroeder, 1975].
Propagation

various implementational improvements in the mentioned constraints
of the original capability system were proposed and tested. The CAP system
[Needham, 1972] and Plessey 250 [England, 1974] assigned a cgpabi/ity
nolaing segment to each user and only those segments were used to load
and store capability information. In this way, other users could not make
copies of the capability of the original user and propagation was prevented.
Similarly the Burroughs BS000 family used the same concept in improving
the capability by constraining the capabilities to be stored in the virtual
processor stack and a table to prevent unauthorized access. Another

approach in solving the propagation problem was having a depth counter set

11

to a certain limit. Any access to the segment in order to obtain a capability
to open a file caused the counter to increment by one; subsequently, any
attempt greater than the 1imit generated an error by the operating
system[Karger and Herbert, 1984]. These approaches in solving the
propagation problem cail for greater auditing and flexibility because any

auditing and checking by the operation system required checking all users.

Revocation

In solving the revocation problem in a capability system, all access to
a file has to go through an indirect file where it then retrieved the
capability for the intended access file specified by the user. Only the file
owner or the system administrator has the capability to destroy or change
the indirect file, thus making revoking the access capabilities of the user
possible[Redell 1974, Synder 1981, wiseman 1986].

According to Saltzer and Schroeder [1975], the basic problem with a
capability system is that the capability to access an object given by the
object owner is analogous to having the owner gives the "ticket” for entry to
the intended person; this “ticket” could be transferred freely without any
independent control by the system. Therefore, their proposed method and
implementation imposed limitations on copyability. This means extra
precautions and resourtes at the expense of simplicity, flexibility and

uniformity of capability as addresses.
Access Controlling List System

Instead of distributing a "ticket” for admission into the protected

object like the capability system, each protected object in an access

12

controlling st system has a separate file where all the user names and
their corresponding access rights are presented. The operating system or
the file server would verify any user who requests to access the protected
object, by checking the user name in the access controller file of the object.
The access controller contains the object pointer as well as the access
control 1ist. The access controller functions as an indirect access to the
protected object; therefore, the access controller itself is protected
against any user [Peterson and Silberschatz 1983, Downs 1985].

The use of an access controlling list system provides a last minute
check on any attempt to access an object. It stops propagation by not only
restricting the ability to copy and transfer, as does the capability system,
but also by verifying every attempt to access any object. Revocation is more
manageable because the owner of the protected object can just retrieve the
access controller and change the names and their given access rights. This
system of access control is illustrated in Figure 2.2 [Stoughton, 1981]

The access controlling list system no doubt has many benefits over
the capability system, but it certainly has its implementational problem.
According to Saltzer and Schroeder [1975], any attempt to access requires
the system to go through several serial steps, such as accessing the pointer
register 1o get entry into the access controlier list to search for the proper
access rights, and then accessing the object through addressing registers.
Another disadvantage of the access 1ists system is, in a time sharing
system, a complex mechanism is required to search and compare the names
of users. This slows down the system. The third disadvantage is that the
access controlier list length varies for different objects, thus imposing
some implementation problems requiring great care in the programming of

the searching mechanism.

13

The first disadvantage was solved by allowing an extra pointer
register for each user as a shaaow register Each time a user issues a
command to access a file, the indirect access controller copies the content
(with file pointer and access rights) to the shadow register; thus
subsequent access to the same file by the previous user goes directly to the
extra register, saving some memory references. Revocability can only be
rigidly preserved by having to clean all shadow registers and changing

access rights [Swaminathan, 1985].

Group Divisions in Access Control List

The variable length of the access controller list and multiple users
requiring lengthy search were solved by the method proposed by Ritchie and
Thompson[1974] on a Unix system, where users are categorized into groups.
Only three entries are allowed in the access controlier list on each object:
one entry for the object owner, one entry for the group and the last entry
for all system users. .The price paid is inflexibility, because each object can
only be accessed by a group. If more than one group need to access the
object, it has to be placed as a public object.

Single-Key-Lock System

Though the Access Control list has solved some problems in the area
of propagation, problems still remain in the areas of verification and
revocation. In the area of revocation, any time a file owner wants to revoke
another user's file access rights, the system needs to perform an exhaustive
search in the access control list for the correct user. Only then is

revocation possible. In the area of verification, if a user requests to access

14

a file, the system needs to search for the correct file, then run an
exhaustive search for the user's name in the access control list. Then the
system retrieves the access rights which the file owner gave the user and
compares them with the rights that the user would like to exercise. Thus
each verification requires an exhaustive search which the Single-Key-Lock

mechanism aims to avoid.

ingle-Key-Lock ing Vector lati

Based on the same concept prescribed by the previous two systems of
access matrix, Wu and Hwang [1984] proposed a single-key-lock system
using the Key-Lock-Pair (KLP) mechanism, where each user is system
assigned a key and each protected object is assigned a system lock. The
system will verify any request to exercise the access right on an object by
Xxth user on yth protected object using a mechanism developed by Hwang
and Ton [1980].

In this system, the key, lock and access rights are represented by
numbers, and access is only permitted by the system when the access rights
requested are less than or equal to the entries made in the matrix. The
entries made in the matrix table are specifically given by the owner of the
file. The locks are created based on the keys assigned by the system and the
entries made by the user on the matrix. If A7 represents the /£ user and /;
represents the /& file; then the access right of K7 on /; 1s represented
by gj7. Through the calculation of @y =K7*L; inthe Galois Field ()
where ¢ 15 the smallest prime number that 1s larger than all the access
rights in the matrix table considered. Revocation based on new matrix

entries only requires the system to recalculate the lock assigned to a

protected object. The merit of this single-key-lock system lay in its

15

simplicity and flexibility because of a single key and a single lock assigned
10 a user and a file as compared to the pointer method used by the capability
system and access controller list system. Since the implementation of this
system is protected in protection kernel like the monitor, it does not have
any propagation and revocation problem. However, the single-key-1ock
system has a storage problem due to the length of its keys and locks. In
1989, Chang and Jiang [1989] improved on the current method by proposing
the Binary Single-Key-Lock system, where the underlying matrix entries,
keys and 1ocks are represented in binary numbers; calculation of the keys
and locks could therefore be done in simple logical AND and XOR operations.
However, the binary single key lock system only solves the storage probiem
10 a lesser extent; complex calculation of keys and locks still prevail.

ingle-Key- m Using the Chinese
Remainder Theorem

Chang [1986] proposed a method using a concept similar to the Single-
Key-Lock System proposed by Wu and Hwang [1984]. However, this method
requires a system to assign coprime numbers to any new file in the system.
Calculation df keys that represent the users' access rights are based on the
coprime numbers. This method has a lesser storage problem which was
restricted by the method described by Wu and Hwang. Therefore, instead of .
using &y =Ky *{; GF(¢.J inthe original Single-Key-Lock Pair mechanism,
the calculation should make use of the Chinese Remainder Theorem with &
=K;mod Ly where t is the smallest prime number that is larger than all the
access rights of the users. This mechanism of calculating the keys and 1ocks
is more efficient in terms of system assigned coprime numbers because,

unlike the method proposed by Wu and Hwang [1980], which required an

16

arbitrary nonsingular matrix of size m for m users in the system, the single
key lock system based on the Chinese Remainder System only required an
integer to represent the key. Where storage is concerned, Wu and Hwang's
method [1980] needs raé/) where a is the number of users and b is the
number of files. However, Chang's method requires only Or@+p) for each
storage of key.

However, this mechanism that make use of the Chinese Remainder
Theorem has its disadvantages too. One of the main disadvantage of this
mechanism is the fact that the mechanism would have to recalculate all the
keys of all users present in the system when a new ffle (or new coprime
number) is being added to the system. If each calculation of a user in the
system takes up t system time, then each new file being added to the
system requires t*M system time if M number of users have account on this

system.

CHAPTER I11
RESEARCH PROCEDURES

Research Objective

Keeping in mind the benefits of the Single-Key-Lock system based on
the Chinese Remainder Theorem in designing the protection protocol, this
research aims to improve the speed of the system by incorporating both the
simplicity of the Single-Key-Lock System based on the Chinese Remainder
mechanism and the strict control the access control list commands. This
research will exploit the compactness of the Single-Key-Lock pair
mechanism where each new file is assigned a new pairwise coprime number.
The access rights of any files will be incorporated into a legitimate user's
key using the single-key-lock pair mechanism based on the Chinese

Remainder Theorem.
Research Methodology

The method developed by this research will incorporate the user
hierarchical system into the user structure. In this system, all subjects or
users are arranged into a single hierarchical tree of directories. This
hierarchy aims to provide a hierarchy of control of access, through the
ability to modify the access rights of the subjects lower in hierarchy than
the control subject. The use of this user hierarchy system makes it possible
for the system to create a totally centralized control of all access

17

18

decisions. For example, if a user adds a file into his system, only he has
exclusive right to give access permission to other users in the system.

Each user node carries a local binary tree of records which contains
information on each file the user has access right to. This information is
restricted to the name of the file and the system assigned prime numbers
only. The most important restriction of this system is that a user could only
allowed to access file in his own directory. Any time a user request to
access a file is generated, the system protection protocol will verify the
legitimacy of the access right by searching for the file in his own directory.
If the file name is right, then the system assigned prime number (which
identify this file in the system) is retrieved. At the same time, the key of
the user is also retrieved and the access rights could be verified by finding
the modulus congruence of the key on the lock. Therefore, the records that
store the information on each file are arranged in a local binary tree. The
use of local binary tree 1s to facilitate the system in verifying the user
access requests. Therefore, for each access requested by the user, we
require a In2 N search for the file where N represents the number of files

present in the local binary local directory.

The Hierarchical r Str r

After clearing the password file, each user would be given a record
according to their login names and password. Each user node contains the

following information:

1. Astring to store the user name. This string is used to identify the

user in the process.

N

18

A string to store the user's department. This string is used to identify
the department the user belongs to. The department head has
exclusive access rights to all the files his subordinates have.

A string to store the user's group that he is belongs to. This string is
used to identify the user ‘s group for the system. The group leader
also has exclusive access rights to all the files the group members
have.

64 bits to store the key of each user. Each time a new file is being
added to the local binary file tree of the user, a new key is being
issued by the system. The mechanism of calculating the key is based
on the Chinese Remainder Theorem that will be discussed later.

64 bits to store the value of L

where L = J] L«

k=1
and 1 sk<n.
The value of L is put into the user record is to facilitate the
calculation of the key when a new file is being added or deleted.
Recursive function is used to traverse the local binary file tree.
Therefore, each time this value is needed, it could be retrieved
from the user node.
A local binary tree pointer that points to the head of the local binary
tree. If there is a file being added or deleted, recalculation of the key
of the user could be done by traversing the local binary tree file.
Therefore, the head of each tree has to be placed in the user node.

20
The Local Binary File Structure

This local binary file structure contains all the information of the
files that the user is accessable to. It has
1. A string of 20 characters to store the name of the file. This
information is vital in searching for the correct file name during
accessing, deleting and transferring of rights.

o

Thirty two bits to store the value of each file number that is assigned
by the system. The values would be used to calculate L as above.

3 A file pointer that tells the location of the file in the system. If
access request is being verified, the file pointer would direct the

process in fulfilling the access request.

In this system, a new feature is also added to the Single-Key Secured
System. Since each user node carries a local binary tree structure in his
own directory, and those file present in the system are files that are
accessible by the user. This design aims to shorten the verifying time where
the coprime file number is needed to calculate the access right of the file
with gy =K modL;. However, since a higher hierarchy node is designed to
have exclusive access rights towards files of lower hierarchy, (but only to
the extent of the same department or same group) there might be times a
father node wants to access files of a son node and it happens that the file
is owned by the son node. Therefore, in the local binary file directory of the
father node, the file node is not found. Thus, a global binary tree that
contains all the file present in the system does the job of fianl control.
Each time a new file is being added to the system, the name of the file is
being stored into the record and inserted into the global binary file

structure.

21

The global binary tree node contains the following information:

1. A string of 20 characters to store the name of the file.

2. An owner pointer that points to the owner of the file.

If a father node tries to access a file that belongs to his son node,
then the system will verify it by searching for the file in his own local
binary directory first. Since the file is owned by his subordinate, the file is
not present in his own local binary directory. Then the system needs to
perform the final check on the global binary tree. If the file is not found,
then the file is definitely not present in the system. Otherwise, the owner
pointer in the record points to the owner of the file (or user node).
Information regarding the user's department and group is retrieved and
compared with the accessor node information on department and group name.
If the accessor node is found more superior than the owner of the file in
terms of the user hierarchical structure, then the system allows the
accessor exclusive access right towards the file. Otherwise, the file is not

accessible by the accessor.

The Chinese Remainder Theorem

The research method requires the system to calculate the keys of
each user by applying the Chinese Remainder Theorem. The Chinese

Remainder Theorem states that:
Let iy, 2 N3 N be positive integers such that gealty, 1) =1 Tor 7=).

7hen the system oF congruences

22

X =& (mod 1ty)
X = 8 (mod fip)
X = &3 (mod f13)

X =8 (modfy)

has a simultaneous solution, which 1s unique moaulo 1 tfislly . .

Proof: We start by forming the product n = mNaNzNg ., N, For each
k=1,23,...r let

Ne =n/ng = Ny MMy N
in other words, N is the product of all the integers n; with the factor ng
omitted. By hypothesis, the ni are relatively prime in pairs, so that
gcd(Ng ng) = 1. According to the theory of a single linear congruence, it is
therefore possible to solve the congruence N X = 1(mod ng) call the
unique solution X, Our aim is to prove that the integer

X =aNixy + aNoxo+ . .+ alNeX,
is a simultaneous solution of the given system.
First, it is to be observed that Nj= 0 (mod ny) for i =k, since N | N; in this
case. The result is that
X=aNixy+. .+ aNX. = 8 N X (mod ny)

But the integer Xy was chosen to satisfy the congruence Nyx = 1 (mod ny),

23

which forces the

X=a.! =a (modny)

This shows that a solution to the given system of congruences
exits.(Adapted from Burton, 1976)

The uniqueness of the keys calculated using the Chinese Remainder
Theorem should be absolute, so that confusion could not arise during the
system verification of the keys to use the different access rights.

Supposing two keys are found using the Chinese Remainder Theorem,
and the Ly,L L3 . L, represents the various files in the system created

by the users.with Lj> max (aj;} where ajjrepresents the access rights of

n
the usersKionLj AndD; =L/L; wherel = JT Ly
k=1

where D; X;= 1 (mod L;) can be solved by using the Extended
Euclidean Algorithm.
x= 2D x a (1)
y= 2 Diya; (2)
Clearly, Dj,kj = Djy; =1 (mod Lj) forall]
Dj(Xj-yp=0 (modL;) forall]j
therefore, X; = ¥ (modL;) forallj ...(3)

From(3) Xj = yj + MjL; for someM
substituting Xj = y; + M Lj into (1)

24

we get X = z Dj(Yj + Mj .Lj) aij

x = X Dyyja; + 2 DyayML
sinceD; L; = L
X = y + LZM . a;
therefore, X = ¥

with this, the Chinese Remainder Theorem is proven.

Regearch Ste

Application of the Chinese Remainder Theorem

This research will focus on the Chinese Remainder Theorem [Burton
1976] and developing an algorithm to implement the access control based on
the idea discussed by [Chang 1986).

Finding th rime Number

This research will also develop and implement an algorithm to
generate coprime numbers which would be assigned to the files as locks.
The procedure that generates the coprime numbers should be protected from
any users. The idea behind the calculation of coprime numbers is to get the
first prime number in the natural numbers system 2 and the idea that any
composite number can be divided by any prime numbers found in the
algorithm and these prime number lies between 2 and the square root of the
composite number. Therefore, in order to shorten the testing time, if the

square of the testing prime number is greater or equal to the number being

25

tested, then we can quit testing. Listed below is the algorithm on the

finding of the coprime numbers.

| firstprime <-- currentnum <-- 2 index <-- 0

2 for (i =1;i <Maxprime; i++)
begin
success <-- FALSE
3 . while (success <> TRUE)
begin

| currentnum <-- currentnum + 1;
4 for (k<—-0;Kk <=index; K <—-k+ 1)

begin
5 if ((currentnum mod prime[lastprimefound]) =0)
then stop;
6 if ((prime[lastprimefound])2 >= currentnum) then

success <-- TRUE;

7 if (success = TRUE) then stop;
end;
end;
primeli] <-- currentnum;
index <—-i;

end;

These coprime numbers are going to be served as the unique
identification number the system provide to the each individual file the

system.

26

With the result from above, a function to calculate the keys is
developed and implemented. Each calculated key is kept in their respective
user nodes. The user nodes are then arranged in a hierarchical form. The
generation of user hierarchical would be based on the idea discussed by
[Saltzer and Schroeder, 1976] and under the user hierarchical form, the
users in the system is also divided into groups so that any revocation or
introduction of new files into the group, only the group members is
assigned a new key. Each group has a group administrator to take care of
revocation and public file access rights. Calculation of the key is only
dependent on the access rights of the public files as well as the access
rights a group member towards any files in the same group.

Compared with the user hierarchical system proposed by Wu and
Hwang[1984], this system has greater advantage because the Key Lock Pair
mechanism has to solve a series of equation in order to find out the
relationship of two users. Where hjj is the relationship between two keys K;
and Kj. then the Keys of K; and Kjcould be found by the transpose of the
m X m key matrix. Thus giving hj; = Ki * Kj for 1<i sm, 1<j<m.
Conceptually, this method of assigning keys to the user is very similar to
the airect kev assignment method discussed by Chang and Jiang [1989]
However, their method has to go through a series of calculations to find out
the relationship between two keys as well, thus increasing the system
time. In this improved method of user hierarchical system, the relationship
between two keys will be confirmed by checking immediately the
hierarchical structure of the user. Comparison between the two key in the
hierarchy should confirm the superior and inferior relationship between any
two users. In terms of user extensibility, any new account given to any user

27

means adding them in the user list in the system as well as in the
appropriate hierarchy.

Modification of the Extended Euclidean's Algorithm

According to Chang's algorithm in solving the keys of the users, he
proposed that:

If Ly Lo Lz .. Lyrepresents the files or locks numbers with

L;> max (&),

n
where & 15 the access rights of ith user on jth file. ThenL = J] Ly
k=1

and Dj=L 7 Lj The equation of DjX;=1 (modL;)for 0 < X; <L;, can

be solved (uniquely since O <X;< L;j) by means of the extended Euclidean

Algorithm.

Greatest Common Divisors and Euclid's Algorithm
Definition :
Let any two numbers No and N1 be positive integers. A positive

integer M is called a greatest common divisor of N, and Ny and is denoted
by GCD(No, Ny), if

1. Mdivides both N, and Ny, and
2. every divisor of both N, and Ny divides M.

The £fuclias Algorithm for computing GCD(Ng, Ny) is to compute the
remainaer sequence No, Ny, No, ... Ny where N;, for i 2 2, is the nonzero

28

remainder resulting from the division of Ni-2 by Ni-y, and where Ny divides
Ni-1 exactly (ie., N+1 = 0). Then GCD(Ng, N1) = Ng.

[heorem 3.4
The Euclid's Algorithm correctly computes GCD(Ng, Ni).

Proof - The algorithm computes Ni+y = Ni-y - Qi N; for | < i <k, where
Q; = Floor Value [Ni-1/ Nl Since Nijs1 <N; the algorithm will
clearly terminate. Moreover, any divisor of both Ni-1 and Ni is a

divisor of Ni+1, and any divisor of N; and Nj4 is also a divisor of
Ni-1. Hence GCD(Ng, Ny) = GCD(Ng, N1) =... . = GCD(Nk-1, Ng).
Since GCD(Nk-1, Nk) is clearly N, the algorithm is proved.
Extension of the Euclidean Algorithm

The Euclidean algorithm can also be extended to find not only the
greatest common divisor of No and N1, but 21so to find integers X and Y such
that NoX + NiY = GCD(Ng, N¢). The algorithm is as below:

Extended Euclidean Algorithm

begin
1 Xo <—-1;

Yo <= 0;
X1 <= 0;

Yy <—- 1
i<¢-1,

2 while N; does not divide Ni-1 do

29

begin
3 Q <---Floor Value [Ni-1/ NiJ;
4 Ni+1 <= Ni-1 —Q*N;;
5 Xie1 === Xiop = Q* X
6 Yis1 <<= Yiop —Q %Y,
7 T =1+ 1

end
8 Return (N;, X;, Yj);

end

The worst case time complexity to find the integer GCD(ag, @1) is
O(ny,52 N) if 0 < @, a; < N. [Knuth, 1980]

In solving the equation of DjXj=1 (mod Lj) for 0<Xx; <Lj, we
will be using modification of the Extended Euclidean algorithm which is

faster and more efficient.
Modification of the Extended Euclodean’'s Algorithm

In order to improve the speed and overall system efficiency of the
operating system, the extended Euclidean Algorithm that Chang [1986] |
suggested was working with large numbers that would take a longer time to
solve for X; in Djx;j = 1 due to the tremendous number of equations when a

large number of users are log onto the system.

forDj=L/Ljand

30

n
L=]JI Lc where Ly, L L3s...Ly represents all the locks. In my
k=1

opinion, the use of smaller numbers is possible. Instead of using Dj itself,
the remainder of D; when it is divided by L could also be used to solve for

Xj. The following proof will indicate why:

Supposing ;' =D; (mod Lj) where D; = D;' + MiL; (some value of
Mj)
Since Djx; = 1 (modL;),
therefore, (Dj' + Mij)Xj= 1 (mod Lj)
Dj.Xj + MJ'LJ Xj= 1 (mod Lj) and
Di’xj = 1 (modL)p QED
Therefore, there will be a procedure that will change the numbers to a

modulus and then the extended Euclidean Algorithm will be applied. In the

algorithm that finds the key of

the user is Ki= 2 Dixja; mod L

During the calculation of the keys, since Z Djxjaij
j=1

in general is a large number compare to L. In order to avoid overflow in the

calculation, we use the fact that

31

(a+b)modc)={[a(modc)]+b}(modc) (Appendix B)
That is, when we are calculating the key, if the partial sum is greater
than L, then the modulus of the partial sum will be obtained and used.

Algorithm on The Chinese Remainder Theorem

This algorithm determines the positive constant key K for a given N
pairwise coprime locks L;. and a corresponding set of access rights a;.

Input: Ly, Ly, L3, ..., L, and ay, 8y, a3, ... ,a,

Output: K
1 Read L;and a;
| 2 for (num =1i; num<n; num<--num + 1) do

L=L* Lom:
3 for (num =1i; num<n; num <--num + 1) do
D num=L 7 Loum ;
4 for (num =1i; num<n; num<-—-num+ 1) do
D num = Doum M0d L,
S compute the X; with DAnurn using the Extended Euclidean Algorithm.
6 for (num =1i; num < n; num <--num + 1) do
K = K + Daum * Xnum* 8num;
7 if (K>L)then k= kmodL;
8 ReturnK;

Various Binary Operations

The eight commands described by the Graham and Denning 's model
are simulated to the closest.using the various binary operations of addition,
multiplication and division. The idea is to simulate the Single-Key-Access-

Control System using the Chinese Remainder Mechanism with improvement

32

by having each user to have his or her own local binary file structure. The
entire simulation is assumed to be simulated inside the Secured Kernel. The
following listed are the binary arithmetic operations carried out in the

simulation 1tself.
Bi \ddit]

Given a positional number system in base b = 2, the addition of two »
digit positive numbers, the addend .x and the augend y :

X = (Xp-1, ... X1, %0), ¥=(¥n-1....¥1, ¥o)

results inasum S = (S, Sn-1, .. .51, So) where S, can only take one
of the two values 0 or 1 independently of b. When Sn is 1, it will often be
considered as an overflow. Since in caiculation of the Keys using the
Chinese Remainder Theorem do not give rise to any negative numbers,
therefore, it is nol being considered as an overflow. The addition

algorithmis expressed as below:

1. Co <—- 0 (Cyis the initial carry-in);

2. For i:=0Step 1 until n-1 do

begin
Si «— (X +Y, +C)modb;
Ci+y <——Floor Value [(X; +Y; +Ci)/ b]
end;
3 S, «-C.

Since X; +Y; <2(b - 1) and the initial Co = 0, the maximum value for

any C; will be the Floor value of [2(b-1)+1/b] = 1.
Since this algorithm will examine every bit once, therefore, it is of

33

O (n) where n is the number of bits represented.

The Multiplication Algorith

Given two n-digit positive integers, the multiplicand X and the
multiplier Y, represented in a positional number system of redix b = 2.

X = (Xn-1, ... X1, %), ¥=(¥n1.... Y1, Yo)
their result is a 2n-digit positive numbers:

R = (Ron-1, Ron-2, . . . Ro) could be calculated by the following

algorithm.
1 Set Rj <-0,for0 < j<2n;

N

Fori:=0Step tuntiln-14do

3 Ity ©Othen

begin

K <--0;

For j =0 step 1 until n-1 do

begin
t <-- Xj*'y‘i + an +K;
Risj <—-tmodb;
K <--Floorvalue [t 7 b]

end;

Risn - K;

end;

34

Generally, it Y and Z are the two numbers needed to be multiply, the upper
bound of this algorithm is Oan Y)or O(Ing 2) depending on which number

15 greater.

ivision Operation of Two Positive In S

The division operation has (n + M) digit dividend X and an N-digit
divisor ¥ to produce two outputs, an (m + 1)-digit quotient q and and nN-

digit remainder ' such that:

K=y*q-+r, o<r<y
The above algorithm is called a restoring division with :

X = (Xn-l,.,.,xo)

y - (Yn—l,] VO);
q = (Qn nnnn) qO),
r=(rn—],|...,r0)

The algorithm can be expressed as :

1 Expand X into X' =(Xon2, ..., %n, Xn-1,, Xo)
by letting all X;, forn< 1< 2n-2, be 0, (* perform a sign extension *)
2. For i:= 1 step 1 until n do
. n-i
SetZ<«¢- X -2 *Y¥
ifz > OthenQuer~i < land X' - 2;

else Que1-i <-- 0 and do not modify X'

35

3 re-X

From the algorithm, it is clear that if the value of the number being
divided is ¥, thus the upper bound of the binary division operation is in the
Oty V).

Algorithm On Various Binary Tree Operations

Algorithm on Find Node

This algorithm is part of the operations on the Binary Tree. It
receives the head of any binary tree, whether it is a global or local binary
tree. A stack of pointer to tree nodes is being passed and this serves as a
path on the searching direction. The found is served as a flag to indicate to

the calling routine whether the node is found.

Input . Head, info, found, stack, stacktop.
Output: found, stacktop, Head,;

I previousnode <-- head;

currentnode <-- head;

temp_top <-- -1;

temp_found <-- FALSE

WHILE ((temp_found <> TRUE) AND (currentnode <> NIL))
begin |

N H W N

temp_top <-- temp_top + 1;

temp_stack[temp_top] <-- currentnode;

if (currentnode->info = info) then temp_found <-- TRUE;
else

begin

36

if (currentnode->info < info) then
currentnode <-- currentnode->rightpt;
else currentnode <-- currentnode->leftpt;
end;

end;

found <-- temp_found;

stack_top <-- temp_top;

copy (temp_stack to stack);

OO

Return (currentnode);

3.7.2 Algorithm on Modifying Tag of Tree Node

This algorithm will caiculate the tag inside the stack of pointer to
tree nodes. Since this is a height balance tree, on any particular tree node,
the Tongest path to the right must not be more than one node length than the
shortest path on the left of that particular node. If more than two is found,
then the algorithm would stop and return the critical node.

Input: head (* head of the tree *)

process (* to differentiate Insertion and Deletion *)
critical (* an integer to indicate on stack which is critical *)
stack (* an array of pointer to tree node *)
stack_top (* an integer to tell top of stack *)
Output: critical node

I previousnode <-- stack_top;

)

temp_top <-- stack_top -1;
temp_critical <-- FALSE;
STOP <-- FALSE;

Find critical loop:

[2 I N 08

IT (Deletion) AND (stack[stack_top -1]->tag = 0) then
stop <-- TRUE;
If (stack[stack_top -1]->info > stack[stack_topl->info) then
begin
if (Insertion) then
decrement stack[stack_top-1]->tag by 1
else increment by 1;
end;
else begin
it (Insertion) then
Increment stack[stack_top -1]->tag by 1,
else decrement above by 1;

end
if (Istack[stack_top-1]->tagl > 1) then
begin
tempcriticainode <-- stack_top -1;
tempcritical <-- TRUE;
end;

IT ((stop = TRUE) AND (tempcritical = TRUE)
OR (stack[stack_top -1] = head)
OR (stack[stack_top - 1]->tag=0)
AND (insetion))) then goto stopfind;
else begin
previousnode <-- stack_top - 1;
stack_top <-- stack_top - I;
goto Findcriticalnode;
end;

37

38

stopfind.
critical <-- temp_critical,
critical_node <-- temp_critical_node;
6 Return;

Algorithm On Binary Tree Insertion

This routine needs input on the head of the tree, the name of the file,
and the pointer to the user node that tells who owns a file if inserton is
done on the global binary tree. This routine also allocate memory for the
“new node being created for the binary tree (whether is local binary tree or
global binary tree) as well as inserting the node into the lexicographic
appropriate position. Before exiting the routine, it will call the balance tree
routine to balance the tree after the new insertion,

Input: head (* either head for local or global binary tree *)
info (* name of the node *)
usernodept (* pointer to user node who owns the file *)

Ouput: head of the tree

1. location <-- Call findnode;

2 if (found = FALSE) then

3 begin
Allocate Memory for new node and update the information;
if (globalbinarytree) then newnode->ownerptr <-- usernode;
else newnode->filenumber = primelprimeindex];

end
4 if (head = Nil) then head <-- newnode;

39

1T (location->info < info) then location->rightpt <-- newnode;
else location->leftpt <-- newnode;

Increment stack_top by 1;

stack[stack_top] <-- newnode;

Call ModifyTag;

10 1f (critical) then Call BalanceTree;

O o N O A

return;

Algorithm jonof Tr

This routine will first search for the node in the tree according to the
name of the file passed in. If the node is found, then it will delete the node
from the tree and free the memory. After freeing the memory, it would then
modify the tag on the path and if it is necessary, it will rebalance the tree.
The output of this routine is the head of the tree.

Input: filename (* name of the file needs to be deleted *)
head (* head of the tree %)

Qutput: head of the node;

| Call Find Node
2 it (found) then
begin
if (head node) then free (head);
else if (head->rightpt = Nil) then
begin
head <-- head->leftpt;
free(head->leftpt);
end

40

else begin

del_loc <-- stack_top;

location <-- stack[del_loc]->rightpt;

while (location <> Nil) do

begin
stack_top <-- stack_top + 1;
stack[stack_top] <-- location;
location <-- locatio->leftpt;

end

suc <-- stack_top;

bef_suc <-- stack_top -1;

Call ModifyTag;

it (stack[del_locl->rightpt = Nil) AND
(stackldel_loc]->1eftpt = Nil)) then

begin
if (stack[bef_del]->info > stack[del_locl->info)
then stack[bef_del]->leftpt <-- Nil;
else stack[bef_dell->rightpt <-- Nil;
free(stack[del_loc));

end

else if (stackldel_loc]->rightpt = Nil) then

begin
if (stack[bef_dell->info > stackl[del_loc])
then stack[bef_del}->leftpt <-- Nil;
else stack[bef_del]->rightpt <-- Nil;
free(stack{del_loc));

end

else begin
copy (successor node to del_loc node);
if (bef_suc->info > suc->info) then
bef_del->leftpt <-- suc->rightpt;
else bef_del->rightpt <-- suc->rightpt;
free(suc);
end;
it (critical) then
begin
if (stack_top - critical_node) < 3) then
begin
if (critical_node->info >
(critical_node +1)->info) then
begin
if (critical_node-.rightpt <> Nil)
then begin
critical_node+ 1 <-- critical_node->rightpt
if (critical_node +1)->tag=1) then
critical_node+ 2 <- critical_node->rightpt;
else if ((critical_node+1)->tag = -1) then
(critical_node+2) <—- (critical_node+1)->leftpt;
else begin
It ((critical_node +1)->rightpt <> Ni1) then
critical_node+2 <-- (critical_node+1)->rightpt;
else critical_node+2 <-- (critical_node+1)->1eftpt;
end;
end

41

42

end
end
Call BalanceTree
end;
end

Return

Algorithm On Balance Tree

This algorithm is called by the Insertion or Deletion routines. It
receives input on the head of the tree, a flag to indicate Insertion or

Deletion routine .and the stack where the path of all tree nodes are stored,

Input : head (* head of the tree node *)
flag (* to show Insertion or Deletion %)
stack (* the stack of tree node pointers for the path *)
critical_node (* node which is found critical *)
Output : head of the tree;
1 son <--critical_node + 1;
2 grandson <-- critical_node + 2;
3 if ((stack[critibal_node]—ﬂeftpt = stack[son]) AND
(stack[son]->1eftpt = stack[grandson))) then
Call SingleLeftRotation;
else if ((stack[critical_nodel->rightpt = stack[son]) AND
(stack[son]->rightpt = stack[grandson])) then
Call SingleRightRotation;

43

else if ((stacklcritical_node]->1eftpt = stack[son]) AND
(stack[son]->rightpt = stacklgrandson])) then
Call DoubieLeftRotation;

else Call DoubleRightRotation;

Return;

Algorithm On Single Left Rotation

This routine is being called by the Balance Tree routine and the inputs

include the head of the tree, stack that store the pointers of the path, and

the critical node. This routine would bring the critical node down and put on

the right of the pivotal node. It would then return the stack as well as the

head of the tree,

Input: head (* head of the tree %)

stack (* stack that store pointers of the path *)
critical_node (* an integer that indicates the position of the critical

node in the path *)

Output: head (* the head of the tree *)

Mo

N W

stack (* the new stack with the nodes being repositioned *)
pivot <-- critical_node + 1;
pivot_right = stack[pivot]->rightpt;
stack[pivot]->rightpt <-- stack[critical_node];
stack[critical_node]->leftpt <-- pivot_right;
if (stack[critical_node] = head) then head <-- stack[pivot];
else if (stacklcritical_node - 1]->]eftpt = stack[critical_node]) then
stack[critical_node - 1]->1eftpt = stack[pivot];

else stack[critical_node - 1]->rightpt <-- stack[pivot];

44

stack[critical_node]->tag <-- 0;
stack[pivot]->tag <-- 0;
return;

Algorithm On Single Right Rotation

This routine will reposition the nodes in the path and takes input as

head of the tree, the stack that store the pointers of the tree nodes as well

as the position of the critical node. It would return the repositioned stack

as well as the head of the tree.

- Input: stack (* stack for the path pointers *)

head (* head of the tree %)

critical_node (* position of the critical node in the stack *)

Output: corrected stack, and the head of the tree.

!

LS AR) . O LA

pivot <-- critical_node + 1;

pivol_left <—- stack[pivot}->1eftpt;

stack[pivot]->leftpt <-- stack[critical_nodel;

stack[critical_node]->rightpt <-- pivot_left;

if (stack[critical_node] = head) then head <-- stack[pivot];

else 1T (stacklcritical_node - 1]->1eftpt = stack[critical_node]) then
stack[criticai_node - 1]->leftpt <-- stack[pivot];

else stack[critical_node - 1]->rightpt <-- stack[pivot];

return;
Algorithm On the Double Left Rotation

This routine is called by the Balance Tree routine and takes input of

head, stack and the critical node position. It would rotate once and then call

45

Single Left Rotation to do another rotation. 1ts output will be the stack and
the head of the tree.
Input: head (* head of the tree %)

stack (* stack that stores the pointers of the path *)

critical_node (* position of stack that contains critical pointer %)

Output: head and the reposition stack;

I

O o d G 3 Hh WON

o

pivot <-- critical_node + 1;

pivot_right <-- stacklpivot]->rightpt;

Copy input stack to local stack

stack[critical_node]->leftpt <-- pivot_right;

stack[pivot]->rightpt <-- pivot_right->leftpt;

pivot_right->leftpt <-- stack[pivot];

localstack[pivot] <-- pivot_right;

localstack[pivot+ 1] <-- stack[pivot];

Call Single Left Rotation;

if ((stack[critical_node]->rightpt <> Nil) AND
(stacklcritical_node]->leftpt = Nil)) then
stack[critical_node]->tag <-- 1;

else if ((stack[critical_node]->rightpt = Nil) AND
(stacklcritical_node]->leftpt <> Nil)) then
stack[critical_node->tag <-- -1;

else stacklcritical_node]->tag = 0;

if ((stack[pivot]->leftpt = Nil) AND (stack[pivot]->rightpt < Nil))

then stack[pivot]->tag <-- 1;

else if ((stack[pivot]->tag = 1) AND (stack[pivot]->leftpt < Nil)
AND (stack[pivot]->leftpt->tag < 0)) then

stack[pivot]->tag <-- -1;
else if ((stack[pivot]->1eftpt <> Nil) AND
(stacklpivot]->rightpt = Ni1)) then stack[pivot]->tag <-- -1,
else stack[pivot]->tag <-- -1, |

return;
Algorithm On the Double Right Rotation

This routine is called by the Balance Tree routine and it takes input
like the head of the tree, the stack that stores the path, and the critical
node that indicates the position of the stack.

Input: head (* head of the tree *)

stack (* stack that stores the pointers of the path *)

critical_node (* position of stack that contains critical pointer *)
Output: head and the reposition stack;

] pivot <-- critical_node + 1;

pivot_left <-- stack[pivot]->leftpt;

Copy input stack to local stack
stack[critical_nodel->rightpt <-- pivot_left;

bW N

stack[pivot]->leftpt <-- pivot_left->rightpt;
pivot_left->rightpt <-- stacklpivot];
localstacklpivot] <-- pivot_left;
localstack[pivot+ 1] <-- stack[pivot]:

Call Single Right Rotation;

10 if ((stack[critical_node]->rightpt <> Nil) AND
(stack[critical_nodel->ieftpt = Nil)) then

O @ ~ O

stack[critical_node]->tag <-- 1;
else if ((stacklcritical_node]->rightpt = Nil) AND

46

47

(stacklcritical_node]->1eftpt <> Nil)) then
stacklcritical_node->tag <-- -1;

else stack[critical_node]->tag = 0;

11 if ((stack[pivot]->1eftpt = Nil) AND (stack[pivot]->rightpt <> Nil))
then stack[pivot]->tag <-- 1;
else if ((stack[pivot]->tag = -1) AND (stack[pivot]->rightpt < Ni1)
AND (stack[pivot]->leftpt->tag <> 0)) then
stack[pivot]->tag <—- -1;
else if ((stack[pivot]->leftpt <> Nil) AND
(stack[pivot]->rightpt = Ni1)) then stack[pivot]->tag <-- -1;
else stack[pivot]->tag <-- 0;
return;

xample On lication

In this example, we assume that there are a total of nine users in the
system. The first user in the hierarchy is the system administrator, Sa and
two department heads. Namely department A, Da and department B, Db.
Department A has 3 users under his hierarchy. which are named as AU1, AU2,
and AU3. On the other hand, deparment B has 3 users under his hierarchy and
there are called BUT, BU2, and BU3 respectively. Figure 3.3 shows the
hierarchical structure of the example system. The system administrator is
charged wih the task of setting the accounts of different users in the
system, and assigning the preliminary files to be used by each user.
oupposing there are three library files, which was set up by the system
aamintstrator, which are named as LIB1, LIB2 and LIB3. The system
administrator Sd decides that he would allow all users in department A to

48

execute LIB1, LIBZ, LIB3 and users in department B to read and execute LiB1,
LIB2 and LIB3. Suppose that each user in the system decides to create a file

of their own. Thus, representing :

Execute : |
Read 2
write : 3 and
Own 4

If a user can read a file, then he has the right to execute also. If a
user own a file, then he could execute, read and write on the file, Each time
afile is created, the system will assign a new prime number to the file and
insert it in the global binary directory. Thus, the prime number that
represents each file in the system is as follows:

LIBT1 =5

LIB2=7

LIB3 = 11 (These are system files.owned by the system administrator Sd)
FIA
FIB
FIAUT =19 (The first file belongs to user 1 in department A)

13 (The first file belongs to department A)

17 (The first file belongs to department B)

FIAU2Z =23 (The first file belongs to user 2 in department A)
FIAU3 =29 (The first file belongs to user 3 in department A)
F1BUT =31 (The first file belongs to user 1 in department B)
FiBU2 = 37 (The first file belongs to user 2 in department B)
F1BU3 =41 (The rirst file belongs to user 3 in department B)

Calculation of Keys of Various Users

To calculate the keys of these user :

40

1. To calculate the key of the system administrator Sd, we have three
files that are created by him in the system. There are LIB1, LIB2, and LIB3
with prime numbers 5, 7, 11 respectively. Since he owns all the three files,
the access rights are 4 for these three files.

ThenL = J] L
k=1

and Dj = L / L d;is the remainder of Dj when it is divided by L; The
equation of djX;j=1 (modLj)for O < X; <L will be calculated.

Therefore,

L=5711=385and
D,= 77, D, =55 and D3 = 35.
di=2 dy= 6anddz =2
X1=3, Xp=6 and Xz=6

Therefore, the value of the key is

(Dyxja; + Doxoa;+ Dsxzaz Imod L

(77(3)4) +55(6)(4) + 35(6)4) Imod 385
(924 + 1320 + 840) mod 385
4

1]

2. The calculation of the key of department head A involves 4 files in
his local binary directory. Since users in department A could execute LIBI,
LIB2, and LIB3, his access rights on these files are 1 respectively.
Department head A also has a file of his own, that is FIA and it has been

assigned a prime number of 13. The calculation of key for department A is

50

as follows:

L = (SX7X11)(13) = 5005 and
Di= 1001, Dy =715,D3 = 455,and . D4 = 385
di=1, do=1,ds=4 andds=8
Xi=1, Xo=1, Xz=3 and X4=5
Therefore, the value of the key is
= (Dixja; + Doxoao+ Disxzaz + Dgx4a4)mod L
= {10010y + 71501)(1) + 455(3)(1) + 385(5)(4) Jmod 5005
=771

3. The calculation of the key of department head B also involves 4
files in his local binary directory. Since users in department B, like
department A could read and execute LIBI, LIB2, and LIB3, his access rights
on these files are 2 respectively. Department head B also has a file of his
own, -that is F1B and it has been assigned a prime number of 17 The

calculation of key for department B is as follows:

L =GX711)(17) = 6545 and
D= 1309, Dy =935,D3 =595, and. D4 = 385
di=4 do= 4,d3=1 anddg =11
X1=4, Xp=2, Xz=1 and X4=14
Therefore, the value of the key 15
=(Dixja; + Dyxoar+ Dixzas + Daxsa4 Jmod L
= [1309(4)(2)+ 935(2)(2) + S95(1)(2) + 385(14)(4) }mod 6545
= 4237

51

4. The calculation of user AUI, which is the first user inside
department A Besides having the access rights of 1 or execute on the LIBI,
LIB2, and LIB3, it has its own file of F1AUI, which 15 given the prime
number of 19 by the system. Therefore, the key 15 calculated as follows:

L= (SX7X11)19) = 7315 and
Di= 1463, Dy = 1045, D3 = 665, and . D4 = 385
di= 3 do= 2,d3=5 anddg =5
X1=2, Xo =4, X3 =9 and X4=4
Therefore, the value of the key is
={Dyxja; + Doxoar+ Daxzaz + Dyx4sa4 Jmod L
{1463(2)(1) + 1045(4)(1) + 665(9)(1) + 385(4)4)) mod 7315
4621

J. The calculation of user AU2, which is the second user inside
department A. Besides having the access rights of 1 or execute on the LIB1,
LIBZ2, and LIB3, 1t has its own file of F1AU2Z, which 1s given the prime
number of 23 by the system. Therefore, the key is calculated as follows:

L = (SX7)(11)%(23) = 8855 and
Di= 1771, D2 = 1265, D3 = 805, and. Dg = 385
di= 1 dr=5,ds=2 anddg =17
X1=1, X2=3, Xz =6 and Xq4=19
Therefore, the value of the key is
={Dyxja; + Dyxoap+ Dsxzaz + Daxqa4 Imod L
= [177101)1) + 1265(3)1) + 803(6)(1) + 385(19)(4) Jmod 8855
= 4236

52

6.The calculation of user AU3, which is the third user inside
department A. Besides having the access rights of 1 or execute on the LIB1,
LIB2, and LIB3, it also has its own file of F1AU3, which is given the prime

number of 29 by the system. Therefore, the key is calculated as follows:

L =(5X7)(11)29) = 11165 and

Di= 2233, Dy =1595,D3 = 1015, and . D4 = 385
di= 3 do=6,ds=3 and dq=8
X1=2, X2 =0, X3 4 and Xg=11

Therefore, the value of the key 1S

= {Dix187 + Doxodp+ Diaxzaz + Dax4a4 Jmod L

{(2233(2)(1) + 1595(6)(1) + 1015(4)(1) + 385(11)4) Jmod 11165
1541

7.The calculation of user BUI, which is the first user inside
department B. Besides having the access rights of 2 or read and execute on
the LIBI, LIBZ, and LIB3, it also has its own file of FIBUI, which is given
the prime number of 31 by the system. Therefore, the key is calculated as

follows:

L = (SX7X)11X31) = 11935and

Di= 2387, D, =1705,D3 = 1085, and . D4 = 385
di= 2 d= 4, d3=7 and d4q=13
X1=3, Xo=2, Xz =8 and Xg=12

Therefore, the value of the key is
={Dix;a; + Doxoar+ Dixzaz + Dsx4a4 Ymod L
= [2387(3X2) + 1705(2)(2) + 1085(8)(2) + 385(12)(4) Imod 11935

53

= 9242

8.The calculation of user BU2, which is the second user inside
department B. Besides having the access rights of 2 or read and execute on
the LIBT, LIB2, and LIB3, 1t also has its own file of F1BUZ, which is given
the prime number of 37 by the system. Therefore, the key is calculated as

follows:

L = SXD(11X37) = 14245 and
D, = 2849, D, = 2035, Dz = 1295, and . D4 = 385
di= 4 db=5 d3=8 and d4q=15
X;= 4, X2= 3, Xz=7 and X4=5
Therefore, the value of the key is
={Dixia; + Daxoap+ Dzxzaz + Daxqas4 Jmod L
={2849(4)(2) + 2035(3)2) + 1295(7X2) + 385(5)4) Jmod 14245
= 3852

9.The calculation of user BU3, which is the third user inside
department B. Besides having the access rights of 2 or read and execute on
the LIBI1, LIB2, and LIB3, it also has its own file of F1BU3, which is given
the prime number of 41 by the system. Therefore, the key is calculated as

follows:

L = (5X7X11)41) = 15785 and

Di= 3157, Dy =2255,D3 = 1435, and . D4 = 385
di= 2, dr= 1, dz=5 and d4=16
Xi= 3, Xo= 1, Xz3=9 and X4= 18

Therefore, the value of the key 1s

= {Dix1ay + Doxod2+ Daxzaz + Daxadq Jmod L

={3157(3)(2) + 2255(1)(2) + 1435(9)2) + 385(18)4) Jmod 15785
= 13862

CHAPTER IV
ANALYSIS OF RESEARCH RESULTS

Program Correctness

According to Graham and Dennig, it is necessary to prove the program

and system correctness through two criteria:

1 Any request made by a user or subject K; which leaves the protection
state or the matrix A intact can not be an unauthorized access.

)

Any command made by a user or subject Kj which changes the
protection state A can not lead to a new protection state in which
some other users or subjects, such as Ky has unauthorized access to
the same object L.

with respect to the first criteria, if the protection system is correct,
the attachment of a unique key, which identifies the commanding subject to
every request it makes, allows the protection system to identify the user
and the file. It thus makes any reference easier and thus fulfills criteria 1.
In another words, since both the Key and the Lock are unique, therefore, all
requests are accountable.

The burden of proofs lies on the fact that the protection system
calculates the unique key correctly, and the protection system interrogates

the correct entry in the access matrix A and no other monitors except the

secured protection system alters the contents of the access. Since no other

33

56

mechanism alters the access rights of any file except the protection
system, therefore, those files which are accessible to the user will only be
presented during the calculation of the keys. Since the sets of access rights
of any two users Uy and Uy are never the same (though they may have the
same set of access rights to the same set of library files, as soon as one of
them issues the command to create another new file, or is given a new
access right to a new file, the key of the receiving user is not the same any
more), therefore, the keys calculated are always unigue.

With respect to the second criteria, the keys are only calculated

based on the given access rights &

n

n
Ki = Z Dj. Xj. &jj mod L =H Ly

j=m k=m
where m<j<n, m<k<n,andm <nand the protection state of a file can
be changed by a user, but the recalculation of the key is done by the
mechanism in the protection system and posted to the user ‘s directory who
received the new access right to a given file. If the access right is read,
then the user can not change it to write because the key is being calculated
and the user can not change the key.

Considering the classical problem of propagation and revocation
mentioned widely in most methods. A department head Ho allows a group of
n staff members under him So, ... ,Sn-1, Sp to read a very important |
document of the department. Suppose further that Ho intends that under no
circumstances, should St read this document. Under the access control list
method and directory 1ist method, the entry for this file could be revoked
and deleted from the list. However, further provisions must be provided to
prevent all other group members (from S, to S,) copying this file indirectly

57

to S1. Using the improved method of calculating the keys and the locks, any
user who does not receive this unique lock number in calculating his or her
key, simply can not access that file because it is just not found in his own
local directory. Thus, this method provides the possibility of having a policy
in which only the owner of a file can have the power to grant access rights

to others.

Time Complexity of the Chinese Remainder Theorem

Since the Chinese Remainder Theorem requires the following formula:

m
Ki= 2 DiX. a; mod L= IIY . (1)
i=0 i

m : the number of users in the system.
Ki : the i user key in the system

Dj . 1S the product of all the relatively prime numbers except the ¢/ prime

)
number. It 15 calculated from D; =H L« X =],
x=1

L . is the final product of S relatively prime numbers or all the files in the
system.

To deduce the time complexity of the Single Key Access Control using
the Chinese Remainder Theorem mechanism, we need to look at the binary
operations of the various components in the formula. Since there are S
numbers of files in a local binary tree directory, if L represents a file

number, then each binary multiplication needs O(lng L)). Therefore, to

58

calculate the product of all L; where i<n, and n is the number of files in
the local binary directory, we definitely need (n - 1)O(ln2 Li). To deduce the
number of operations which are needed for each D, where D; = L/L;, D;
needs an operation of O(Inp L), since the number of operation depends on the
greater number in the division,, in this case, the product of L; L. Therefore,
to get the total number of operations for all Dj, where 1< j <n, we need
nO(mg L). Therefore, total overall number of operations to calculate L and
all Dj is

in- DO Ly + nOainy L)

Since the Chinese Remainder Mechanism requires for solving for X; in
this equation of Djx; -1 = MiL; (for some value of M;). .. .(1)

To find the time complexity of X;, we started with equation (1),
however; D; could be written as djL; + €; for some value of d;, Thus, we
have €;X; - 1 = M;"L; (for some value of M;") and the time to convert D;
needs a modulus operation of O(lnz Dj), since finding X; from
eiXj - 1= M;"L; needs the most time of O(in; 5" N) -2, (if 0 ¢ Xj, Lj <
N).thus we have the time to find the €; Thus the entire operation of

finding a single key is
- DOz Ly + n00nz L) + Ot LLY + Otinp 5°° Ny - 2

From (1), we know that the entire Chinese Remainder Theorem mechanism

costs an upper bound of

nOdn, L)

39

Comnparison of the Improved Methods With the
Key-Lock-PairMechanism

The Key-Lock-Pair (KLP) mechanism based on the Chinese Remainder
Theorem proposed by Chang requires the system to fetch for a lock of the
corresponding file. This unique lock number is required to perform a
~ mathematical operation of Ki mod L; where K; is the key number of user i. If
we assume all locks are stored in a binary tree and the total number of files
present in the system is N. Thus, to verify a user access right to a file the
number of searching is InpN. The system also needs to perform the above K,
mod L, operation. Therefore, total number of operation is IngN + 1.

The key of each user K is calculated based on the Chinese Remainder
Theorem. If we represent jth file in the system by a unigue number, LJ-,,
then the key for ith user is calculated using the access right @;; of the user
to jth file. Then Dj= is L/ L; and X; can be found by solving Djx; - 1 = ML;
(for some value of Mj) by using the extended Euclidean's Algorithm. Since

0 <aj ¢ 4 with

0 = No access
I = Execute
2 = Read

3= Wwrite
4= 0wn

and 1< X< Lj ,
Disadvantages of the KLP mechanism

The main advantage of the KLP mechanism lies on its simplicity and

its process during verification of users’ access rights. From the

60

introduction, if we assume that there are N files in the system, then the N
lock numbers are stored in a binary tree. Each verification process in this
KLP mechanism needs a log N search as well as one operation of Ki mod L;

Lo obtain &;j.
However, if we assume M users in the system, this method has the

following disadvantages and there can be observed as follows.

MKeys Calculation After One File Addition. Any addition of a new file

by a user in the system requires the system to recalculate each user's key.
Even though many users may not have any access right to that file and
receives a zero for their access rights towards that file, we still require
the unique Tock number of the new file to recalculate all the keys in the
system because Dj= is L/ Lj. With M users in the system, then we need to
recalculate M times. If we denote T, as the time required to caiculate the
key of one user, then there is a InoN search for the right place to insert and
M*T. for M users. This clearly takes up tremendous amount of system time
to include all the lock numbers in the calculation.

M Keys Calculation after One File Deletion. As we can see from

above, if any user in the system decides to delete a file in the system, since
the corresponding lock number and the access right have to be removed from
each key calculation, all the keys in the system would then need to be

recalculated with M calculations. Thus, with the 1noN search for the right

file to delete, then another M*T. to recalculate M keys after a file deletion.

Long Search Time During Each User Verification. When a user wants

to access a file, the system needs to verify the legitimacy of the access
request of the user. The user may issue a string for the file name. If we

61

assume that each file name and its corresponding unique lock number is
stored in a binary tree, then we need to have a InoN search for the lock

number and then perform the verification by performing Ki mod L; operation.
Therefore, total time during user verification is InoN + 1. With a large
number of users and numerous files in the system, the search for user

verification takes up a lot of time.
Advantages of the improved Method Over the KI P
One Key Recalculation During Each Insertion of File. Since each file is

inserted into both the local binary tree of the owner as well as the system
global binary tree, we need to search for the correct positions in both binary
trees to insert the file. Thus, the improved method requires log n + log N
searching if we assume there are n number of files in the local binary tree
and N number of files in the global binary tree. Therefore, total time
required to perform an insertion is Inoh + InoN + T, instead of InoN + M*T,

in the KLP mechanism.

One Key Recalculation During Each Deletion of File. When there is a

deletion of file, it is the same case as the insertion and there is only one
recalculation of key. Thus the total time is Inoh + InoN + T as compare to
the KLP mechanism which requires InoN + M*T.q4, if we denote T.q as the

time needed to recalculate the key after the file deletion.

Shorter Search Time for User Verification. In the research procedure,

the analysis below shows it has shorter searching time during user

verification.

I. Lowest Hierarchy Has Inpn+ 1 Time

62

In the user hierarchical nodes, it is reasonable to assume that there
are more than 50% of the users in the lowest hierarchy of the system. For
example, students account in the university is more than the faculty and
administrative account. when users in the lowest hierarchy issue commands
to access a certain file, they have only Inon + 1 number of operations. They
could only search for files in their local binary tree where n is assumed to
be the number of files in the local binary tree. The ruie is that if they found
the file in their local binary tree, the total time of operation is Inon + 1
where 1nzn is the worst case searching time and perform a K;mod L

operation. If that file is not found in the local binary tree, then that means

the user can not access that particular file.

2. Higher Hierarchy

Since the node in the higher hierarchy comprised less than 50% of the
system population, the node in the higher hierarchy requires logn + 1
operations if the accessed file is in the local binary tree of the user. If the
accessed file belongs to the accessor's descendent, then the accessed file
may not be found in the local binary tree, and the system needs to find that
file in the global binary tree to find the owner of the accessed file. One
more comparison is needed to determine the relationship between the
accessor and the owner of the accessed file. The accessed file could only be
accessed by the ascendent of the owner. Therefore, in the worst case
analysis, the total number of operations is Ingn + IngN + 1.if the accessed
file is not found in the local binary tree of the accessor.

For nodes in this higher hierarchy, there is a possibility that the
system may not find the file name in the local binary tree, then we denote

63

P as the percentage of finding the jth file in the ith user local binary
tree.
(1-P) is the percentage that this file is not found in the local binary

tree.

Therefore, the node in the higher hierarchy needs an operation of

P(Inon + 1) if the file he wishes to access is found in his local binary
tree,

(1-P)(Inpn + InpN + 1} if the file belongs to one of his descendents
and thus

the file is not found in his local binary tree,

Therefore, if the total number of operations in the KLP mechanism is Yi.p
and the total number of operations in the improved method is Ynew . Then
Ycie = 1N+ 1 to verify a user status in accessing a file, where N is the
total number of files present in the system. For the improved method,

Ynew = P{Inon+ 11+ (1-P) { Inpn + IngN + 1) with

n = average number of files in the local binary tree,

N = total number of files in the global binary tree as the KLP
mechanism.

simplifying, we have

Ynew = PInon + P+ Inon + InoN + 1 = Pinon - PIngN - P
Yuew = Inon + InoN + 1 - PIngN

64

when the population comprises less than 50% of the system
population, we need to prove that under normal circumstances, most users
would access files that are legitimately accessible by them, thus under that
assumption, P is close to 1. Since our handicap in this analysis is the
difficulty in measuring P, or the probability of a user legitimately
accessing a file, our justification is that when most users access their own
file, the KLP mechanism has a higher number of operations than the

improved method. If that is true, then

Yar, - Ynew 2 0...(1)

Then{ingN+ 1) -(Inon+InaN+1-PinpN)} >0
=>InpgN+1 - Inoh-InaN- 1+PInpN >0
= PlngN-1non»> 0
=>P>Inon/ In2 N

The analysis is that, as long as P, the probability of a user
legitimately accessing a file, is greater than Inan/IngN, the KLP mechanism
has a longer verification time than the improved method. Since the value
for Inzn/1noN 15 relatively small for a large database system, we conclude
that, under normal circumstances, P is close to 1. Therefore, in this
improved method, the user in the higher hierarchy also has a shorter total
number of operations. In addition, user in the lowest hierarchy always has
Inon + 1 total operations. Thus, overall, the improved method has a shorter

verification time than the KLP mechanism.

CHAPTER V
SUMMARY OF RESEARCH THESIS

summary

Secured system and secured database are essential for data accuracy
and information integrity in modern computing environment. Therefore,
when designing the operating system or database system, great effort and
time must be devoted on considerations of having a secured system that is
free from undetected and unverified access on any information files. A
secured system must be able to provide the mechanism for both separation
of all users information as well as sharing of certain sharable
informational files; these mechanism must be robust and yet easy to use.

A system designer is charged with the duty of finding out what should
be protected as well as understanding the environment the protection
system is based on. Through studying models, the essential components of a
system is identified, and the interactions between these components must
be studied carefully in order to design an efficient system. This research
project referenced the Graham-Denning Monitor model. Therefore, criteria
of the model are followed and can be seen throughout the content of this |
research project. Since the model calls for the protection of objects in the
system and thus requiring the separation of subjects and objects, the
Chinese Remainder Theorem is used to implement the separation as well as
the necessary verification upon attempted access. Various mathematical

verifications were given on the mechanism to show that this mechanism

65

works in accordance with the model criteria. Each user in the research >
project belongs to a node in the hierarchical structure.

Generally, the rule set up is that users in the lower hierarchy do not
get more resources. In another words,they do not have more access rights
towards a fix number of files or they have less library files that can be
accessed. In the implementation of this research project, the keys
represent the subjects and the files represent the objects to be protected.
Any access of objects need a user's key to verify the access rights. This
mechanism is performed in the protection system, which is ideally placed
close to the hardware of the computing environment. Thus, in the
implementation process, various binary operations were coded to show that
the mechanism can be implemented close to the hardware as well as
preserving the accuracy of the mechanism.

In the analysis of the research project, discussion is provided on the
mechanism correctness by showing close affinity to the two basic
assumptions.

Finally, the analysis shows the performance of the Chinese Remainder
mechanism required a time of O(lng L) where L represents the product of all
the coprime numbers in a local binary tree. The research projcet shows that
Single Key Lock mechanism could be done much faster in terms of key
calculation, insertion of files, deletion of files and finally verification

time.

Future work

Further research could be geared towards faster performance of the
mechanism by considering the faster multiplication of binary numbers.

Calculation requirement of keys for users in the same functional group when

67
anew file is introduced could be further improved using some other

mathematical mechanism. The storage structure for the keys could be

modified to splay tree instead of a height balanced tree if priority of the

subjects could be determined.

BIBLIOGRAPHY

Burton DM. (1976). £/ementary NMumber Theory, Allyn and Bacon, Inc.
New York.

Computer System Organization , (1973): The B5700/ B6700 Series.
New York Academic Press.

Chang, C. K, & Jiang, T. M. (1989). "A Binary Single Key System for
Access Control." /EEE Trans, Computers vol. 38, No. 10.

Chang, C. C. (1986). "On the design of a key lock pair mechanism in
information protection systems.” 5/7, 26 (4), 410-417.

Dennis, J. L., & Van Horn, (Mar.,1966), "Programming semantics for
Multiprogrammed Computations,” Commun ACM, vol 9, 143-135.

Downs, D. et al. "Issues in Discreationary Access Control.” Aroc /1985 /EEE
symo. Security & Privacy, \EEE Comput. Soc. 1985, pp. 208-218.

England, D. (Aug., 1974) "Capability Concept mechanism and Structure in
System 250," /R/IA Int, Workshop Protection in Opérating Systéems,
63-82.

Graham, G. S. & Denning, P. J. (1972). "Protection-Principles and Practice.”
Proc AF/IPS SUCC 40, 417-429.

Hwang, T. Y. & Ton, J. C. (1980). "An access control mechanism for computer

system resources,” in Aroc /nt. Comput. Symp, Taipei, Republic of
China.

68

69

IMffe, J. & Jodeit, J. (Oct, 1962). "A dynamic storage allocation scheme,”
comput. A, vol S, 200-209.

Kain, R, and Landwehr, C." On Access Checking in Capability-Based
Systems.” Arac 1986 IEEE Symp Security & FPrivacy, \EEE Comput.
Soc 1986, pp. 95-100.

Karger, P.,and Herbert, A. “ An Augmented Capability Architecture to Support
Lattice security and Traceability of Access. ™ Proc. 1984 /EEE Symp.
Security & Privacy |EEE Comput Soc 1984, pp.2-12.

D. E. Knuth, 7he Art or Computer Programming NO. 1: Fundamental
Algorithms, Second Edition, Addison-Wesley, Reading,
Massachusetts (1973).

D. E. Knuth, 7he Art of Computer Programming, NolL.2: Seminumerical
Algorithms, Second Edition, Addison-Wesley, Reading,
Massachusetts (1980).

Needham, R. (1972). ":Protection systems and protection implementations,”
in AICC, AFIPS Conf. Proc, vol. 41, pt.1, 571-578.

Pettofrezzo, A. J. & Byrkit, D. R. (1970). £/ement of Number Theory,
Allyn and Bacon, Inc.

Pfleeger, C. (1989) Secwrity in Computing Prentice-Hall, Inc.

Ritchie, D. & Thompson, K. (Jul., 1974). "The Unix time sharing system,”
commun ACM, vol. 17, 365-375.

Redell, D. (1974)."Naming and protection in extendible operating systems,”
Ph.D. dissertation, Univ. of Calif., Berkeley.

Rusby, |. and Randell, B. " A Distributed Secure System. " Computer, vol.16
n7 Jul.1983, pp. 55-67.

10

Saltzer, J. H., & Schroeder, M.D. (Sept. 1975). "The protection of information
in computer systems.” Aroc /££L 63 (9), 1278-1308.

Stonghtom, A. " Access Flow: A Proctection Model which integrates access
Control & Information Flow. ™ Aroc 71987 IEEE Symp. Security &
FPrivacy, IEEE Comput Soc 1981, pp 9-18.

Synder, L. "Formal Models of Capability-Based Protection Systems.” /£££
Trans. Comput, vol. 30 n3 Mar 1981, pp.172-181.

Swaminathan, K. " Negotiated Access Control . " Proac /1985 IEEE Symp.
Security & Frivacy, \EEE Comput Soc 1985, pp. 190-196.

wiseman, S. " A Secure Capability Computer System.” £Proc /986 /EEE Symp.
Security & Pravicy, \EEE Comput Soc 1986, pp 86-94,

wu, M. L., & Hwang, T. Y. (1984). "Access Control with single key lock.” /EEF
Trans. on Sortware £ng, SE-10 (2), 185-191,

APPENDIXES

71

APPENDIX A

PROVE OF A COMPLETE RESIDUE SYSTEM MODULO M

73

A X s a complete resiaue system moaulo m and (a, m) = 1, then the set
C'=(lax+b/xe C/
1S @ complete resiaue systéem moaulo m.
PROOF : According to the definition of a complete residue system
modulo m, each integer is congruent to one and only one of the
members of the set. Assume that
axy+ b = axg + b (modm)
for two members x; and x2 of C. Then
axy = axo (mod m)
Then Xy = X2 (modm)
since (a,m) =1. However, this contradicts the hypothesis that
X1 and xo are members of C since no two members of a
complete residue system modulo m are congruent. Hence.
C =(ax + blx e C}

is acomplete residue system modulo m.

74
APPENDIX A (Continued)
1 (a m) =17, then the linear congruence ax = b (mod m) has exactly one

unique selution (or incongruent selution)

PROOF : Let C represents any complete residue system modulo 72
By the above theorem, the set /ax/x e /& also a complete
residue system modulo m Therefore, there exists only one
element xpe ¢ such that axp is congruent modulo 7 to a
given integer & Hence, the linear congruence ax = & (mod m.),

where (g/m/ =/, has exactly one incongruent solution x = xp (mod m)

(Adapted from Pettofrezzo and Byrkit, 1970)

APPENDIX B

PROVEOF (a+b)modc={[almodc)l+bimodc

75

Toprove(a+b)imodc={[a(modc)]+Db J(modc)
proof : (a+b)modc
=a(modc)+b(modc)
=fa(modc)](modc)+b(modc)

=[a(modc) + bl(modc)QED

76

APPENDIX C

FIGURES

77

Users

System Intervention @ Files

\ ‘@
ks
N

N

Key Lock

Figure 1. System View of SKL

78

FILE 1
FILE2
FILE 3
FILE 4
FILE S
F'YLE O 1LE 7

USER 1 0 |R R R|E
USER2 |p | O 0
USER 3 R R |pl|R
USER4 |R E
USERS |w |R | Rlg | |E | E
USER 6 - g |R|W E
USER7 |- |- |- |R E
usecrs |- | E|E |- [R o |W
USRS |- |E e w |- R |w
USER10 | |E (W IE |- | w

Figure 2.0. Access Control Matrix

80

a.out 0 > out
Progl.c RwW
Progl.o N
Temp E
.
User A Directory Progl.o
File Name AR FP
Bibliog 0
Test.a R
1. W
Progl.c > Prog.tx
Prog.tx RWE :
Temp R
User B Directory —
Temp
— -
AR : Access Rights
FP: File Pointer
R : Read L Blbhog
W : Execute
0 :0wn
N :No access Ly
Test.a

Figure 2.1. Directory Access Control

Files

User Access Right

Physical Files

A ———m= ONE ORW
B TWO R
C THREE | RW
i) FOUR | W
B =1 ONE ORW -
| FIVE | ORW
SIX R
SEVEN R
EIGHT | R
> | NINE ORW
TwoO ORW
—— = NINE RwW
TEN RW

Figure 2.2. Access Control Lists

Users

System Administrator

Global Binary Tree

DN

Z \

N

8¢

R

L

Figure 2.3. Structure of the Key-Lock-Pair Mechanism

Users

; - /N

ZA.

/
/ System Global File

Each File in the global
binary tree has a pointer
that points to the owner of
the file.

Users Binary Tree The calculation of each user
key is based on the lock
number in their own local

/ g 5 binary tree.
]

Figure 3.1 Hierarchical User Structure
With Local Binary Directory

83

84

E%l
F1BU1 F1BU2

F1BU3

L1, L2, L3 representing the 3 files by System Ad.

F1AUI represents file owned by user 1 from
department A.

Figure 3.3. System View of Example File
Structure

APPENDIX D

SIMULATION OF A HIERARCHICAL SINGLE-KEY-LOCK ACCESS

CONTROL USING THE CHINESE REMAINDER THEOREM

Cord R

rn =

R = S e B O B e o B o o I I 0

~01 L

Fad b bt bk b e b b ek bem i

<

10
42
4

%
4o

b
47

A
%5

49
50
4
o

[
a2

33

#include "h
3
Name

Tittle

Froject :

Progras D

Hierarchi

Binary tree

Logon On St

i/

86

eader .h*®

: Lee, Kig Sin

: Computer Simulation on the Single Key Access Control using the

Chinese Remainder Theorea.
Theeis Project for the Master of Science in Computer Science.

pscription @ This prograe will simulate the Single Key Access
Control using the Chinese Resainder Theorem. Each user in the
computer svstem is given a node and they are being inserted into
an ordinary hierarchical tree.

tal Tree : Each user node contains information on the access rights
of the user. & user is given some strings to identify the user
himselt as well as the department and the group that he belongs to.
The key where the calcuiation iz done ic stored in the user node.
The value of L where L represents the product of all the file
number that is accessible by the user. Since the users on the sase
level have the same pririoty with the user hisself, a pointer is
inside the user node to let the process knows of the presence of
other users. f pointer is alse provided for users of Iower level
than hig. A tree node is alsc provided to let the users have their
filec reprecented. Each file that is accessible by the user is
being inserted in the local binary tree of the user. If the user
wants toc access a file, the operating system will check the
iegality of the request by retrieving the prime file nusber

and retrieving the key of the user and perforg the

Key mod Lock = access rights. If the regquest is less than or

equal to the access rights, then the reauest is granted.

Else the request is not honor. '

: This binary tree will store all the necessary information on the

file that ic accessible by the user. Each node contains names

of the file, the tag for rotation of the tree. A file number which

is prime and represents the unigueness of the file in the systea. f pointer
that points to the owner of the file. Two additional pointerc that

points to the right and left childen.

ructure: The function of this structure is to provide the process to
recognize the user and passwords when they log on to the system, only
recognizable password will be given access and directed to the
caorrect usernode in the hierarchical structure.

—-STRUCT tree_node_rec \{

CHAR 1nfolMAXLENT; /kinto is the file name ¥/

INT tag: /% to store the tag nusber of the file for easy balancing ¥/

INT #num; /Y to store the prise number associated with the file 8/
STRUCT heirarchy fownerpt; /1 a pointer that points to owner of file &/
STRUCT tree_nooe_rec ¥lpt; /Xthe left tree pointer ¥/

STRUCT tree_node_rec ¥rpt; /% the right tree pointer ¥/

b 3 tree_node_types

|
i
!

H
1

i

3% —8TRUCT heirarchy \{

@ CHAR usernase[MAXLENI: /1 the user nage in the svstes ¥/

3| CHAR deptname[MAXLENI; /¥ the department the user belaongs to 3/

i CHAR groupname{MAXLEN]; /% the group name the user belongs to ¥/

38 CHAR key[MAX]; /1 the value of the key in binary fors ¥t/

¥ | CHAR largelMA¥]; /¥ the value of all file nusher in the directory &/
&0 | STRULCT heirarchy fnext; /# the next hierarchy pointer ¥/

61 | STRULCT heirarchy tdown; /% the subrodinate users in the systes &/
62 | STRUCT tree_node_rec fthead; /1 the head of the local directory 3/

I W} heirarchy_entry;

4 ——STRUCT logon \{

63 | CHAR usernaae{MAXLENY; /¥ the user name in the systea ¥/

bt | CHAR password(MAXLEN]; /f the password string belongs to the user #/
87 | STRUCT heirarchy ftheirarchy_ptr} /f the pointer that points to heirarchy &/
48 | STRUCT logon ddown; /¥ the down pointer ¥/

b9 e \} logon_entry;

70 FILE t#p, tfg,¥fch,¥4l;

7 INT priselMarprizel, priseindex, nus;

12 CHAR first,second,str{801, globalkey[MAXI, globallargelMAX],

73 djC1001IMAXT, »jI1001{NAYT, ai jL1001[RAX];

74 STRUCT heirarchy th_start;

73 STRUCT tree_npde rec ¥globalhead;

78 STRUCT logen flogon_start,tlogon_last;

77 FE R R iRttt it ittt ieieietiaritirtticititinieteitiostiesttti
78 Function Main : The function of the main program is to call various subsystess

19 to facilitate the calculations of the kev, It will call getprieel) to
80 produce a number of prise nusbers which serves as the unique number

t when calculating the key. It alsc has a loop that will keep reading the
B2 input file for new users log on and new comsand issued. Thus, the

3 eaphasis of this program is on the batch processing of the various

B4 cosmand.

85 S R R AR PR ettt R a i asrtitiritniisniotaiitissistsitisedi
86 re-main() A

faied

87 | h_start=NULL;

g8 | logon_start=logon_last=NULL;

g7 | globalhead = NULL;

99

91 | tp = fopen{‘userdate”,"r*};

92 | —--IF (Mg} A printé{®can’t open the input file \n®);
EAI | exit{0};

EL I ooy

i | f3 = fopen{"globaltree.dat”,"w"};

96 | r——IF ('4g) \{ printf{"can’t open the write file \n®);
87 |] exitily;

98 | bt G

79 | getprime(}s
109 | primeindex =2;
I p-WHILE{fesf (fp}]
10| | r——XIF (fgetsistr,80,4p}) \{
103 f] IF istri¢] == '{") batch_process{i;
194 | i ! ELSE separate_stringi{);
iOS 5 g | S—— 11

!

106

107
108
149
11
t
112
13
114
113
118
17
18
119
120

124
is

122
133
124
g
id
126
13
iL
128
129
130
131
132

117
ida

B - U -

[SOy
e Ced Gl Ged €

.‘
e
—_

142
143
144
143
144
147
148
47

e

<z

ot prh i bk bbb e pots poeb ik e

[0 N T o T O I L S I L I
~O 0 s Gk Ged D e

R
[A

/v searchih_start)y 8/

/¥ print_logoni{logon_start): ¥/
teloseifghy
close{tpl;

LR R R R iRttt er it a it Rrariiiieritiiatesesiesisitsssse
The getprime function will generate the prise nuambers needed in the
calculation of the keys and when which new file is being added into the
systea, the system will assign the new prime nusber for the file and this
nusber will stay with the file for its entire life in the systes. The
prime nunbers are stored in an array of integers and when ever there are
needed, the systes will fetch the number from the array.

T N O N R O e g/
getpriset]

REGISTER i,k,sutcess:

IMT current,indes;

priaeld] = current = 2;
index = 3
—FOR (i=1; 1{ Maxprime; i++) \{
success = 03
r——WHILE (success '= 1} \{
] current += |3
i r——FOR (£ =0; k 4= indey; k++) u{
I ! IF { {current ¥ prigelk]) == 0} BREAK;
{ | IF ({primelk] t primelk]) »= current) sucress = {;
| { IF {success == |} BREAK;
! | F— \3

L }

I
l
2
|
!
(
!
l
!
!

primeli] = current;

| index = 1
L...,..\\ }
RETURN;
| F— 1}

gresmensseesens

|
1
!
;
|

l

Apnmnnppuaai oo o i o
The separate string is called by the main function and it will separate
the string that the main function sent into separate command that is
recognizable by the system. Its primary function is to call various
functions like the form_department, fors_group, and form meaber with
the coamands issued in the batch file.

e Rttt iR iR R it tieitintiotisiititiitiseitbiisy

separate_stringf}

CHAR (801, nasnelMAXLEK], deptnanelMAYLENRT, groupname IMRYLEN],
passwordiMAALENT;
REGISTER INT i,j,k:

j:j:Q;
strepyls,stris

WHILE{s[i1 '= 7 7} \{ nagelj] = s[i]; 1+4; j+; \J
name[j] = "\0°;

88

-

] ed ed

-1 F {s[i+1] == "¢’} \{

=TF {s[i+2] == 7y'} \{

| =0y 1 4= &

| WHILE is{il i= ’\07) \{ password[i] = s[i]; i+4; 3445 \D
i password[j] = "\0%;

| fore_svsiname,password);

|
J
i
i
|
i b}
| ——ELSE \{
§ | j=0; 1 += 4
| | WHILE(s[i]l '= 7 ") \{ deptnamelj] = s[idy i+4; j++; \)
! | deptnamelj] = "\’
| |
! l RS HE
i | WHILE(s{i] '= 7’} 3{ groupnamelil = slily i+4) j+4; A}
! | groupnamelj] = "\07;
| {
| { i+t § =0
] f WHILE({s[i] '= *\0"} \{ password[j] = s[il; it4; j+4; \J
| f password[j] = "\
i i
| | fora_seaber (nase,deptname, groupnase, password);
i by}
=3
r—ELSE {
! b=i+1;
i i+= 4§ =0
| WHILE is{il = 7} \{ deptnamelj] = slid; i++; j++; \I
i deptnagelj] = *40';
! 1+= 1y § =0y
i
! WHILE(s[i] '= "\07) \{ password[i]l = slil; i++; jH4p 2
! passwardlil = 'R0
{
| IF (slk] == "d*) forn_dept(name deptname,passwordiy
| ELSE fors_group{name,deptnane,password);
.

SR T

..__._.‘....“\ Jl

S-‘-n....\‘ {

AR R e iy
The function of thiz fors_sys is to declare a new node in the hierarchy

and see that approprite addresses are cet up. The system administrator
contrels has the oower of the superuser in Unix. [t could delete user in the
system, delete files and perform varipus systes adainistration work.

RSt ER iR aR el ie it iisaisereiesaietesiattstitatieeitisteiititseiie
torm_sysin,p!

CHAR #n,1p;

STRUCT heirarchy Inewncde;

STRUCT logon Inewlogon:

r——-TF {h_start ==NULL} 3{
! newnode = (STRUCT heirarchy 1ealloc (ST ZEOF theirarchy_entryl)s
i r—-IF {(‘nesnode! { printf{"out of meaorv in form systes administrator

[SO T O S R N T T N I O T O T O T SN T O B T S I B R S |

A P B3 P B3 PI BI PI BRI BRI R e bt a e e b e

RN I o R > L N R S R N R R R = n RSN R« o A B S)

!
!
l
I
1
!
I
!
!
l
l
|
!
I
!
I
l
l
i
!
f
!
l
!

| | exnit{0)y

{ b}

| strcpy (newnode-Jusername,nl;

| newnode->deptnasel0] = *§7;

| newnode-groupnanel0] = ’¢7;

| strcpy (newnode->key, "00%);

| strcpy(newnode->large,"01°);

| newnode->next = newncde->down = NULL;

| newnode-*head = NULL;

| h_start = newnode;

!

f newlogon = (STRUCT logon $)aalloc!SIZEOF (logon_entryl)):

f r—IF {'newlogon) \{

l | printf(*cut of mesory in form syctea for newlogen \n"}}
! | exit(0);

| b

| strepy (newlogon-username,nly

| strepy (newlogon->passward,pl

| newlogon-sheirarchy_ptr = newnode; /% the logon ptr points tc new hierarchy node ¥/
| logon_start = logon_last = newlogon;

Loy
——ELSE \{ printf{“check why ic there another system administrator \n®);
| exiti0);
e e\
L...,_..._........\‘}

PR R iRt Rt at ettt it i Retitiiiotriniioiesiotisisitsgcitsitil
This fora departsent function is called by the separate string and its
primary function is to fors the departsent head and perfora various
addresses sat up in the hierarchical tree for the users. It declares a new
node and copy the necessary information to identify the node and link it
to the hierarchical tree.

SRR Rttt eitsa st eiiRisieinsiotesetiteiesisitinitesatinsitd
torm_deptin,d,p)

CHAR in,3d,1p;

STRUCT logon ineslogon, ¥curlogon;
STRUCT heirarchy fnewnode, fcurncde;

newnode = (STRUCT heirarchy $1ealloc(SIZEOF (heirarchy_entryl)y
r—IF {'newnode} \{ printf{*out of memory in form departmentin °);
i exit{0);
b\ }

strcpy{newnode-username,nl;

stropy (newnode->deptnane,d);

newnode->groupnasel(] = '47;

strcpy (newnode->key, "00%);

strepy (newnode-:large, “01");

newnode-rnext = newnode-idown = NULL;

newnode- *head = NULL;

curnocde =h_start;
IF {curnode->down == NULL) curnode-idown = newnode;
r——ELSE {

{
l
|
!
I
!
l
!
!
!
I
!
l
|
|
%
!
!

[

91

| curnode = curnode-rdown:

| WHILE f{curnode-;next ‘= jULL) curnode = curnode-inext;
| curncde-inext = newnode;
L.

newlogon = (STRUCT logen flaalloc(SIZEDF {logon_entrylly
——IF {'newlogon) \{ print#{" out of memory in forsing dept\n®};
i exiti{0);
L....._\\}
strepy{newlogon-jusernamre,nl;
stropy(newlogon->password,pls
newlogon-idown = NULL:
newlogon-heirarchy_ptr = newnode:
IF {logon_start == NULL) logon_start = logon_last = newlogong
r——ELSE {
| curlogon = logon_last;
| curlogon-:down = newlogon;
| Togon_last = newlogon;
b\
—-\}
LR R R R R R Ry a iRl R Rt atioiitrerititiatotastitnieiotittsssesst
s the two functions described above, the form_group function is to
declare a new node in the hierarchy and link them to the approprite position
and it haz the power of superuser on its subjects or group eember under its
hierarchy. But various users in other groups are not subjected to the control
ot this group leader.
R Rttt Rt i e Rt iRt ittiiesireisitiieiisatstsitinsissasetetts
tora_groupin,d,p!
CHAR in,¥d,¥p;

..... {

STRUCT heirarchy fnewnode, fcurnode;
STRUCT logon ¥newlogon;

newnode = {STRUCT heirarchy $)aalloc (ST ZEOF {heirarchy_entry)}:
r—-1F (inewncde} \{ printf{"\n out of memory in forming group \n®};
| eritif};

stropy (newnode-jusernase,n)s
stropy{newnode-rdeptnase,d!;

stropy inewnode-groupnase, nl
stropy{newnode-key, *00%),

stropy (newnode->large, "017) 3
newnode-rrext = newnode->down = NULL:
newnode-head = KULL;

curnode = h_start-down; /¥ on ist dept ¥/
WHILE! strespicurnode-deptname,d! !'= 0 &k curnode-dnext '= KULL)
curnode = curnade-rnext;

IF ({curnode-down == NULL) curnode->down = newnode;
r—-ELSE {
| curnode = curnpde-down;
! WHILE {curnode-snext 's NULL) curnode = curnode-’nest;
| curnode-inext = newnode;

Rt I o L A I

UL T L B o, N K,y I Y }

SO0

- éal Cod Ll G Cd Gl L G Gl N

<4
o~
—

362
363
34
365
166
367
368
369
3

il
3

Al

b \s

newlogon = (STRUCT logon ¥)mallociSIZEOF {logon_entry});
=T F {'newlagon) \{ printf{" out of memory in newlogon in form group n'};
| erit(0};

b}

strcpy (newlogon-ypassword,pl;
newlogon->heirarchy_ptr = newnode;
newlogon-ydown = NULL;
logon_last-*down = newlogon;
logon_last = logon_last->down;
L._x_..."\}
PR3t Rl e nsiaiasitesitesitesiteatititsitecisintsiitstiotitititiesds
fora_member (n,d,q,p)
CHAR ta,id, %, ¥p;
==4{
STRUCT heirarchy inewnode, ¥curnode;
STRUCT logon fnewlcgon;

|
|
!
|
|
|
{ strcpy(newlogon-Jusernaze,n)
|
|
|
|
|

newncde = (STRUCT heirarchy $)salloc(SIZEOF (heirarchy_entryl);
——IF {'newnode) \{ printf(*out of semory in fors member of newnode \n");
| exiti0};
b\ }

strepy (newnode-usernase,nl;

strcpy{newnode->deptname,d);

strcpy (newnode->groupname, gl

strcpy (newnode-3key, "00%);

strcpyinesncde-large, "01%)y

newnode->next = newnode->down = NULL;

newnode-rhead = NULL;

|

|

|

f

I

!

!

|

!

|

i

|

|

|

!

| curnode = h_start-’down;

| WHILE istrcapicurnode->deptnase,d) '= O &% curnode-dnext != NULL)
| curnode = curnode-snext; /¥ find the deptname ¥/
!
i
!
!
!
!
i
|
i
I
|
!
!
|
|
|
!
!

curnode = curncde-Ydowns /3 found the dept and search down for group 3/
WHILE (strcap{curnode-rusernane,g) '= 0 && curnode-next = NULL)
curnode = curnode-rnext;
IF (curnode->down == NULL) curncde-}down = newncde;
r—-ELSE \{
| curnode = curnsde->down;
! WHILE (curnode-next '= NULL) curnode = curnode-inext;
! curnode-rnext = newnode;
I.._....._.._‘.‘}
newlogon = {STRUCT logon ¥imalloc(SIZEOF (logon_entryl);
r——IF {'newlogon) \{ printf{*cut of memory in newlogn of form member \n®);

| exiti0);

strcpy (newlogon-lusernage,nls
stropyinewlegon-password,pls
newlogon-rheirarchy_ptr = newnode;
newlogon->down = newiogon->down;

[V VR BV S]
S35
[A P ey

e e e]

G N
~d
o3 -~

379
380
381
382
183
384
383
386
387
388
389
399
391
392
373
394
395
396
397
398
399
4400
404
402
403
404
405
405
447
404
409
416
411
412

3
414
415
416
417
413
419
420
421
422

23

424

!
I
b}

-
}
i
!
!
i
|
i
!
l
{
]
{
{
S
l
!
|

logon_last->down = newlogon:
logon_last = logon_last->down;

AR O D O R
Thic batch process is called by the aain function and it will separate
the string send into systes recognizable form so that the various command
could be pertormed. It will simulate the eight file manipulation cosaands
discussed in the thesis. There are

1. Read a file i.e user r filenase

2. Write a file user w filenage

3. Execute a file user & filename

4, Create a file user cr filenare

5. Lopy a file user cp sourcefilename targetfilenase
5. Delete a file user ¢ filename

7. List sembers user la

8. List files user 1f

9. Allow access for a file for individual meaber.

user ai targetuser filenase access right.
i.e user A allows user B to read hic file name Fi,
Aai BFLr
10, Allow group access:
This command aliows the entire departeent or group to access his file
command is @ user ag targetgroup filenase access right.
i.e. user root department Cosp to read and execute library file F2.
comgand : root ag Comp F2 r

{1, The cosmand to create a user in the systes.
naae departeentrnase password.

12, Change Directory : This comsand is designed for the user in the higher
hierarchy. It allows user in the higher hierarchy
to go to a directory that belongs to his subject.

i.e, usernase! cd usernamal
In this case, user{ is the superior node of user2, thus, userl
could change directory to user? directory.

R PRt R R ot ettt o st tiRoiisostesinibeiiotnsisatissttity

batch_processi()

e 4

CHAR s[80],napelMAXLEN], filenanel [MAXLEN], filename2[MAYLEN],
Toc[MAXLENI,ar;

REGISTER INT i,j;

1 =1 =y

strepyis,strlg

WHILE (s[i] '= " "} 3{ namelj] = s[il; i+4; j+4y \}
nameljl = "0,

strepy (loc,nasel;
r—IF {{fch = fopeniloc,”a"}}) == NULL) \{
E printf("ran’t open file Izin",Jock;
i exit{0};
b}

streatiloc, "tree.dat®)y
e IF (il = foperfloc,”a”}} == HULL) A
! printf{®can’t open file ¥sin®,loc};

b1-4
L

425
427
428
429
430
431
432
433

4
433

36
437
438
433
440
441
442
442
344
445
444
447
448
449
430

5
452

53
454
435
456
457
458
459
440
451
452
463
444
445
466
467
448
459

74
§71
472

71
i

474
475
§75

a7
".'-:!

| exit{0);
b}
first = sli+il;
second = s[i+2];

i4+=4; j =0
—WHILE {#{sti) =7 ") {
| r——IF (isalnua(¥{s+i)}} \{ ${filenamel+j) = ¥{s+i);
| i P44y e
| L._...-‘\}
] ELSE i+t
b\ }

${filenagel+j) = "\{’;
r—SWITCHfirsti \{
r—CASE 'c¢’: SWITCHI(second) \{
CASE 'r":
create filelname,filenaeel);
BREAK;
CASE 'p': i += 1y j=0
——WHILE{ $is+i) '= "\0"} \{

] —-IF {isalnua{f{sti}}) \{

] | f(filenaae2+jl = f(s+i);
| | RS HINEZH

! ELSE it+;

b}
f{filename2+j) = "\0°;
topy_fileiname,filenarel,filenane?};
BREAK];
CASE '4°: change_dir (name,filenanel};
BREAK;
DEFAULT : fprintf{fch,"probles in inner switch ")}

!
!
!
i
!
d
|
|
!
|
I
!
!
|
|
l
!
| printf(*\n problem in inner switch *};
i

exit{0);
3
BREAK;
CASE ’'r’: execute_filelnasze,filenasel, 2}
BREAK:
CASE 'w': execute_fileiname,filenamel,3};
BREAK:
CASE ’e': execute file(nane,filenamel,l);
BREALK;

CASE ’1*: IF i{second == "f'! list_filelnamel;
ELSE list_smember (namel;
BREAK;

CASE 'd’: printf(*sill delete file %s by user Ys\n®,name,filenanel);
gelete_filelname,filenamell;
BREAK;

CASE 'a’: i += 11 j =0
WHILE {s{il =7 7} :\{ filename2lj] = slil; i+4y joe; \J
tilename2[j] = "107; ar = sli+i];
allow_accessinaee,second,filenasel, filenaneZ,ar};
BREAK;

I
!
!
|
|
|
{
!
!
|
|
|
!
I
!
|
|
i
!
f
!
|
{
|
|
|
|
|
i
i
%
|
i
{
!
|
!
f
!
| DEFAULT : fprintfifch, problem in cuter switch of batch process ‘n")y

a4

478
479
480
481
482
483
484
483
486
487
488
489
420
491
492
463
494
493
436
497
494
499
300
T
302
303
304
305
306
307
508
309
310
3t

312

n

N bt pei o e
S0 G0 g O

:_.I'I LN N Ln N Ln ol

<

S
€39
Sy¥a

£97
Ry

Si4

g5

e bt
326
527
58
39

e
Ja¥

| printf(*probles in outer switch of batch process \n');
] ex1t {0}
b\ 3

felosetfchl;

fcloseifl);

| OSSN ¥

........ \ T

AR

R R R R R R R R Rt et asietiiittitaeseitititsaititittsts
This function, upon receiving the separate string will check for the a
approprite password in the systes and call insertion to insert this file into
the global binary file. Then it will call calkey to calculate the key of this
new user and then call insertion again to insert the file into the directory
of the user.
SRR E et ettt et ariterisirirttietotseteitiestititieid
create_fileln,f)
CHAR 1,04,
it

STRUCT logon fcurlogon;

STRUCT heirarchy ¥curnode, theipt;

CHAR tintZbint};

curlogon = logon_start;
WHILE (strcapicurlogon-rusernase,n) '= 0 &% curlogon->down != NULL)
curlogon = curlogon-idown;

curnode = heipt = curlogon-*heirarchy_ptr;

insertion{f, kglobalhead, heipt, 1); /% passed in for global bintree ¥/
calkey(curnode, 4,0, 0);

insertion(f, &{curnode-head), heipt, 0}; /¥ insert in local bintree &/
primeindex++;

RETURN,;

 I—— \ }

e

!
|
!

R Rt a ittt Rt i tRtaeiettiiteiiobiisistseististtittit
Thic calkey will receive the usernode fros the cailing function. It will
talculate the the key based on the Chinese Remainder Theorem and use the file
{unique) numsbers from the file to calculate the Dj or the summation of all
files in the directory. It started off by calculating L, the product of all
file numbers and stored L in the string provided by usernode. Then using the
old key and the file numberc in the directory, it will calculate the access
rights of various files and stored them in the array of string. The [j value
is alse calculated at the same time using Dj = L/Lj with L 15 the product
of all Lj stored thea intc the array of string. The modulus of Dj, di is also
calculated using dj = Dj mod Lj and stored into the dj array. The »j is then
calculated using the Eucledian algoritham and stored in the yj array. Thus, the
key could be then calculated using key = Dj.xj.aij + Dk.xk.aik + ... mod L
Bhere Jukylefuerierinnas <= number of files in the directory.
R R R R Rt Rttt eiisasieititetititititeititititityl
calkeyfcn, accright, givenfilenus, fromgroupaccess)
STRUCT heirarchy fcn;
INT accright, givenfilenus;
~~~~~ \
CHAR  tresult, fnlMAYY, sum[MAX], ¥smalldj, teapsumIMAXI,
teaplMAX], teap! [MAX], toul (), ¥int2bin (), dbdiv(), $add ()}
UNSIGMNED LONG INT locdj,loclj,bin2int(};

35



LN oL oo oLn oen Lo cnoCl
LN LN Ln Lncn on oo oo
sS4 O LN Pe L RO e

wn
o~ ohn
Lol I v |

cn

561
362
563
o4
965
NLY)
567
548
5469
570
57
372
573
574
575
574
577
578
579
580
81
582

583

26

REGISTER INT i,k;
VOID calacci);

r—IF (cn-shead == NULL) \{
r——IF (fromgroupaccess == 1} \{

|
!
I
|
I
|
!
!
|
l
!
|
l
!
!
!
I
l
!
!
|
!
!
i

| r—SWITCH{accright)\{

! | CASE 1 : strcpyfcn-key,"0001");
! | BREAK;

| | CASE 2 : strcpylcn-tkey,"0010%);
! ! BREAK;

! | CASE 3 : strcpyfon-Jkey,"0011%);
| | BREAK;

I | DEFAULT: printf(*error in calkey calculating fromgroupaccessin®);
} L__......\}

! result = int2bin{givenfilenua);

b}

r——ELSE \{

| strepyicn-key, “0100");

| result = int2bin{primelpriseindex]);
b}

1=0;

r—-WHILE {#{result+i) != "\0") \{

cn-rlargelil = tiresultti);
144}

Y

cn-tlargelil = "\07;
RETURN,;

Y

nua

:{):

r—-IF {fromgroupaccess == FALSE) \{

i
%
I
i
|
l
3
I

result = int2bin(prinelprimeindex]}; /#% convert the new filenua to bin ¥4/
1=y

r——WHILE {(#{result+i} = "\0’} \{

i frlil = tiresult+i);

| it}

L-__...‘._'\\ l',

frlil = "\(7y

| IU—— \ }

—ELSE \{ :

! result = int2bin{givenfilenual;

I =10

| r——WHILE {${result+i} '= "0} \{
| | fnlil = t{result+i);

% ! 14

! L._...._._'\ 5

| tnlil = "\07

| S—— \ j

strepy(tesp,cn-2largel;

strepy (tessi, fnlg

result = mul (templ,teapl;

/% result = aul{fn, cn->large) cal the sigaa L #¥/



R:E S i= 0
85 1 r—WHILE {#{result+i) '= *\07) \{
8 1| | cn-rlargeli] = ¥{result+il;
@7 i+
b I T b}
.9 1 | cn-rlargelil = *\0%;

a0 | | strcpy(aloballarge,cn->large);

k) B strepy(globalkey,cn-tkey);
92 | i}
393 | —ELSE \{
LT N strcpy{globalkey,cn->kevl;
i I strcpy{globallarge,cn-largel
6 | e\
397 | calacc{cn-rhead);
98 | r—IF laccright !s= (
399 1 | IF (accright == strepy{atjlnual, "0100%) s
600 | | ELSE IF (utcrxght == 3} strepyfaijlnual,® 00117);
801 | | ELSE IF (accright == 2) strcpyfaijinuel,"0010");
602 | | ELSE IF (accright == 1) stropy{aijlnuml,"0001%};
603 1 | stropy(teap,cn-rlargel;
604 | | strepy(teapl,fnl;
803 | | result = bdxv(tenpl,temp,l);
06 | | i=0;
507 | | ——WHILE {tiresult+i) '= "\(0°) \{
508 | | | dilnuallil = Hresult+i);
609 | | ! i+4;
610 | | ——\}
11 || dilnumllil = "\

12 1 | strepy(teap, dj[nm]“
813 | | sealldi = bdivitempl,tesp,0;

614 | | i=0;
515 | | r——WHILE{ ${smalldj+i} '= "\0") \{
816 | | | templil = *{smalldjt+i);
617 1 | { 1+
618 | | b 3
619 1 | teapl{il =7\¢7;
&20 | locdj = binZint{temp};

20 strepy(teap, fnl;
822 | | loclj = binZint{temp);

2 1 result = int2bin{gcd(locdj,locli})y /% cal xi and put to last array ¥/
624 | | =03
620 | | re=—WHILE { ¥{result+i) = 107} {
626 | | | #ifouadlid = diresultsi)y
627 | | ! i+

628 | | by
29 | | 2ilouslli] = *7\07;
630 | | NURHH;
N I
632 | FEVERELY cal key now KRERRERNY/
633 | strepy(sue, "00%);
&34 | —FOR {i=0; 1<num; i++) 4{
635 1 | ~strepy(tesp,dilil);
438 1| stropyltespt,aijlill;



637
638
637
640
641
642
643
644
643
646
647
548
649
630
631
632
633
634
6335
635
637
638
639
660
LY
562
863
b64
LI
LLE
467
648
669
6740
LHY
672
673
674
&75
676
877
678
679
&80
681
682
683
484
885
686
587
663
539

k=0;

—WHILE ( ${result+k) '= "\0’} i{
| t{teaptk) = ¥(result+k}

| k++;

b }

Ytemptk) = "\0';

|

!

|

f

!

|

|

!

] stropy(tespl, xilil)

| result = sul (temp,teapl);

I k=03

| —-WHILE ( ¥iresult+k) !'= *\0") \{
| | t{tempsumtk! = ¥{result+k);

| | k++;

| bt}

| Yiteapsuatk) = "\07;

| ¢=—IF (strcep{tempsum, cn-}arge) > 0} A
| strcpy(teap,cn-largel;

| strepyiteepl, tenpsusl;

!
|
i
!
!
I
|
|
l

i
!
I
|
| result = bdivitemp,teapl,C);
! k=03

| r-—-WHILE { ${result+k} '= "\0"} \{
| | t{tempsumtk) = ¥(result+k);
l I ki

{ L..__...\}

| Y {tempsumtk) = "\0’;

I /% find the modulus ¥/

: \}

| result = add(sum, temspsus};
| k=0
! —-WHILE { t{result+k} '= *\07) \{
| | f{cumtk) = ¥{result+k);
| | k+t;
{ [ — A2
| flsuatk) = "\(’;
b 3

strepy(temp,cn-ilargel;

stropyitespl,sum);

result = bdiv(teap,teapl,0);

k=0
r—WHILE { f{result +k} = "\0") \{
! f{sumtk! = ¥iresult+k);
i Ett}
L...,...u...’\.“}

$lsumtk) = "\

strepy(cn-key,cusd; /% new key is found ¥/

AR n R N
The use of this gcd is to calculate xj when it is called where
dixj = 1 mod Li. Thic function will then return the value of zj into the

caliing function.

result = amul (teap,teapll; /18 dili) multiply aijlid ¥4/

/t tespsue = sulflresult, xjlill; &/

/ttempsum = bdivicn-rlarge, tespsums, 0); ¥/

28



690
671
692
£93
894
6935
696
697
698
699
700
701
702
703
704
703
706
707
108
709
714
i
Nz
713
714
715
716
17
718
79
720
72
722
723
724
725
728
127
728
729
730
731
732
733
734
33
736
37
738
739
740
™
742

PRI R N R T RS LA S L LR R RS RSB 20800
INT qcdid,l)
UNSIGNED LONG INT ¢,l;

)

UNSIGNED LONG INT x;
—FOR (x = 1; 5 (=l 244) \{
| IF ({tdtx) %X 1) == 1) RETURNIz};
fprintfifch,"error in gcd with Dj = %1d and Lj = %ldin",d,1);
printf{*error in gcd with dj == %1d and 1j == 1id \n",d,1};
exit{G);

LR Rt R b iR iRt iiiRririririoctttitioioseitsisiseitsies
This function calacc will calculate the access rights of the various
tiles in the directory. It receives the head node of the directory and
using recursive technigue to calculate the access rights.

LR R R iR i Rt e e serisiriciretititsieesittseitsisy
VOID calaccihead!

STRUCT tree_node_rec Ythead;

=== {

!
l
I
|
|
I
!
|
!
!
|
!
!
i
|
|
I
I
]
|
I
I
!
I
l
!
I
I
!
!

CHAR fn[MAX], tesp[MAX], fresult,$intZbin(), thdiv(), ¥smalldj,
templ [MAX1, teap2MAXI;

UNSIGNED LONG INT locdj,locli;

REGISTER INT i;

IF {'head) RETURN;
result = int2bin(head->fnua);
i =03
r—WHILE { Hresult+i) !'= "\{") \{
| Fifnti) = Hresult+i);
| 1+4;
L...._....'\}
fifnti) = "\07y
stropy{tesp2, globalkey);
strepy{tespl, fnl;
result = bdiv{temp!,temp2,0);
/3% aijlnuml = bdiv{fn,gqlobalkey, 0); cal big di =L div Lj 38/

i =03
——WHILE { ${result+i) = *\07) \{
| aiilnualli] = ¥(result+i);
| 1+4;

| IS, W
atjlnumlfil = "\{’,
strepyitespl, fn);
strcpy(teapZ, globallarge);
result = bdivitespl,teap?, 1);
/4dilnuml = bdiv{¢n, globallarge, 1) cal saall di = dj div filenus t/
1=0;
r—WHILE { ¥{result+i) '= "\0"}) {
| dilnualli] = ¥{result+il;
| 144}
b }

dilnumllil = A8

29



743
744
745
746
747
748
749
750
751
732
733
734
733
736
757
73

759
760
H!
782
763
Tod
763
766
167
748
769
770
771
712
173
774
775
778
777

778
773
780
781
782
783
784
785
784
787
788
789
796
9
792
793
794

795

100

| strcpy{teapl, fnl;
! strcpy(teap2,dilnunl);
! fysmalldj = bdiviin, dilnuml, G);4/
| sealldj = bdiv(tespl,temp);
| i=0;
| —WHILE ( t(sealldj+i) '= "\0") \{
| t{teapti) = ¥{smalldi+i);
(. 1+
| t—-\}
| f{teapti) = "\0%;
| locdj = bin2int(teap); /% convert szall dj to unsigned long int ¥/
b—\}
strepy (teap,fn);
loclj = bin2int (teap);
result = int2bin(gcd{locdi,loclj});
=0
r—-WHILE ({ ${result+i) '= "\0*) \{
| %ilnuaslli] = S{result+il;
| 1t4;
b}
#ilnuellil = "\’
/4 xjlnum) = int2bin(gcd (locdj, head->fnum)) cal xj and store in the array &/
numtt;
calaccihead->1pt);
calaccthead->rptl;
RETURN;
\}
R Rttt asinaisieniisiteiietititoiertiioitesesssiasitistttotodi
This execute_file will carry out the request by the user and perfora the
execute function. It first check the user’'s password for validity of the
cosmand. Then it will find the usernode in the hierarchy structure. If this
file is found in his own directory, then he can access it. Else it will
go to the global binary file directory to check for this file and retrieve
the address that points to the owner of this file. Comparison is made on the
user and the owner of this file. If the owner of this file is the subject of
this user, then user has exclusive access rights on this file. Else, this
the user reguest is rejected.
SRRt iR et ia st einiRetesiatittiieitisitioinciitsititsitsittesey
execute_fileln,f, accright)
CHAR in,1f;
INT accright;
r={
I STRUCT logon fcurlogon;
| STRUCT heirarchy ¥curnode;
{ STRUCT tree_ncde_rec ¥accessnode, ¥stack[MAXSTACK], #loc, #find_node();
| CHAR fresult,temp[MAX], teapl [MAX1, tbdiv{}, ¥int2bini)y
| INT i, found, stack_top:
| REGISTER INT k;
I
l
!
]
I

curlogon = logon_start;

WHILE { strcapicurlogon-jusernase,n) '= O & curlogon->down = NULL)
curlogon = curlogon-rdown;

curnode = curlegon->heirarchy_ptr;



7%6
797
798
199
800
801
80z
803
804
803
806
807
808
899
81
atl
81z
813
814
815
8is
817
818
- 819
220

2

22

s

"7
o

a4
823
826
827
828
829
830
g3t
g3z
g3

833

836

77
a1

338

819

840
841
842
843

101

accessnode = curnode-rhead;

—I1F (accessnode == NULL) {

i fprintf(fch,“%s has no files in the directory \n%,n);
| RETURN;

b—\}

!

|
!
!
!
l
!
I
|
(
|
|
l
l
!
|
|
!
l
!
I
l
!
l
I
!

loc = find_node(accessnode,f, &found, stack, kstack_top, 1)
r——IF {found == TRUE) \{
result = int2bin{loc-»fnum); /% convert filenum to string ¥/

k=

03

—-WHILE { t{result+k) = "\0’ ) {
titeaptk) = tiresult+kly

kg

L_._....\}
itemptk} = "\’

strepyitespl, curnode-skeyls

result = bdiviteap,templ,0);

/¥ bdiviresult, curnode-key, 0) cal the acc right ¥/

k=0;

r—WHILE ( ¥result+k) '= "\07) \{
Yitemptk) = Yiresult+k);

k+ty

L_...__'\}
F{teaptk) = *\0%;

i = bin2int{tesp!; /¢ convert acc right to int ¥/

|
i

I
I
I
{
|

r—-=IF (1 = accright) \{

IF f{accright == 1) strcpy{temp,"execute”);

ELSE IF (accright == 2) strcpyiterp, ‘read”);

ELSE IF ({accright ==3! strcpy(temp, write®);
printf("\nfile %5 ic allowed %s by user %s \n",f,teap,n);
RETURN;

——ELSE \{ printf{“user %s is not allowed execute on file %s ",n,f};

!

L.‘..___.'\‘ }

RETURN;

loc = find_node{globalhead, f, 4&found, stack, Ystack_top, i):

IF {found == TRUE) \{
r——-1F ({curncde-sdeptnamel0] == *$’) && (curnode-:groupnamel(] == *$7}) \{
| printf ("user %c is allowed to access file ¥s with rights %d \n",n,f,accright)

! RETURN;

e
r——ELSE IF{ {curncde-groupnarel0] == '$¢') Y& (strcaplcurncde-deptname, loc-)o

| deptname) == 0)} \{
f printf{*user %z is allowed to access file %s with rights %d \n®, n, f, accri

| RETURN;

l___._\}

i~——ELSE IF { strcep{curnode-jusername,loc->osnerpt-’aroupnamel == () Af

] printf{®user %s is ailowed to access file %s with rights %d n", n, f. accri



848
849
830
8t

32
833
854
835
836
as7
838
839
360
go1
862
863
864
865
366
867
868
B&9
870
871

72
873
874
875
876
877
878
879
880
a8t
882
B8z
a4
85
886
887
g8e
sy
890
891
892
893
894
895
896
897
898
899
704

|

I

l L V]
L.

! f RETURN;

——\}

PR Rttt Rttt R sieeriesiittittitettseiiritstsstistil
This copy file function is called by the batch_process and its main
tunction is to copy the filel to file2. After being invoked, it will
search the list of all users in the system, eguivalent the etc/passwd

in the Unix systea, after verifying the users and the password, the
tunction will be using the names of filel to find the file in the local
directory, if the file is found, then it will create another node in the
local directory and call crete file function to create a node in the
directory and perfore key calculation by calling the calkey and insertion
to insert the file in the local directory.

L R R e iR Rttt iieiRriasirseistiatitstestsstitiasstiy
copy_filein, #1,£2}
CHAR In,141,442;

STRUCT logon fcurlogon;

STRUCT heirarchy fcurnode;

STRUCT tree_node_rec ¥loc,tfind_node(),¥stack[MAXSTACKI;
INT found, stack_top;

turlogon = logon_start;
WHILE/( strecapicurlogon-susernage,n) '= ¢ &% curlogon-Ydown '= NULL)
curlogon = curlogon->down;

curnode = curlogon-heirarchy_ptr;
o IF (curnode-rhead == NULL) \{
| printf{"No file in the dir of Zs \n®,n);
! RETURN;
b 3
loc = find_node{curnode->head, f1, %found, stack, Ystack top, 1};
printf{“node copied is is\n",loc->infoly
exit (0}
b
r—-1F {found==TRUE} {
i create_filein,f2};

!
|
I
!
!
I
!
!
I
I
3
!
!
I
!
!
l

| RETURN;

bt 3

—-ELSE \{

| printé(" file %s not found in the directory \n",f1);
! RETURN;

b\

AR R O O O O
This list file function iz to list the file that the user has in his
directory, It will list the file names that are accessible by the user
as well as listing the access rights of the user towards that file. It did
this by retrieving the key of the user, and retrieving the file number of the
tile in the dirsctory and perfore a calculation of

access right = key mod filenumber,



Then this listing is listed on the file.
RRe Lt asaeastttsetteetarcetissetasasitsatiteiieiosioRosisptiatiititetiy)
list file(n)
CHAR tn;
=1
STRUCT logon ¥curlogon;
STRUCT heirarchy fcurnode;

curlogon = logon_start;
WHILE( strcapicurlogon-dusernase,n) ‘= 0 & curlogon->down != NULL)
turlogon = curlogon->down;

|
!
I
|
!
i
|
| curnode = curlogon->heirarchy_ptr;
| p—IF ({curnode-*head == RULL} \{
o printf(*no files in the directory of user Is \n®, nlj
{1 RETURN;
bt
! printtree{curnode-*head,curnode-keyl;
| RETURN;
L...__.«'\}
JReEee e Rttt ltttiesssasssetstssssictiatosiitioeiitiiisieisiesiississty
This printtree is called by the list file function. If there are nore file
in the binary local directory tree, then it will call itself recursively to
print more files names and access rights.
e ST ereetsteseseassetsnsiissatcttetiasiissosiijittittttesiiisstitizisy
printtreethead, key!
STRUCT tree_node_rec ¥head;
CHAR tkey;
....... "xl"
CHAR localkey[MAY1, tresult, $bdiv(}, temp{MAX];
REGISTER INT i

IF {thead) RETURN;

result = intZbin(head->fnumly

1=

F-WHILE { flresult+i} = "A{07) A
| Titeap+i}) = diresult+ily
| 14}

Yitempti} = "\0";
strepyilocalkey, key!s
result = bdiv(teap,localkey,0);
jtfresult = bdiviresult, key, 0} 4/
fprintf(fch,*File name - ¥s and access right is isin®, head-rinfo,result);
strepy (local key, keyly
printtreeihead-:lpt,localkevl;
printtree{head-irpt,localkey!;
...... .
FE 3Rt Attt iRt et R atsiiriatetitessiastiiotssitotstatisititisesiiotill
This list member function is called by the batch_process function, it
receives information on the nase of the user. The function will then

i

103



979
1000
1001
1062
1003
1004
1003
10404

search for the user in the logon file and verify the password. If it is
correct, the function will then follow the addresces of the hierarchy and
print the names of the user and their department.
SRR R PR bR iRt tarirestititoitiitssisaststtinetin
list_gember (n}
CHAR 1in;

{

STRUCT logon $curlogon;

!

i STRUCT heirarchy tcurnode;

|

| curlogon = logon_start;

f WHILE({ strcap(curlogon-usernase,n) '= 0 & curlogon->down '= NULL!

] curiogon = curlogon-down;

|

| curnode = curlogon-rheirarchy_ptr

| r——==IF ({currode-down == NULL) \{ printf{" no mesbers in group %s \n®,n);
| ! RETURN;

| b\ }

| p——IF {curnode-groupnaael0] == ’$¢’ && curnode-}deptnamel0] == ’§’} \{

| | fprintf (fch,"listing all meabers of systes \n");

| | printing{curnode};

| | RETURN:;

| e

| —ELSE IF {curnode->groupnamel0] == "¢’} \{

| | fprintfifch,"listing all members of dept %s \n",curncde-:deptnasel;
| | printing{curnode);

! ! RETURN;

{ L.__.,-..\\}

| —ELSE \{ /34348 curnode-rgroupnarelQ] = 7§ theReR/

| { fprinté(fch,“listing all members of group %s \n®,curncde-lgroupnamel;
| | curnode = curnode->down;

| ! r—--WHILE {curnode = NULL) \{ printf(" %s \n",curnode->username);
| | | curnode = curnode-inext;

| | RETURN;

| b\ 3

Annninnnanininnaninnnrn i a e nn
This change directory function is called by the batch process function and
receive nases of the superios node and name of the inferior node. If this
relationship holds, the command would be oheyed.

PR R iR R R e i i i i i torartiieiesototisaseissitieisttitatstitsess
change _dir({n,nl}

CHAR tn,inl;

STRUCT heirarchy fuseri, fuserZ;
STRUCT logon ¥curlogon;

WHILE ( strcap(curlogon-’usernase,n) ‘= 0 && curlogon-idown = NULL)
curlcgon = curlogon->down;

l
|
I
| curlogon = logon_starty
i i
!
! ucerl = curlogon-iheirarchy_ptr

|

|

104



105

1097 | curlogon = logon_start;

1008 | WHILE{ stroap(curlogon-jusername,nl) = & curlogon->down = NULL)
1009 | curlogen = curlogon->dosn;

1010 | user? = curlogon-cheirarchy_ptr;

fotr |

1012 |  r——IF ({userl-ideptnarel0] == "¢’ Lk useri-’groupnamel0] == ’§°) \{
1013 1 | fprinté {fch,"allow change dir \n®);

1014 | | userl = user?; RETURN;

s | i}

1818 | r—ELSE IF {useri-jgroupnasel0] == ’$’ & user2-igroupnaee{0] == ’§’} \{
1047 1 | tprintf{fch,“change dir not allowed \n%);

1018 1 | RETURN,;

e | il

1020 | ELSE IF (useri-groupnamel(] == %’ &% userZ-rgroupnazel0] '= ’¢’ &
1021 | r—stroep{useri->deptname,user2-deptnasel == 0} \{

1022 | tprintfifch,"allow change dir \n®);

1023 | RETURN;

1024 | A

1025 | —ELSE IF ( strcap{useri-usernase,user2->qroupnasel == ¢} \{
1026 | |} fprintf(fch,"allowed accessed \n"};

1027 | | RETURN;

1028 | Al

1029 | r—ELSE \{ fprintfifch,” no such cases between Zs and ¥s \n",n,ni}:
03 RETURN;

K B B

1032 b——\} /EEER%E350 end of function PRESEIERLTERARNL/

1433 A R eyt ettt Rritiiiieriosetiesetitsitbeiitieibsbts
1034 Thic delete_file function is called by the batch_process and will

1035 theck for the user in the logon list to ensure security. Then it will

1035 search the file in the global directory., If the global directory contains
1037 the file, then this file will be deleted. Any member that has this file will
1038 have their file deieted and their keys would be recalculated accordingly.
10439 It also performs necessary checking on the validity of the user and whether
1040 the file is owned by the user. If validity test fails, then the delete

1041 reguest is not honored.

1042 R R e Rt Rttt e et ttiiattaiiteiiriesirtoitieitttssy

1042 delete_filein,f)

1044 CHAR i, 11,

1045 i

1646 | STRUCT logen ¥curlogon:

1047 | STRUCT heirarchy icurnode, cn;

1048 | STRUCT tree_node_rec ¥loc, ¥stack{MAYSTACKD;

1049 | CHAR f#result,tlock, thdiv{),teaplockIMAX], teapi [MAX], teap2IHAK];
1930 | INT stack_top, found, i;

1031 | REGISTER INT k;

1532 |

1053 | turlogon = logon_start:

1034 | WHILE {strcapicurlogon-iusernase,nj '= 0 &% curlogon-rdown '= NULL)
1035 | curlggon = curlogon-rdown;

1936 |

1057 | curnode = curlogon-sheirarchy ptr:

1058 |

1059 | Ioc = find_node{globalhead, ¥, &found, stack, &stack_top, 1



1050
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1074
1077
1078
1079
1080
1081
1082
1083
1084
10835
1086
1087
1088
1089
{999
1091
1092
1093
1094
1095

1096 .

1997
1098
1099
1100
1ol
1102
1103
1104
1105
1106
1107
1108
1109
1110
{11
112

r——IF ({found == TRUE} &% (loc-’ownerpt == curnodel} \f{

I
|
{
!
!
I
!
l
I
!
l
|
I
I
!
!
!
!
I
I
i
I
!
I
!
I
!
{
!
I
l
!
l
I

|
!
l
|

e

printf{“user %c owns file %s and deleting..... \nen fig

loc = find_node{curncde-‘head, f, Yfound, stack, Ystack top, 1)
/¢ tind file in local bin tree #/

lock = intZbin{loc-Xfnum); /% convert fnus to bin ¥/

k= 0;

—WHILE ( t{locktk) '= "\07) \{

| Yitemplock+k) = ¥{lock+k)s

| ktt;

l...__..‘\}

fi{templock+k) = *\0’;

deletion{f, &{globalhead},1}}; /7t deleting the gqlobal file ¥/

curlogon = logon_start;

r——WHILE {curlicgon = NULL) \{

| cn = curlogon->heirarchy_ptry

strepy(templ, templock);

strepy(teap2,cn-largel;

result = bdivitempl,temsp2,0};

ftresult = bdiv{lock, cn-large, 0)%/

i=0; found = FALSE;

r——WHILE {¥{result+i) '= "\0") \{

| IF (¥iresult+i) == ’1") found = TRUE;

i IF i{found == TRUE) BREAK; /1 to check whether divisible by fnum ¥/
| 144}

Y

r—IF (found == FALSE} \{

i deletion(f, &(cn-’head),0); /¥ remainder == ¢ ¥/
| strepyitespt, templock)s

i strepyltesp?, cn-tlargel;

| result = bdiviteapl,tempZ, 1i;
i k=0

| rWHILE { ${result+k} '= "\0°} \{
f | Yi{teapltk) = f{result+k);
| ! kg

i b\ }

| titemplitk) = *\0";

{ strepy{cn-2large, templls

| /tcurncde-rlarge = bdiv(lock, curnode-’large, {13/
i IF {cn-:head = NULL) calkey(crn, G, 0, 0);

curlogon = curlogon->down;

SR
i)

r—-ELSE IF( (found == TRUE ! && (loc->ownerpt '= curnode)) VM

lot = find_ncdelcurncde->head, f, 4found, stack, Ystack_top, 1)
—IF {found == TRUE} \{

| deletion{f, &{curnode-’head),0};

| strepy{teap!,teaplock);

| stropy{temp2, curnode-largel;

| result = bdivitespl, tespZ, l};

i k=0;



113
1114
{15
116
1y
1118
119
1120
124
1122
1123
112
i2
1126
112

t4n
i L

1129
1130
1131
1132
1133
1134

1135

1134
1137
1138
1139
{140
{141
1142
1143
{144
1145
1145
1147
1148
1149
1158
{151
1152
1153
1154
1153
1156
1157
1158
1139
1160

161
1162
1163
1154
1165

——WHILE { t{result+k) '= ’\0’} \{
| titempltk) = tiresult+ki;
i k+4;

AY
b}

|

i

i

|

| titeapi+k) = \0';
| strepy{curnode->large, teapl);

| {fcurnode->large = bdiv{lock, curnode-}large, 1) ¥/
l

|
|
I
|
l
l
|
! IF (curnode->head '= NULL ) calkey(curnode, 0, G, 03
|
|
I
!
f

b}

—-ELSE \{

! printf(*file not found in local bin dir of ¥s\n®,n};
| RETURN;

by

b\ }

r——ELSE IF (found == FALSE} 3{ /¥ can’t find the file in global bin tree t/
lac = +ind_node{curnode-’head, f, &found, stack, &stack_top, 1}
r—-IF {found == TRUE) \{
| deletion{f, &icurnode-’head),0};

i
{
I
| | printf(“file %s deleted in local directory \n®, f);
| | IF (curnode-head '= NULL) calkey(curnode, 0, 0, 0);
! ! RETURN;
| —ELSE \{
| { printf("file does not exist in both local and global directory \n®};
! | RETURN;
| be—\}
L._.......\}
b}

PR SRR R et iR Reiesisetitteiiossiotsiitacitotistisseititertisasstissite:
This function is directly called by the batch_process function and its main
function is to determine the requested user in the systes and find the file
in his directory. Only file that are present in the requested user’s
directory are allowed tc proceed. It will also determine the group access

or individual access this user reguested and will call the approprite
function to proceed with the processing of the access.

P O R O L O gy
allow_accessin,gori,uname,fname,accessright)

CHAR In,gori, funase, $fname,accessright;
\F

| I Y

i
|
l
I
I
|
|
{
I
I
|
!
l

STRUCT logon fcurlogon;

STRUCT heirarchy ¥curnode, fusernode;

STRUCT tree_node_rec ¥ghead, ¥loc, ¥find_node(}, ¥stack[MAXSTACKT;
INT num, found, stack_top;

curlogon = logon_start;
WHILE( strcep{curlogon-rusernase,n) '= § &% curlogon-down != NULL)
curiogon = curlogon-rdown}

curnode = curlcgon-rheirarchy_ptr;
—--IF {curnode-rhead == NULL) \{
| tprintf(fch,nc files in the dir of user %s in allow access in",nl);
I RETURN;

(R}
b g



108

{185 H qrrnd = Jl ;IEa:;;

{167 for = find n.:adeighean‘ tname, &found, stack, ¥stack_tep, 1l
tigg 1 g IF (fgund == FALSE | \{

- printt{"File %s not found in allow access in®, fnazely
176 RETUEN

D

1770 IF {ifcund == TRUE} %% (loc-iownerpt = curnodel) i
77 printf{*file ¥s iz found but not owned by user %s \n',fname, nly
174 RETURN;

175 |

1 i tot = find_nodetcurnod

i i pee-IF {fpupd == CAL”

printf{*file 4z is not found in the local direcin”,fnamel;

!
! RETURN;

curicgon = logon_start:

WHILE ‘ctrompicuriogon-rusername,uname) = O &% curlogon-rdown = HULL)
curlecgon = CHI"IC!L_jDﬁ‘,-'GJHﬂ:

-IF {curiogon-idown == -‘-JU‘LL & ogon-rusername,unamel = 01 A
IF fgori == "g"} !

«.

(RN S GO o n o
A

B R s ]

oo Coorx

--SWI TCHarcessright!
CASE "2’ num = 1
i BREAEK;
CASE 'r': nus = 2:
BREAE:
CASE “w': num = I
BREAK;

~0 O

b e

B ]
L

.

¥

i
o

userncde = curiogon-iheirarchy_ptr:

{ IF {gori == ¢’} groupaccessiusernode,num,loc->fnum,lac-
| ELSE groupaccess{usernode,num,loc ,fnum,.a,t—ﬁunfu, 0y
| RETURN;

"”“HHU“”H!XXUU!JU!"HU"UHUH“!

it
ed by the allow access smd it will determine ths

access or individual access. If 1nd1 idual access is

il rum once By calling insertion +u1Lt1.-n tg insert the file
directory and call calkey function to recaloulate the

It group access is encountered, it will keep calling

y to perfora the above funct tion.
R ey
ight,or_tnumber,or_fname, grpacc

50 STRUCT heirarchy theipty
-t S vl

IS STRUCT tree node rec oo, dstackMAXSTACKY, ¥ind_node(dy
217 INT stack_tep, found:
IR i



1219
1220
1221
1222

797
el

1224
1223
1226
1227
1228
1229
1230
1231
1232

1977
pE At

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1243
1246
1247
1248
1249
1230
1231
1232
1253
1254

aee
axdd

1236
1257
125

1259
1260
1261
1262
1243

1264

1265

126
1267
1268
1269
1279

271

l
l
|
|
I
t
{
|
|
|
l
!
{
I
!
S
l
!
I
!
I
!
!
l
l
|
l
!

r——IF {'ropti‘{

| printf{"inside root has nothing ‘n");

! RETURN;

Lm__mx}

heipt = root;

r——IF (root-‘head == NULL} \{

talkey{root,givenright,or_fnusber, i}

insertion{or_fnaee, Y{root-’head), heipt, 0);

loc = find_node(root->head,or fname,kfound,stack,kstack_top,1};
loc->#num = or_fnumber;

r—IF {grpacc == TRUE} \{

| groupaccess{root-next,givenright,or_fnumber,or_fname,1};
| groupaccess(root->dosn,givenright,or_fnusber,or_fname,1);

bt }
ELSE RETURN;

e }

r~—ELSE \{

calkey({root, givenright, or_fnumber, 1)}
insertion{or_fname, &iroot->head), heipt, 0i;
focr = #ind_node(root-rhead,or_fname,kfound,stack,bstack_top,1);
loc-*fnus = or_fnuaber;
——IF (grpacc == TRUE) {

| printf("inside the groupaccess of more than one filein®};

| printf{("user name is Is\n®,root-lusernaeel;

| groupaccess{root->next, givenright, or_fnumber, or_fname,l});
| groupaccess{rcot->down, givenright, or_fnumber, or_fname,l};
b\ }

|
!
!
|
!
|
!
!
!
!
L

-} f4¢ else loop $4/

~_\}

R SR ettt eitiieioistiiriistototiafesittisetssetssessssss
This printing is called by the main program to print all users in the
hierarchy for their naae department nase and group nase. It will call itself
recursively,
R R R R ar it iriraresaiaotteiotitiitoiitceiiisssotisitatesityy
printingf{root)
STRUCT heirarchy ¥root;

= {

IF ('root! RETURN;

tprintf (fch,“The nase is %Is \n",root-usernamel;
tprintf{fch,"The deptname is %s ‘n",root->deptnamel;
fprintf (fch,"The groupname it %s \n*,roct-’groupnase);
fprintf {fch, "ERRERESRERILRERERLE \n"),
printing{roct-;downl;

printing{root-inext}):

LRt F e R E iR eR oot aareteiritratetitotaretsttitiesitsasitestitss
This print logon function is called by the main prograe and it will print
out all the users name and password in the \dev\passwd directory, It is only
supposed to be called by the systes administrator.

R O O R O R T
print_logonircat)

STRUCT logon troot;

e ~X{

109



b o
LR I X B R R |

110

STRUCT logon fcurlogon;
IF {'root! RETURN;
curlogon = root;

r
| fprintf (fch,"nase is %s \n",curlogon-rusernase);

| tprintf(fch,"password is %s \n",curlogon->password);

| fprintf (fch, “usernase is %s \n",curlogon->heirarchy_ptr-dusernase);

| fprintf (fch, "deptname is %s ‘n",curlogon-heirarchy_ptr->deptnare);

| fprintf(fch, "groupnase is %s \n",curlogon->heirarchy_ptr->groupnamel;
] fprintf (fch,"key is %1d \n",curlogon-’heirarchy_ptr-tkey);

| curlogon = curlogon->down;

Lo\t WHILE f{curlogon '= NULL);

FE S R R Rt iR R Rt iteie e iriieiRiiestiiesetttitstesesst
This print function is called by various tree manipulation function in the
program. It will print the name of the files in the local as well as global
directory if call appropritely.
R R Rt a e i et et iiiRestiasRtiosieieriotestiseisaticetscteipiietitity
print {s,glaobal}
CHAR is;

——\{ REGISTER INT i;

FILE tfout;

l

|

| IF {global == TRUE} fout = fo;
| ELSE fout = f1;

| i=0;

! —WHILE (s[i] = "\07}\{

| | tprintf (fout, "ic®, slil);
S

I L..._..\}

! tprintf(fout, “\n");

| RETURN;

b\ }

R e AR iRl R iR it eisairirtetirstesoitistiesitittstssttit
This find_node function is called by various tree sanipulation function and
return a file node record type once it it found. Wher this function is called
the calling function will pass the name of the file, and the stack to store the
pointer for the file, The head is the pointer of the head node in the tree,
ahether it is a global binary tree or local binary tree.
SRR it e RO iR i ittt sttt tiaieirititieitsiitreitstiitstsititity
STRUCT tree_node_rec $find_ncde {head, info, found, stack, stack_top, ori)
CHAR infoll;
INT tfound;
STRUCT tree_node_rec ¥ctack[], ¥head;
INT tstack top:
INT ori;

r—-3{ STRUCT tree_node_rec ¥pre, fcur;

STRUCT tree node_rec ¥temp_stack[MAXSTACKI;

INT i,tesp_top,teap_found;

pre = cur = head;
temp_top = -1

i
i
l
!
!
!
{ teap_found = FALSE;



1325 | r—WHILE ({temg_found '= TRUE) &k {cur '= NULLIINC
1326 1 | tesp_toptt;

1327 | |} temp_stack[tesp_topl = cur;

1328 1 | IF (strcap(cur->info,info) == () teap_found = TRUE;
1329 | | ——ELSE \{

1330 | | | pre = cur;

1330 | | IF ({strcapf{cur->info,info) < 0} cur = cur-irpt;
1332 | | ELSE cur = cur-lpt;

1333 1 | b}

1334 | -—-\} /% while loop ¥/

1335 | tfound = teap_found;

1336 | ¥stack_top = temp_top;

1337 | FOR (i=0; i{=tesp_top; i++) stackli] = teap_stacklil;
1338 | IF {{temp_found == TRUE) & (ori == {}} RETURMNIcur);
117 I

13 ELSE RETURN(pre);

1340 b-—\} /¥ end of find_node %/

1341 FE R R iRt R Rt a iRt e ittt eatirireeioitstiticivititstticsesl
1342 This insertion function is called by varicus file manipulation function. The
1343 parameter that passed in is the name of the file, 5. The head of the tree and
1344 the pointer that points to the user node, For global file inmsertion, it will
1345 ctore the pointer in the global file node.

1244 B O R O L L R R s g y/
1347 insertion (s, head,heipt,gicbalbini

1348 CHAR 1s;

1349 STRUCT tree_node_rec ithead;

1350 STRUCT heirarchy fheipt;

1331 INT globalbing

1352 \{ STRUCT tree_ncde_rec #find_node!}, ¥new_node, ¥loc, ¥stack[MAXSTACKI;

-
1353 | INT critical, found, critical _node, stack_top;

1334 | FILE tfout;

1385 |

1356 | IF (globalbin == TRUE} fout = fgi

357 ELSE fout = {l;

1358 | loc = find_node (thead, s, &found, stack, ¥stack tep, 0);

1359 | IF (found == TRUE} fprintf (fout, " is already existed. No insertion '\n\n"};
1360 | ——ELSE

1361 | | new_node = (STRUCT tree_node _rec ¥lmalloc{SIZEOF {tree_node_typel);
1362 1 | r—-IF {'nes_ncde}\{

1363 | | ! tprintf{fout, "out of memory in insertion \n\n");

1368 | | | exit{0);

1365 | | bt

1366 | | strcpy (new_node->info, s)

1387 | | new_ncde-:lpt = NULL;

1368 | | new_node-rpt = NULL;

12369 | | new_node-rtag = 03

1370 | | r—-IF {globalbin == TRUE} \{

TS N f new_node->ownerpt = heipt;

1372 1 | f new_node->fnum = 03

1377 1 | b\ }

374 ] | r——ELSE {

137 | | | new_nocde-rownerpt = NULL;

137 1 | i new_node->tnum = priselpriseindexl;

1377 1 | bt



1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1290
1391
1292
1393
1394
1393
1396
1397
1398
1399
1400
1401
1442
1403
1404
1443
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1423
1426
1427
1428
1429

{274
1430

1z

IF (thead == NULL! thead = new_node;

—ELSE \{

| IF i{strcap {loc-rinfo, s} < 0) loc-irpt = new_node;

| ELSE loc-?lpt = new_ncde;

| stack topt+t;

| stack{stack_topl = new_node;

! sodify_tag (thead, INS, kcritical, stack, stack_top, &critical_node);

| IF f(critical == TRUE}

| IF (globalbin == i) balance_tree (head, INS, stack, critical _node,1};
l

!
I
|
I
f
|
|
|
l
| ELSE balance_treelhead, INS, stack, critical _node,0};
!
|
!
!
|
f
{
I
|

L._.......\ }
——1IF (globalbin == 1} \{
| print_tree (0, thead,1);
| fprintf (fout, "\n"};
L........\ }
—-ELSE \{
| print_tree(9, thead, 0);
| fprintf (fout, "\n®);
i._........\ :

b -\}

RETURN;

L—-\} /1 end of insertion ¥/
SRR e R e it e et et i tiaiaeieasiotinsiotiaciintiinsiesttifetttiestitidi
This andify tag function is to modify the tag of the file in both the glabal
and local file. The idea is that for a balance tree, on any node in the tree,
the difference between the number of nodes on the right and the number of
nodes on the left aust not be greater than 1.
RS ROttt iRt eioeisieinsicioiiriieitititoteiiicititsttntteittdy
sodify tag (head, process, critical, stack, stack_top, critical_node)
INT process, stack_top, ¥critiral, $critical_node;
STRUCT tree_node_rec Istack{l, thead;

—\{ INT pre, teap_top, tesp_critical_node, stop, temp_critical;

pre = stack_top;
temp_top = stack_top-1;
tesp_critical = FALSE;
stop = FALSE:
loopagain: /% the famous loop starts here '!!! ¥/
IF {iprocess == DEL} &% {stack[temp_topl)-itag == 0 ) stop = TRUE;
r—-—IF {strcepistackltemp_topl->info, stacklprel-*info) > () \{
| IF f{process == INS) {stack{temp_topl)-tag--}
| ELSE {stackltemp_topl)-tagt+;

L...._.__..\ } .

r—ELSEV{

| IF (process == INS) {stack[temp_topl)-itagt+;
| ELSE {stack{teap_topli-itag--;

L..._._.\,‘ 1

i IF {abs{stack[temp_topl-tag) > 11 \{

| temp_critical node = temp_top;

| temp _critical = TRUE;

by}

IF f{istop == TRUE) |! (temp_critical == TRUE} i} (stack{temp_topl == head)
i1 {{stack[temp_topl-rtag == 0} &% (process == INS}))



1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1445
1447
1448
1449
1450
1451
1452
1433
1454
1435
1434
1457
1458
1459
1450
1461
1452
1453
1454
1445
1466
1467
1468
1449
1470
1471
1472
1473
1474
1475
1474
1477
1478
1479
1480
1481
1482
1483

!
I
I
I
|
l
!
I
!

GOTO retval;
—ELSE {
| pre = teap_top:
| temp_top--;
| GOTO loopagain;
b—-\}
retval: ¥critical = teep_critical;

fcritical node = teap_critical_node;

RETURN;

L——\} /t1% end of modify_tag 3%/

A R R R i
The single left tree rotation function is one of the tree manipulation
function that is called by balance tree. If the balance tree function
determines that the tree ic not balance, then it needs to be rotated.

R R R R R R R R R R R R iRt i RiReiiiritieieitseitiestittiitisieitity
single_left (head, stack, critical _ncde)

STRUCT tree_node_rec ¥stack[1, fthead;

INT  critical _node;

-\

!
|
!
|
I
|
!
l
!
!
I
(
I
l

INT pivot;
STRUCT tree_node_rec fpivot_right;

pivot = critical_node + 1

pivot_right = stacklpivotl->rpt;

stacklpivetl-srpt = stacklcritical _nodel;

stacklcritical _nodel-*lpt = pivot_right;

IF (stacklcritical nodel] == thead) %head = stack{pivotl;

ELSE IF (stacklcritical node - 11-}Ipt == stacklcritical _nodel}
stacklcritical _node - 11->1pt = stacklpivetl;

ELSE stacklcritical_node - 11-irpt = stacklpivotl;

/t end it ¥/

stack{critical _nodel-tag = 0

stacklpivotl->tag = 0;

A} /¥ end of single_left ¥/

oo

I O R R T R L L L
The single right rotation function will rotate the tree once it is out of
balance. It will bring the parent node and put into the right child.
R AR R R i rieiReiestsaeiestsiosiotesiettitiieseitestigcttittitid
single_right (head, stack, critical_node)

STRUCT tree_node_rec ¥stack[], tthead;
INT  critical_node;
INT pivot;
STRUCT tree_node_rec tpivot_left;

pivot = critical node + I}

pivot left = stacklpivot]-*lpt;

stack[pivotl-}lpt = stacklcritical _nodel;

stacklcritical nodel-rpt = pivot_left;

IF ({stacklcritical nodel == $head) thead = stack(pivotl;

ELSE IF (stackicritical _node - 11-3lpt == stacklcritical _nadel)
stacklcritical node - 11-:1pt = stack{pivet]y

ELSE stacklcritical _node - 11-rpt = stacklpivotl;



114

fnnpnaunpnnpnngiouUnnannnLnannanany

sl
n
53

148

-
o
=
=
"
- -
- =d (=9
Lid =3 —
(=4 '
— b " ~— s o
oy " w - — -~
- " w3 —— o R d
ot + Q - hord
[=1] -t ] €1 = =4 " Wt
R v Ead 7] Lonnd ] =3 " .-
- gt - (=] = — = Rt
[T ad [ 1 o o e
QA uY ee W ™ w " g N
[ T ra 1} R n + -
w1 T e - REd -~ -~
— O we — < “r— ol ] et
I 4 O e - [=] [ =N - -
[ e - ' w e 1= .
e - - wa L — T
w [T " m g b e - =
T3 A4S e e n (] [ — -y -
L e Lo} o ] e [N e FONT
£= 0 U e . Lo g -t B [ jooves R .-
- -t () "l R (] g [ L ]
e e e o S [ — - — 5 - —
— e T e [ " s o ce e
— - i) ' — witd —t [Tt - L
13> JERT W RS - -+ e w3 wng | Ly >
N n £ L= - e -
w -~ =3 rd e "3 Y g O
€W D e " - - - 44 W g LT
W T b wr - m [= By L
AZ et U we - 1 - e = ~— " -
[T T ' - 4.4 oy == o - T
a Rl [y (=] o o A re -
It U e ey &= B s " it Rl e D
[l LT . [} hnd [} n -t e
00 s e m (&8 P - — e P T]
— el DI et 1 —d -+ — — L - R— - LS
WL 3w n - = o e = - e
[ Rt Y R ' s s =2 e =1 =2 o -~
2 e o~ e el o i N e & -y Rl
[ R L= - e e " i ot
aoe - — Y o3 oo e - 1" " g
[ TR o — | T - 7] - LI} e diL]
a o e v e WL [~ = =g e m hodiined
o Cn e as A b T3 L (=] ; g hod o — 0
- E 1 e+ == e -t [~ [ B} e L .
s Y e e - =1 L ) -
. o am 5 . " e — [ N | o]
- o e — 1 ee T3 e ] m L b " T e s
- (R S Y - P i oy e s ] =) R0 ey
—_— et R I R et e ] — Rd Bl e T BN - AT
e U e () T S o w +4 e B B s a0y fod
ot b e a + e b Woen ' e g | bt FR = R g
L I T e R L N BT (W] — o, L B (Lo = R S-S RN .03
[ e L. [ U e - =) e L 4 @ B3 oeh €Dy ey e
[T = I ~=a Y W T s S L) — Lo [} [ B T et ~ S S B ) bt
et e e ™ [ PR o = Ly R T T o R - T Rt
s [ €3 e - g - [ I I T R Y e
is .u.m_. L - 5 ] .nw. - €3 1 e e W s G Al e
-+ b — b Lo ] e et s T 0+ vl _— ol
€3 0 me w o e o M ] e ZE er w8 ooy D e
e e T e u (] e ] e ce— e T me T e s S
P e B Lo P 1] v M o [ [ T B WS B ol
s - s e M 0 . & . R e e
e A End S A o 4t [ s et wlS Ay Rad bl
[ TR TRt TI — am F “.E e Ll et F e F o~ ..H . bl
-t a1 e P Ll U R N 4 i ed LS e w2 e
i, 2 by o L - Cet - i1 ] m e W
-+ L Ut [ 4 s — L
Ur.tm_ = ” = ' a. W =] 1) w un Lu uw L W - ..u-
- ¥ et e s = . — 3 - -
S ey R E wwx-0Ome =) m | msTx 2
EIRER = 520w 1. = R i we
WA e —~ e - . T . bt
oL e m = NI T U [T w i} L L e
D A e
e o et L S 4
L N HEy
|
[ R Vi B e I & [k ! P L B
et et e et e I B S B i e
[T BT B o BT BT} U U E ua ul
e T S [ e




€17

bawdd
1538
1539
1540
1541
1542
1343
1544
1543
1544
1347
1548
1349
1530
15351

1552

1533

1354
1353
1336
1357
1558
1359
1580
1561
1562
1363
1564
1363

or
~d O~

e e TR = 0N = L & 03

—

et

[ R R R R R
[ S R R SN 3, I PN R N Rt S R s o

Bk Bom et et bk Bt b peh bt B ek bk pen  poe  n bbb pen et et B G b ek
oL oLn LN on LN L LN oen o Lhoen L:: LN LN i LN LNl LN oL LNl

O3 OO 0 00 O 00 O o0 o oo
P T = s BRI w S B - Y N

rotaticn to continue the second rotation. The stack of pointers that point

to the affected tree node are passed in and out.

R R Rt tRettiRr ettt atioieriteieiostetisiciiotnetistissitiasch
double right (head, stack, critical_node)

STRUCT tree_node_rec #stack[], fthead;

INT  critical_node;

—\{

INT pivot, zeroed,i;
STRUCT tree_node_rec $pivot _left;
STRUCT tree_node_rec ¥loc_stack[MAXSTACKI;

pivot = critical_node + {;

pivot_left = stacklpivotl-iipt;

FOR (i = 0; i < BAXSTACK; i++) loc_stackli] = stacklil;

IF f{pivot == NULL! zeroed = FALSE;

ELSE IF ((pivot_left '= NULL) & (pivot_left-tag == -1})
zeroed = TRUE;

ELSE :zeroed = FALSE;

/% end if &/

stacklcritical nodel-irpt = pivot_left;

stackipivotl-2lpt = pivot_left-irpt;

pivot _left-irpt = stacklpivotl:

loc_stacklpivotl = pivot_lett;

loc_stacklpivat+l] = stacklpivetl;

single_right (head, loc_stack, critical _nocde!;

IF {istacklcritical nodel-)rpt != NULL) &% (stacklcritical_nodel-}lpt == NULL)}
stacklcritical nrodel-itag = 13

ELSE IF ({stacklcritical _nodel-»rpt == NULL} &k (stacklcritical _nodel-}lpt = NULL)

stack{critical nodel-itag = -1
ELSE stacklcritical nodel->tag = 0;
/t end if ¥/

IF ((stack(pivotl-»lpt == NULL) && {stacklpivotl-irpt '= NULL))
stacklpivotl-itag = 13

ELSE IF (istacklpivotl-rtag == -1} &k (stacklpivotl-irpt '= RULL) &

{stacklpivotl-srpt->tag '= 0}

stackipivotl-rtag = |

ELSE IF ({stacklpivotl->lpt '= NULL) & (stackpivotl-irpt == NULL))
stacklpivetl-2tag = - 13

ELSE IF {{stack(pivotl->tag == -1} && (zerced == TRUE} &k

" (stacklpivotl-srpt '= NULL) &% (stackpivot]-irpt-itag == 0))

stacklpivot]->tag = 13

ELSE stacklpivoti-itag = 03

/t end if ¥/

—-\} /% end of double_right ¥/
PR EEe e R Rt a s iae it Rteiasieiiatitasetsiatitistuciasitiiesissietitt
Thic balance tree is called by the modify tag and then it will call the
the approprite rotation function to perfora the balancing act.
AR R R AR R R iR i i Rao R ie i iRt retiiiiastisosRtiistestssttetaty
balance_tree {head, process, stack, critical_node,globali
INT process, critical _node,globals

115

}



1590
1594
1592
1383
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1624
1622
1623
1624

623
1626
1627
1623
1629
1630
1631
1632
1633
1634
1635
1636
1637
14638
1639
1640
1641
15642

STRUCT tree_node_rec ¥stack{l, $ihead;

i

| SO

A0 INT loc_cri, loc_ncde, son, grandson:
FILE tfout;

IF f{global == TRUE} fout = fg;
ELSE fout = $1;
sgn = critical node + {3
grandson = critical nede + 23
IF {{stackicritical nodel-lpt == stacklsonl) &
r—{stacklsonl-lpt == stacklgrandsanl}) \{
! fprintf (fout, “single left rotation.\nin®};
{ single_left (head, stack, critical _nodel;
\}
ELSE IF (istacklcritical_nodel-’rpt == stacklson]) &%
r—r1{stack{sonl-3rpt == stacklgrandsonl}) {
fprintt (fout, "zingle right rotation.\nin®};
single_right {head, stack, critical_nodel;
\2
ELSE IF (({stacklcritical _nodel-}lpt == stack[sonl) &
r——(stack{son]->rpt == stacklgrandsonl)}\{
tprintf (fout, “double left rotation.\n\n®);

double left {(head, stack, critical_node);
11

r—ELSE \{

tprintf {fout, *double right rotation.\n\n®);
double right (head, stack, critical_node);

| S— \ ‘)l

/% end if &/
IF ({process == DEL)} &k {critical node > 1)}
modify_tag (thead, process, &loc_cri, stack, critical _node, %loc_nodel;
/Y end if ¥/
RETURN;

V3 /1 end of balance_tree ¥/

PR iR i e Rt i ittt ataiaiiibiieirisieottsioRststtitit
Thic deletion will remove the approprite tree node from the directory. First

it
of

use the string that pase in and call find node tc find approprite location
the rode in the directory. If it ic found, it is then reacve the node and

rall balance tree to rebalance the tree. This routine is useally called by
the delete node in the main prograas.

R R R R R R ettt riesiesiititttitioiitosittitititssity
deletion {s,head,global}

CHAR ts;

STRUCT tree_node_rec ¥thead;

INT global;

\{ STRUCT tree_node_rec ¥find_node(}, ¥loc, ¥stack{MAXSTACKI;
INT  critical, found, critical_node, stack top,

bef del, del lec, bef_suc, suc, gle;
FILE tiout;

IF {global == TRUE} fout = fg;
ELSE fout = 1
gle = global:



117

1643 | IF (thead == NULL) fprintf (fout, “Eapty tree !'\n"};

it44 | —ELSEM

1645 1 | loc = find_node (thead, s, &found, stack, &stack_top, 0);

1646 | | it print (s,qleball; #/

1647 | IF (found '= TRUE} fprintf (fout, * does not exit. Deletion denied 'in\n®}y

1648 1 —ELSE \{

1649 | i ] tprintf {fout, “ hac heen deleted and the tree is: \n"};

1850 | | | IF ({stackistack topl == thead) &% ({thead)->lpt == (thead)-irpt})

1631 1 ! r——{ free {thead};

1632 | | | f fhead = NULL;

1633 | | i ! fprintf (fout, "Empty Tree !'\n");

1654 | i bt}

1655 | | ! r——ELSE IF ({ctack{stack topl == thead) & {(¥head)-d>rpt == NULL}I\{
1655 1 i { ! free {stackistack_topll;

1657 | | i ! thead = stacklstack topl-}lpt;

638 1 | b\ }

1659 | | | r—ELSE \{

1660 | | i | bet_del = stack_top - 13

1668 | | | | del loc = stack_top;

1662 | | | | loc = stackidel locl-irpt;

1863 | | ! | ——WHILE (loc = NULL) \{

1664 | | { | | stack_toptts

1665 | | | | i stack{stack_topl = loc;

1666 | | { ! J loc = loc-3lpt;

1667 | i ! | b\

1668 | | | | suC = stack_top;

1669 | | { i bet suc = stack_top - 1

1670 1 | | | modify_tag (#head, DEL, kecritical, stack, stack_top, keritical nodely
.75 S B | ! IF {(stackidel locl-irpt == NULL) & (stackldel locl-iIpt == HULL))
1672 1 | | { r—=3{ IF {strcmpistacklbef dell-)info, stackidel locl-infol
1673 1 | ! | i stacklbef _dell-*lpt = NULL;

1674 1 i I i ELSE stacklbef_dell-srpt = NULL;

1675 | | { | i free {stackldel locli;

1676 | | I | Y

1877 4 | | ! ELSE IF (stacklde! locl-irpt == NULL)

1678 1 | | | r—\{ IF {strcap(stacklbef _dell-Yintc, stackldel locl-}info) >
673 1 | | | stacklbet _dell-:lpt = stackldel_loci-}lpt;

1680 1 | f { ! ELSE stacklbef dell-irpt = stack{del _lecl->1pt;

1681 | | i { { free {stackidel loclly

1682 | 1 I ! b}

883 | ! { r——ELSE \{

1684 | | i i | stropy (stackldel locl-info, stacklsucl-:infel;

1683 | | { f I stack{del locl-fnue = stacklsucl-num;

1686 | | f | { stackldel locl-somnerpt = stack{sucl->ownerpt;

1687 | | { ! { IF (strcmpistack{bef sucl-*info, stack{sucl-Xinfol > 0
1488 | | | i | stacklbef _sucl->lpt = stacklsucl-irp¥;

1687 | | | f ! ELSE stacklbef sucl-rpt = stacklsucl-drpt;

1690 1 | i ! | free {stacklsuclly

.21 S { i b

1692 | | i IF {critical == TRUE} +{

1633 1 | | { IF ({stack top - critical node} € Zi\{

1694 | | i | IF fstremp(stackicritical nodel-rinfe, stacklcritical_nodetil-sinfo) » 0)
1695 | | ! b



0

= NULL)

pt |

4

i
L

A\

SRR W

i

o
d
L

-

TR R Rt a it oaitarstiiotietititatittststitioety

-

L

s
!

Ifout

cric
iLt

o
i

[
-
"
non
a4
—_
m o
s
(8]
=
=)

[= 2]
-t



.-.‘
~d
n oo

~d ~d ved
o o O~ LN LN Ln it Ln L Ll Lot e
- T

S S Sed 3
~d O~ LN P L D

b bh bk b bt bt bt bt pd b b ok pu e
e e e Bl B i Bt B |
[, I I R N - = =1

—
D
o~

1767
1748
1789
1770
177
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1732
1783
1784
1735
1734
1787
1788
1789
173¢
1791
1732
1793
1794
1793
1794
1737
1798
179%
1800
1801

i
l
!
!
|

r—-\{ print_tree {nua_blank + 10, tree_node->rpt,loc);
| FOR (1 = {; 1 <= nun_blank; ++1)

| fprintf {(fout, “ic", BLANK!;

{ print {tree_node-}infe,lochy

i print_tree (nua_biani + 1, tree_node-}lpt,loch;
-}

b} /4 end of print_tree ¥/

R LR RC e Rt critseeseiieiisbihottosesteitsieg)

This aul.c is stored as ancther file and it will be linked to main.c.

The purpose of this multiplication function is to siaulate the binary
working of the actual hardware amultiplication during the calculation of the
systes key using the Chinese Resainder Theorem.

R R Rt F et ieriiestcsttstesiieiinsitstititasittitisatisctittictiy
#include “header.h”

CHAR taul {om, 00}

CHAR 1on, fog;

4

|
l
{
!
|
|
{
!
!
!
1
I
{
|
|
!
i
i
!
|
!
I
i
l
l
i
i
i
!
!
!
!
|
!

CHAR a[HAXINUNI, gl,resul tIMAYIMUMI, com_sIMAXINUNI,carry, 4q,1m;
REGISTER INT cvcle,inds,i j,k,indem,indsg;

4 =00y A= By
indum = indxg = 03
indsa = strlien{m); indeg = strlenig);
indxe -= 1; indxg -= 1}
r—-IF {indzm '= indxg) \{
r—-TF f{indxq > indxm} \{
! IF {{indug+l) > MAXINMUM ) \{ printf{*ruaber in div is too large \n")
ko= indxgy alk+il = "\0%y
r—FOR {i=indim; 13=1; i--) A
! alkl = alily k-3

l

!

!

! b}

i FOR (i= {indzg-indxa); i:=1y i--) alil = 707

| ind: = indxg:

b

—ELSE IF {indss » indig} \{

! r——IF ({indxm+1} > MAXIMUM } \{

| L—arintt Cnusber in div is too large \n"); exiti0); A}
i k = indem; glk+i] = "\07y

i —FOR {i=indzg; i=1; i--) M
| i glkl = glily k-—;

!

I

|

by}

FOR {i=(indss-indxgl; i3=1; 1--} glil = 707y
indx = indim

%
| New—— \i

!
l
!
f
1
{
!
)
!
;
(
|
|
!
!
I
I
{
!

b }
ELSE ind: = ind:am;
coa_mlindxtl] = *\(7y
FOR ({i=0; i{=indx; 1++} ali] =707,
alil = "\0%;
rFOR (j=indyy 33207 j--1 \{
| IF {sljl =="0") com_aljl = "0";
! ELSE BREAK;

Lot

exit{0}; 4}



1802
1843
1804
1803
1806
1807
1808
1809
1810
1811
1812
1813
1814
1615
1816
1817
1818
181%
1820
1821
1822
1823
1824
1825
1826
1827
182

1829
1830
1831
1832
1833
1834
1833
1834
1837
1838
1839
1840
1841
1842
1843
1644
1543
1546
1847
1842
1849
1850
1831
1852
1852
1854

cos_aljl = "1

120

IF {(alk]=="71") cgg‘i[k] = ?03;
ELSE con_alkl = "1}

r—-4{
IF (qlindx] == gl} /¥ either i{ or 00 ¥/

|
!
I
l
|
!
|
|
l
i
I
I
l
I
l
i
I

I
|
l
I
!
!
i
!
l
!
I
{
!
i
|
i
l
!
i
|
i
!
|
I
|
i

r—=\{

gl = '0’; FOR (i=0; i¢=indx; i+4) alil = *0;
alil = "\
FOR (cycle=0; cycled=s indx; cvclet+)

gl = qlinds];
FOR (j=indx; j>=i; j--1 qljl = qlj-1h
qlo] = alinde]ly

IF (ali] =="1"} aldl = ’1"y ELSE aldl = 0%

—\}

;
[
| !
I
!
|
!
!
i
I

|
!
!
!
I
!
!

!
|
!
{
|
!
i
I
i
l
l

l
l
|
l
[
!
|
!
I
I
i
I
!
i
!
!
I
!
I
I
|
!
{
!
|

{

!

!

| FOR (i=indx; j»=1y j--) aljl = alj-1];
!

[

—ELSE \{
——IF {glindx] == 0’1 \{ /43t case of 01 114/

resultlinds+1] = *\0°; carry = 07}

[ r—FOR {i=indx; 13=0; 1--} \{

——IF (alil '= ali}) \{

I

[ | IF dcarry == 707} \{ carry = 707 result[il="1"} \}
| i ELSE { carry = "1} resultli] = 07 1}

[ L_....,_.'\‘}

| ——ELSE \{

| | IF (alil == 71" & carry == "’) VM carry = *1"y resultlil= "17y
| | ——ELSE IF {alil == "{" &k carry == 7(") \{
i ! | carry = *173 reseltlil =707

| | bt}

] i —ELSE IF (alil == "0’ && carry == "1") \{
! | | carry = 0% resultlil = 17

| | b }

i | —ELSE IF ({alil == ’0" & carry == 707} \{
| i | carry = '07; result{il = "{";

I ! b ¥

I

[ -

A}

\} 788a8 if loop of O 844/

resultlinds+1] = *\07; carry = 7073
r——FOR (i=indx; 1720; 1--) \{
r~—-IF(ali]l '= com_a{i]) \{
| IF (carry == "0"} \{ carry = "07; resultli] = "17;
i ELSE \{ carry = "17; result{i] = 70°3 A3

-
—
—

|
!
|
!
l —ELSE \{
i
I
!
i
i
!

| -=-IF {alil == 71" &k carry == "1") \{

( | carry = '17y resultli] =717

! bt}

{ r—ELSE IF {alil == "1" && carry == 70"} \{
| | carry = "1°; resultlil ="¢";

‘  S—— ‘\3



1855
1856
1857
1858
1839
1869
186!
1862
1863
1844
1863
1846
1847
1848
{869
1870
i8N
1872
- {873
1874
1873
1876
{877
1878
1879
1880
1581
1882
1883
1684
1885
1884
1887
1888
1889
1870
1891
1892
1893
1894
1893
1874
1897
1898
1899
1300
1901
1702
1902
1904
1905
1904
1907

121

r——-ELSE IF {alil == 0" & carry == 1"}
i carry = 07 resultlil = "1y

|

|

I b—\}

| r—-ELSE IF {alil == 0" & carry == "0"} \{
| | carry = '0%; resultlil = "¢’

{ b}

-—\}
/11% case of 10 $1¥/
/Y printf("$ftdresult of addition with A - M is Xs\n®,resultl;
L 44

| S ¥
i

stropyfa,result);
gl = glind:zl;
FOR {j=indx; jr=1; i--} ol3] = qlj-1};
gl01 = alindx];
FOR (j=indx; j=1; i--) al3l = alj-i%;
IF (a1l ==71"} al0) = ’1"; ELSE al0] = *0%;
—--\} /41 end of else for case 10 or I 1Ek8Y/
———X} /% end of the cvcle ¥/
strepyiresult,aly streat{result, gl
—-FOR {i=0; j<={28inds); 344} {
| IF f{resultljl == "1’} BREAK];
Lo\ }
result{d] = "0%; k =1;
r—FOR{i=i; 1{={28indx)} 1y 1+4)
] resultlk] = result{il;
| k+t;
L.....__\}
resultlk] = "\07y
RETURNIresult};

FE SRRt R it iu ittt eiiteiratiisitsitititoatsicitittticsited
This binary division ic to simulate the binary division inside the hardware
of the systes. It could be called by any function and the & is the sultiplier
and the g is the guotien. The needg ic the fiag that tells this subroutine
that whether the remainder or the guotient is needed.
FE R 0 AR iRt oot tierotate i iaritiiasitontstitotitsiptissatstsstty
#include “header.h”
CHAR bdiv{a,q,needg)
CHAR $a,1q0;
INT needa;
L
CHAR alHAZIMUMI, resul tIMAXINUM], con_mlMAXINUMI,cign,carry;
REGISTER INT i,cvele, i, ki
INT indxg,indys,indy;
indxg = strienigl; indzm = strlenfal;
indxg -= 13 indxm -= i}
==IF {indza '= indxg) \{
| —--1F (indeq * indxm! \{
| IF (lindxg+l) > MASIMUM ) \{ printf(“nusber in div is too large \R")y exit(Gi; \
f k= indegy mlk+1] = 7007,
{ r-—-FOR {i=indsmy 131 i--)

1
i



1908
1909
1910
191
1912
1913
1914
1915
1914
1947
1913
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1933
1936
1937
1933
1939
1940
1941
1942
1943
1944
1943
1944
1947
1948
1949

1950
1951
{952
1952
{954
1955
1956
1957
1958
1959
1980

skl = alil; k--;

FOR (i= (indxg-indxm); i>=1; i--} alil = {7y

| {

| b}

!

| indx = indxg:
b—\}

—ELSE IF {indsa > indzg} \{

IF {l{indxg+l) > MAXIMUM )} \{ printf(*nusber in div is too large \n®}; exit(0)y \}
k = indsm; glk+1] = "\0%;
—FOR {i=indxq; i)=1; 1--) \{
glk] = glily k-

SO %
VI

FOR (i={indsa-indxq}; i¥=1; i--) glil = 707}
indx = indxm;

Lo }
| — -_..\}
ELSE inrdy = indss;

com_alindz+l]l = "\(7y
FOR (i=0; i{=indz; i++) ali] =707

-FOR {j=indx; j¥=0; j--1 \{

e

alil = "\0';

IF {(aljl =="0") com_alj]l = "0";
ELSE BREAK];

i
I

com_aljl = "1";

F—FOR (k=i-13 k3=0; k--1 \{

!
!
b

|
|
i
I
l
!
|
|

I
{
!
!
!
!
I
i
!
!

IF ({slk] =="1"] com_nlk] = *07;

ELSE com_alk]l = "1’}

..

sign = al0l;

—F0R (cycle =0; cycled=indx; cyclett) \{

FOR (i=0; i{=indx-1; i++) alil = ali+i1; /% shift left ¢/
/Y shift left for A ¥/
FOR (i=0; i {=indx-1; i++) qli] = gli+1]; /% shitt left for @ 1/

alindx] = qlil;

r—-TF (al0] != 2[01) \(

resultlinds+11 = *\07; carry = 707
r—-FOR {i=indxy 12207 i--) \f
r—-IF (alil '= ali]) \{

| IF (carry == 707} \{ carry = 7073 result{il="1";
| ELSE \{ carry = ’1"; resultli]l = ’0"; \

L...._..._‘\'}

r—-ELSE \{

| IF (alil == 71" & carry == 717} V{ carry = °1°
| —-ELSE IF {alil == "1 & carry == "0"}
| | garry = "7y resultlil ="0’;

| [

| —ELSE IF (alil ==70" & carry == "1}
| | carry = 07y resultlil = *17;

| b 3

! ——ELSE IF {ali] == 0’ & carry == "{’)
| | carry = *07; resultlil = 07y

| [A— A3

| — 1

1
¥

y resultlil= "1

\L



1941
1962
1943
19¢4
1965
1946
1947
1948
1949
1970
1971
1972
1973
1374
1975
1976
1977
1978
1979
1980
1981
1932
1983
. 1984
1983
1984
1987
1988
1989
1990
1991
1992
1992
1994
1995
1996
1997
1993
1997
2000
2041
2002
2003
2004
2005
2006
2097
2004
2049
2010
01t
2012

2013

L.....___'\ ;
r—ELSE \{
resultlinds+id = *\07; carry = 707
r——FOR {i=indg; 13=0; 1--) \{
r—IF(alil !'= com_ali]) \{
| IF (carry == 70"} \{ carry = *0"; resultli] =
! ELSE \( carry = *17; result[i] = 70"; \}

——\}
1
]

b

IF f{sign == result[01) \{ /¥ successful ¥/

i
i
|
|
|
!
I
|
|
|
I
!
|
I
|
!
i
i
i
|
[
|
|
f
|
| | glindx] = *17;
l

!

|

I

|

| strepy{a,resultl)y
b}
——ELSE \({ /% unsuccessful ¥/
| glindx] = *0’;
bl
L......--‘\‘}
~—IF (needg == 1) \{
stropyiresult, gl

!
| FOR {(j=0; j{=indy; j++} \{ IF f{resultij] == '1") BREAK; \}
| result{0] = *07y k=1

| FOR (i=j; i<=indutl; i++) V{ resultlk] = resultlil; kt+y A0

! resultlk] = "\07y

| RETURNIresult};

L

et }
r—-ELSE \{ strepyiresult,al:

| FOR {j=0; j{=indz; j++) \{ IF f{result[j] == "1"} BREAK; \}
| resultf®l = "0’y k=i;

| FOR {i=j; i¢=inds+1; i+4) \{ resultlk] = resultlidy k++p \2

! resultfk] = 307

| RETURMN(result};

L

A O R R L R R O gy
This add routine will sigulate the hardware addition of the binary calculation
The input are the painters tg string and it will RETURN the pointer to string
FOR the calling function.

I O R R O O gt/

l

i

| !

| |

| |

| ! e

| I r—ELSE \{

| | | —IF (ali] == "1’ &k rarry == "1") \{
| { | | carry = '17; resultlil ="17;

| | | Y

I I | —ELSE IF (ali]l==71" ¥ carry ==
l I I | carry = 17y resultlil =707

I l | b\

i | | —ELSE IF (alil == 0" &k carry ==
! | | | carry = 'Oy resultlil = ’1";
I | | b }

I | | —-ELSE IF (alil == "0’ & carry ==
| | | | carry = 073 result{il = '0%;
| I | b\ }

| | b}

! L

[}
(98]

"

US IR

—
—
e
-

0\



2014 | #include “header.h®
2015 | CHAR tadd{a,a)
206 | CHAR f1a,is;
217 |
2018 || CHAR result[MAXIMUN], carry;
2019 || REGISTER INT indy,ik,indxa,indxa;
2020 ||
2021 || indxe = strlen(a); indxa = strlenfa)
2022 || indxm -= 1y indxa -= 13
2023 1
2024 | | —IF f(indxa '= indxa) \{
2025 |11 ——IF (indxa » indxm) \{
2026 11 I ~—IF ({indxati) > MAXIMUM ) \{
2027 11| | L—grintf(*nuaber in div is too large \n"i; exit(0); \J
2028 || | k = indxa; alk+l] = *\0";
2029 11 ! —--FOR (i=inds; 1=l i--)
2030 it | i alkl = alil; k-
2030 1 ! b—\}
2032 1 | FOR (i= (indxa-indga); 1=l i--) ali] = 707
2033 11 i indx = indxa;
2034 1| b }
2035 111 r—ELSE IF {indsa > indxa} \{
203 1 i —-IF ({indxmt1) > MAXINUN } \{
2037 L1 | i——arintf (“nuaber in div is too large \n®}; exit(0}y \}
2038 1 ! k = indum; alk+1] = *\0%;
2039 ||| ! —FOR (i=indxa; ir=1; i--) \{
2080 {1 f ! alkl = alily k-
2041 11 ! 3
2042 ||| ! FOR {i={indzs-indza); id=1; i--) alil = ’0";
2047 (1 ! it printf{"A --> Y5 and MW --» %5 \n",3,m);
2044 ||| ! i/
2045 1 1] i indx = indxa;
2086 | ] b
2047 || =i}
2048 || ELSE inds = indxa;
2088 ||
2050 || resultlindx+i} = "\0"y carry = '0°%;
2051 | | —FOR {i=indx; 1320y 1--) i
2052 {11 r——IF {alil '= ali]) \{
2037 11 | IF fcarry == 707} 8{ carry = *0°y result[il="1"; \}
2054 ||| | ELSE \{ carry = 7173 resultf{il = 0"y \}
2053 1] b\
2036 11 —ELSE {
2057 1] | IF (alil == 1" & carry == "17) \{ carry = 1"} resultlil= *17; \
2058 |1 i —ELSE IF (alil == 1" & carry == "0") \{
2059 11 | i carry = 17y resultlil =707,
2060 1 | bt}
2060 11 | —-ELSE IF (alil =="0" & carry == "1") \{
2082 i | | garry = 07y resultlil = 17
2063 i | b }
2064 11| | ——ELSE IF (alil == "0" & carry == 70"} \{
2065 {1 | f carry = '0%; resultiid = "¢’y
I |

[

2066 \}



20567
2068
2069
2070
2071
2072
2073
2074
2073
2074
2077
2078
2079
2080
2081
2082
2083
2084
2083
2086
2087
2088
208%
2090
2091
2092
2093
2094
2093
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
21
2112
2113
2114
2115
2116
2117
2118
2419

!
I
|
I
I
!
I
l
{
l
!
!
!
!
!
l
l
|
|
I
I
l
!
!
|
|
l
!
I
|
!
!
i
!
!
!
!
!
I
I
!
|
!
|
l
!
l
|
i
!
l
I
f

I —-\}

| b—\}

{ /% printf("result of addition before moving %s \n®,result)y
| 14

| r—=IF {resultf0] == 71"} \{

| | resultlindx+2] = "\0’;

| | FOR (i = indx; i)=0; i--)  resultli+!] = resultlil;
| | result(0] = "0y

| b—\}

| /1 printf(*result of addition --* ¥s \n",resulti;

I ¥

| RETURN(result};

L—\}

SRRt et it eiReiastosioieosieieitoseeiiatiistiasttinsetiissst
This binary to integer routine will receive the binary character froa the
calling routine and convert it to unsigned long integer.
R R R R iRt e R eiRit et esesieiosieiteieiiesitinsieitsatatitsitsttyl
UNSIGNED LONG INT bin2int(s)
CHAR ts;

—\{

REGISTER INT i,j,len,tine;

UNSIGNED LONG INT lacval,y:

len = strien{s}; len -= 1
i =0; locval =0

——FOR{i=len; ir=l; i--) \{

——IF (s[i] == 17} \{

| IF {j == {) locval += 1y

I r——ELSE \{

f | v =l

| | FOR (tise = {; time{=j; time++) vy 1= 3§
f ! locval = locval + y;

| b\ }
b\ }
it
| b}
i RETURN( locval);
L.._k.\ J'

RS Ee Rttt R eiisieiReieseietiosistetititiitsttioteiesitantotttd
This integer to binary function get integer input and convert it into
binary number in character and return thes as a pointer to string.
SRR ettt iRt iisesetititeiotieiotitatteisieitottttitstitestedy
$#include "header.h"
CHAR tintZbinin)
INT n;

=\

CHAR s{MAXINUMI,stri[HAXINUND;

INT index,i,k;

i=0;
IF (n==0) \{
—=IF {n == 1)\

1

printf{"value send in is 0\n"}; exit{0}; \}
I
T

!
!
I
|
l
l

125



s{0] =707 s[4 = *17; o[21 = 20"y RETURNIs);
r" 0\
| IF{ {n% 2i == 1} slil="1"
| ELSE slil = '0°;
|
|
-

-t

!
=

=0 /2y ity IF (1 == MAXIHUM) \(
—grintf(*too large array in int2binin"); exit{0i; \}
—3\} WHILE (n =1 )3

s{i] = *17; sli+1] = A0’y index = i3 k= i} stril(] = 707
FOR (i = index; ir=0; i--) \{ strilk] = slil]y k+4; A}
strifkl = "\0%; RETURNMNIstri);
.......\}
AR R Rttt i s iR riairioitieitieeiitstititesitinitesatttssstty



VITA™
Kim S. Lee
Candidate for the Degree of

Master of Science

Thesis: A HIERARCHICAL SINGLE-KEY-LOCK ACCESS CONTROL USING
THE CHINESE REMAINDER THEOREM

Major Field: Computer Science

Biographical:

Personal Data: Born in Tapah, Perak, West Malaysia, September

11, the son of Choon Gan Lee and Ngan Siew Thong.

Education: Graduated from Monk’s Hill Secondary School,

Singapore, in December 1981; received Bachelor of Science
Degree in Business Administration ( Majoring in Accounting )
from Oklahoma State University at Stillwater inMay, 1988,
completed requirements for the Master of Science degree
at Oklahoma State University in December, 1991.

Professional Experience: Programmer Trainee, System

Department of Ong's Construction Company, Singapore,
January, 1982, to December, 1983; Junior Programmer,
System Department, Hyatt Regency Hotel, Malaysia,
January, 1984, to July, 1985; Student Programmer,
Department of Agriculture Economics, Oklahoma State
University, August, 1990, to December, 1991.



