
~HIERARCHICAL SINGLE-KEY-LOCK ACCESS

CONTROL USING THE CHINESE --
REMAINDER THEOREM .. -"" -

By

KIM SIN }EE

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
December, 1991

A HIERARCHICAL SINGLE-KEY-LOCK ACCESS

CONTROL USING THE CHINESE

REMAINDER THEOREM

Thesis Approved :

v

Dean of the Graduate College

ii

PREFACE

The key-Jock-pair mechanism based on the Chinese remainder theorem

was modified and implemented on the single-key-lock system. The single­

key-Jock system associates each subJect<i.e., user) with a key and each

obJect(i.e., file) with a Jock.

The modification is inspired by Chang·s method of key-Jock-paJr

mechanism using the Chinese Remainder Theorem. In addition to using the

key-Jock-pair (KLP) mechanism based on the Chinese remainder theorem, we

introduce a hierarchical key storage structure which not only implies the

relationship between the subJects, but decreases the number of

recalculations of keys substantially when obJects are added or deleted.

This hierarchical key storage structure also requ1res fewer files or lock

numbers to be involved in the key calculation. It also reduces the

verit" icat JOn time to Q(log2n), instead of OUog2N) which the old SKL system

needs. Morever, during the calculation of keys for the subJects, faster

computation speed 1s achJeved by using the modulus congruence of a Di,

n

where Dj =II Li for i = J and j = 1, 2, ... , n
i=l

where Li denotes the Jock on the t"i Je i for i= 1, 2, 3, ... , n.

A simulation of the single-key-lock access control was perfomed on a

Vax/Unix machine and time complexity of the key calculation was discussed.

I wish to express my sincere gratitude to the individuals who

~~~;slsted me 1n tt11s proJect and during my coursework at Oklahoma State 

iii 



University. In particular, I wish to thank my major adviser, Dr. Huizhu Lu, 

for her intelligent guidance, inspiration, and invaluable aid. I am also very 

grateful to the other committee members, Dr. William D. Miller and Dr. John 

P. Chandler, for their advisement during the course of this work. 

My deepest appreciation is extended to my mother, wt1o provided 

constant support. moral encouragement, and understanding. 

iv 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION 

Protect ion Svstem 
Problem and Research Ob iective 
Graham and Denning's Monitor Model 

,.., 
L 

II. LITERATURE REVIEW ...... . 8 

Ill. 

r-· rp t t s-· t _.urren, ro ec JOn ys em 
Capabllity System . . . ..... 
Access Controlling List System . 
Single-Key-Lock System Using the Chinese 

Remainder Tt1eorem . . . . . . . . . . ... 

RESEARCH PROCEDURES . . 

Research Ob 1 ect i ve 
Research Methodo 1 ogy 
The Ct1mese Remainder Theorem ... 

,g 

9 
' ' 1 1 

15 

17 

17 
17 
.:21 

Research Steps . . . . . . . . . . . . . . . . . . . . . 24 
Greatest Common Divisor and Euclid's Algorithm ... 27 
Algorithm on the Chinese Remamder Theorem . . .. 31 
Various Binary Operations ................ 31 
Algorithms on Various Binary Tree Operations . . 35 
Example on the AppiJcatwn 47 

IV. ANALYSIS OF RESEARCH RESULTS 55 

Program Correctness . . . . . . . . . . . 55 
Time Complexity M the Chinese Remainder 

Theorem . . . . . . . . . . . . . . . . . . . . 57 

v 



Chapter Page 

Comparison of the Improved Methods w1th the 
Key-Lock-Pair Mechanism . . . . . . . . 59 

V. SUMMARY OF RESEARCH THESIS . . 65 

Summarv . . . . . . . . . . . . . . . . . . . . . . 65 
Future Work . . . . . . . . . . . . . . . . . . . . . . . . 66 

BIBLIOGRAPHY .................... . ... 68 

APPENDICES ..................... . . .. 71 

APPENDIX A - PROVE OF A COMPLETE RESIDUE SYSTEM 
MODULO M . . . . . . . . . . . . . . . . . . . . 72 

APPENDIX B - PROVE OF (a + b ) mod c = ([a (mod c)] + b J 
(mod c) .. . .. .. .. . . . .. . .. . . . 75 

APPENDIX C - FIGURES ............... . 

APPENDIX D - SIMULATION OF A HIERARCHICAL 
SINGLE-KEY-LOCK ACCESS CONTROL 

. . 77 

USING THE CHINESE REMAINDER THEOREM . . . . . 85 

vi 



L1 ST OFT ABLES 

Table Page 

L Basic Protection Rights ...... . 4 

I L Graham and Dennlnq's Secured Svstem Commands .. 
v • 

' 5 

vii 



LIST OF FIGURES 

Figure 

1. System View of the SKL 

2. Access Control t1atrix .... 

Page 

.. 78 

.. 79 

3. Directory Access Control ........................ 80 

4. Access Contra l List . . . . . . . . . . . . . . . . . 8 1 

5. Structure of the Key-Lock-Pair Mechanism 82 

6. Hierarchical User Structure with Local Binary Directory 83 

7. System View of the Example File Structure .............. 84 

viii 



CHAPTER I 

INTRODUTION 

Protection System 

Protection systems 1n a computing environment are developed to 

prevent information stored in a computer from being destroyed, altered, or 

even disclosed or copied without being detected. With various resources in 

a computing environment, there is always a need to ensure that each user or 

process uses system resources only in ways consistent with the stated 

policies of the system administrators. Research in protection systems 

continues to grow as more sensitive information is stored and processed by 

computers and transmitted over computer communication networks. As more 

small businesses and even personal home computer systems become part of 

larger networks, the secur1ty of 1nd1v1dual data becomes a growing concern. 

There are three major areas of computer protection 1n a computer 

system, namely, the external protection, interface protection and internal 

protection. External protection is concerned with physical access to the 

overall computer facility. While interface protection deals with the 

authentication of a user once a physical access to the computer becomes 

feasible; the internal protection deals with the control of access to the 

computing resources, and safeguarding of information [Rusby and Randell, 

831. This research thesis will examine only the internal protection 

mechanism in the computer system) particularly on the access control of 

file 1n an operating system or file server. 

1 



Problem and Research ObJeCtlVP 

Prob·lem 

rvlost current operating systems and databases make use of a 

combination of user llst directory and file access control list. This 

combinatJOn works great as far as user access control is concerned. 

However, each request made by the user requwes the monitor to do a lot of 

searching for the correct file and verify the validity of the request. 

Research Ob 1 ect Jve 

This research project alms to improve the speed of user verificatJOn 

when an access request is made to reduce the storage requirements imposed 

by the current linked list problem. Since the arithmetic computation 

generally takes up less computer time as compared to searching time, this 

research thesis aims to take advantage of that. 1 t uses a unique Key Ki to 

represent each user in the system and a system identification number Lj for 

each file .. and onlv through the system verification of K; mod Lj which gives 

the access right of a1.L and the system decides on the legality of the access 

attempt. 

Granam and Denning's MonJtor Model 

There are two main reasons of studying a model. 

1. By studying the security model, we have references to guide us in 

the des1gn and implementation of secured database and system. especially in 

the area of determining the secured policies of the system. Therefore, 

before going on to explain the actual research methodology and objective, it 



1s important to clarlfy the security model this research work closely 

relates to. 

3 

2. Only through studying the properties of the models can a secured 

system des1gner diHerentiate the essence of tne model from other 

secondary funct10ns the system is entitled to provide F1gure 1 on tne 

appendix snows the organizat.JOn of the Graham and Dennmg·s momtor model 

The Graham and Dennmg·s model was first introduced by Lampson 

[Lampson, 71 J and later modified by Graham and Dennmg [Graham and 

Denning, 1972]. Their maJor work was on the expansion of the generic 

protect1on propert1es of the model. There are four basJC elements of the 

model. 

I. A set of subJects S1 where o < i <Nand N is the number of users in 

the system 

2. A set of ObJects Oj where o < j < M and M is the number of files 

m the system. 

3. A set of user defined access rights R. 

4. A set of system stored Access Control Matrix A 

The Access Control Matrix has an attribute for each subject, which is 

Identified as a row. It also has an attribute for each object and is 

recognized as a column in the Access Control Matrix. The content of each 

matnx Au is the access right Rij. For each object Oj. where j is any file in 

the directory, a subject Si designates an "owner" in Aij, then Si has absolute 

control over object OJ For each subject 51, if another subject Sh 

(where h < J ), designates a controller attribute, then Sh has more rights 

than Sj. There are eight basic protection rights described in the model. 

Tt·1ese protection r1gl~ts are Issued by various subjects and are taken by the 



4 

system as commands. Ttle commands w1ll tiave effects on ower subJects and 

ObJects. They are as taouiated as m taoie 1. 

TABLE I 

BASIC PROTECTION RIGHTS 

1 r.:reare object: Ttl1s command allows U1e 1ssued subJect to lntroduce a 
new obJect into the system. 

2 create sutyect: Th1s command allows the issued subject to create 
another subject or directory in the system. 

3Delete Ob_!ect:· This command allows the 1ssued subject to delete 
an unwanted obJect from the system. 

4 Delete subject This command has the rights to delete some directory or 
any other subJect under 1ts hlerarchy. 

SReao·access nght This command allows a subject to determ1ne the 
current access rights of a subject to an object. 

6t.-7rantacce.ssriq!Jt- This command allows the o~ovne.r of an object to allow 
ott'ler subjects to nave ttie access rlgt'lts deslgnated oy 
him. 

7 Delete access ng!Jt: This command allows a subject to delete a right of 
another subject for an object, provided that the deleting 
subject is either the owner of the object or controls the 

subJect from whlch access should be 



s 

TABLE !(Continued) 

8. Transfer access rfg!Jts· This command allows a subJect to transfer one of 
its rights of obJects to another subJect. ( Each nght can 
be transferable or nontransferable. If a subject receives 
a transferable right, the subject can then transfer that 
right ---either transferable or not --- to other 
subjects. If a subJect rece 1 ves a non transf erab 1 e right, lt 
can user the right, but cannot transfer that right to other 
subjects.). This set of eight rules provides the 
properties necessary to model access control 
mechamsms of a secured system. 

This set of e1ght rules prov1des the propert1es necessary to model 

access control mecr1amsms of' a secured system. Tabulated in Table II. is 

U1e Secured System Commands with var10us conditions and consequences 

when these commands are carried out. 

TABLE II 

GRAHAM AND DENNING'S SECURED SYSTEM COMMANDS 

1 Command: 
Condition: 
Consequence: 

create object Oj 

nil 
add column for obJect in A1.1 place owner 
r1gM in A[x,o]. 



2 Command: 
Condit JOn: 
Consequence: 

3 Command: 
Condition: 
Consequence 

4 Command: 
Condition: 
Consequence: 

5 Command: 
Condition: 
Consequence: 

6 Command: 
Condition: 
Consequence: 

7.Command: 
Condition: 
Consequence: 

8 Command: 

Cond1t10n: 
Consequence: 

TABLE II (Continued) 

create subject si 
nil 

6 

add row for subjects in Aij, place control in 
A[x,s] 

delete object Oj 

owner of object Oj 

delete column J for subject 1 

delete subject Si 

control in A[i,j] 
delete row s1 

Subject Si read access nghts of obJect Oj 

Control subject Si or owner of object Oj 

Retrieve access rights Ai.i· 

Delete nghts of Si on Oj. 

Control subject Si or owner of object Oj 

remove access rights from A[i,J] 

grants access rights r to Si on oJ 
owner of Oj 

add r to A[s,o] 

transfer right r orr* from subject s to 
object o 
r* in A[x,o] 
add r orr* to A[s,o] 



7 

Tile most lmportant contrltlutwns tills model towards tne secured 

system are 

1. Each obJect has a unique Identification number which JS attached by 

the system to each access attempted by any subject.. 

2. Each and every attempted access by a subject to an object 1s 

va I idated by the system. 

This research thesis closely follows Graham and Denning's model. In 

the Jmplementation of the model, we assume that the files are the only 

objects protected by the system and the users in the system are the only 

subJects. The access nghts of users towards the files constitute the access 

matrix A This research thesis is implementing the basic protection rights 

m a Vax/Unix computer. 



CHAPTER II 

LITERATURE REVIEW 

Current Protection System 

It Is the Intention of every system administrator that every user can 

only be allowed to access those information files that he is authorized to 

access. When a user has intention of accessing any informational resources 

in any computing environment, the protocol that takes care of the file 

access control will verify the access requests 1ssued by the user. 

To date, most commercial and military computer systems make use of 

the access matrix to exercise their access control. The access matrix uses 

each row ( i ) to represent an accessor and uses each column c J ) to 

represent the informational files. Each entry towards the access matrix 

( i, j ) represents the access rights authorized [Graham and Denning, 1972). 

Trle use of the access matrix is straight forward and simple where 

direct method 1s concerned. The most straight-forward way or 
implementing the access matrix is having a global two-dimensional array as 

a matrix table [Peterson and Silberschatz, 1983]. Each user of row c I J has 

a separate entry of access rights towards each f1le which is represented by 

a column( j ). Figure 2.0 in the appendix shows the diagram for the access 

matrix table. However this system of protection has a problem when the 

system is large with numerous users and files in the system, the access 

matrix is sparse and the matrix table has to be kept in the auxiliary memory 

and therefore needs additional input and output [Pfleeger, 19891 

8 



9 

Caoabil1ty System 

In 1966, Dennis and Van Horn [ 1966) came out with an idea to solve 

the sparse matrix problem. They suggested using a linked I ist of users 

called Directory Access Control, in which each user has a separate entry of 

file identifiers and their corresponding access rights. There are bott·l 

hardware and software implementations of this linked list of users· records 

[Figure 2.1]. The software implementation of this notion is to create a 

record for each user in the system. Each record contains various entries for 

the file or resources that a user is capable of accessing. Each entry for a 

file contains the name of the file, the access rights of the user on the file 

as well as a file pointer that tells the operating system the location of tt1e 

file. The hardware implementation of this idea in inter-user protect ion 

called f.":a/Jabili~v wr1ere each word in the memory is tagged w1tr1 an extra 

bit. If the bit is off, then the word is an ordinary instruction or data, else 

U1e word can be loaded into the protection descriptor register.[lliffe and 

Jodeit. 1962]. This particular tag architecture is called a caoabili~v s_vstem 

and it gives rise to two sets of data values and two sets of instructions, 

namely tr1e ordinary data values in computation and protection descriptor 

values and ordinary instruction to load protection descriptor values. This 

system aims to differentiate the two sets of instructions and data values 

and prevent misprocessing of data values. Thus each user is provided with 

one segment as a record to store the capability or file pointer he is 

authorized to use. Each capability then contains separate read, write or 

execute permission bits so that different users have different access rights 

or capabilities towards tt1e same files [lliffe and Jodeit, 1962]. 

TriOugr' tt1is caparJillty system solved the prorJlem of r1av1ng tt1e 

access rigMs implemented in a global table, 1t r1as many 1rnplernentat1onal 



10 

dlsadvantages. One of them 1s the problem of revocation, namely, if user A 

allows user B to have the capab1l1ty to read one of h1s files, he can not 

disable U1e file pomter or capability that user B has stored away 

sornewr1ere in tr1e computer memory. His only option is to ctestroy U1e 

ortgtnal rne, an act ton that affects other users who have the capab111ty to 

access U1e same rne [Katn and Landwehr, 19861 The second dtsadvantage or 
the capabillty system is the problem of propagation that user B may copy 

the capabi11ty and distribute them to users to whom user A does not want 

the fiie to be exposed. There were certain controls that restricted the 

possibility of pr~opagation .. which the original capability system did not 

provide. These measures were devised to solve the problem of propagation 

and one of the example is using exhaustive searching for all users that have 

access towards the file. However, this requires X*Y number of sequential 

searchs for X numbers of users and an average of Y number of records in the 

system[Saltzer and Schroeder, 19751 

Propagation 

Various implementational improvements in the mentioned constramts 

or the original capability system were proposed and tested. The CAP system 

[Needham, 1972] and Plessey 250 [England, 1974] assigned a capability 

!Jo!d;ng segment to each user and only those segments were used to load 

and store capability information. In this way, other users could not make 

cop1es of the capability of the original user and propagation was prevented. 

SJmilarly the Burroughs BSOOO family used the same concept in improving 

the capability by constraining the capabilities to be stored in the virtual 

processor stack and a table to prevent unauthorized access. Another 

approach in solving the propagation problem was having a depth counter set 



11 

to a certain limit. Any access to the segment in order to obtain a capability 

to open a file caused the counter to increment by one; subsequently, any 

attempt greater than the limit generated an error by the operatmg 

system[Karger and Herbert, 19841 These approaches in so lvmg the 

propagation problem call ror greater auditing and flexibility because any 

auditing and checking by the operation system required checking all users. 

Revocation 

In solving the revocation problem In a capability system, all access to 

a file has to go through an Indirect file where It then retrieved the 

capability for the Intended access file specified by the user. Only the flle 

owner or tl)e system administrator has the capability to destroy or change 

the Indirect file, thus making revoking the access capabilities of the user 

posslble[Redel I 1974, Synder 1981, Wiseman 1986]. 

According to Saltzer and Schroeder [ 1975], the basic problem with a 

capability system Is that the capability to access an object given by the 

object owner is analogous to having the owner gives the "ticket" for entry to 

the intended person; this "ticket" could be transferred freely without any 

independent control by the system. Therefore, their proposed method and 

implementation imposed I imitations on copyabi I ity. This means extra 

precautions and resources at the expense of simplicity, flexibility and 

uniformity of capability as addresses. 

Access Con troll tng List System 

Instead of distributing a "ticket" for admission into the protected 

object like the capability system, each protected object In an access 



12 

controll1ng 11st system has a separate rne where all the user names and 

their corresponding access rights are presented. The operating system or 

the file server would verify any user who requests to access the protected 

object by checking Ule user name in the access controller file of Ule object 

The access controller contains the object pointer as well as the access 

control list. The access controller functions as an indirect access to the 

protected object; theref·ore, the access controller ltself is protected 

against any user [Peterson and 51lberschatz 1983, Downs 1985]. 

The use of an access controlling list system provides a last minute 

check on any attempt to access an object It stops propagation by not only 

restricting the ability to copy and transfer, as does the capability system, 

but also by verifying every attempt to access any object. Revocation 1s more 

manageable because the owner or the protected object can just retrieve the 

access controller and change the names and their given access rights. This 

system of access control is illustrated in Figure 2.2 [Stoughton, 19811 

The access controlling llst system no doubt has many benefits over 

the capability system, but it certainly has its implementational problem. 

According to Saltzer and Schroeder [ 1975], any attempt to access requires 

the system to go tnrough several serial steps, such as accessing the pointer 

reg1ster to get entry into the access controller list to search for the proper 

access rights, and then accessing the object through addresslng registers. 

Another disadvantage of the access lists system is, in a time sharing 

system, a complex mechanism is required to search and compare the names 

of users. This slows down the system. The third disadvantage is that the 

access controller list length varies for different objects, thus imposing 

some lmplementation problems requiring great care in the programming of 

the searching mechanism. 



12 

Shadow Register 

The first disadvantage was solved by allowing an extra pointer 

register for each user as a shadow register: Each time a user issues a 

command to access a file, the indirect access controller copies the content 

(with file pointer and access rights) to the shadow register; thus 

subsequent access to the same file by the previous user goes directly to the 

extra register, saving some memory references. Revocability can only be 

rigidly preserved by having to clean all shadow registers and changing 

access rights [Swaminathan, 1985]. 

Group Divisions in Access Control List 

The variable length of the access controller list and multiple users 

requiring lengthy search were solved by the method proposed by Ritchie and 

Thompson[ 1974] on a Unix system, where users are categorized into groups. 

Only three entries are allowed in the access controller list on each object: 

one entry for the object owner, one entry for the group and the last entry 

for all system users .. The price paid is inflexibility, because each object can 

only be accessed by a group. If more than one group need to access the 

object, it has to be placed as a pub I ic object. 

Single-Key-Lock System 

Though the Access Control list has solved some problems in the area 

of propagation, problems still remain in the areas of verification and 

revocation. In the area of revocation, any time a f11e owner wants to revoke 

another user's file access rights, the system needs to perform an exhaustive 

search in the access centro 1 I ist for the correct user. Only then is 

revocation possible. In the area of verification, if a user requests to access 



14 

a file, the system needs to search for the correct file, then run an 

exhaustive search for the user's name in the access control list. Then the 

system retrieves the access rights which the file owner gave the user and 

compares U1em wlth the rights that the user would like to exerctse. Thus 

each verification requires an exhaustive search whtch the Single-Key-Lock 

mechanism aims to avoid. 

Single-Key-Lock System Using Vector Calculation 

Based on the same concept prescribed by the previous two systems of 

access matrix, Wu and Hwang [ 1984] proposed a single-key-lock system 

using the Key-Lock-Pair (KLP) mechanism, where each user is system 

assigned a key and each protected object is assigned a system lock. The 

system will verify any request to exercise the access right on an object by 

xt!J user on yt!J protected object using a mechanism developed by Hwang 

and Too [ 1980]. 

In this system, the key, lock and access rights are represented by 

numbers, and access is only permitted by the system when the access rights 

requested are Jess than or equal to the entries made in the matrix. The 

entries made in the matrix table are specifically given by the owner of the 

t'i I e. The locks are created based on the keys assigned by the system and the 

entries made by the user on the matrix. 1 f K/" represents the lt!J user and LJ 

represents the jt!J f11e; then the access r1ght or Kt on ~/ 1s represented 

by a!!. Through the calculation of at!= Kt * Lj in the Galo1s Field ( t) 

where t is the smallest prime number that 1s larger than alI the access 

rights in the matrix table considered. Revocation based on new matrix 

entries only requires the system to recalculate the lock assigned to a 

protected object.. The merit of this single-key-lock system Jay in its 



1S 

s1mplicity and nexiblllty because of' a single key and a single lock assigned 

to a user and a file as compared to the pointer method used by the capability 

system and access controller list system. Since the implementation of this 

system is protected in protection kernel llke the monitor, it does not have 

any propagation and revocation problem. However, the single-key-lock 

system has a storage problem due to the length of its keys and locks. In 

1989, Chang and Jiang [ 1 989] improved on the current method by proposing 

the Binary Single-Key-Lock system, where the underlying matrix entries, 

keys and locks are represented in binary numbers; calculation of the keys 

and locks could therefore be done in simple logical AND and XOR operations. 

However, the binary single key lock system only solves the storage problem 

to a lesser extent; complex calculation of keys and locks still prevail. 

Single-Key-Lock System Using the Chinese 

Remainder Theorem 

Chang [I 986] proposed a method using a concept simi Jar to the Single­

Key-Lock System proposed by Wu and Hwang [I 9841 However .. this method 

requires a system to assign coprime numbers to any new fi Je in the system. 

Calculation of keys that represent the users· access rights are based on the 

coprime numbers. This method has a Jesser storage problem which was 

restricted by the method described by Wu and Hwang. Therefore, instead of 

usmg a~/= I<.:(* L.f 6f( t .,!, in the original Single-Key-Lock Pair mechanism, 

the calculation should make use of the Chinese Remainder Theorem with a~/ 

= 1<.]-rnod~f where tis the smallest prime number that is larger than all the 

access rights of the users. This mechanism of calculating the keys and locks 

is more efficient in terms of system assigned coprime numbers because, 

unlike the method proposed by Wu and Hwang [ 1 980], which required an 



16 

arbitrary nonsingular matrix of size m form users in the system, the single 

key lock system based on the Chinese Remainder System only required an 

integer to represent the key. Where storage is concerned, Wu and Hwang·s 

method [ 1 980] needs Otab) where a 1s the number of users and b is the 

number of files. However, Chang's method requires only O(a+b) for each 

storage of key. 

However, this mechanism that make use of the Chinese Remainder 

Theorem has 1ts disadvantages too. One of the main disadvantage of this 

mechanism Is the fact that the mechanism would have to recalculate all the 

keys of all users present in the system when a new f1le (or new coprime 

number) is belng added to the system. If each calculation of a user In the 

system takes up t. system time, then each new f i 1 e being added to the 

system requires t*M system time if M number of users have account on this 

system. 



CHAPTER Ill 

RESEARCH PROCEDURES 

Research Objectlve 

Keeping in mind the benefits of the Single-Key-Lock system based on 

the Chinese Remainder Theorem in designing the protection protocol, this 

research aims to improve the speed of the system by incorporating both the 

simplicity of the Single-Key-Lock System based on the Chinese Remainder 

mechanism and the strict control the access control list commands. This 

research will exploit the compactness of the Single-Key-Lock pair 

mechanism where each new file is assigned a new pairwise coprime number. 

The access rights of any files will be incorporated into a legitimate user's 

key using the single-key-lock pair mechanism based on the Chinese 

Remainder Theorem. 

Research Methodology 

The method deve 1 oped by this research w i I 1 incorporate the user 

hierarchical system in.to the user structure. In this system} all subjects or 

users are arranged into a single hierarchical tree of directories. This 

hierarchy aims to provide a hierarchy of control of access} through the 

abi 1 ity to modify the access rights of the subjects lower in hierarchy than 

the control subJect. The use of this user hierarchy system makes it possible 

for the system to create a totally centralized control of all access 

17 



deciswns. For example, if a user adds a file into his system, only he has 

exclusive right to give access permission to other users in the system. 

1Q 

Each user node carries a local b1nary tree of records which contains 

information on each f1le the user has access right to. This information is 

restr1cted to the name of the f1le and the system assigned prime numbers 

only. The most important restriction of this system is that a user could only 

allowed to access file in his own directory. Any time a user request to 

access a file is generated, the system protection protocol will verify the 

legitimacy of the access right by searching for the flle in his own directory. 

If the file name is right, then the system assigned prime number (which 

identify this flle in the system) is retrieved. At the same time, the key of 

the user is also retrieved and the access rights could be verif1ed by finding 

the modulus congruence of the key on the lock. Therefore, the records that 

store the information on each flle are arranged in a local btnary tree. The 

use of local binary tree is to facilitate the system in verifying the user 

access requests. Therefore, for each access requested by the user, we 

require a ln2 N search for the file where N represents the number of files 

present in U1e local bmary local directory. 

The Hierarchical User Structure 

Arter clearing the password file, each user would be given a record 

according to their login names and password. Each user node contains the 

following information: 

1. A string to store the user name. This string is used to identify the 

user in the process. 



19 

2. A strmg to store the user's department. This string is used to ldentify 

the department the user belongs to. The department head has 

exclusive access rights to all the files his subordinates have. 

3 A string to store the user's group that he is belongs to. This string is 

used to ldent1fy the user ·s group for the system. The group leader 

also has exclusive access rights to all the files the group members 

have. 

4. 64 bits to store the key of each user. Each time a new f1 le Is being 

added to the local binary file tree of the user, a new key is being 

issued by the system. The mechanism of calculating the key is based 

on the Chinese Remainder Theorem that will be discussed later. 

5. 64 bits to store the value of L 

and 1 s: k s: n . 

n 

where L =II Lk 
k=l 

The value of L is put into the user record is to faci 1 itate the 

calculation of the key when a new file is being added or deleted. 

Recursive function is used to traverse the local binary file tree. 

Therefore, each time this value is needed, it could be retrieved 

from the user node. 

6. A local binary tree pointer that potnts to the head of the local binary 

tree. If there is a file being added or deleted, recalculation of the key 

of the user could be done by traversing the local binary tree f i I e. 

Therefore, the head of each tree has to be placed 1n the user node. 



20 

The Local Binary Flle Structure 

This local binary file structure contains all the information of the 

flles that the user is accessable to. It has 

1. A string of 20 characters to store the name of the file. This 

information is vttal in searching for the correct flle name during 

accessing, deleting and transferring of rights. 

2 Thirty two b1ts to store the value of each file number that is assigned 

by the system. The values would be used to calculate Las above. 

3 A file pointer that tells the location of the file in the system. If 

access request is being verified, the file pointer would direct the 

process in f u 1 f i 11 i ng the access request. 

In this system, a new feature is also added to the Single-Key Secured 

System. Since each user node carries a local binary tree structure in his 

own directory, and those file present in the system are files that are 

accessible by the user. This design aims to shorten the verifying time where 

the coprime file number is needed to calculate the access right of the file 

with a;.1 = K; mod L;. However, since a higher hierarchy node is des1gned to 

have exclusive access rights towards files of lower hierarchy, (but only to 

the extent of the same department or same group) there might be times a 

father node wants to access fi Jes of a son node and it happens that the file 

is owned by the son node. Therefore, in the local binary file directory of the 

father node, the file node is not found. Thus, a global binary tree that 

contains all the file present in the system does the job of fianl control. 

Each time a new file is being added to the system, the name of the file is 

being stored into the record and inserted into the global binary file 

structure. 



21 

The Global Binary F1le Structure 

The global binary tree node contains the following information: 

1. A string of 20 characters to store the name of the file. 

2. An owner pointer that points to the owner of the file. 

If a father node tries to access a file that belongs to his son node, 

then the system will verify it by searching for the file in his own local 

binary directory first. Since the file is owned by his subordinate, the file is 

not present in his own local binary directory. Then the system needs to 

perform the final check on the global binary tree. If the file is not found, 

then the file is definitely not present in the system. Otherwise, the owner 

pointer in the record points to the owner of the file (or user node). 

I nformat1on regarding the user's department and group is retrieved and 

compared with U1e accessor node information on department and group name. 

If the accessor node is found more superior than the owner of the flle in 

terms of the user hierarchical structure, then the system allows the 

accessor exclusive access right towards the file. Otherwise, the file is not 

accessible by the accessor. 

The Chinese Remainder Theorem 

The research method requires the system to calculate the keys of 

each user by applying the Chinese Remainder Theorem. The Chinese 

Remainder Theorem states that: 

Let n1 .. n.;:.1 n .. ,r, ... nr be positive. integers suc!J tnat gcdfll,; /'l.;:.J = 1 fori~ j 

Then t!Je system ol congruences 



,:t' = !lt tmod n,J 
x = 62 (mod n2J 
x = !ls (mod ns) 

X = !lr (mod n,. ) 

!Jas a simultaneous solution., w!Jic!J ;s un;que modulo ntn2113114. .. flr. 

For each 

k = I ,2, 3, ... r, let 

in other words, Nk is the product of alI the integers ni with the factor nk 

omitted. By hypothesis, the ni are relatively prime in pairs, so that 

gcd(Nk, nk) = I. According to the theory of a single linear congruence, it is 

therefore possible to solve the congruence Nkx = l(mod nk) call the 

unique solution Xk. Our aim is to prove that the integer 

is a simultaneous solution of the given system. 

22 

First, it is to be observed that Ni = 0 <mod nk) for i ~ k, since nk I Ni in this 

case. The result is that 

But the integer Xk was chosen to satisfy the congruence Nkx = 1 (mod nk ), 



which forces the 

This shows that a solution to the given system of congruences 

exlts.(Adapted from Burton, 1976) 

The uniqueness of the keys calculated using the Chinese Remainder 

Theorem should be absolute, so that confusion could not arise during the 

system verification of the keys to use the different access rights. 

Supposing two keys are found using the Chinese Remainder Theorem, 

and the L1,L2 ,L3 ... Ln represents the various files in the system created 

by the users. with Lj > max (aij} where aij represents the access rights of 

n 
the usersX1 on LJ. And Di = L/LJ where L = II L~c. 

k-1 

W~lere Dj.XJ = 1 <rnod LJ ) can be solved by using the Extended 

Euclidean Algorithm. 

x= ~ D· x· a .. L. J. J. IJ ( 1 ) 

Clearly, Dj.Xj = Dj-yj = 1 <mod Lj ) for all j 

Dj (Xj- yj) = 0 <mod Lj ) for all j 

therefore. Xj = yj (mod Lj ) for all j ... C3 ) 

From ( 3 ) Xj = yj + Mj .lj for some M 

substituting XJ = YJ + MJ. LJ 1nto C 1 ) 

23 



we get 

x = ~ Dj yj ~ij + 2: Dj ~ij Mj Lj 

since Dj. Lj = L 

x = y + L ~ Mj . aij 

therefore, x = y 

with this, the Chinese Remainder Theorem is proven. 

Researcr1 Step 

Application of the Chinese Remainder Theorem 

24 

This research will focus on the Chinese Remainder Theorem [Burton 

1976] and developing an algorithm to implement the access control based on 

the idea discussed by [Chang 1986]. 

Finding the Coprime Numbers 

This research will also develop and implement an algorithm to 

generate coprime numbers which would be assigned to the files as locks. 

The procedure that generates the coprime numbers should be protected from 

any users. The idea behind the calculation of coprime numbers is to get the 

first prime number In the natural numbers system 2 and the Idea that any 

composite number can be divided by any prime numbers found in the 

algorithm and these prime number lies between 2 and the square root of the 

composite number. Therefore, in order to shorten the testing time, if the 

square of the testing prime number is greater or equal to the number being 



25 

tested, then we can qu1t testing. Listed below is the algor1thm on the 

flnding of the coprime numbers. 

firstprime <-- currentnum <-- 2 index <-- 0 

2 for (i = 1; i < Maxprime; i++) 

begin 
success < -- FALSE 

3 while ( success <>TRUE ) 

begin 

4 

5 

6 

7 

currentnum <-- currentnum + I; 

for ( k <-- 0; k <= index; k <-- k + 1) 

beg1n 

end; 

end; 

1f ( ( currentnum mod prime[lastprimefound] ) = 0 ) 

then stop; 
2 

If ((prime[lastprimefound]) >= currentnum ) then 

success <-- TRUE; 

1f < success= TRUE ) then stop; 

8 prime[l] <-- currentnum; 

9 index <-- i; 

end· 
' 

These coprime numbers are going to be served as the unique 

identification number the system provide to the each individual file the 

system. 



:26 

Calculatlon of Keys 

With the result from above, a function to calculate the keys is 

developed and implemented. Each calculated key is kept in their respective 

user nodes. The user nodes are then arranged in a hierarchical form. The 

generation of user hierarchical would be based on the idea discussed by 

[Saltzer and Schroeder, 1976] and under the user hierarchical form, the 

users in the system is also divided into groups so that any revocation or 

introduction of new files into the group, only the group members is 

assigned a new key. Each group has a group administrator to take care of 

revocation and public file access rights. Calculation of the key is only 

dependent on the access rights of the public files as well as the access 

rights a group member towards any files 1n the same group. 

Compared with the user hierarchical system proposed by wu and 

Hwang[ 1984 ], this system has greater advantage because the Key Lock Pair 

mechanism has to solve a series of equation in order to find out the 

relationship of two users. Where hij is the relationship between two keys Ki 

and Kj. then the Keys of Ki and Kj could be found by the transpose of the 

m X m key matrix. Thus giving hij = Ki * Kj for 1 ~ i ~ m, 1 ~ j ~ m. 

Conceptually, this method of assigning keys to the user is very similar to 

the direct ke,y assignment met!Jad discussed by Chang and Jiang [ 1989]. 

However, their method has to go through a series of calculations to find out 

the relationship between two keys as well, thus increasing the system 

time. In this improved method of user hierarchical system, the relationship 

between two keys will be confirmed by checking immediately the 

hierarchical structure of the user. Comparison between the two key in the 

hierarchy should confirm the superior and inferior relationship between any 

two users. In terms of user extensib1lity, any new account given to any user 



means adding them in the user list in the system as well as in the 

appropriate hierarchy. 

Modification of the Extended Euclidean's Algorithm 

27 

According to Chang·s algorithm In solving the keys of the users, he 

proposed that: 

If L 11 L2 I L3 1 ••• Ln represents the f i I es or 1 ocks numbers with 

LJ > max f~iJL 
n 

where aij is the access rights of 1th user on jth file. Then L = II Lk 
k=l 

and Dj = L I Lj. The equation of DjXj = 1 (mod LJ·) for 0 < X· < L· can J J I 

be solved (uniquely since 0 < Xj < Lj ) by means of the extended Euclidean 

Algorithm. 

Greatest Common Divisors and Euclid's Algorithm 

Definition : 

Let any two numbers No and Nt be positive integers. A positive 

integer M is called a greatest common d/v/sor of N0 and N1 and is denoted 

by GCD<No, Nt ), if 

I. M divides both N0 and Nt, and 

2. every divisor of both N0 and Nt divides M. 

The Euclid's Algorithm for computing GCD(No, N1) is to compute the 

remainder sequence No, N~, N2, ... Nk where Ni. for i 2 2, is the nonzero 



29 

remainder resulting from the division of Ni-2 by Ni-t. and where Nk divides 

N~-1 exactly (1e.) Nk+1 = 0). Then GCD(No~ N1) = Nk. 

Theorem 3.4 

The Euclid's Algorithm correctly computes GCD(N0, N1 ). 

Proof : The algorithm computes Ni+1 = Ni-1 - Qi Ni for I ~ i < k, where 

Qi =Floor Value [ Ni-1/ Nj). Since Ni+l < NL the algorithm will 

clearly terminate. Moreover, any divisor of both Ni-1 and Ni is a 

divisor of Ni+1, and any divisor of Ni and Ni+ 1 is also a divisor of 

Since GCD(Nk.-1, Nk) is clearly Nk, the algorithm is proved. 

Extension of the Euclidean Algorithm 

The Euclidean algorithm can also be extended to find not only the 

greatest common divisor of No and N1) but also to find integers X andY such 

that NoX + N1Y = GCD<No~ N1). The algorithm is as below: 

Extended Euclldeao Algorithm 

begin 
Xo <-- 1; 

Yo <-- 0; 

x, <-- 0; 

y 1 <-- 1 ; 
i <-- 1. 

) 

2 wh1le Ni does not divide NH do 



beg1n 

3 Q <---Floor Value [ NH/ Nd; 

4 

5 

6 

7 1 <--- i + 1 ; 

end 

end 

The worst case time complexity to find the integer GCD<ao} a1) is 

0< ln2 5112 N ) if 0 ~ a0. a1 ~ N. [Knuth} 1980] 

2Q 

In solving the equation of DjXJ = 1 <mod Lj ) for o < Xj < Lj } we 

will be using modification of the Extended Euclidean algorithm which is 

faster and more efficient. 

Modification of the Extended Euclodean's Algorithm 

In order to improve the speed and overall system efficiency of the 

operating system} the extended Euclidean Algorithm that Chang [1986] 

suggested was working with large numbers that would take a longer time to 

solve for x1 in D1x1 = 1 due to the tremendous number of equations when a 

large number of users are Jog onto the system. 

for D1 = L I Lj and 



n 
L = II Lk where L1 J L2. l3 ... Ln represents all the locks. In my 

k - 1 

ao 

oplnionl the use of smaller numbers is possible. Instead of using Oj itself, 

the remainder of Oj when it is divided by Lj could also be used to solve for 

Xj. The following proof will indicate why: 

I I 

Supposing Dj = Dj (mod Lj ) where Dj = Dj + Mjlj ( some value of 

Mj ) 

Therefore J there will be a procedure that will change the numbers to a 

modulus and then the extended Euclidean Algorithm will be applied. In the 

algorithm that finds the key of 

n 

the user is Ki = ~ Djxjaij mod L 
j : 1 

n 

During the calculation of the keys, since ~ DjXjl:2ij 
j • 1 

in general is a large number compare to L. In order to avoid overflow in the 

calculation, we use the fact that 



31 

( a + b )( mod c) = { [ a ( mod c ) ] + b l ( mod c ). < Appendix B ) 

That is, when we are calculating the key, if the partial sum is greater 

than L, then the modulus of the partial sum will be obtained and used. 

Algorithm on The Chinese Remainder Theorem 

This algorithm determines the positive constant key K for a given n 

pairwise coprime Jocks Lj. and a corresponding set of access rights aj. 

Input: Lt, L2, L3, ... , Ln and 22t, a2, a3, ... ,an. 

Output: K 

l Read Li and ai 

2 for ( num = i; num s n; num<-- num + I) do 

L = L * Lnum; 

3 for <num = i; num s n; num <-- num + 1) do 

D num= L I Lnum ; 

4 for ( num = i; num s n; num <-- num + 1) do 
A 

D num = Dnum mod Lnum; 
A 

5 compute the Xj with D num using the Extended Euclidean Algorithm. 

6 for ( num = i; num s n; num <-- num + I) do 

7 

8 

K = K + Dnum * Xnum * anum; 

if ( K > L ) then 

Return K; 

k = k mod L· 
' 

Various Binary Operations 

The eight commands described by the Graham and Denning ·s model 

are simulated to the closest.using the various binary operations of addition, 

multiplication and division. The idea is to simulate the Single-Key-Access­

Control System using the Chinese Remainder Mechanism with improvement 



32 

by having each user to have his or her own local binary file structure. The 

entire simulation 1s assumed to be simulated inside the Secured Kernel. The 

follow1ng listed are the binary arithmetic operations carried out in the 

simulation itself. 

Binary Add1tjon 

Given a positional number system in base b = 2, the addition of two n 

digit positive numbers, the addend x and the augend y: 

X = ( Xn-1 , . . . X 1 , Xo ) , Y = ( Y n-1. . . . Y 1 , Yo ) 
results in a sumS= ( S0 , Sn-1, ... S1, So) where Sn can only take one 

of the two values 0 or 1 independently of b. When Sn is 1, it will often be 

considered as an overflow. Since in calculation of the Keys using the 

Chinese Remainder Theorem do not give rise to any negative numbers, 

therefore, it is not being considered as an overflow. The addition 

algorithmis expressed as below: 

1. Co<-- o ( Co is the initial carry-in ); 

2. For i := o Step 1 unt11 n-1 do 

begin 

Ci + 1 <-- Floor Value [ ( Xi + Yi + Ci )/ b] 

end; 

3 s <-- c . n n, 

Since X; + Y; ~ 2( b - I) and the initial C0 = 0, the maximum value for 

any C; will be the Floor value of [ 2 ( b -1) + 1/b J = 1. 
Since this algorithm will examine every bit once, therefore, it is of 



33 

0 (n) where n is the number of bits represented. 

The Multiplication Algorithm 

Given two n-digit positive integers, the multiplicand X and the 

multiplier Y, represented in a positional number system of redix b = 2. 

X = (Xn-1, ... x, Xo ), Y = ( Yn-h .. · Y1, Yo) 

their result is a 2n-digit positive numbers: 

R = CR2n-1, R2n-2. . . . Ro) could be calculated by the following 

algorithm. 

1 Set Rj <-- 0, for o < j < 2n; 

2 For i := 0 Step 1 unt11 n - 1 do 

3 If Yi <> 0 then 

beg1n 

K <-- O· 
' 

For j := 0 step 1 until n-1 do 

begin 

Ri+j <-- t mod b; 
K <--Floor value [ t I b] 

end· • 

Ri+n <-- K; 

end· • 



Generally, 1f V and Z are the two numbers needed to be multiply, the upper 

bound of this algorithm is Onn 2 V ) or Oon2 Z) depending on which number 

is greater. 

Division Operation of Two Positive Integers 

The division operation has <n + m> digit dividend x and ann-digit 

divisor y to produce two outputs, an <m + 1 )-digit quotient q and and n­

digit remainder r such that: 

X= y * q + r, O<r<y 

The above algorithm is called a restoring division with: 

X = ( X n-1 , . . . 1 Xo ) 

Y = ( Yn-t,. · · 1 Yo ), 

q = ( Qn •.... , Qo), 

r = ( rn-1' " " ' ro ) 

The algorithm can be expressed as : 

Expand X into X' = ( X2n-2, ... , Xn, Xn-t. .... , Xo) 

by letting all Xi, for n ~ 1 ~ 2n-2, be 0, (*perform a sign extension*) 

2. For 1:= 1 step 1 untn n do 

n-i 
Set z <-- x' - 2 * y 

if z z 0 then Qn+l-i <-- 1 and x' <-- Z; 

else Qn+l-i <-- 0 and do not modify x' 



35 

3 r <-- x I 

From the algorithm, 1t 1s clear that if the value of the number being 

divided is V ~ thus the upper bound of the binary division operation is in the 

Oon2 V ). 

Algorithm On Various Binary Tree Operations 

Algorithm on Find Node 

This algorithm is part of the operations on the Binary Tree. It 

receives the head of any binary tree, whether it is a global or local binary 

tree. A stack of pointer to tree nodes is being passed and this serves as a 

path on the searching direction. The found is served as a flag to indicate to 

the calling routine whether the node is found. 

Input: Head, info, found, stack, stacktop. 

Output: found, stacktop, Head; 

1. previousnode <-- head; 

2 currentnode <-- head; 

3 temp_ top <-- -1; 

4 temp_f ound < -- FALSE 

5 WHILE (( temp_found <>TRUE) AND ( currentnode <>NIL)) 

begin 

temp_top <-- temp_ top + I; 

temp_stack[temp_top] <-- currentnode; 

if< currentnode->info = info) then temp_found <--TRUE; 

else 

beg1n 



end· • 
end; 

if ( currentnode->info < info) then 

currentnode <-- currentnode->rightpt; 

else current node <-- currentnode-> leftpt; 

6 found <-- temp_found; 

7 stack_top <-- temp_top; 

8 copy ( temp_stack to stack); 

9 Return Ccurrentnode); 

3.7.2 Algorithm on Modifying Tag of Tree Node 

36 

This algorithm will calculate the tag inside the stack of pointer to 

tree nodes. Since this is a height balance tree, on any particular tree node, 

the longest path to the right must not be more than one node length than the 

shortest path on the left of that particular node. If more than two is found, 

~hen the algorithm would stop and return the critical node. 

2 

3 

4 

5 

Input: head C* head of the tree*) 

process C* to differentiate Insertion and Deletion*) 

critical (*an integer to indicate on stack which ts critical*) 

stack <* an array of pointer to tree node*) 

stack_top <*an Integer to tell top of stack*) 

Output: crtttcal node 

prev1ousnode <-- stack_top; 

temp_top <-- stack_top -1; 

temp_critlcal <--FAlSE; 

STOP <-- FAlSE; 

Find critical loop: 



If c Delet1on) AND C stack[stack_top -1 ]->tag= 0) then 

stop <-- TRUE; 

If Cstack[stack_top -I]-> Info> stack[stack_top]-> Info) then 

begin 

end· • 

If C Insertion ) then 

decrement stack[stack_top-1 ]->tag by I 

else increment by 1; 

else begin 

1f (Insertion> then 

Increment stack[stack_top -J ]->tag by I; 

else decrement above by I; 

end 

If < lstack[stack_top-1]->tagl > I ) then 

begin 

end· • 

tempcrlticalnode <-- stack_top -I; 

tempcrltlcal <--TRUE; 

1f (( stop = TRUE) AND C tempcrltlcal = TRUE> 

OR (stack[ stack_ top -I] = head) 

OR Cstack[stack_top - I ]->tag = 0 > 

AND (lnsetion))) then goto stopfind; 

else beg1n 

end· • 

previousnode <-- stack_ top - I; 

stack_top <-- stack_top - 1; 

goto Findcrltlcalnode; 

37 



stopfind: 

critical <-- temp_crltical; 

crlticaLnode <-- temp_criticaLnode; 

6 Return; 

Algorithm On Binary Tree Insertion 

39 

This routine needs input on the head of the tree, the name of the flle, 

and the pointer to the user node that te 11 s who owns a f i 1 e if i nserton is 

done on the global binary tree. This routine also allocate memory for the 

new node being created for the binary tree (whether is local binary tree or 

global binary tree ) as well as inserting the node Into the lexicographic 

appropriate position. Before exiting the routine, it will call the balance tree 

routine to balance the tree after the new insertion. 

Input: head(* either head for local or global binary tree*) 

info (*name of the node*) 

usernodept (*pointer to user node who owns the fi Je *) 

Ouput: head of the tree 

1. location<-- Ca11 findnode; 

2 if ( found = FALSE ) then 

3 begin 

end 

Allocate Memory for new node and update the information; 

if ( globalbinarytree) then newnode->ownerptr <-- usernode; 

.else newnode->filenumber = prime[prime1ndex]; 

4 if (head = Ni I) then head <-- new node; 



3Q 

5 1r Oocat1on->1nfo < 1nfo) ttten locat1on->r1ghtpt <-- newnode; 

6 else location-> leftpt <-- newnode; 

7 Increment stacLtop by 1 ; 

8 stack[stack __ top] <-- newnode; 

9 Call Mod1fyTag; 

1 o 1f Ccrit1caD then Call BalanceTree; 

return; 

Algorithm On Deletion of Tree Nodes 

This routine will first search for the node in the tree according to the 

name of the file passed in. If the node is found, then it will delete the node 

from the tree and free the memory. After freeing the memory, it would then 

modify U1e tag on the path and if it is necessary, it will rebalance the tree. 

The output of this routine is the head of the tree. 

Input: filename(* name of the file needs to be deleted*) 

head C* head of the tree*) 

Output: head of the node; 

Call Find Node 

2 1f (found) then 

begin 

if (head node) then free (head); 

else if (head->rightpt =Nil) then 

begin 

end 

head <-- head-> leftpt; 

free( head-> leftpt); 



else begin 

deLloc <-- stack_top; 

location <-- stack[del_loc]->rightpt; 

while <location<> N1l) do 

begin 

end 

stack_ top <-- stack_ top + I; 

stack[stack_top 1 < -- 1 ocat ion; 

location <-- locatio-> leftpt; 

sue <-- stack_top; 

bef_suc <-- stack_ top -1; 

Call Modif'yTag; 

1f <stack[deLloc)->rightpt = N1D AND 

<stack[deLlocJ-> leftpt = Ni 1 )) then 

beg1n 

end 

U <stack[bef_del]->info > stack[deLloc]->lnfo) 

then stack[bef_del]-> leftpt <-- Ni1; 

else stack[bef_del]->rightpt <-- Ni1; 

freeCstack[de Lloc]); 

else 1f <stack[deLloc]->rightpt = N1D then 

beg1n 

end 

1f <stack[bef_delJ->1nfo > stack[deLJoc]) 

then stack[bef_de lJ-> Jeftpt <-- Nil; 

else stack[bef_del]->rightpt <-- Nil; 

free< stack[ de Lloc]); 

40 



else beg1n 

end· , 

copy (successor node to deLJoc node); 

If (bef_suc->1nfo > suc->info) then 

bef _del-> leftpt <-- suc->rightpt; 

else bef _del->rlghtpt <-- suc->rlghtpt; 

free<suc>; 

1f (critical) then 

begin 

If (stacLtop- crlt1caLnode) < 3) then 

beg1n 

if ( crlticaLnode-> Info > 

(crltlcaLnode + 1 )->Info) then 

begln 

1f (criticaLnode-.rlghtpt <> NJ I) 

then beg1n 

critical_node+ 1 <-- criticaLnode->r1ghtpt 

1f CcriticaLnode + 1 )->tag= 1 > then 

crit1caLnode+ 2 <-- crit1caLnode->r1ghtpt; 

else 1f C<cr1tical_node+ 1 )->tag = -1 > then 

<cr1t1cal_node+2) <-- <cr1t1caLnode+ 1 >->leftpt; 

else beg1n 

end; 

tf ((crltlcaLnode + 1)->rlghtpt <> NtH then 

criticaLnode+2 <-- (criticaLnode+ I )->rightpt; 

else crit1cal_node+2 <-- Ccritical_node+ 1 )-> leftpt; 

end 

41 



end 

end 

Call BalanceTree 

end· 
' 

end 

Return 

Algorithm On Balance Tree 

This algorithm is called by the Insertion or Deletion routines. It 

receives input on the head of the tree, a flag to indicate Insertion or 

Deletion routine .and the stack where the path of all tree nodes are stored. 

Input: head(* head of the tree node*) 

flag(* to show Insertion or Deletion*) 

stack (* the stack of tree node pointers for the path*) 

critical_node (*node which is found critical *) 

Output : head of the tree; 

son <-- crltical_node + 1; 

2 grandson <-- critical_node + 2; 

3 if (( stack[critical_node)->leftpt = stack[son)) AND 

(stack[son]-> leftpt = stack[ grandson])) then 

Call SingleLeftRotation; 

e1se 1f (( stack[critical_node)->rightpt = stack[son]) AND 

(stack[son)->rightpt = stack[ grandson])) then 

Call SingleRightRotation; 

42 



else 1f (( stack[critical_node]-> leftpt =stack[ son]) AND 

Cstack[son]->rightpt = stack[grandson])) then 

Call DoubleLeftRotation; 

else Call DoubleRightRotation; 

4 Return; 

Algorithm On Single Left Rotation 

43 

This routine Js belng called by the Balance Tree routine and the inputs 

mclude the head of the tree, stack that store the pointers of the path, and 

the critical node. This routine would bring the critical node down and put on 

the right of the pivotal node. It would then return the stack as well as the 

head of the tree. 

Input: head(* head of the tree*) 

stack (*stack that store pointers of the path*) 

criticaLnode (*an integer that indicates the position of the critical 

node in the path *) 

Output: head(* the head of the tree*) 

stack(* the new stack with the nodes being repositioned*) 

pivot <-- criticaLnode + 1; 

2 pivot_right = stack[pivot]->rightpt; 

3 stack[pivot]->rightpt <-- stack[criticaLnode]; 

4 stack[criticaLnode]->leftpt <-- pivoLright; 

5 if (stack[criticaLnode] =head) then head <-- stack[pivot]; 

6 else if Cstack[criticaLnode- 1 ]-> leftpt = stack[criticaLnode]) then 

stack[cri t ica Lnode - 1 ]-> leftpt = stack[pivot]; 

7 else stack[criticaLnode- I ]->rightpt <-- stack[pivot]; 



8 stack[critical_node]->tag <-- 0; 

9 stack[pivot]->tag <-- 0; 

return; 

Algorithm On Single Right Rotation 

44 

This routine will reposition the nodes in the path and takes input as 

head of the tree, the stack that store the pointers of the tree nodes as well 

as the position of the critical node. It would return the repositioned stack 

as we 11 as the head of the tree. 

Input: stack(* stack for the path pointers*) 

head(* head of the tree*) 

critical_node (*position of the critical node in the stack*) 

Output: corrected stack, and the head of the tree. 

pivot <-- critical_node + 1; 

2 pivot_left <-- stack[pivot]-> leftpt; 

3 stack[p1vot]-> leftpt <-- stack[cr1t1caLnode]; 

4 stack[cr1t1caLnode]->rightpt <-- p1vot_left; 

5 1f (stack[critical_node] =head ) then head <-- stack[pivot]; 

6 else 1f <stack[crlticaLnode- 1 ]-> leftpt = stack[cr1t1caLnode]) then 

stack[criticaLnode- 1 )-> leftpt <-- stack[pivot]; 

7 else stack[critical_node- 1 )->rightpt <-- stack[pivot]; 

return; 

Algorithm On the Double Left Rotation 

This routine is called by the Balance Tree routine and takes input of 

head, stack and the critical node position. It would rotate once and then call 



45 

Single Left Rotation to do another rotation. Its output will be the stack and 

the head of the tree. 

Input: head(* head of the tree*) 

stack (* stack that stores the pointers of the path*) 

criticaLnode (*position of stack that contains critical pointer*) 

Output: head and the reposition stack; 

pivot <-- criticaLnode + I; 

2 pivoLright <-- stack[p!votJ->rightpt; 

3 Copy input stack to local stack 

4 stack[criticaLnode]-> leftpt <-- ptvot_r1ght; 

5 stack[plvot]->rlghtpt <-- p1vot_r1ght-> leftpt; 

6 plvot_right-> Jeftpt <-- stack[ptvot]; 

7 localstack[ptvot] <-- plvot_right; 

8 Jocalstack[pivot+ 1 J <-- stack[pivot]; 

9 CaJJ Single Left Rotation; 

10 if (( stack[criticaLnode]->rightpt <> Nil) AND 

(stack[crtttcaLnode]-> leftpt = N11)) then 

stack[criticaLnode]->tag <-- 1; 

else if (( stack[criticaLnode]->rightpt = N11) AND 

<stack[crtttcaLnode]-> leftpt <> Ni ))) then 

stack[criticaLnode->tag <-- -J; 

else stack[crtt1caLnode]->tag = 0; 

11 if ((stack[pivot]-> leftpt =Nil) AND ( stack[plvot]->rightpt <>Nil)) 

then stack[pivot]->tag <-- I; 

else if ((stack[pivot]->tag = 1) AND< stack[pivot]->leftpt <>Nil) 

AND <stack[plvot]-> leftpt->tag <> 0)) then 



stack[p1vot)->tag <-- -1; 

else 1f (( stack[pivot]-> leftpt <> N11) AND 

<stack[plvot)->rightpt = N1 I)) then stack[pivot]->tag <---I; 

else stack[pivot]->tag <-- -1; 

return; 

Algorithm On the Double Right Rotation 

This routine is cal Jed by the Balance Tree routine and it takes input 

like the head of the tree, the stack that stores the path, and the critical 

node that indicates the position of the stack. 

Input: head (* head of the tree *) 

stack (*stack that stores the pointers of the path*) 

criticaLnode (*position of stack that contains critical pointer*) 

Output: head and the reposition stack; 

pivot<-- criticaLnode + 1; 

2 pivot_ left <-- stack[pivot)-> leftpt; 

3 Copy input stack to local stack 

4 stack[cr1t 1caLnode]->r1ghtpt <-- p1vot_left; 

5 stack[pivot]-> leftpt <-- pivot_left->rlghtpt; 

6 plvot_left->rlghtpt <-- stack[pivot]; 

7 localstack[plvotl <-- p!vot_left; 

8 localstack[pivot+ 1 J <-- stack[pivot]; 

9 Call Single Right Rotation; 

1 o if (( stack[criticaLnode]->rightpt <> Nil) AND 

(stack[criticaLnode]->leftpt =Nil)) then 

stack[criticaLnode]->tag <-- 1; 

else 1f (( stack[criticaLnode)->rightpt = Ni1) AND 

46 



47 

<stack[crit ical_node)-> leftpt <> NH )) then 

stack[critical_node->tag <-- -1; 

else stack[critical_node)->tag = 0; 

11 1f <<stack[pivot]->leftpt = N11) AND< stack[pivot]->rightpt <> N11)) 

then stack[pivot]->tag <-- 1; 

else 1f <<stack[pivot]->tag = -1) AND C stack[pivot]->rightpt <> N11) 

AND Cstack[pivot)->leftpt->tag <> 0)) then 

stack[pivot)->tag <-- -1; 

else if (( stack[pivot)->leftpt <> Ni1) AND 

<stack[pivot]->rightpt = Nll )) then stack[plvot]->tag <-- -1; 

else stack[ptvot]->tag <-- 0; 

return; 

Example On the Application 

In this example, we assume that there are a total of nine users in the 

system. The first user in the hierarchy is the system administrator, Sa and 

two department heads. Namely department A, Da and department B, Db. 

Department A has 3 users under his hierarchy. which are named as AU 1, AU2, 

and AU3. On the other hand, deparment B has 3 users under his hierarchy and 

there are called BUI, BU2, and BU3 respectively. Figure 3.3 shows the 

hierarchical structure of the example system. The system administrator is 

charged w1h the task of sett1ng the accounts of d1fferent users in the 

system, and assigning the preliminary files to be used by each user. 

Supposing there are three library files, which was set up by the system 

administrator .. which are named as LIB I, LIB2 and LIB3. The system 

al1mlnlst.rator Sd decides that he would allow all users in department A to 



49 

execute LIB 1, LIB2, LIB3 and users in department B to read and execute LIB 1, 

LIB2 and LIB3. Suppose that each user 1n the system dec1des to create a f11e 

of their own. Thus, representing : 

Execute: 1 

Read :2 

Write : 3 and 

Own :4. 

If a user can read a flle, then he has the right to execute also. If a 

user own a file, then he could execute, read and wr1te on the f11e. Each time 

a file 1s created, the system will assign a new prime number to the file and 

insert It In the global binary directory. Thus, the prime number that 

represents each file in the system is as follows: 

LIB! =5 

LIB2 = 7 

LIB3 = l l (These are system files.owned by the system administrator Sd) 

F I A = l 3 (The first f1le belongs to department A) 

F 1 B = 17 ( The first f 1le be longs to department B ) 

F l AU I = 19 <The first file belongs to user I in department A ) 

FIAU2 = 23 <The first file belongs to user 2 in department A) 

F1AU3 = 29 c The first f1le belongs to user 3 in department A) 

FIBUI = 31 c The f1rs.t flle belongs to user 1 in department B) 

F1BU2 = 37 (The first f1le belongs to user 2in department B ) 

F 1 BU3 = 41 c The flrst file belongs to user 3 ln department B ) 

Calculation of Keys of Various Users 

To calculate the keys of these user: 



4Q 

1. To calculate the key of the system adm1n1strator Sd, we have three 

f1les that are created by h1m 1n the system. There are LIB 1, LIB2, and LIB3 

w1th prime numbers 5, 7, 11 respectively. S1nce he owns all the three files, 

the access nghts are 4 for these three files. 

n 

Then L = II Lk 
k=l 

and OJ = L I LJ. dJ is the remainder of OJ when it is divided by LJ. The 

equation of djXj = I (mod LJ ) for 0 < Xj < Lj, will be calculated. 

Therefore., 

L = 5. 7. II = 385 and 

01 = 77, 02 = 55 and 03 = 35. 

d 1 = 2 . d2 = 6 and d3 = 2 

X 1 = 3 .• X2 = 6 and X3 = 6 

Therefore, the value of the key is 

(01X1~1 + 02x2~2 + 03X3~3 >mod L 
= (77(3)(4) + 55(6)(4) + 35(6)(4) )mod 385 

= (924 + 1320 + 840 ) mod 385 

= 4 

2. The calculation of the key of department head A involves 4 files in 

his local binary directory. Since users in department A could execute LIB I, 

LIB2, and LIB3, his access rights on these files are I respectively. 

Department head A also has a file of his own, that is F 1 A and it has been 

asslgned a prlme number of 11 The calculat1on of key for department A is 



as follows: 

L = (5)(7)( 11)( 13) = 5005 and 

01 = 1001, 02 = 715, 03 = 455, and . 04 = 385 

d 1 = d2 = 1 • d3 = 4 and d4 = 8 

Therefore, the value of the key is 

= ( 01X1t11 + D2X2t12 + 03X3t13 + 04X4tl4 )mod L 

= { 1 oo 1 c 1 )( 1) + 715( nc 1) + 455(3)( 1) + 385(5)(4) )mod 5005 

= 771 

so 

3. The calculation of the key of department head B also involves 4 

files in his local binary directory. Since users in department B, like 

department A could read and execute LIB 1, LIB2, and LIB3, his access rights 

on these files are 2 respectively. Department head B also has a file of his 

own, --tfla-t is F 1 B and it has been assigned a prime number of 17 The 

calculation of key for department B is as follows: 

L = (5)(7)( I I)( 17) = 6545 and 

01 = 1309, 02 = 935, 03 = 595, and. 04 = 385 

d 1 = 4, d2 = 4 , d3 = 1 and d4 = 1 1 

X1= 4, 

Therefore, the value of the key 1s 

=( 01x1~1 + 02x2a2 + 03X3~3 + D4x4a4 )mod L 

= { 1309( 4)(2)+ 935(2)(2) + 595( I )(2) + 385( 14)( 4) )mod 6545 

= 4237 



51 

4. The calculatJOn of user AU 1, which 1s the first user ms1de 

department A Besides hav1ng the access r1ghts of 1 or execute on the LIB 1, 

LIB2, and LIB3, it has its own file of F 1 AU 1, which is given the prime 

number of" 19 by the system. Therefore, the key 1s calculated as follows: 

L = ( 5 )( 7 )( 1 1 )( 1 9) = 73 1 5 and 

01 = 1463, 02 = l 045, 03 = 665, and. 04 = 385 

dl = 3, 

x,= 2. 

d2 = 2 , d3 = 5 and d4 = 5 

X2 = 4, X3 = 9 and X4 = 4 

Therefore, the value of the key is 

= {01X1l21 + 02x2a2 + 03X3Z13 + 04X4l24 )mod L 

= { 1463(2)( 1) + 1 045(4)( 1) + 665(9)( 1) + 385(4)(4) } mod 7315 

= 4621 

5. The calculation of user AU2, which is the second user inside 

department A Besides having the access rights or I or execute on the LIB I, 

LIB2, and LIB3, 1t has 1ts own ftle of F 1 AU2, wh1ch 1s g1ven the prime 

number of 23 by the system. Therefore, the key is calculated as follows: 

L = (5)(7)( 11 )(23) = 8855 and 

01 = 1771, 02 = 1265,03 = 805, and. 04 = 385 

d 1 = d2 = 5 , d3 = 2 and d4 = 1 7 

X2 = 3, X3 = 6 and X4 = 1 9 

Therefore, the value of the key is 

={ Otx1a1 + 02x2a2 + D3X3fl3 + 04X4a4 }mod L 

= ( 1771 ( 1 )( 1) + I 265(3)( I) + 805(6)( I) + 385( 19)(4) }mod 8855 

= 4236 



52 

6.The calculation of user AU3, which is the third user ms1de 

department A Besides having the access rights of 1 or execute on the LIB 1, 

LIB2, and LIB3, it also has its own f1le of F 1 AU3, which is given the pr1me 

number of 29 by the system. Therefore, the key is calculated as follows: 

L = (5)(7)( 11 )(29) = 11165 and 

01 = 2233, 02 = 1595, 03 = 1015, and. 04 = 385 

d 1 = 3, d2 = 6 , d3 = 3 and d4 = 8 

X2 = 6, X3 = 4 and X4 = 11 

Therefore, the value of the key 1s 

= {D1X1l2t + 02X2l22 + D3X3l23 + D4X4l24 )mod L 
= {2233(2)(1) + 1595(6)(1) + 1015(4)(1) + 385(11)(4) )mod 11165 

= 1541 

7.The calculation of user BU I, which is the first user inside 

department B. Besides having the access rights of 2 or read and execute on 

the LIB 1, LIB2, and LIB3, it also has its own file of F I BU 1, which is given 

the prime number of 31 by the system. Therefore, the key is calculated as 

follows: 

L = (5)(7)( II )(31) = 11935and 

Ot = 2387, 02 = 1705, 03 = I 085, and . 04 = 385 

d 1 = 2, d2 = 4 , d3 = 7 and d4 = 1 3 

X 1 = 3 , X2 = 2, X3 = 8 and X4 = 12 

Therefore, the value of the key is 

= { 01 x 1 a 1 + D2x2a2 + D3X303 + D4X404 Jmod L 
= (2387(3)(2) + 1705(2)(2) + 1 085(8)(2) + 385( I 2)(4) )mod 11935 



53 

= 9242 

8.The calculation of user BU2, which is the second user inside 

department B. Besides havtng the access rights of 2 or read and execute on 

the LIB 1, LIB2, and LIB3, It also has Its own flle of F 1 BU2. which Is given 

the prime number of 37 by the system. Therefore, the key ls calculated as 

follows: 

L = (5)(7)( 1 I )(37) = 14245 and 

01 = 2849, 02 = 2035, 03 = 1295, and. 04 = 385 

d 1 = 4, d2 = 5, d3 = 8 and d4 = 1 5 

X 1 = 4 , X2 = 3, X3 = 7 and X4 = 5 

Therefore, the value of the key is 

= {0 1 x 1 ZJ 1 + 02X2ZJ2 + 03X3ZJ3 + 04X4ZJ4 }mod L 

=(2849(4)(2) + 2035(3)(2) + 1295(7)(2) + 385(5)(4) )mod 14245 

= 3852 

9.The calculation of user BU3, which is the third user instde 

department B. Besides having the access rights of 2 or read and execute on 

the LIB 1, LIB2, and LIB3, 1t also has 1ts own file of F I BU3, which is given 

the prime number of 41 by the system. Therefore, the key is calculated as 

follows: 

L = (5)(7)( 11 )(41) = 15785 and 

01 = 3157, 02 = 2255, 03 = 1435, and. 04 = 385 

d 1 = 2, d2 = 1 , d3 = 5 and d4 = 16 



Thererore, the value or the key 1s 

= {01X1l:l1 + D2X2l:l2 + 03X3l:l3 + 04X4Z14 }mod L 
=(3157(3)(2) + 2255( 1 )(2) + 1435(9)(2) + 385( 18)(4) }mod 15785 

= 13862 



CHAPTER IV 

ANALYSIS OF RESEARCH RESULTS 

Program Correctness 

According to Graham and Dennig, it is necessary to prove the program 

and system correctness through two criteria: 

Any request made by a user or subject Ki which leaves the protection 

state or the matrix A intact can not be an unauthorized access. 

2. Any command made by a user or subject Ki which changes the 

protection state A can not lead to a new protection state In which 

some other users or subjects, such as Km has unauthorized access to 

the same object LJ. 

With respect to the first criteria, if the protection system is correct, 

the attachment of a unique key, which identifies the commanding subject to 

every request it makes, allows the protection system to identify the user 

and the file. It thus makes any reference easier and thus fulfills criteria I. 

In another words, since both the Key and the Lock are unique, therefore, all 

requests are accountable. 

The burden of proofs 1 ies on the fact that the protect ion system 

calculates the unique key correctly, and the protection system interrogates 

the correct entry in the access matrix A and no other monitors except the 

secured protection system alters the contents of the access. Since no other 

55 



56 

mechanism alters the access rights of any file except the protection 

system, therefore, those files which are accessible to the user will only be 

presented during the calculation of the keys. Since the sets of access rights 

of any two users Ux and Uy are never the same ( though they may have the 

same set of access rights to the same set of library files, as soon as one of 

them issues the command to create another new file, or is given a new 

access right to a new flle, the key of the receiving user is not the same any 

more ), therefore, the keys calculated are always unique. 

WiU1 respect to the second criteria, the keys are only calculated 

based on the given access rights t2ir 

fl fl 

Ki = ~ Oj. Xj. t2jj mod 
j ~ m 

where m ~ j ~ n, m ~ k ~ n, and m ~nand the protection state of a file can 

be changed by a user, but the recalculation of the key is done by the 

mechanism in the protection system and posted to the user ·s directory who 

received the new access right to a given file. If the access right is read, 

then the user can not change it to write because the key is being calculated 

and the user can not change the key. 

Considering the classical problem of propagation and revocation 

mentioned widely in most methods. A department head Ho allows a group of 

n staff members under him So .... ,Sn-1· Sn to read a very important 

document of the department. Suppose further that Ho intends that under no 

circurnstances, should S1 read U1is document. Under tt1e access control list 

method and directory list method, the entry for this file could be revoked 

and deleted from the list However, further provisions must be provided to 

prevent all other group members (from So, to Sn) copying this file indirectly 



57 

to S1. Using the improved method of calculating the keys and the locks, any 

user who does not receive this unique lock number in calculating his or her 

key, simply can not access that file because it is just not found in his own 

local directory. Thus, this method provides the possibility of ~laving a policy 

in which only the owner of a file can have the power to grant access rights 

to others. 

Time Complexity of the Chinese Remainder Theorem 

Since the Chinese Remainder Theorem requires the following formula: 

m 5 

Kl· = ~ D' X' ~·' " J. J. lJ 
i=O 

mod L = II Lj .. " " ' " ' ( 1) 
j=O 

m: the number of users in the system. 

K1 : the i user key in the system 

DJ: is the product of all the relatively prime numbers except the jt!J prime 

5 

number. It is calculated from Oj =II Lx 
x-1 

X .c j, 

L : is the final product of S relatively prime numbers or all the files in the 

system. 

To deduce the time complexity of the Single Key Access Control using 

the Chinese Remainder Theorem mechanism, we need to look at the binary 

operations of the various components in the formula. Since there areS 

numbers of files in a local binary tree directory, if Li represents a file 

number, then each binary multiplication needs Oon2 L1). Therefore, to 



58 

calculate the product of all Li. where i ~ n, and n is the number of files in 

the local binary directory, we definitely need <n- 1 )O(ln2 Lj). To deduce the 

number of operations which are needed for each Dj, where Dj = L/Lj-, Dj 

needs an operation of Onn2 U, since the number of operation depends on the 

greater number in the division., in this case, the product of Li, L. Therefore, 

to get the total number of operations for all Dj, where 1 ~ j s: n, we need 

nOC1n2 U. Therefore, total overall number of operations to calculate Land 

all Dj is 

Since the Chinese Remainder Mechanism requires for solving for Xj in 

tt1is equation of DJXJ -1 = MJLJ < for some value of MJ ) .... (I) 

To find the time complexity of Xj. we started with equation ( 1 ), 

however; OJ could be written as dJLJ + eJ tor some value of dj, Thus, we 

have eJXJ - 1 = M/lJ ( for some value of M/') and the time to convert OJ 

needs a modulus operation of O(ln2 OJ), since finding Xj from 

eJXJ - I = M{LJ needs the most time of O(ln2 5°'5 N)- 2, ( if o ~ XJ, LJ < 

N ).thus we have the time to find the eJ. Thus the entire operation of 

finding a single key is 

From (I), we know that the entire Chinese Remainder Theorem mechanism 

costs an upper bound of 

n0<1n2 L) 



Comparison of the Improved Methods With the 

Key-Lock-Pair.Mechanism 

59 

The Key-Lock-Pair <KLP) mechanism based on the Chinese Remainder 

Theorem proposed by Chang requires the system to fetch for a lock of the 

corresponding file. This unique lock number is required to perform a 

· mathematical operation of K1 mod LJ where K1 is the key number of user i. If 

we assume all Jocks are stored in a binary tree and the total number of flles 

present in the system is N. Thus, to verify a user access right to a file the 

number of searching is ln2N. The system also needs to perform the above K, 

mod L, operation. Therefore, total number of operation is Jn2N + 1. 

The key of each user K is calculated based on the Chinese Remainder 

Theorem. If we represent jth file in the system by a unique number, LJ .. 

then the key for ith user is calculated using the access right a1J of the user 

to jth file. Then OJ= is L/ LJ and Xj can be found by solving DJXJ - I = MJLJ 

(for some value of MJ) by using the extended Euclidean's Algorithm. Since 

o ~ au ~ 4 w i th 

and 

o =No access 

I = Execute 

2 = Read 

3 = Write 

4= Own 

I~ Xj ~ Lj ' 

Disadvantages of the KLP mechanism 

The main advantage of the KLP mechanism 1 ies on its simp! icity and 

its process during verification of users· access rights. From the 



60 

introduction, if we assume that tt1ere are N files in the system, then theN 

lock numbers are stored in a binary tree. Each verification process in this 

KLP mechanism needs a log N search as well as one operation of Ki mod Lj 

to obtain aij. 

However, if we assume M users in the system, this method has the 

following disadvantages and there can be observed as follows. 

M Keys Calculation After One File Addition. Any addition of a new file 

by a user in the system requires the system to recalculate each user's key. 

Even though many users may not have any access right to that file and 

receives a zero for their access rights towards that file, we still require 

the unique lock number of the new file to recalculate all the keys in the 

system because Dj = is L/ Lj. With M users in the system, then we need to 

recalculate M t1mes. If we denote Tc as the time required to calculate the 

key of one user, then there Is a ln2N search for the right place to Insert and 

M*Tc forM users. This clearly takes up tremendous amount of system time 

to include all the Jock numbers in the calculation. 

M Keys Calculation after One File Deletion. As we can see from 

above, if any user in the system decides to delete a file in the system, since 

the corresponding lock number and the access right have to be removed from 

each key calculation, all the keys in the system would then need to be 

recalculated with M calculations. Thus, with the ln2N search for the right 

file to delete, then another M*Tc to recalculate M keys after a file deletion. 

Long Search Time During Each User Veriflcation. When a user wants 

to access a file, the system needs to verify the legitimacy of the access 

request of the user. Tr1e user may issue a string for the file name. If we 



61 

assume that each file name and its corresponding unique lock number is 

stored in a binary tree, then we need to have a ln2N search for the lock 

number and then perform the verification by performing K1 mod Lj operation. 

Therefore, total time during user verification is ln2N + 1. With a large 

number of users and numerous files in the system, the search for user 

verification tak.es up a lot of time. 

Advantages of the I mproyed Method Over the KLP 

One Key Recalculation During Each Insertion of File. Since each f1le is 

inserted into both the local binary tree of the owner as well as the system 

global binary tree, we need to search for the correct positions in both binary 

trees to insert the fi I e. Thus, the improved method requires log n + log N 

searching 1f we assume there are n number of files in the local binary tree 

and N number of files in the global binary tree. Therefore, total time 

required to perform an insertion is ln2n + ln2N + T c instead of ln2N + M*T c 

in the KLP mechanism. 

One Key Recalculation During Each Deletion of Flle. When there is a 

deletion of file, it is the same case as the insertion and there is only one 

recalculation of key. Thus the total time is ln2n + ln2N +Ted as compare to 

the KLP mechanism which requires ln2N + M*Tcd, 1f we denote Ted as the 

t1me needed to recalculate the key after the f11e deletion. 

Shorter Search Time for User Verification. In the research procedure, 

the analysis below shows lt bas shorter searching time during user 

verification. 

I. Lowest Hierarchy Has ln2n+ 1 Time 



62 

In the user hierarchical nodes, it is reasonable to assume that there 

are more than 50% of the users in the lowest hierarchy of the system. For 

example, students account in the university is more than the faculty and 

administrative account. When users in the lowest hierarchy issue commands 

to access a certain file, they have only ln2n + 1 number of operations. They 

could only search for files in their local binary tree where n is assumed to 

be the number of files in the local binary tree. The rule is that if they found 

the file in their local binary tree, the total time of operation is ln2n + 1 

where ln2n is the worst case searching time and perform a Ki mod Li 

operation. If that file is not found in the local binary tree, then that means 

the user can not access that particular file. 

2. Higher Hierarchy 

Since the node in the higher hierarchy comprised Jess than 50% of the 

system population, the node 1n the higher hierarchy requtres Jog n + 1 

operations if the accessed file is ln the local binary tree of the user. If the 

accessed f11e belongs to the accessor's descendent, then the accessed f11e 

may not be found in the local binary tree, and the system needs to f1nd that 

file in the global binary tree to find the owner of the accessed flle. One 

more comparison is needed to determine the relationship between the 

accessor and the owner of the accessed file. The accessed file could only be 

accessed by the ascendent of the owner. Therefore, in the worst case 

analysis, the total number of operations 1s ln2n + ln2N + 1. if the accessed 

file is not found in the local binary tree of the accessor. 

For nodes in this higher hierarchy, there is a possibility that the 

system may not find tr1e f1le name in the local binary tree, then we denote 



63 

P as the percentage of finding the jth file in the ith user local binary 

tree. 

( 1-P) is the percentage that this file is not found in the local binary 

tree. 

Therefore, the node in the higher hierarchy needs an operation of 

PC1n2n + 1) if the file he wishes to access is found in his local binary 

tree. 

( 1-P)( ln2n + ln2N + I } if the file belongs to one of his descendents 

and thus 

the file is not found in his local binary tree. 

Therefore, if the total number of operations in the KLP mechanism is VKLP 

and the total number of operations in the improved method is VNEW. Then 

VKLP = ln2N + 1 to verify a user status in accessing a file, where N is the 

total number of files present in the system. For the improved method, 

YNEW = P{ ln2n+ 1 } + < 1-P) { ln2n + ln2N + 1} with 

n = average number of files in the local binary tree) 

N = total number of files in the global binary tree as the KLP 

mechanism. 

simplifying, we have 

YNEW = Pln2n + P + ln2n + ln2N + I - Pln2n - Pln2N- P 

YNEW = ln2n + ln2N + 1 - Pln2N 



64 

when the population comprises less than 50% of the system 

population, we need to prove that under normal circumstances, most users 

would access files that are legitimately accessible by them, thus under that 

assumption, Pis close to 1. Since our handicap 1n this analysis is U1e 

difficulty in measuring P, or the probability of a user legitimately 

accessing a file, our justification is that when most users access their own 

file, the KLP mechanism has a higher number of operations than the 

improved method. If that is true, then 

Vnp - VNEW > 0 ... ( 1) 

Then (1n2 N + 1 ) - ( 1n2n + 1n2 N + 1 - P1n2 N ) > 0 

= > 1 n2 N + 1 - 1 n2n - 1 n2 N - 1 + P 1 n2 N > 0 

=> P1n2 N - ln2n > o 
= > P > 1 n2 n/ 1 n2 N 

The analysis is that, as long as P, the probab1l1ty of a user 

legitimately accessing a f11e, 1s greater than ln2n/ln2N, the KLP mechanism 

has a longer veriflcatlOn time than the improved method. Since the value 

for- ln2n/1n2N is relatively small for- a large database system, we conclude 

that, under normal circumstances, P is close to 1. Therefore, 1n this 

improved method, the user in the higher hierarchy also has a shorter total 

number of operations. In addition, user in the lowest hierarchy always has 

ln2n + 1 total operations. Thus, overall, the improved method has a shorter 

verification time than the KLP mechanism. 



CHAPTER V 

SUMMARY OF RESEARCH THESIS 

Summary 

Secured system and secured database are essential for data accuracy 

and information integrity in modern computing environment. Therefore, 

when designing the operating system or database system, great effort and 

time must be devoted on considerations of having a secured system that is 

free from undetected and unverified access on any information flles. A 

secured system must be able to prov1de the mechanism for both separation 

of all users information as well as sharing of certain sharable 

informational files; these mechanism must be robust and yet easy to use. 

A system designer is charged with the duty of find1ng out what should 

be protected as well as understanding the environment the protection 

system is based on. Through studying models, the essential components of a 

system is identified, and the interactions between these components must 

be studied carefully in order to design an efficient system. This research 

project referenced the Graham-Denning Monitor modeL Therefore .. criteria 

of the model are followed and can be seen throughout the content of this 

research project. Since the model calls for the protection of objects in the 

system and thus requiring the separation of subjects and objects, the 

Chinese Remainder Theorem is used to implement the separation as well as 

the necessary verification upon attempted access. Various mathematical 

verifications were given on the mechanism to show that this mechanism 

65 



works in accordance with the model criteria. Each user in the research 

project belongs to a node in the hierarchical structure. 

66 

Generally, the rule set up is that users in the lower hierarchy do not 

get more resources. In another words. they do not have more access rights 

towards a fix number of files or they have Jess library files that can be 

accessed. In the implementation of this research project, the keys 

represent the subjects and the files represent the objects to be protected. 

Any access of objects need a user's key to verify the access rights. This 

mechanism is performed in the protection system, which is ideally placed 

close to the hardware of the computing environment. Thus, in the 

implementation process, various binary operations were coded to show that 

H1e mect1anisrn can be implemented close to the hardware as well as 

preserving the accuracy of the mechanism. 

In the analysis of the research project, discussion is provided on the 

mechanism correctness by showing close affinity to the two basic 

assumptions. 

Finally, the analysis shows the performance of the Chinese Remainder 

mechanism required a time of O(Jn2 U where L represents the product of all 

the coprime numbers in a local binary tree. The research projcet shows that 

Single Key Lock mechanism could be done much faster in terms of key 

calculation, insertion of files, deletion of files and finally verification 

time. 

Future Work 

Further research could be geared towards faster performance of the 

mechanism by considering the faster multiplication of binary numbers. 

Calculation requirement of keys for users in the same functional group when 



67 
a new file is introduced could be further improved using some other 

mathematical mechanism. The storage structure for the keys could be 

modified to splay tree instead of a height balanced tree if priority of the 

subjects could be determined. 



BIBLIOGRAPHY 

Burton D.M. ( 1976). Elementary Number T!Jeory, Allyn and Bacon, Inc. 
New York. 

Computer System Organization, ( 1973): The 85700/ 86700 Series. 
New York Academic Press. 

Chang, C. K., & Jiang, T. M. ( 1989). "A Binary Single Key System for 
Access Control." IEEE Trans Computers, vol. 38, No. I 0. 

Chang, C. C. (I 986). "On the design of a key lock pair mechanism in 
information protection systems."B/T,26 (4), 410-417. 

Dennis, J. L, & Van Horn, (Mar., 1966), "Programming semantics for 
Multiprogrammed Computations," Commun. ACM, vol 9, 143-155. 

Downs, D. et al. "Issues in Discreatlonary Access Control." Proc 1985 IEEE 

.:;)1!7P Securit)l & Privacy, IEEE Comput. Soc. 1985, pp. 208-218. 

England, D. (Aug., 1974) "Capab11 ity Concept mechanism and Structure in 
System 250," !RIA lnt, Workshop Protection in Operating S,vstem0 

63-82. 

Graham, G. S. & Denning, P. J. ( 1972). "Protection-Principles and Practice." 
Proc AFIPS SJC( 40, 417-429. 

Hwang, T. Y. & Ton, J. c.< 1980). "An access control mechanism for computer 
system resources," in Proc lnt Comput Symp, Taipei, Republic of 
China. 

68 



11 iffe, J. & Jodeit, J. COct, 1962). "A dynam1c storage a11ocat10n scheme," 
Comput ./,. vol 5, 200-209. 

Kain, R., and Landwehr, C. "On Access Checking in Capability-Based 
Systems." Proc 1986 IEEE 5ymp. Security ,~ Privacy, IEEE Comput 
Soc 1986, pp. 95-1 00. 

69 

Karger, P. ,and Herbert, A " An Augmented Capab i 1 ity Architecture to Support 
Lattice security and Traceability of Access ... Proc 1984 IEEE 5ymp. 
Security & Privacy IEEE Comput Soc 1984, pp.2-12. 

D. E. Knuth, The Art of Computer Programming. Vol. I: Fundamental 
Algorithm~ Second Edition, Addison-Wesley, Reading, 
Massachusetts ( 1973). 

D. E. Knuth, The Art of Computer Programming. Vol.2: 5em;i7umencal 
A!gorlt!Jm~ Second Edition, Addison-Wesley, Reading, 
Massachusetts ( 1980). 

Needham, R. ( 1972). ":Protection systems and protection implementations," 
in FJC( AFIPS Con! Proc., vol. 41, pt. I, 571-578. 

Pettofrezzo. A J. & Byrkit, D. R. ( 1970). Element of Number Theory, 
Allyn and Bacon. Inc. 

Pfleeger, c.< 1989) Security li7 Computli7g, Prentice-Hall., Inc. 

Ritchie, D. & Thompson. K. (JuL. 1974). "The Unix time sharing system .. " 
Commun ACM, vol. 17, 365-375. 

Redel 1, D. ( 1974)."Naming and protection in extendible operating systems," 
Ph.D. dissertation, Univ. of Calif., Berkeley. 

Rusby, I. and Randell, B. "A Distributed Secure System. " Con7Puter, vol.16 
n7 Jul.1983, pp. 55-67. 



Saltzer, J. H., & Schroeder, M.D. <Sept. 1975). "The protection of information 
in computer systems." Proc. IEEE; 63 (9), 1278-1308. 

Stonghtom, A" Access Flow: A Proctection Model which integrates access 
Control & Information Flow ... Proc. 1981 IEEE ... ~vmp 5ecurf~v & 
Privacy; IEEE Com put Soc 198 1 , pp 9-18. 

Synder, L. "Formal Models of Capability-Based Protection Systems." 1£££ 
Trans Comput, vol. 30 n3 Mar 1981, pp.172-181. 

Swaminathan, K. .. Negotiated Access Control . " Proc 1985 IEEE ... ~vmp 
Securit,v & Privacy: IEEE Com put Soc 1985, pp. 190-196. 

Wiseman, S. "A Secure Capability Computer System." Proc 1986 IEEE Symp 
Security & Pravlcy, IEEE Comput Soc 1986, pp 86-94. 

wu, M. L., & Hwang, T Y. ( 1984). "Access Control with single key lock." IEEE 
Trans. on Software Eng.J SE-1 0 (2), 185-191. 

70 



APPENDIXES 

71 



.APPENDIX A 

PROVE OF A COMPLETE RESIDUE SYSTEM MODULO M 

72 



73 

A It cis a complete residue system modulo m and(~ mJ = I, tnen tne set 

C' = (ax + b I x e c J 

is a complete residue system modulo m. 

PROOF: According to the definition of a complete residue system 

modulo m, each integer is congruent to one and only one of the 

members of the set. Assume that 

ax1 + b = ax2 + b <mod m) 

for two members x1 and x2 of C. Then 

ax 1 = ax2 (mod m) 

Then x1 = x2 <mod m) 

since <a,m) = 1. However, this contradicts the hypothesis that 

x1 and x2 are members of C since no two members of a 

complete residue system modulo m are congruent. Hence. 

C' = ( ax + b I x e C) 

is a complete residue system modulo m. 



74 

APPENDIX A (Continued) 

B ll fa, mJ = (. then the I !near canpruence ax = b f mad mJ nas exact~~~ cme 

unique solution (or inconpruent solut i£m.J 

PROOF: Let C represents any complete residue system modulo m. 

By the above theorem, the set l a.x/x e C J 13 also a complete 

residue system modulo m Therefore, there exists only one 

element .NtJ e C such that aXtJ is congruent modulo m to a 

given integer b. Hence, the linear congruence a.K = b fmod m!. 

where fi3,.m) = /. has exactly one incongruent solution .x· = .N(1 fmod m) 

(Adapted from Pettofrezzo and Byrkit, 1970) 



APPENDIX B 

PROVE OF <a+ b) mod c = { l a( mod c)) + b ) mod c 

75 



To prove C a+ b ) mod c = ([a ( mod c ) ] + b ) < mod c) 

proof : ( a + b ) mod c 

= a ( mod c ) + b < mod c ) 

= [a C mod c ) J C mod c ) + b ( mod c ) 

= [ a ( mod c ) + b ] < mod c ) OED 

76 



APPENDIX C 

FIGURES 

77 



78 

Users System Intervention 

w 

Figure 1. System View of SKL 



USER 1 

USER 2 

USER 3 

USER 4 

USER 5 

USER 6 

USER 7 

USER 8 

USER 9 

USER 10 

FILE 1 
FILE 2 . 

FILE 3 

1 1 ,-! FILE 4 
FILE 5 l • FILE 6 

0 R R R 

R 0 

R R R R 

R 

w R R E E E 

- E R w 
- - - R 

- E E - R 0 

E E w - R 
-

E w E - E -

Figure 2.0. Access Control Matrix 

79 

FILE 7 

E 

0 

R 

E 

E 

E 

E 

w 

w 
w 



80 

a. out 0 ... - a.out 
Prog I.e RW 

Prog J.o N 
.. 

Prog.tx w - K - Prog I.e 

Temp E . 
--

User A Directory Prog l.o 

File Name AR FP 
Bib I iog 0 

Test. a R 

Prog I.e w . -- Prog.tx 

Prog.tx RWE . -
Temp R 

User B Directory --
Temp 

... -AR: Access Rights 
FP : File Pointer 

: Read -- Bibliog R 
w :Execute 
0 :Own ---N . No access 

j Testa 

Figure 2.1. Directory Access Control 



Files 

jA 

I B 

I c 

ID 
I E 

User Access Right Physical Files 

t----Il~• ONE ORW 8 I TWO R I 

~ THREE RW 

FOUR w 

- I ONE I ORW 

.. FIVE ORW 

SIX R 

SEVEN R 

EIGHT R 

~ I NINE I ORW 

I ... 

---

8 
[] 

~-.(D J 
TWO ORW 0 

1---~~~~~ E 
NINE RW 

TEN RW 

Figure 2.2. Access Control Lists 

81 



8'/ 

Users 

System Administrator 
Global Binary Tree 

D 

Figure 2.3. Structure of the Key-Lock-Pair Mechanism 



Users 

Users Binary Tree 

System Global File 

Each File in the global 
binary tree has a pointer 
that points to the owner of 
the file. 
The calculation of each user 
key is based on the lock 
number in their own local 
binary tree. 

Figure 3.1 Hierarchical User Structure 
With Local Binary Directory 

83 



L1 

L 1, L2, L3 representing the 3 files by System Ad. 
FlAUl represents file owned by user I from 
department A. 

Figure 3.3. System View of Example File 
Structure 

84 



APPENDIX D 

SIMULATION OF A HIERARCHICAL SINGLE-KEY-LOCK ACCESS 

CONTROL USING THE CHINESE REMAINDER THEOREM 

85 



#include "header.h• 
2 I* 

6 
7 
8 
9 

Name 

Tittle 

Lee, Kim Sin 

Computer Simulation on the Single Key Access Control using the 
Chinese Reaainder Theorem. 

Project : Thesis Project for the Master of Science in Computer Science. 

10 Program Description : This program will simulate the Single Key Access 
11 Control using the Chinese Remainder Theorem. Each user in the 
12 computer system is given a node and they are being inserted into 
13 an ordinary hierarchical tree. 
14 
15 
16 
i"T 
i I 

;o 
1U 

20 
21 

24 

26 
27 
28 
29 
30 

7"'"! 
.......... 

34 
35 
36 
37 
38 
39 
40 

Hierarchical Tree : Each user node contains information on the access rights 
of the user. A user is given some strings to identify the user 
himself as well as the department and the group that he belongs to. 
The kev where the calculation is done is stored in the user node. 
The value of L where L represents the product of all the file 
number that is accessible by the user. Since the users on the same 
level have the same pririoty with the user himself, a pointer is 
inside the user node to let the process knows of the presence of 
other users. A pointer is also provided for users of lower level 
than him. A tree node is also provided to let the users have their 
files represented. Each file that is accessible by the user is 
being inserted in the local binary tree of the user. If the user 
wants to access a file, the operating system will check the 
legality of the request by retrieving the prime file number 
and retrieving the key of the user and perform the 
Key mod Lod = access rights. If the request is less than or 
equal to the access rights, then the request is granted. 
Else the request is not honor. · 

Binary tree : This binary tree will store all the necessary information on the 
file that is accessible by the user. Each node contains names 
of the file, the tag for rotation of the tree. A file number which 
is prime and represents the uniqueness of the file in the system. A pointer 
that points to the owner of the file. Two additional pointers that 
points to the right and left childen. 

41 Logon On Structure: The function of this structure is to provide the process to 
42 recognize the user and passwords when they log on to the system, only 
43 recognizable password will be given access and directed to the 
44 correct usernode in the hierarchical structure. 
45 i / 
46 r-----·STRUCT tree_node_rec \{ 
47 I CHAR info[MAXLENJ; /hnfo is the file nar,e if 
48 INT tag: /t to store the tag nu11ber of the file for easy balancing •t 
49 INT fnum: It to store the pri11e number associated with the file it 
50 STRUCT heirarchy jownerpt; li a pointer that points to owner of file ii 
51 STRUCT tree_node_rec Upt; /Hhe left tree pointer t/ 
52 STRUCT tree node_rec trpt; li the right tree pointer ll 
53 L--··---·---·---------\} tree_node_type; 

86 



87 

54 r--··STRUCT heirarchy \{ 
55 CHAR username(f'IAXLENj: !i the user name in the svstem ii 
56 CHAR deptnaroe[MAXLENl; /l the department the user beiongs to li 
57 CHAR groupnale(I!AXLENJ; It the group name the user belongs to t! 
58 CHAR key[lfAXl; it the value of the key in binary for• li 
59 CHAR large[lfAXl; /t the value of all file nu~ber in the directory il 
60 STRUCT heirarchy tnext; /t the next hierarchy pointer if 
61 STRUCT heirarchy idown; /t the subrodinate users in the system if 
62 STRUCT tree_node_rec lhead; It the head of the local directory t/ 
63 '-----··---·--\} heirarchy_entry; 
64 r-STRUCT 1 ogon \ { 
65 I CHAR username(I1AXLENJ: it the user name in the syste1 t/ 
66 I CHAR password(MAXLENl; ll the password string belongs to the user tl 
67 STRUCT he1rarchy theirarchy_ptr; /t the pointer that points to heirarchy if 
68 STRUCT logon tdown; /t the down pointer t/ 
69 L-..-----------·-\} logon_ en try; 
70 FILE lfp, lfg, tfch, Hi; 
71 INT prime[Maxpriul, primeindex, num; 
72 CHAR first,second,str[SOJ, globalkey[MAXJ, globallarge[MAXJ, 
73 dj[100JCI1Ail, xj[IOOJ[I!AXJ,aij[!OOJ[MAXJ; 
74 STRUCT heirarchy th_start; 
75 STRUCT tree_node _rec tg i obal head; 
76 STRUCT logon tlogon_start, Uoqon_last; 
77 /tttttttttttitttttttttttitttttittttttttttttttttttitittititttttttttttittiitttt 
78 Function Main : The function of the main prograa is to call various subsystems 
79 to facilitate the calculations of the key. It will call getprime!l to 
80 produce a number of prime numbers which serves as the unique number 
81 when calculating the key. It also has a loop that will keep reading the 
82 input file for new users log on and new command issued. Thus, the 
83 emphasis of this program is on the batch processing of the various 
84 COIIIand, 
85 ttttttfttttttttttt.titttttttttttitttttttttttttttttttittttttttttttttttttttttltt/ 
86 r·-·--mai n () \ { 
87 h_start=NULL; 
88 logon_start=iogon_last=NULL: 
89 globalhead = NULL; 
90 
91 fp = fopen('userdata•,•r•l: 
92 r-·--IF (!fpl \{ printf("can't open the input file \n'l; 
93 I exi t(0); 
'14 L--·-·\} 

95 fg = fopen!"globaltree.dat","w"l; 
96 r---··IF (1fgl \{ printfl"can't open the write file \n'l; 
97 exit\01; 
98 '--··---\} 
99 getprime\l; 

100 primeindex =2; 
101 r--···WHILE( 1feofffpli \{ 
11n I r--·-IF (fgetststr,SO,fpll \{ 
103 I I IF tstr[Ol == 't' i batch_processO; 
104 I I ELSE separate_stringO; 
105 I L·--··-\} 

1 (! 6 L·-···-·\ } 



107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
jY. 

123 
124 

/t searchlh startl: t/ -
/t print_logonllogon_startl: *' 

fcloseifgi; 
fcloseifol: 

L---·\} 

/tttttttttttttttttttttttttlttttttlttttlttttttttttttttttjtttttttttttttt 
The getprime function will generate the prime numbers needed in the 
calculation of the keys and when which new file is beinq added into the 
systea, the system will assign the new priae number for the file and this 
number will stav with the file for its entire life in the system. The 
prime numbers are stored in an array of integers and when ever there are 
needed, the system will fetch the number from the array. 
ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt/ 
getpr i me (i 

REGISTER i,k,success: 
INT current,inde~; 

125 prime[OJ = current = 2; 
126 index = 0; 
127 I r-FOR (i=l; i( Maxprime; i++l \{ 
128 I I success = 0; 
129 I I r----wHILE (success 1= ll \{ 
130 I i ! current += 1; 
131 ! I r--FOR \k =0; k <= index; k++l \{ 
132 i I I IF ( icurrent ! prilie[kJl == Ol BREAK; 
133 I I I IF ( (pri me[U t pri 11e[ k:l l >= current l success = 1: 
134 I I I IF (success == 1l BREAK; 
135 I I '--\} 
136 I I L--·\} 

137 l I 
138 I I 

prime[il =current: 
index = i; 

139 
140 
141 
142 
143 
144 
145 
146 
147 
!48 
149 

I '-.. \} 

150 
l <:j 
~· 

153 
154 

I RETURN; 

/ttttttttttttttttttltlttttttlttlttllfttlttttttttttttttttttttttttttttttl 
The separate string is called by the main function and it will separate 
the string that the main function sent into separate command that is 
recognizable by the system. Its primary function is to call various 
functions like the form_department, form_group, and form member with 
the commands issued in the batch file. 

tttttttlttttllttttttltttttlttttttttttttttttttttttttttttttttltttttttttt/ 
separate_stringi) 

C:HAR s[BOJ,name[MAXLENJ,deptname[MAXLENJ,groupname[MAXLENJ, 
password[MAXLENJ: 

REG I STER I NT i , j , k: 

155 i=j=O: 
156 strcpy(s,strl; 
!57 
158 WHILE! s ( i J 1 = ' ' l \ { name r j J = s [ i J; i ++; j ++; \} 
159 r:ame[j J = '\0': 

88 



160 
i61 

163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 

r-·-IF !s[i+l] == 's'l \{ 
! ,-··-IF is[i+2J == 'y' l \{ 

j=O; i += 4; 
WHILE (s[i] 1= '\0') \{ password[j] = s[iJ; i++; j++; \} 
password[j] = '\0'; 
form_sys!name,passwordi; 

L-\} 

r-··--··ELSE \ { 
I j=U; 1 += 4; 
I WHILEis[i] 1=' ') \{ deptname[j] = s[iJ; i++; j++; \} 
I deptname[j] = '\0'; 

'---·\} 

i += 1; j =0; 
WHILElsli J 1- ' '\ . - I 

groupname[j] = '\0'; 

i +=1; J =0; 

\{ groupnaille[j] = s[iJ; i++; j++; \} 

WHILEis[il '= '\O'l \{ password[jl = s[iJ; i++; j++; \} 
password[j] = '\0'; 

form_memberiname,deptname,groupname,passwordi; 

183 L-\} 

184 r---ELSE \{ 
185 k = i t 1; 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
i98 
199 
200 
201 
202 
203 
204 

206 
207 
208 
209 

'··--·--···\} 
L .. -····-·-\} 

i += 4; j =0; 
WHILE is[iJ 1=' ') \{ deptname[jJ = s[iJ; i++: j++; \} 
deptname[jJ = '\0'; 
i+=!;j=O; 

WHILEis[i] 1= '\O'i \{ password[j} = s[iJ; i++; j++; \} 
password[jl = '\0'; 

IF (sUJ == 'd' i form_ dept (naile,deptname,password); 
ELSE form_group (name,deptname, password): 

ittttttttttttttiltttittttttttttttttitttttttttttttttitlitlltttttttttttttt 
The function of this form_sys is to declare a neM node in the hierarchy 
and see that approprite addresses are set up. The system administrator 
controls has the power of the superuser in Unix. It could delete user in the 
system, delete files and perform various system administration work. 
tttttttttttttttttttttttittitititttttttttttittttttttttttttttttttttttttitt/ 

CHAR tn,tp: 
~-·\{ 

STRUCT heirarchy inewnode; 
STRUCT logon tnewl ogon: 

210 ,-··-·-IF (h_start ==NULU \{ 
211 newnode = (STRUCT heirarchv timalloc(SIZEOF(heirarchv entrvll: 

r--IF (!newnode) \{ printft•out of memory in form system administrator \n"l; 

89 



L--·-·\} 214 
215 
216 
217 
218 
219 
220 
221 
222 

strcpyinewnode->username,nl; 
newnode->deptname[OJ = 'S'; 
newnode->groupname[Ol = '$'; 
strcpylnewnode->key,"OO"J; 
strcpylnewnode-}Jarge,"Ol"l; 
newnode->next = newnode->down = NULL; 
newnode->head = NULL; 
h_start = newnode; 

224 newlogon = tSTRUCT logon lliallorlSIZEOF(loqon_entryll; 
225 r---IF (1newlogonl \{ 
226 I printf("out of meeory in form system for newloqon \n'l; 
227 I exit I 0 l : 
228 '-----\} 
229 strcpylnewlogon->username,nl; 
230 strcpylnewlogon->password,pl; 
231 newlogon->heirarchy_ptr = newnode; /t the logon ptr points to new hierarchy node t/ 

232 Jogon_start = logon_last = newlogon; 
233 L~----\} 

234 ,----ELSE \ { pri ntf ('check why is there another system administrator \n• J: 
235 l exitiOl; 
236 '------·\} 
237 L--·--·---\} 
238 /tttttltttttttttttttttttttttttttttttlttttlttttttttttttttttttttttttttttlttt 
239 This form department function is called by the separate string and its 
240 primary function is to form the department head and perform various 
241 addresses set up in the hierarchical tree for the users. It declares a new 
242 node and copy the necessary information to identify the node and link it 
243 to the hierarchicai tree. 
244 tttttttttttitttititttttttttttttttttltltttttttttitttttttttttttttttttttiitti 
245 form_deptln,d,p) 
246 CHAR tr.,td,tp: 
2 4 7 r-··-··--· \ { 
248 I STRUCT logon inewlogon, tcurlogon; 
249 ! STRUCT hei rarchy tnewnode, tcurnode; 
250 
251 newnode = ISTRUCT heirarchy timalloc!SIZEOFiheirarchy_entryil; 

r·-·--·I F I~ newnodel \ { pri ntf ('out of lleMry in form department\n • l; 
.... t:7 
i.~,) 

254 
i 
l.·---\} 

e:dUOl; 

255 strcpylnewnode->username,nl; 
256 strcpylnewnode-)deptname,dl; 
257 newnode->groupname[Ol = '$'; 
258 strcpylnewnode->key,'OO"I; 
259 strcpylnewnode-}larqe,"OI"); 
260 newnode-)next = newnode-)down = NULL; 
261 newnode->head = NULL; 
262 
263 curnode =h_start; 
264 IF U:urnode- >down == NULU cur node- }down = newnode; 
265 r----ELSE \ { 

90 



266 
267 
268 
269 
270 
271 
272 
273 
274 

276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
2S7 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 

L·--\} 

curnode = curnode-)down: 
WHILE (curnode- .: ;,ext ~ = ;'lULU cur node = cur node- >next: 
curnode-)next = newnode; 

newlogon = (STRUCT logon ilwalloc(SIZEQF(!ogon_entrvll; 
r----IF (!newlogoni \{ printf(" out of memory in forming dept\n'l; 

exi UO); 
l-\'. 

\J 

strcpy(newlogon->username~nl; 

strcpy(newlogon->password,pl; 
newlogon->down = NULL; 
newlogon->heirarchy_ptr = newnode; 
IF (logon_start == NULL) logon_start = logon_last = newlogon; 

r--ELSE \{ 

L---\} 

curlogon = Jogon_last; 
curlogon->down = newlogon; 
logon_last = newlogon; 

'----\} 

/liiitiiiliillliitiiiititiiltilttittiliitililiiltltttilitiiitltiitiiliitii 
As the two functions described above, the for~_group function is to 
declare a new node in the hierarchy and link them to the approprite position 
and it has the power of superuser on its subjects or group member under its 
hierarchy. But various users in other groups are not subjected to the control 
of this group leader. 
tttttlttttttttitttttttttttttttltllttttttttttttttllttttttttttttttttltlltlt/ 
forrn_groupln,d,pl 
CHAR tn,td,tp; 

r·---··\ { 
STRUCT heirarchy tne111node~tcurnode; 

STRUCT 1 ogon lnewl ogon; 

newnode = ISTRUCT heirarchy tlmallociSIZEOFiheirarchy_entrvll; 
,---·IF ( !newnode) \{ printf ("\n out of memorv H1 forming group \n"J; 
I mUOJ; 
'--····-\} 

strcpylnewnode->usernaae,nl; 
strcpylnewnode->deptname,dl; 
strcpy(newnode->groupnaae,nl; 
strcpylnewnode->key,"OO"I; 
strcpylnewnode->large,"01"l; 
neNnode->next = newnode->ctown = NULL; 
newnode->head = NULL; 

310 curnode = h_start->down; li on 1st dept t/ 
311 WHILE( strcmplcurnode->deptname,d) 1= 0 H curnode->next 1= NULU 
312 curnode = curnode->next; 
313 
314 IF I curnode- >down == ~lULU cur node- )down = newnode; 
315 r·---ELSE \ { 
316 curnode = curnode-}dol!ln; 
317 WHILEicurnode->next != NULU curnode = curnode->next; 
318 curnode-}next = newnode; 

91 



31 q 1···---\} 

320 
321 newlogon = ISTRUCT logon tlmalloctSIZEOF\!ogon_entryll; 
322 r-·-·--IF (~newlogon) \{ printf (" out of 11esory in ne11logon in form group \n'l; 
323 I exiUOl; 
324 

326 
327 
328 
329 
330 .... , 
.J.Jl 

334 

336 
337 
338 

L-\} 

strcpylnewlogon->username,nl; 
strcpylnelilogon->password,pl; 
newlogon->heirarchy_ptr = newnode; 
newlogon-)down = NULL; 
logon_Iast->down = ne~logon; 
logon_last = logon_last->down; 

L...-·-\} 

liliiiiiiiiitttittiititttiiiltitiiitiiiittiitiittiititiitiiiiitittttitlfii 
form_memberln,d,g,pi 
CHAR tn,td,tg,tp; 

,-----\ { 
STRUCT heirarchy tnewnode, tcurnode; 
STRUCT logon tnewlogon; 

339 newnode = ISTRUCT heirarchy llmalloc:(SIZEOF!heirarchy_entryll; 
340 r-IF I ~newnodel \{ printf !"out of memory in form member of newnode \n•); 
341 I exi UOi: 
342 L..--\} 

343 strcpylnewnode->username,nl; 
344 strcpylne~node->deptname,dl; 

345 strcpy\newnode->groupnalle,gl; 
346 strcpylnewnode->key,"OO"l; 
347 strcpyinewnode->large,'Ol"l; 
348 newnode-)next = newnode-)down = NULL; 
349 newnode->head = NULL; 
350 
351 curnode = h_start->down; 
352 WHILE (strc:mp(curnode->deptname~d) '= 0 H curnode->next != NULLl 
353 curnode = curnode->next: /t f1nd the deptnaae t/ 

354 
355 curnode = curnode->ctown: ll found the dept and search down for group t/ 

356 WHILE (strcmp (curnode- >username ~ g l '= (I H: curnode->ne~t ! = NULU 
357 curnode = curnode->next; 
358 IF (curnode-)down == NULU cur node- >down = newnode; 
359 ~-.. ·-··-ELSE \ { 
360 I curnode = curnode->down; 
361 I WHILE (curnooe->next ~= NULU curnode = curnode->next: 
362 I curnode-}ne~t = newnode; 
363 1··--· .. \} 

364 newlogon = ISTRUCT 1 ogon t) ull oc(S I ZEOF !logon_ entry) l; 
365 r---IF (1newloqonl \{ printf("out of me11ory in newlogn of form member \n'l; 
366 I exit\0); 
367 1---\} 

368 strcpy(newlogon-)username,nl; 
369 strcpylnewlogon->password,pl; 
370 newlogon->helrarchv otr = newnode: 
371 newlogon->down = newlogon->down; 

Q" -· .;. 



372 
,...,1' 
"'" 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
4(l7 
408 
409 
410 
411 
412 
413 

logon_last->down = newlogon: 
logon_iast = logon_last->down; 

L----\} 

/ltltlitllltttttltlttttttttllttttttttlttitttlttttttttlttttttttttttttttt 
This batch process is called by the main function and it will separate 
the string send into system recognizable form so that the various command 
could be performed. It will s1mulate the eight file manipulation commands 
discussed in the thesis. There are 
1. Read a file i.e user r filename 
2. Write a file user w filename 
3. Execute a file user e filename 
4. Create a file 
5. Copy a file 
6. Delete a file 

user cr filename 
user cp sourcefilename targetfilename 
user d filename 

7. List 111e111bers user h 
8. List files user If 
9. Allow access for a file for individual member. 

user ai targetuser filenaae access right. 
i.e user A allows user B to read his file name Fl. 

A ai B F1 r 
10. Allow group access: 

This command allows the entire department or group to access his file 
command is : user ag targetgroup filename access right. 
i.e. user root department Coap to read and execute library file F2. 
rotmand : root ag Coap F2 r 

11. The command to create a user in the system. 
name departmentnaae password. 

!2. Change Directory : This comaand is designed for the user in the higher 
hierarchy. It allows user in the higher hierarchy 
to go to a directory that belongs to his subject. 

i.e. usernamel cd username2 
In this case, user1 is the superior node of user2, thus, user! 
could change directory to user2 directory. 

tttttttttttttittttttttttltttttttttttttttttttttttttlittttttttttltttttlt/ 
batch_proress() 

1--·-\-' 
" 
c;~~F< s(80J,nate(MAXLENJ,filenamel(MAXLENl,filename2[MAXLENl, 

loc£MAXLENJ,ar; 
F<EGISTEF< INT i ,j; 
i =1; j=O; 
strcpy!s,str); 

414 W~ILE is[il 1=' 'l \{ name[jJ = s[il; i++; j++; \} 
415 
416 
417 
418 
419 
420 
421 
4"" 
423 
424 

naae[j] = '\0'; 

strcpyiloc,naael; 
r·---IF (lfch = fopen(loc,"a"li == NUlll \{ 
I printf("can't open file %s\n",locl; 

ex i tfO l; 
L---\} 

strcat(loc,"tree.dat"l; 
r··-·--IF ((fl = fopenOoc,'a"ll == NULU \{ 
I printf("can't open file hS\n",locl; 

93 



425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
4o0 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 

exi UOI; 
L--·\} 

first = s[i+1J; 
second= s[i+2J; 
i += 4 i j =0; 

,--wHILE lt!s+i) 1=' 'l \{ 
I ,-IF (isalnum!tis+illl \{ tifilenaae1+jl = tls+il; 
I i i++; j++; 
I 1--\} 

I ELSE i++; 
l-\} 

t!filenaee1+jl = '\0'; 
r--SWITCHifirst) \{ 
I r-·-cASE 'c': SWITCH!secondl \{ 
I I 

I 
I 
I 
I 

CASE 'r': 
create_file!name,filenaee1l; 
BREAK; 

CASE 'p': i += 1; j=O; 
r-WHILEI i(s+il 1= '\O'l \{ 
I r---IF iisalnuaitis+illl \{ 
I I t(filename2+ji = i!s+il; 
I I i++; j++; 
I 1--\} 

I ELSE i++; 
1--\} 

tlfilename2+j) = '\0'; 
copy_fileinaae,filename1,filename2l; 
BREAK; 

CASE 'd': change_dir!name,filenamell; 
BREAK; 

DEFAULT: fprintf(fch,"problem in inner switch "l; 
printfl"\n problem in inner switch "I; 
exi UOi; 

L--··-·-·-·--·--···---·----\} 

BREAK: 
CASE 'r': execute_file!name,filenamel, 2l; 

BREAK; 
CASE 'w': execute_fileiname,filenamel,3l; 

BREAK; 
CASE 'e': execute_filelname,filenamel, 1l; 

BREAK; 
CASE '1': IF (second== 'f'l list_filelnamel; 

ELSE list memberinamel: 
BREAK; 

CASE 'd': printf!"will delete file %s by user %s\n',name,filenamell; 
delete_fileiname~filenamell: 

BREAK; 
CASE 'a' : i += 1; j = 0; 

WHILE ( s [ i J 1 = ' ' i \ { f i !!?name 2 [ j l = s [ i ] ; i ++; j ++; \} 
filename2[j] = '\0'; ar = s[i+lJ; 
aliow_access(name,second,filenamel,filename2,arl; 
BREAK: 

DEFAULT : fprintf (fch, "problem in outer switch of batch process \n"l; 

?4 



473 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
501 

1--·-\} 

fclose (fch); 
fcloseifll; 

L-\} 

printfl'problea in outer sNitch of batch process \n'l; 
eY.JtiOJ; 

/tttttttttttttlttttttttttttttltlllttllttttttttttttttttttttttttlttttttttt 
This function, upon receiving the separate string will check for the a 
approprite password in the systea and call insertion to insert this file into 
the global binary file. Then it will call calkey to calculate the ~ey of this 
new user and then call insertion again to insert the file into the directory 
of the user. 
ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt/ 
create_fileln,fi 
CHAR in,tf; 

STRUCT logon tcurlogon; 
STRUCT heirarchy tcurnode, theipt; 
CHAR tint2bin0; 

curlogon = logon_start; 
WHILEistrcapicurlogon->usernalle,nl 1= 0 ~~ curlogon->down != NULU 

curlogon = curlogon->down; 

502 curnode = heipt = curlogon->heirarchy_ptr; 
503 insertion if, ~global head, heipt, 1J; li passE'd in for global bintree if 
504 calkeylcurnode,4,0, Ol; 
505 insertionlf, ~(curnode->headi, heipt, OJ; /t insert in local bintreE' t/ 
506 primeindex++; 
507 RETURN; 
508 L...---·---... \} 
509 /tttitttttttttttttttltttttttttttttttttttttttttttttttttttttttttttttttttttttltt 
510 This calkey will receive the usernodE' from the calling function. It Nill 
511 calculate the the key basl!d on the ChinE'se Remainder Theorem and USE' the file 
512 iuniquel numbers from the file to calculatE' the Dj or the su11mation of all 
513 files in thE' directory. It started off by calculating L, the product of all 
514 file nu11bers and stored L in the string providE'd by usernodE'. Then using the 
515 old key and the file numbers in the directory, it will calculate the access 
516 rights of various files and stored them in the array of string. The Dj value 
517 is also calculated at the same time using Dj = L!Lj with L 1s the product 
518 of all Lj stored them into the array of string. The modulus of Dj, dj is also 
519 calcuiated using dj = Dj mod Lj and stored into the dj array. The ~j is then 
520 calculated using the Eucledian algorithm and stored in the xj array. Thus, the 
521 key could be then calculated using key= Dj.xj.aij + Dk.xk.aik + •.• mod L 
522 where j~k,l,m .•......... <= number of files in the directory. 
523 tsttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt/ 
524 calkeylcn, accright, givenfilenu11, fromgroupaccessl 
525 STRUCT heirarchy ten; 
526 INT accright, givenfilenum; 

528 CHAR iresult, fn[MAXJ, sum[MAU, ismalldj, tE'IIpsum[MAXJ, 
529 temp[MAXJ,templ[MAXJ,imul !l,iint2bin(i,lbdivil,taddll; 
530 UNSIGNED LONG INT locdj,ioclj,bin2int0; 

95 



531 ! 
i 

REGISTER INT i,k: 
532 VOID cal ace(}: 
533 I 
534 I r-IF 
535 I I 
536 I I 
537 I 1 
538 I I 
539 I I 
540 I I 
541 
542 

(cn->head == NULL! \{ 
r--IF (frolgroupaccess == 11 \{ 
I ,-5WITCH!accrightl\{ 
I I CASE 1: strcpy(cn->key,'OOO!"l: 
I I BREAK; 
I I CASE 2: strcpy(cn->key,"0010"); 
! I BREAK; 
I I CASE 3: strcpy(cn-Hey,'0011'l; 
I I BREAK; 

96 

543 

I I 
I I 
I I 
I I 
I I 
I 

I I DEFAULT: printf(•error in calkey calculating froegroupaccess\n"l; 
544 
545 
546 
547 
548 
549 
550 

I I 
I I 
I I 
I I 

551 I I 
I I 

553 I I 
554 I I 
555 I I 
556 I ! 
557 I 
558 !.. _______ \} 

I L----·\} 

result = int2bin(givenfilenuml; 
L..--\} 

r·-··--ELSE \{ 
I strcpyicn->key, "0100"1; 
I result = int2bin(priae[priaeindexll; 
L--\} 

i = 0; 
,---WHILE !tiresult+il ~= '\O'l \{ 

cn-}large[i] = tiresult+il; 
j ++; 

L---\} 

cn->large[i] = '\0'; 
RETURN; 

559 num =0; 
560 r--IF (accright ~= 0) \{ 
561 I 
562 I ,--··-IF (fromgroupaccess == FALSE! \{ 
563 I I result= int2bin(prime[primeindexll; Itt convert the new filenue to bin tti 
564 I i =0; 
565 r-·-wHILE (t(result+il != '\0') \{ 
566 i fr:[iJ = i(result+il; 
567 I i++; 
568 L--··--\} 

569 fn[i] = '\0'; 
571) L-·-·-\} 
571 r--ELSE \ { 
572 result= int2bin(givenfilenuml; 
573 i = 0; 
574 ,---wHILE a (resul t+i) I= '\0') \ { 
575 I fn[i] = t!result+il; 
576 i ++; 
577 L---\} 

578 fn[i] = '\0'; 
579 L----·\} 

sao strcpy(temp,cn->largel; 
581 strcpy(templ,fn); 
582 result= mulltemp1,templ; 
583 /t result= mullfn, cn->Jargel cal the sigma L ttl 



584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
617 
618 
619 
620 
6'1! .... 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
67. 

-.i'l 

635 
636 

i = 0; 
.---wHILE lllresult+il '= '\O'l \{ 
I cn->large[iJ = tlresult+il; 
I i ++; 
'---\} 

cn->large[iJ = '\0'; 
strcpylgloballarge,cn->largel; 
strcpylglobalkey,cn->keyl; 

L-\} 

r---ELSE \{ 
I strcpylglobalkey,cn->keyl; 
I strcpylgloballarge,cn->largel; 
'---\} 

calacclcn-)headl; 
r--··IF !ac:c:right '= Ol \{ 

IF (accright == 4! strcpylaij[numl, "0100"): 
ELSE IF laccri ght == 3i strcpy (ai j[numl, • 0011" l; 
ELSE IF (accright == 2! strcpylaij(numl,"0010"l; 
ELSE IF laccright == 1l stn:pylaij[numJ,"OOOl"l; 
strc:py!temp,c:n->largel; 
strcpyltempl,fnl; 
result = bdiv(temp!,temp,ll; 
i = 0; 

r--wH I LE !t (resul t+i l ! = '\0' l \ { 
I dj[nUiaHi l = t!result+i l; 
I i ++; 
L--\} 

dj[numJ[iJ = '\0'; 
strcpvltemp,dj[numll; 
smalldj = bdivltempl,temp,Oi; 
i = 0; 

r--wHILEI i(sJ,alldj+il 1= '\O'l \{ 
I temp[iJ = ~ismalldj+il; 
I i++; 
L---\} 

temp[il ='\0'; 
locdj = bin2intltempl; 
strcpyltemp,fni; 
loclj = bin2intltempl; 
result = int2binlgcdllocdj,locljli; /l cal xj and put to last array if 
i=O; 

r·---·-wHILE I tlresult+il 1= '\O'l \{ 
xj[numJ[iJ = tlresult+il; 
i++; 

'----\} 

xj[numJ[iJ = '\0'; 
num++; 

L----·\} 

/itttltt cal key no~ ttttttitl/ 
strcpylsum,'OO"I; 

,---···-FOR (i=O; i<num; i++i \{ 
I strcpyltemp,dj[ill; 
I strcpyltempl,aij[iJl; 

97 



637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 
650 
651 

result= ;ul !te1p~te1pU; /U dj[l] 1ultiply aij[i} U/ 
k = 0; 
,--WHILE! l!result+kl != '\O'l \{ 
I t (tellip+U = i !result+U 
I H+; 
L--\} 

tlte;p+kl = '\0'; 
f* te1psum = mull result, xj[i Jl; l! 

strcpyltempl,xj[iJl; 
result = mui \temp, templl; 
k=O; 
r---wHILE ( tiresult+kl != '\0' l \{ 
I tltempsum+kl = ilresult+kJ; 
I k++; 
L--\} 

652 i!tempsum+ki = '\0'; 
653 r---IF lstrcmp(tempsum, cn->Jargel > Ol \{ 
654 I strcpyite;p,cn->Iargel; 
655 I strcpy(te;p1,tempsumi; 
656 I /lte1psu1 = bdivicn->large, tempsum, 01; t/ 
657 I result= bdivltemp,temp1,0l; 
658 I k=O; 
659 I r·-·-wHILE ( tiresult+kl '= '\0'1 \{ 
660 I I titempsum+kl = tiresult+kl; 
661 I I k++: 
662 I L·--·-\} 
663 I tltempsum+kl = '\0'; 
664 /t find the modulus t/ 
665 '--·--·-\} 
666 result = addlsum, tempsuml; 
667 k=O; 
668 ,---wHILE ( itresult+ki != '\0') \{ 
669 I tlsum+kl = i(result+kl; 
670 I k++; 
6 71 1.--··---\ } 

672 llsum+kl = '\0'; 
673 1---\} 

674 strcpyltemp,cn->largel; 
675 strcpyitempl,suml; 
676 result = bdivltemp,temp!,OI; 
6 77 k = 0; 
678 r·----wHILE i tiresult +kl 1= '\0') \{ 
679 tisum+k) = tlresultHl; 
680 k++; 
681 L---··\} 

682 l(sum+ki = '\0'; 
683 strcpylcn-)key,suml; /t new key is found t/ 
684 RETURN: 
685 L--\} 

686 illtltttltttlltttlttttttttttttttltltltttttttttttttttiittttttttltltttilt 
687 The use of this gcd is to calculate ~j when it is called where 
688 djxj = I mod Lj. This function will then return the value of xj into the 
689 calling function. 

98 



690 ttttillttlttttlttttttttttllltltJtltttttttttttttttlttititttttttlllltttt/ 
691 INT gcdid,l i 
692 UNSIGNED LONG INT d,l; 
693 ,--\{ 
694 UNSIGNED LONG I NT x; 
695 r--FOR !x = 1; x <=I; x++) \ { 
696 I IF llldhl ! ll == 11 RETURNlxi; 
697 L----\} 

698 fprintf(fch,"error in gcd with Dj = !ld and Lj = !ld\n",d,ll; 
699 printfl"error in gcd with dj == !ld and lj == Zld \n",d,ll; 
700 exitlOl; 
701 L----·\} 
702 /ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttllllttttt 
703 This function calacc will calculate the access rights of the various 
704 files in the directory. It receives the head node of the directory and 
705 using recursive technique to calculate the access rights. 
706 tittttttttttttttttttttttttttttttttttttttttltttitttttttttttttttttttttti 
707 VOID calacclheadl 
708 STRUCT tree_node_rec thead; 
709 ,---\{ 
710 CHAR fn(MAXl, temp[MAXJ, tresult,tint2bin0, tbdiv!l, tsmalldj, 
711 temp1[MAXl,temp2[MAXl; 
712 UNSIGNED LONG INT locdj,!oclj; 
713 REGISTER INT i; 
714 
715 
716 
717 
718 
719 
720 
721 
722 
7'11 ... .., 
724 
725 
726 
727 
728 
729 

IF ( 1 head) RETURN; 
result = int2binlhead->fnuml; 
i =0; 

r-·-wHILE ( t!result+il ~= '\O'i \{ 
I tlfn+il = llresult+il; 

i++; 
L----1 ·, 

\J 

t (fn+i l = '\0'; 
strcpyltemp2,globalkeyl; 
strcpyltemp1,fnl; 
result= bdivltempl,temp2,0l; 
Itt aij[numl = bdivlfn,globalkey, OJ; cal big dj = L div Lj ttl/ 
i = 0; 

r--wHILE I tlresult+ii 1= '\0') \{ 
I aij[numl[iJ = tlresult+il; 

730 i ++; 
731 '--·-\} 
732 aij[numHil = '\0'; 
733 strcpy(templ,fnl; 
734 strcpyltelp2,globallargel; 
735 result= bdivitempl,temp2, ll; 
736 /tdj[numl = bdivlfn, globallarge, li cal small dj = dj div filenum t/ 
7.,., 

.J/ 

738 
739 
740 
741 
742 

i=O; 
r---wHILE ( t(result+il 1= '\(l') \{ 

I dj[numl[il = tlresult+il; 
I i++; 
'-·---\} 

dj[nu1Hil = '\C'; 

99 



743 
744 
745 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
771 
772 
773 
774 
775 
776 
777 
778 
779 
780 
781 
782 

strcpyltespl,fnl; 
strcpyltesp2,dj[nuall; 

/tsmalldj = bdivlfn, dj(numl, Ol;t/ 
smalldj = bdiv(tesp1,temp2l; 
i = 0; 
r-~HILE ( tlssalldj+il != '\0'1 \{ 
I t!temp+il = tlssalldj+il; 
I i ++; 
L-··-\} 

tltemp+il = '\0'; 
locdj = bin2intltempl; /t convert ssall dj to unsigned long int t/ 

I..-.-\} 

strcpylteap,fnl; 
loclj = bin2intltempl; 
result= int2binlgcd\locdj,locljll; 
i = 0; 

r----··-wHILE ( t!result+il 1= '\0'1 \{ 
I xj[numJ[iJ = tlresult+il; 
I i ++; 
L-\} 

\} 

xj[nuaJ(il = '\0'; 
IS xj(numJ = int2binlgcdllocdj, head->fnuall cal xj and store in the array ti 

num++; 
calacclhead->lptl; 
calacclhead-)rptl; 
RETURN; 

/tttttttttttttttttttttttttttttitttltttittttttttttttttttttttttttttttttttttt 
This execute_file will carry out the request by the user and perform the 
execute function. It first check the user's password for validity of the 
command. Then it will find the usernode in the hierarchy structure. If this 
file is found in his own directory, then he can access it. Else it will 
go to the global binary file directory to check for this file and retrieve 
the address that points to the owner of this file. Comparison is made on the 
user and the owner of this file. If the owner of this file is the subject of 
this user, then user has e~clusive access rights on this file. Else, this 
the user request is rejected. 
tltittttttitttittttttitttttttltttttittttlttitttttttttttltlttttttttttttttti 
execute_fileln,f, accrightl 
CHAR tn,tf; 

783 INT accright; 
784 r···-·· \ { 
785 I STRUCT logon tcurlogon; 
786 STRUCT heirarchy tcurnode; 
787 STRUCT tree_node_rec iaccessnode, tstacHI1AXSTACKJ, tloc, ifind_nodell; 
788 CHAF< tresult,temp[MAXJ,templ(MAXJ,tbdivll, tint2binil; 
789 INTi, found, stad_top; 
790 REG I STEF< I NT k; 
791 
792 curlogon = logon_start: 
793 WHILE ( strcmpicurlogon->username,ni 1= 0 U curlogon->down 1= NULU 
794 curlogon = curlogon-)down; 
795 curnode = curlogon->heirarchy_ptr; 

100 



796 accessnode = curnode-}head; 
797 rc--·IF (accessnode == NULU \{ 
798 i fprintfifch,"Zs has no files in the directory \n',nl; 
799 I RETURN; 
BOO 1--\} 

801 loc = find_nodeiaccessnode,f, &found, stac~, &stack_top, 11; 
802 r·--IF ifound == TRUEI \{ 
803 1 result= int2biniloc->fnuml; It convert filenum to string t/ 
804 I k = 0; 
805 I r--·-wHILE I tiresult+kl 1= '\0' l \{ 
806 I t(temp+kl = tiresult+kl; 
807 I H+; 
BOB L---\} 

809 
810 
811 
812 
813 
814 
815 
816 
817 
818 

. 819 
8'j(l 

8'11 
'-' 

822 
823 
824 
825 
826 
827 
828 

l ___ \i, 

" 

titemp+k) = '\(I' • •V ~ 

strcpyltempl,curnode->keyl; 
result = bdivitemp,temp1,01; 
/l bdivlresult, curnode-)key, OJ cal the ace right t/ 
k=O; 
r--wHILE ( liresu!t+kl 1= '\0' 1 \{ 
I tltemp+kl = tlresult+kl; 
I H+; 
L---\} 

titemp+kl = '\0'; 
i = bin2int(templ; ii convert ace right to int if 
r----IF i i >= accrightl \{ 
I IF laccright == 1) strcpyltemp, "execute"!; 
I ELSE IF iaccright == 21 strcpvltemp, "read"!; 
I ELSE IF iaccright ==31 strcpyitemp,'write"J; 
I printf("\nfile Xs is allowed Zs by user %s \n",f,temp,nl; 
I RETURN; 
L-----··\} 

,----ELSE\{ printfl"user i.s is not allowed execute on file Y.s •,n,fl; 
I RETURN; 
1--·\} 

r-·-·---ELSE \ { 
loc = find_node(globalhead, f, &found, stack, &stack_top, 11: 
,---·-IF (found == TRUE l \ { 

101 

829 
830 
831 
832 
833 
834 
835 

r····--·IF i\curnode-)deptname£01 == '$') U (curnode->groupname£0] == '$')) \{ 

836 
837 
838 

839 

840 
841 
842 
843 

I printf("user 4s is allowed to access file !s with rights ~d \n",n,f,accrightl 

RETURN; 
L---\} 

!"-·-ELSE IF! !curnode-)groupname[OJ == '$') && (:;trcmp(curr.ode->deptname, loc->o 

deotnamel == OJ) \ { 
printf("user Zs is allowed to access file 7.s with rights 7.d \n', n, f, accri 

RETURN; 
L--\} 

r----ELSE IF ( strr::mp icurnode- >user name,! oc- >ownerpt- >groupnamel == Ol \ { 
! printf!"user !sis allowed to access file /.s with nghts Zd \n', n, f. accri 



848 
849 
850 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
361 
862 
863 
864 
865 
366 
867 
868 
869 
870 
871 
872 
873 
874 

RETURN; 
1..---\} 

L--\} 

L--\} 

/ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttitiiittti 
This copy file function is called by the batch_process and its main 
function is to copy the filet to file2. After being invoked, it will 
search the list of all users in the system, equivalent the etc/passwd 
in the Unix system, after verifying the users and the password, the 
function will be using the names of filet to find the file in the local 
directory, if the file is found, then it will create another node in the 
local directory and call crete file function to create a node in the 
directory and perform key calculation by calling the calkey and insertion 
to insert the file in the local directory. 

tttttttttiittttttttttttttttttttttttttttttttttttttttttttttttttttttttttti 
copy_fiie(n,f1,f2) 
CHAR tn, tfl, if2; 

r-···\{ 

STRUCT logon tcurlogon; 
STRUCT heirarchy tcurnode; 
STRUCT tree_node_rec il oc, Hi nd_node 0, tstacHMAXSTACKJ; 
INT found, stad_top; 

curlogon = logon_start; 
WHILE ( strcmp (curl ogon- >user name, nl ~ = 0 ~~ curl ogon- >dmm ~ = NULLl 

curlogon = curlogon->down; 

875 curnode = curlogon->heirarchy_ptr; 
876 ~--·-IF \cur node- )head == NULLl \ { 
877 I printf("No file in the dir of Is \n",nl; 
878 I RETURN; 
879 L---·\} 

880 
881 
882 
883 
884 
885 
886 
887 
888 

Joe = find_node(curnode->head, fl, ~found~ stack, &stad_top~ 1l; 
printfl"node copied is Is\n",loc->infol; 
e>:i t !Oi; 

L-·---·\} 

r·-··-IF (found==TRUEl \{ 
i create_file\n,f2i: 
I RETURN; 
L--··''· .,, 
!""-··-·--ELSE \ { 

889 printf(" file i.s not found in the directory \n",f!l; 
890 RETURN; 
891 L-··---\} 

892 \} 
893 /tltttlttttttttttttttttttttttttttttttttttttttttttitlttttttttttttttttttttt 
894 This list file function is to list the file that the user has in his 
895 directory. It will list the file names that are accessible by the user 
896 as well as listing the access rights of the user towards that file. It did 
897 this by retrieving the key of the user~ and retrieving the file number of the 
898 file in the directory and perform a calculation of 
899 
900 access right = key mod filenumber. 

102 



901 
902 Then this listing is listed on the file. 
903 tttttttttttttlltittttttttttttttttltttttttlttttttttttttttttttitttittttttttt/ 
904 list_file(nl 
905 CHAR tn; 
906 r--··\{ 
907 I STRUCT logon tcurlogon; 
908 I STRUCT heirarchy tcurnode; 
909 
910 
911 
912 
913 

I 
I 
I 
I 

curlogon = logon_start; 
WHILE( strc;p(curlogon->userna•e,n) ~= 0 U curlogon->down 1= NULL! 

curlogon = curlogon->down; 

914 curnode = curlogon->heirarchy_ptr; 
915 r----IF (curnode->head == NULLl \{ 
916 printf("no files in the directory of user Zs \n", nl; 
917 RETURN; 
918 L--\} 

919 
920 
921 
922 
923 
924 
925 
926 
927 
928 
929 
930 

933 
934 
935 
936 
937 
938 
939 
940 
941 
942 
943 
944 
945 
946 
947 
948 
949 
950 
951 
9C:'J 

953 

printtree(curnode->head,curnode->keyl; 
RETURN; 

'-·--·\} 

iiittilittitliltittiiiiiiliiiitiltttttttttttttiiitttttttilliitiittitttitti 
This printtree is called by the list file function. If there are more file 
in the binary local directory tree, then it will call itself recursively to 
print more files na~es and access rights. 
tttttttttttttttttttittittttttttttitttltttttttttttttttttttttttttttttttttitt/ 
printtreelhead, keyi 
STRUCT tree_node_rec thead; 
CHAR Hey; 

r·--·····\ { 
CHAR locaH:ey[MAXJ, tresult, tbdiv(), temp(MXJ; 
REGISTER INT i; 

IF \ 1headl RETURN; 

result = int2binlhead-)fnuml; 
j = 0; 

;-----WHILE ( tlresult+ii 1= '\O'l \{ 

I t(temp+il = tlresult+ii: 
I i ++; 
'--·--\} 

tltemp+il = '\0'; 
strcpy1localtey,keyl; 
result = bdivltemp,localkey,Ol; 
/Uresult = bdiviresult, key, 01 ti 
fprintf(fch,"File name-> Zs ano access right is Zs\n", head->info,resultl: 
strcpyllocalkey,tevl; 
printtree'head->lpt,localkeyl; 
printtreelhead->rpt,localkeyl; 

L---·-·--\ } 

ittttttittlttttttttttlttttttttttttttttttttttltittttttttttttttttttttttttttt 
This list member function is called by the batch_process function, it 
receives information on the name of the user. The function will then 

103 



104 

954 search for the user in the lagon file and verify the password. If it is 
955 correct, the function will then follow the addresses of the hierarchy and 
956 print the names of the user and their department. 
957 tlttttttttttttttttttttltltttttttttttttttlttttttttttttttt•tttttttttttttttt/ 
958 list memberinl 
959 CHAR tn; 
960 ,---\ { 
961 I STRUCT logon tcurlogon: 
962 I STRUCT heirarchy tcurnode; 
963 I 
964 I curlogon = logon_start: 
965 I WHILE( strcmp(curlogon-)username,nl 1= 0 ~& curlogcn->down != NULU 
966 curlogon = curlogon->down; 
967 
968 curnode = curlogon->heirarchy_ptr; 
969 r------IF (curnode->down == NUlll \{ printf(" no me1bers in group 4s \n",nl; 
970 I RETURN; 
971 L----\} 

972 r--IF (cur node- )groupname[OJ == '$' ~~ curnode-}deptname[O J == '$' l \ { 
973 I fprintf(fch,"listing all me1bers of system \n"l; 
974 I printingicurnodel; 
975 I RETURN; 
976 L--\} 

977 ,----ELSE IF icurnode->groupname[OJ == '$') \{ 

978 I fprintflfch,"listing all members of dept Is \n",curnode->deptnamel; 
979 I printinglcurnodel: 
980 I RETURN; 
981 !_.....·-\} 

982 r---ELSE \( /UiU curnode->groupname[OJ != '$' Uttti/ 
983 I fprintflfch,"Jisting all members of group Zs \n",curnode->groupnamel; 
984 I curnode = curnode-)down; 
985 I r-----·WHILE\curnode !=NULL! \{ printfi" %s \n",curnode->usernamel; 
986 I I curnode = curnode->next; 
987 I '--·\} 
988 I RETURN; 
989 L----·\} 
990 '----·\} 
991 fttitiitiiiiiliiiiiiiiiiiiiliiiiitititiittiitiiltitiiliiitiiitiilitittiit 
992 This change directory function is called by the batch process function and 
993 receive names of the superios node and name of the inferior node. If this 
994 relationship holds, the command would be obeyed. 
995 ttttttttttttlttttttttttttttittttttittttltlttttttttttittittttttlttttttttttti 
99b change_dir(nlnl) 
997 CHAR tn,tn1; 
998 ,--·--·\ { 
999 STRUCT heirarchy iusen, iuser2; 

1000 STRUCT logon tcurlogon; 
1001 
1002 curlogon = logon_start; 
1003 WHILE ( strcmp(curlogon->username,nl '= 0 && curlogon->down 1= NULU 
1004 curlogon = curlogon->down; 
1005 user! = curlogon-)heirarchy_ptr: 
1006 



1007 curlogon = logon_start: 
1008 WHILE( strcmp(curlogon->userna~~e,nll 1= 0 H curiogon->down 1= NULU 
1009 cur!ogon = curlogon->down; 
1010 user2 = curlogon->heirarchy_ptr; 
1011 
1012 r-IF (userl->deptname£01 == '$' U user1->groupname[0] == '$' l \{ 
1013 I fprintf(fch,"allow change dir \n"); 
1014 ! user! = user2: RETURN; 
1015 L----\} 

1016 r---ELSE IF (userl->qroupname[OJ == '$' ~It user2->groupname[OJ == '$' l \{ 
1017 fprintf(fch,"change dir not allowed \n"l; 
1018 RETURN; 
1019 L----\} 

1020 ELSE IF (userl->groupname[OJ == '$' &~ user2->groupname[OJ != '$' U 
1021 r--strcmp(user1->deptname,user2->deptnallle) == Ol \\ 
1022 I fprintHfch,"allow change dir \n"l; 
1023 I RETURN; 
1024 \} 
1025 r·---ELSE IF ( strcmp(user1->usernaae,user2->groupnamel == 0) \{ 

1026 I fprintf(fch,"allowed accessed \n"l; 
1027 I RETURN; 
1028 
1029 

. 1030 
1031 
1032 
1033 
1034 
1035 
1036 
1037 
1038 
!039 
1040 
1041 
1042 
1043 
1044 
1045 
1046 
1047 
1048 
1049 
1050 
1051 
1052 
1053 
1054 
1055 
1056 
1057 
1058 

L--\} 

,---ELSE\{ fprintf(fch," no such cases beheen i.s and i.s \n",n,nll; 
I RETURN; 
L--\} 

'--·\} /UtUUU end of function UUUUUUUUi 
/ttttttttiiitiiiittittttitttttiiiiiittttttttttttttttttlttttttttlttttttt 
This delete_file function is called by the batch_process and will 
check for the user in the logon list to ensure security. Then it will 
search the file in the global directory. If the global directory contains 
the file, then this file will be deleted. Any 1ember that has this file will 
have their file deleted and their keys would be recalculated accordingly. 
It also performs necessary checking on the validity of the user and whether 
the file is owned by the user. If validity test fails, then the delete 
request is not honored. 
ttftfttitttttttttiiittftttttttttttttttJfttttttfit&ttttiiittttiitttitttt/ 
delete_file(n,fi 
CHAR in,H: 

r-·-\{ 

STRUCT 1 ogon tcur logon; 
STRUCT heirarchy tcurnode, fen; 
STRUCT tree_node_rec tloc, tstacWIAXSTACKJ; 
CHAR iresult,tlock,ibdiv(l,templock[MAXJ,temp![MAXJ,temp2[MAXJ; 
INT stad_top, found, 1; 
REGISTER INT k; 

curlogon = logon_start; 
WHILE (strcmpicurlogon->usernalie,nl != 0 U cur!ogon->down != NULLJ 

curlogon = curlogon->down; 

curnode = curlogon->heirarchy_ptr; 

1059 lac= find_node\globalhead, f, Hound, stack, &stack_top, ll; 

105 



106 

1060 r·--IF ((found == TRUE) ~~ \loc->ownerpt == curnodel 1 \{ 

1061 I printf("user Is owns flle i.s and deleting ..... \n',n~fl; 

1062 I 
1063 I loc = find_nodelcurnode->head~ f~ &found, stack, ~stack_top, ll; 
1064 I fi f1nd file in local bin tree if 
1065 I 
1066 I Jock = int2bin(loc->fnuml; li convert fnum to bin if 
1067 I k = 0; 
1068 I ,--WHILE ( iOod+kl '= '\O'i \{ 
1069 I i(tesplock+kl = iilock+U; 
1070 I k++; 
1071 L.--\} 

1072 iiteillplod+U = '\0'; 
1073 deletionlf, ~lglobalheadi,11; ll deleting the global file ii 
1074 curlogon = logon_start: 
1075 r-·-..WHILEtcurlogon != NULLi \{ 
1076 I en = curlogon->heirarchy_ptr; 
1077 strcpyitempl,teaplockl; 
1078 strcpyitemp2,cn->largel; 
1079 result = bdiv\teapl,temp2,0l; 
1080 /iresult = bdivlloct, cn->Iarge, Oll/ 
1081 i=O; found = FALSE; 
1082 r·-·.WH I LE ( tfresult+i) 1 = '\(!' J \ { 

1083 I IF (t(result+il == 'l'l found= TRUE: 
1084 I IF \found == TRUEi BREAK; !i to check whether divisible by fnu111 t/ 
1085 I i ++; 
1086 L-·--\} 
1087 r-----IF I found == FALSE) \ { 
1088 I deletionlf, ~(cn->headl ,Oi; /i reiliainder == 0 if 
1089 I strcpyitemp1,te~,plocU; 

1090 strcpyltemp2, cn->largel; 
1091 result= bdivttemp1,temp2, li; 
1092 k = O: 
1093 r··-···-wHILE ( i(result+kl '= '\0') \{ 
1094 t(templ+kl = llresult+tl: 
1095 k++; 
1096 . L---·\} 

1097 iitelllpl+kl = '\0': 
1098 strcpylcn-)Jarge,temp11; 
1099 /tcurnode->large = bdiv(Joc~, curnode->large, lit/ 
1100 IF \cn->head '= NULU caHey(cn, 0, 0, 01; 
1101 L-·--···\} 

1102 curlogon = curlogon->down; 
1103 '---·--·\} 
1104 L---\} 

1105 r·--·-ELSE IFI (found == TRUE ) &~ (loc->ownerpt != curnodel i \{ 
1106 I loc = find_nodelcurnode->head, f, ~found, stack, &stack_top, 11; 
1107 r--·-·IF \found == TRUEl \{ 
1108 deletion(f, ~dcurnode->headi,Ol; 

1109 strcpyltemp1,templockl; 
1110 strcpyttemp2,curnode->largel; 
1111 result= bdivltemp1,temp2,1l; 
1112 k=O; 



'--\} 

r---WHILE ( tiresultHi 1= '\O'l \{ 
I titemp1Hl = tiresul t+kl; 

k++; 
L---\} 

t!teapi+kl = '\0'; 
strcpy(curnode->large,temp1l; 
/icurnode->Jarge = bdiv(lock, curnode->Jarg~, ll t/ 
IF (curnode->head != NULL l caHey!curnode, 0, 0, Ol; 

1113 
1114 
1115 
1116 
1117 
1118 
1119 
1120 
1121 
1122 
1123 
1124 
1125 
1126 

r---ELSE \{ 

L...-·--\} 

i---\} 

printf(•file not found in local bin dir of Zs\n",nl; 
RETURN; 

1127 ,--·---ELSE IF !found == FALSE! \{ it can't find the file in global bin treE- t/ 

1128 loc = find_node(curnode->head, f, ~found, stack, ~stack_top, 1!; 
1129 r--·IF (found == TRUEl \{ 
1130 I deletion!f, ~{curnode->headl,Ol; 

1131 I printfi"file 7.s deleted in local directory \n", fl; 
1132 I IF (curnode->head != NULLl calkeyicurnode, 0, 0, Ol; 
1133 I RETURN; 
1134 '---·\} 
1135 r--£LSE \ { 

· 1136 I printfl"file does not exist in both local and global directory \n'l; 
1137 I RETURN; 
1!38 L--\} 

1139 L-·-\} 

1140 L---\} 

1141 /tttttttttttlttitttttllttttttitttttttliltttittttiitttittttttttttttltitttitt 
1142 This function is directly called by the batch_process function and its main 
1143 function is to determine the requested user in the system and find the file 
1144 in his directory. Only file that are present in the requested user's 
1145 directory are allowed to proceed. It will also determine the group access 
1146 or individual access this user requested and will call the approprite 
1147 function to proceed with the processing of the access. 
1148 itttltllttttttittttlittttttttttttttltttttttlttlttttttttttttttttttttttttttttt/ 
1149 allow_accessin,gori,uname,fname,accessright) 
1150 CHAR tn .. gori, tuname, tfname,accessright; 
1151 r··-·-\{ 
1152 STRUCT logon tcurlogon; 
i153 STRUCT heirarchy tcurnode, tusernode: 
1154 STRUCT tree_node_rec tghead, tloc, tfind node(), istacW!AXSTACKl; 
1155 INT num, found, stad_top; 
1156 
1157 curlogon = logon_start; 
1158 WHILE( strcmp(curlogon->username,n) '= 0 &1, curlogon->down 1= NULll 
1159 curlogon = curlogon->down; 
1160 
1161 curnode = curlogon->heirarchy_ptr; 
1162 ,-·-·-··IF icurnode- >head == NULU \ { 
1163 I fprintf(fch,'no files in the dir of user Zs in allow access \n",nl; 
1164 RETURN; 
1165 L-----\} 

107 



116t ghead = globa;head; 
1167 lac= find_node{ghead~ fname~ &found, stack, ~stack_top~ 1J: 
11t8 r··--···-···IF \found ==FALSE ! \{ 

i169 printf{"File ~~s net found in all0w access \n;;~ fname}: 
1170 RETURN; 
t 1 "7! L-.......... \ '· 
J..J. .1. \J 

~ 17 4 RETURN: 
1.' 

1176 loc =find node,:curnode->head, fnarne. ;:found. stack~ b:stack top~ 11; 

lC' IF ifound == cALSEi \{ 
!:78 pnnt.:(''fiie i.s 1s not found in the local direc\n",fname:': 
117'1 RETURN; 

1181 curlogon = logon_ste,rt; 
1182 WHILE 'strcmpicuriogon->username,unamel '= 0 H curlooor-::down i: NULU 
1183 curlcgon = :urlogon-}down: 
1184 r·-··· .. ······IF {curlogon->down ==NULL;:~: ~-trcmo~curloyon-.>username,uname) ~= 0 \{ 

1135 
1186 
.. ;;;-; 
i.L:Ji 

1188 
1189 

1 i q l 
1192 
! 1 'i3 
1194 

IF ~yDri == ~ g'; fprintf (fch, ;;no such grouo \n';}; 
ELSE fprir:tf(fch,"qo such individual \n'i; 

RETUHN: 

r·-··--·-5W I TCH \ ac c es sr 1 gh t 1 , ·, 

i CASE 'e': num = 1; 
BREAK; 

CASE 'r': nuK; = 2: 
BREAK: 

CASE 'w': num = 3; 
1!'15 BREAK; 

1197 usernode = curlogon->heirarchy_ptr: 
11'18 IF (gori == 'g'i groupaccess(usernode,num,loc->fnum,loc->lnfo, 1i: 
1199 ELSE groupaccess(usernode,num,loc->fnum,!oc->info, Oi; 
1200 RETURN; 

1203 This groJoaccess is called by the allow access and it will determine the 
1204 whether this :sa group access or individual access, If individual access is 
1205 requested, it will run once by calling insertion functiJn to insert the file 
1206 in the target user's directory and call calkey function to recalculate the 
12(:7 key of the user again. If group access is encountered, it will keep calling 
1208 groupaccess recursively to perfor~ the above function, 
t=no tttttttttttttttatttttttttttttttttttttlttttttttttt!tlttttlttttttttttt•ttttttt/ 
~ ·: ( >; 
l.;.l ,_. 

F:·,l 
.l..:.. l .. 

1 ~·; ~· 
!..: .. .;..:.. 

groupac:esslroot,givenright,or_fnumber,or_fname, grpaccl 
STF:UCT heirarchy ~root; 

INT gnenright,or_fnunber, 'Jipacc: 
CHAR ;:or _fname: 

i:15 STRUCT ~ie:rarchv the1pt: 
12:6 STRUCT tree nc;de rec tluc. t~tack[MAXS.TACKJ~tfind_nodeO: 

1217 INT ~toe!; tcp. found; 
; ·';i,., 

•.:.iC 

108 



1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 

1234 
1235 
1236 
1237 
1238 
1239 
1240 
1241 
1242 
1243 
1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 
1258 
1259 
1260 
1261 
1262 
1263 
1264 
1265 
1266 
1267 
1268 
1269 
1270 
1271 

,--·-IF ('rootl\{ 
I printfl"inside root has noth1ng \n"l; 
I RETURN; 
'---\} 

heipt = root; 
r--IF iroot->head == NULLI \{ 
I calkeylroot,givenright,or_fnumber,1l; 

L-··---·\} 

insertionlor_fname, &lroot->headl, heipt, Ol; 
loc = find_nodelroot->head,or_fname,~found,stack,&stack_top,1l; 
loc->fnum = or_fnumber; 
,--IF lgrpacc == TRUE I \ { 
I groupaccessiroot->next,givenright,or_fnumber,or_fnaae,ll; 
I groupaccessiroot->down,givenright,or_fnumber,or_fname,ll; 
L-\} 

ELSE RETURN; 

r--ELSE \{ 
I calleyiroot, givenright, or_fnu1ber, 11; 
I insertionlor_fname, ~lroot->headl, heipt, Oi; 
I loc = find_node(root->head,or_fnaae,&found,stac~,&stack_top,1J; 
I loc->fnu• = or _fnu1ber; 
I r--IF lgrpacr == TRUEI H 
I printfl"inside the groupaccess of tore than one file\n"l; 
I printfi"user name is Xs\n",root->usernamel; 
I groupaccesslroot->next, givenright, or_fnu1ber, or_fnate,ll; 
I groupaccess!root->down, givenright, or_fnueber, or_fname,ll; 
I L---··\} 

L---\} /U else loop Hi 
'---\} 

/tttJttltttttttttttttttttttttttttttttttltttitititttttttttttitiittittttttttt 
This printing is called by the main program to print all users in the 
hierarchy for their name department name and group name. It will call itself 
recursively. 
tttttttttlttltttltttttttltltttltttttttttttttttttttttttttttttttttttttttttttt/ 
printing (root) 
STRUCT heirarchv iroot; 

,---··\ { 

IF ( ~ rootl RETURN; 
fprintflfch,"The name is Xs \n",raat->username); 
fprintf!fch,"The deptname is Xs \n"~root->deptnamel; 

fprintfifch,"The groupname is Zs \n",root-)groupnaeel; 
fprintflfch,"ttitttttttttttttttt \n"l; 
printinglroot->downl; 
printing(root->nextl; 

/tttttttttttttttttttttttltttttitttttttttttttttttttttttttttttttttttttltttttlt 
This print logon function is called by the eain program and it will print 
out all the users name and password in the \dev\passwd directory. It is only 
supposed to be called by the system administrator. 
ttttttttttttttttttttttitttttitttttttttttttttttttttttttttittttttttttttltttttii 
print_logon(rooti 
STRUCT logon troot; 

r····-··-\ { 

109 



1272 
1273 
1274 
1275 
1276 
1277 
1278 
1279 
1280 
1281 
1282 
1283 
1284 
1285 
1286 
1287 
1288 
1289 
1290 
1291 
1292 
1293 
1294 
1295 
1296 
12'17 
1298 
1299 
1300 
1301 
1302 

STRUCT logon lcurlogon; 
I IF ( 'rootl RETURN; 
I curlogon = root; 
I r·-DO \( 
I I fprintf(fch,"naae is ~s \n",curlogon->usernamel; 
I ! fprintflfch,"password is ~s \n",curlogon->passwordl; 
I I fprintflfch,"us~rnam~ is ~s \n",curlogon->heirarchy_ptr->usernaael; 
I 1 fprintflfch,"d~ptnaae is ~s \n",curlogon->heirarchy_ptr->deptnaael; 
I I fprintflfch, 'groupname is ~s \n",curlogon->heirarchy_ptr->groupnamel; 
I I fprintf(fch,'key is Zld \n",wrlogon->heirarchy_ptr->keyl; 
I I cur 1 ogon = curl ogon- >down; 
I L--\} WHILE lcurlogon ~= NULU; 
!..·-\} 

/ltttttttlttttttttttttttttlttltltltitttttlltiiiittttttJttttttttttttttttttt 
This print function is called by various tree manipulation function in the 
program. It will print the name of the files in the local as well as global 
directory if call appropritely. 
ttttttttttttttlitlttttttttttttttttttttttttttttttttttitttitttttttttttttittt/ 
print Is, global l 
CHAR ts; 

r-··---\ { REGISTER I NT i; 
I FILE tfout; 
I 

IF !global == TRUEl fout = fg; 
ELSE fout = fl; 
i =0; 

,---wHILE ls[iJ '= '\O'J\{ 
I fprintf lfaut, •!c", s[i)J; 
I i +=1; 
L--·\} 

fprintf(fout~ "\n"l; 
RETURN; 

J3!)4 L--\} 

1305 /ttttitittttttlttttttttttttttttiittttttfttttitittttttttitttiittttttttttttttt 
1306 This find_node function is called by various tree aanipulation function and 
1307 return a file node record type once it is found. When this function is called 
1308 the calling function will pass the name of the file, and the stack to store the 
1309 pointer for the file. The head is the pointer of the head node in the tree, 
1310 whether it is a global binary tree or local binary tree. 
1311 ttttttttttittttttiittttttttttttttttttttttttttttttttttttttttttttttttttttttttt/ 
1312 STRUCT tree_node_rec ifind_node (head, info, found, stack, stack_ top, ori l 
1313 CHAR info[J; 
1314 INT Hound; 
1315 STRUCT tree_node_rec istacHJ, thead; 
1316 INT tstack_top; 
1317 INT ori; 
1318 r·--·\{ STRUCT tree_node_rec tpre, tcur; 
1319 STRUCT tree_node_rec ttemp_stacUI'1AXSTACKJ; 
1320 INT i,temp_too,temp_found; 
1321 
1322 

1324 

pre = cur = head: 
temp_top = -1; 
temp_found = FALSE; 

110 



1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 
1334 
1335 
1336 
1337 
1338 
1339 
1340 
1341 
1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 
1350 
135i 
1352 
1353 
1354 
tTrr 
l.JJJ 

1356 
1357 
1358 
1359 
1360 
1361 
1362 
1363 
1364 
1365 
1366 
1367 
1368 
1369 
1370 
1371 
1372 
1373 
1374 
1375 
1376 
1377 

r---WHILE ((teao found!= TRUE! U \cur'= NULLll\{ 
I teap_top++; 

temp_stack[te;p_topl = cur; 
I~ (strcmp!cur->info,infol == Ol teap_found = TRUE; 
r-·--ELSE \{ 
I pre = cur; 
I I~ (strcap(cur->info,info) < Ol cur = cur->rpt; 
I ELSE cur = cur->1 pt; 
L--\} 

L---·--\} /t while loop t/ 
tfound = temp_found; 
tstack_top = temp_top; 
~OR !i=O; i<=temp_top; i++l stacHil = teap_stacHil; 
I~ ( !temp_found == TRUEl H !ori == ll I RETURNicurl; 
ELSE RETURN(prel; 

L---·-··-\} it end of find_node li 
/tttttttttttttttttttttttttttttttttttttttitttttttttttttttttttttttatttttittttt 
This insertion function is called by various file aanipulation function. The 
parameter that passed in is the name of the file, s. The head of the tree and 
the pointer that points to the user node. For global file insertion, it will 
store the pointer in the global file node. 
tttttttttttltttttttttitttttttltttttttttttttttttttttttttttttttttttttttttttltl/ 
insertion Is, head,heipt,giobalbin) 
CHARts; 
STRUCT tree_node_rec: Uhead; 
STRUCT heirarchy theipt; 
INT globalbin; 

r-···--.. \{ STRUCT tree_node_rec ifind_nodell, tnew_node, lloc, tstacWIAXSTACKl; 
INT critical, found, critical_node, stacl:_top; 
FILE Hout; 

I~ !global bin == TRUE) fout = fg; 
ELSE fout = fl; 
loc = find_node lthead, s, &found, stack, &stack_top, 01; 
I~ (found== TRUEl fprintf lfout, ' is already existed. No insertion !\n\n'l; 

,----ELSE \ { 
I new_node = iSTRUCT tree_node_rec tlmallociSIZEO~!tree_node_typell; 
I r··---·1 ~ I !new_nodel \ { 
I I fprintflfout, 'out of memory in insertion \n\n"l; 

exi t\01; 
'---\} 
strcpy (new_node->info, sl; 
new_node->lpt = NULL; 
new_node-)rpt = NULL; 
new_node->tag = 0; 
r-··-·I~ lglobalbin ==TRUE! \{ 
I new_node->ownerpt = heipt; 
I new_node->fnum = 0; 

r·--ELSE \( 
I new_node->ownerpt = NULL; 

new_node->fnum = priie[primeindexl; 

l l 1 



1378 
1379 
1380 
1381 
1382 
1383 
1384 
1385 
!386 
!387 
1388 
1389 
1390 
1391 
1392 
1393 
1394 
1395 
1396 
1397 
1398 
1399 
1400 
1401 
1402 
1403 
1404 
1405 
1406 
1407 
1408 
!409 
14!0 
!411 
1412 
1413 
14!4 
!415 
1416 
1417 
1418 
!419 
1420 
1421 
1422 
1423 
1424 
!425 
1426 
1427 
1428 
1429 
1430 

I~ lthead == NULL) thead = new_node; 
r--ELSE \{ 
1 I~ tstrcmp Uoc->info, sl < Oi loc->rpt = new_node; 
I ELSE loc->lpt = new_node; 
I stack_top++; 
I stack[stac~_topl = new_node; 
I 1odify _tag mead, INS, &critical, stad, stack _top, ~critical_nodel; 

I I~ (critical == TRUEl 

1 12 

I I~ iglobalbin == !l balance_tree (head, INS, stack, critical_node,ll; 
I ELSE balance_treelhead, INS, stack, critical_node,Oi; 
1---\} 

,--I~ lqlobalbin == ll \{ 
I print_tree (0, thead,ll; 
I fprintf (fout, '\n"l; 
L---\} 

r--£LSE \{ 
I print_treeiO, thead, Oi; 
I fprintflfout, "\n"l; 
i----\} 

L--··-·-\} 

RETURN; 
L--\} /t end of insertion ti 

/tttttltttttttttttttltttlttttttttttttttttttttttitttttttttitttttttttttttttttt 
This aodify tag function is to modify the tag of the file in both the global 
and local file. The idea is that for a balance tree, on any node in the tree~ 
the difference between the number of nodes on the right and the nueber of 
nodes on the left must not be greater than 1. 
ttitltttttttttttttttttttttttttttltttttttttttttttttttittttttttttttttttttttttt/ 
modify_tag lhead, process, critical, stack, stack_top, critical_nodel 
INlr process, stack_top, tcritiral, tcritical_node; 
SlrRUClr tree_node_rec tstacH J, the ad; 

r-·-···\( INT pre, temp_top, temp_critical_node, stop, te11p_critical; 
I 
I pre = stack_top; 

teap_top = stack_top-1; 
temp_critical =FALSE; 
-~top = FALSE; 
loopagain: /t the famous loop starts here 1 ! 11 if 
I~ ((process== DELi &~ (stacHtemp_topJl->tag == 0 l stop= TRUE; 
r·---I~ lstrcmplstacHtemp_topJ-}info, stacHprel->infol > (!) \{ 

I~ !process== INSI lstacHtemp_topll->tag--; 
ELSE lstacHtemp_topll->tag++; 

L---·-\}. 

~--·--ELSE\ { 
I I~ !process == INSl lstacHtemp_top]l->tag++; 
I ELSE istacHtemp_topll-)tag--; 
L ..... ·-\} 

r--··I~ (abslstacHtemp_topJ->tagl > 1 i \{ 
I teap_critical_node = temp_top; 
I temp critical = TRUE: 
L----\} 

I~ ((stop== TRUEi :: (temp_critica1 ==TRUE) :: (stadUemp_topl == headl 
:: ( (stacHtemp_topJ->tag == Ol u, (process == INSl) i 



113 

1431 GOTO retva1; 
1432 r-ELSE \{ 
1433 1 pre = te11p _top; 
1434 I temp_top--: 
1435 I GOTO loopagain; 
1436 L--\} 

1437 retval: tcritical = te1p_critical; 
1438 lcritical_node = te11p_critical_node; 
1419 RETURN; 
1440 L----\} /itt end of 1odify_tag tUi 
1441 /ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttlttttttttlltttttt 
1442 The single left tree rotation function is one of the tree 11anipulation 
1443 function that is called by balance tree. If the balance tree function 
1444 determines that the tree is not balance, then it needs to be rotated. 
1445 tttttttttttttttttttttttttttttttttttttttttttttttltttttttttttttttttttttttttttt/ 
1446 single_left (head, stack, critical_nodel 
1447 STRUCT tree_node_rec tstad[J, Uhead; 
1448 INT critical_node; 
1449 ,---\{ 
1450 I INT pivot; 
1451 I STRUCT tree_node_rec tpivot_right; 
1452 I 
1453 I pivot = critical_node + 1; 
1454 pivot_right = stack[pivot]-)rpt; 
1455 stack[pivotJ->rpt = stack[critical_nodeJ; 
1456 stackfcritical_nodeJ->lpt = pivot_right; 
1457 I~ (stack[critical_nodel == lheadl thead = stack[pivotJ; 
1458 ELSE I~ !stacHcritical_node- ll->lpt == stad[critical_nodeJl 
1459 stack[critical_node - 1J->lpt = stack(pivotl; 
1460 EL-SE stack(critical_node - 1J-}rpt = stack[pivotJ: 
1461 /t end if t/ 
1462 stack[critical_nodeJ->tag = 0; 
1463 stack[pivotJ->tag = 0; 
1464 L--··\} It end of single_left l/ 
1465 /tttttttttittttttttttttttttttttttttttttttttttttttttttlttttllttttttttttttttt 
1466 The single right rotation function will rotate the tree once it is out of 
1467 balance. It will bring the parent node and put into the right child. 
1468 itttttttttltttttttlttttttttttttltttttllltttltttitttttttitttttttitlttttitttt/ 
!469 single_right lhead, stack, critical_nodel 
1470 STRUCT tree_node_rec tstacHJ, Uhead; 
1471 INT critical_node; 
1472 ···-·\{ 
1473 INT pivot; 
1474 STRUCT tree_node_rec tpivot_left; 
1475 
1476 pivot = critical_node + !; 
1477 pivot_left = stack[pivotl->!pt; 
1478 stack[pivotJ-)lpt = stack[critical_nodeJ; 
1479 stack[critical_nodeJ->rpt = pivot_left; 
1480 I~ lstack[critical_nodel == theadl ihead = stack[pivotl; 
1481 ELSE I~ (stacHcritical_node- ll->lpt == stacHcritical_nodell 
1482 stack[critical_node - IJ->lpt = stack[pivotJ: 
1483 EL_f>E stack[critical_node - lJ-}rpt = stack[pivotJ; 



114 

1484 !l end if 1: 
1485 stack[crJtlcal_nodeJ->tag = 0; 
1486 stack[pivotJ->tag = 0; 
1487 L-········\; !i end of single_r!ght ii 
1488 /ttt~tttlttitttttlttttltttttttltttttltttttt•tttttlttttttttttttttttt~ttttttt 

1489 The doubi2 left rctat1on will rotate once and then call the single left 
1490 rotat:Jn to :ont1nue rotating. The variable :hat sent in and out are the 
1491 stack cf tree ~ode pointers that point to tne p2th Jf affected nodes. 
1402 ltttttttlttt~litltltltttttttttitttltttlttttlttttttttttttltltltttttttttttttt/ 

1493 dou~!e :e~t .lteal3~ s~act •. ::1t1c2l lJOeJ 

1494 STF~UCT tree_nod~_rec tstack[J~ **head; 
1495 INT critical_node; 
!496 

INT pivot, zeroed, , . 
STRUCT tree_ncae_rec toivot_right: 

14'i9 STRUCT tree neue r!?c Hoc ~tacHMAXSTACU: 
1500 
1501 oivot = critical node + 1: 
1502 pivot_r1ght = stack[pivotl->rpt; 
i5C3 FOR (i = 0; i < MAX STACK; 1 ++) lac stackli J = stack[i J: 
1504 IF (pivot == NULL! zeroed =FALSE: 
1505 ELSE IF ((pivot ri11t1t '= NULU ~~; (pivot_right->tag == lil zeroed= TRUE; 
1506 ELSE :erJed = FALSE; 
1507 /t end if t/ 
!508 stack[critical_nodel->lpt = pivot_right; 
1509 sta:k[pivotJ->rpt = pivot_right->lpt; 
1510 pJwot_right-jJpt = stack[pivotl: 
1511 lac stac~[pivotJ = pivot_right; 
1512 lc~ s:act.[~~ ~8t+l~ = ;tac~[o! ~ot~; 
1513 
1514 single_left (head~ loc_sta:k, critical_node)~ 

15i6 IF \{stack[:ritical node]-.>rot :=NULL! &i~ fsta.ckEcriticai nodeJ->lot ==NUL~)) 
1517 stack[criticil_nodel-~tag = 1; 
p::~ c 
.. ~ .L• .... ELSE IF \(stacHcritical node]-;,rpt ==NULL) H (sta:Hcritical nodeJ-:Jpt 1= NULL!) 

stack[critica!_nodeJ->tag = -1; 

1522 
f C·~~ 
,o,_;j_ . .) 

1524 
1525. 
iC'·"i.' 
lJ.:.D 

; c:.-,-,. 
iJ~,' 

1528 

f ;::..,.,-, 

l,J~'J 

1S32 

'c-..! 
i ,_;,j"+ 

ELSE stacklcr1ti:al iiDDe~-itag = ~)~ 
!t end if !! 
IF \stacklo:votl->lpt == NULU H (stacUpivotJ-:·rpt '= NULLJ) 

stackfoivotJ->tag = 1; 
ELSE IF (\stacHoivotJ->teg == 1l H lstacHpivotJ->lpt '= NULU it& 

(~ta.cUpivotl-.>lpt->tag 1= 0)) 
stack[plvotl->tag = -1; 

ELSE IF ((stackLpivotJ->lpt != NULLi ~& \stackrpivaU->rpt == NULUJ 
stack[pivotl->tag = - 1: 

ELSE IF ((stacHoivoti->tag == ll U tzeroed == TRUEi 
&& lstacHpne:tJ->lpt ~=NULL) && (stacHpivothlpt->tag == 0)) 
stack[pivotl->tag = -1; 

ELSE stacf.[plvotl->tag = 0: 
i! end if t/ 

.. \} it end of double left t/ -
1535 /ll,tttttltlttttttt•tlt!tltttttltttttlttttttttltttttllllttttlttttltttttttttt 
15:6 This double right rotation will rotate once and then call single right 



1537 rotation to continue the second rotation. The stack of pointers that point 
1538 to the affected tree node are passed in and out. 
1539 ttttttttttttttttttttttttttttttttttttttttttttittttttttttttttttttttttttttttttt/ 
1540 double_right !head, stack, critical_nodel 
1541 STRUCT tree_node_rec tstack[], Uhead; 
1542 INT critical_node; 
1543 r-\{ 
1544 I INT pivot, zeroed,i; 
1545 STRUCT tree_node_rec tpivot_left; 
1546 STRUCT tree_node_rec floc_stacHI'IAXSTACKl; 
1547 
1548 
1549 
1550 
1551 
1552 
1553 
1554 
1555 
1556 
1557 
1558 
1559 
1560 
1561 
1562 
1563 
1564 
1565 
1566 
1567 
1568 
1569 
1570 
1571 
l "" .. 'i ..JIL 

1573 
1574 
1575 
1576 
1577 
1578 
1579 
1580 
1581 
1582 
1583 
1584 
1585 
1586 
1587 
!588 
1589 

pivot = critical_node + 1; 
pivot_left = stack[pivotl->lpt; 
FOR ii = 0; i < MAXSTACK; i++l loc_stacHil = stad[il; 
IF ipi vot == NULU zeroed = FALSE; 
ELSE IF iipivot_left 1= NULL! tete ipivot_left->tag == -!ll 

zeroed = TRUE; 
ELSE zeroed = FALSE; 
li end if if 
stack[critical_nodel->rpt = pivot_left; 
stack[pivotl->lpt = pivot_left->rpt; 
pivot_left->rpt = stacklpivotl: 
loc_stack[pivotJ = pivot_left; 
loc_stack[pivot+!J = stack[pivotl; 

single_right ihead, loc_stack, critical_nodei; 

IF (istack[critical_nodeJ->rpt !=NULL) ~& istack[critical_nodeJ->lpt == NULLJ) 
stack[critical_nodel->tag = 1; 

ELSE IF i lstack[critical_node]-)rpt == NULU H lstacUcritical_nodeJ->lpt 1= NULU i 
stack[critical_nodeJ->tag = -1; 

ELSE stacklcritical_nodeJ->tag = 0; 
It end if ii 

IF listacUpivotHlpt == NULU ~& istacHpivotJ->rpt 1= NULLll 
stack[pivotJ->tag = 1; 

ELSE IF 1\stacHpivotl->tag == -1l U (stacUpivotl->rpt 1= NULU && 
lstack[pivotJ-)rpt->tag 1= Oil 

stack[pivotl->tag = 1; 
ELSE IF ((stacklpivotJ->lpt 1= NULLJ && !stacHpivotJ->rpt == NULUI 

stack[pivotJ->tag = - 1; 
ELSE IF (\stacHpivotJ->tag == -!) U (zeroed== TRUEl &1.: 

· (stack(pivotJ->rpt != NULLI •• lstack[pivotJ->rpt->tag ==Oil 
stack[pivotl->tag = !; 

ELSE stacHpivotJ->tag = 0; 
li end if t/ 

L .. - .... \} /t end of double_right t/ 
/ttttttttttttttttttlttttttttttttttttttitttttttttttttttttilttttttttttttttt 
This balance tree is called by tne modify tag and then it will call the 
the approprite rotation function to perform the balancing act. 
itttititttttJ!tttttt!ltttttttttttttttttttttiJiititltliiittiitiiiittiiiittti 
biil ance_tree \head, process, stack, cri tical_node,global) 
INT process, critical_nooe,giobai; 

115 



116 

1590 STRUCT tree_node_rec istac:k[J, Uhead: 
1591 r-----\{ INT loc_r:ri. loc:_node, son, grandson; 
1592 I FILE Haut; 
1593 I 
1594 I IF !global == TRUEi fout = fg; 
1595 I ELSE fout = fl; 
1596 I son = c:ri ti cal_node + 1; 
1597 ! grandson = critical_node + 2; 
1598 I IF {(stacHcritical_nodel->lpt == stackfsonJJ U 
1599 r----(stacHsonl->Jpt == stacHgrandsonlll \{ 
1600 ! fprintf (fout, "single left rotation. \n\n"l; 
1601 I single_! eft (head, stack, critical_nodel; 
1602 \} 
1603 ELSE IF ( !stacHc:ritic:al_nodeJ->rpt == stac:k(sonJl && 
1604 r-·istacHsonl->rpt == stac:UgrandsonJ) l \{ 
1605 fprintf {fout, "single right rotation. \n\n"): 
1606 single_right \head, stack, critical_nodei; 
1607 \} 
1608 ELSE IF ( lstacHcritical_nodeJ->Ipt == stac:HsonJl U 
1609 r--·(stacHsonl->rpt == stacHgrandsonJll\{ 
1610 fprintf (fout, "double left rotation. \n\n"l; 
1611 double left (head, stack, cntical nodel: 
1612 \} 
1613 r--ELSE \{ 
1614 fprintf (fout, "double right rotation. \n\n"l; 
1615 double_right (head, stack, c:ri tic:al_nodel; 
1616 1.·-\} 

!617 fi end if if 
1618 IF ((process== DELl H (critical_node > lli 
1619 modify_tag mead, process, ~loc:_c:ri, stack, critical_node, &loc_node); 
1620 /t end if if 
1621 RETURN; 
1622 '--·\} /t end of balance_tree t/ 
1623 
1624 iititittttttttttttitttlitttttitttttlitttttttttttllttttiittttttttttittttttil 
1625 This deletion will remove the approprite tree node from the directory. First 
1626 it use the string that pass in and call find node to find approprite location 
1627 of the node in the directory. If it is found, it is then remove the node and 
1628 call balance tree to rebalance the tree. This routine is useally called by 
1629 the delete node in the main program. 
1630 tttttttttiittttttitttitttttttttttttttitttttiiititittiititttttttttitttttttti 
1631 deletion !s,head~globall 

1632 CHAR ts; 
1633 STRUCT tree_node_rec Hhead; 
1634 INT global; 
1635 ~----·'\{ STRUCT tree_node_rec Hind_node(i, tloc, tstac:HMAXSTACKJ; 
1636 INT critical, found, critical_node, stack_top, 
1637 bef_del, del_loc, bef_suc, sue, glo; 
1638 FILE tfout; 
1639 
!640 IF \global == TRUEi fout = fg; 
i64i ELSE fout = fl; 
1642 glo =global; 



!643 
1644 
1645 
1646 
1647 
1648 
1649 
1650 
1651 
1652 
1653 
1654 
1655 
1656 
1657 
1658 
1659 
1660 
1661 
1662 
1663 
1664 
1665 
1666 
1667 
1668 
1669 
1670 
1671 
1672 
1673 
1674 
1675 
1676 
1677 
1678 
1679 
1680 
1681 
1682 
1683 
1684 
1685 
1686 
1687 
!688 
1689 
1690 
16'11 
1692 
1693 
1694 
1695 

I~ (lhead == NULLJ fprintf ifout, "Eapty tree ''\n"l; 
r----ELSE\ { 
I loc = find_node (fhead, s, &found, stack, &stack_top, Ol; 
I ii print (s,global); tt 

I~ (found ~=TRUE! fprintf ifout, • does not e~it. Deletion denied '\n\n"l; 
r--ELSE \{ 
I fprintf (fout, • has been deleted and the tree is: \n"); 
I I~ ((stack[stack_topl == theadl ~& ((theadl-)lpt == (theadl->rptll 
I ~--·\{ free !iheadi; 
I I thead = NULL; 
I I fprintf (fout, "Eapty Tree ~ ~ \n"l; 

'---\} 

117 

,--ELSE I~ i(stacHstack_topJ == theadl U i(iheadl->rpt == NULUl\{ 
! free lstack[stack_topJJ; 
I ihead = stack[stack_topl->lpt; 
'----\} 
r---ELSE \{ 
I bef_del = stack_top - 1; 
I del_loc = stack_top; 
I Joe = stack[del_locl->rpt; 
I r--wH I LE !l oc ! = NULU \{ 
I I stack_top++; 

I stack(stack_topJ = Joe; 
I loc = loc->lpt; 
'---\} 

sue = stack_top; 
bef_suc = stack_top- 1; 
modify_tag (thead, DEL, ~critical, stack, stack_top, &critica!_nodel; 
I~ ( istacHdel_locl-}rpt == NULLJ ~& istad[del_locJ->lpt == NULLJ l 

r----\{ I~ istrcmp(stacHbef_dell->info~ stacHdel_locJ->infol > Ol 
I stacl(bef_dell->lpt =NULL; 

ELSE stacHbef_dell->rpt =NULL; 
free ( stacHdel l ocl I: 

l.----·\} 

ELSE I~ (stacHde!_locJ->rpt == ~lULU 

1 --\( I~ (strcapistacHbef_dell->info, stacHdel locl->infol > 01 
1 stack[bef_dell->Ipt = stack[del_locl->lpt: 
1 ELSE stacHbef_dell->rpt = stack[del_locJ->Jpt; 
I free lstacHdel locJ); 
L--\} 

r-·-·£LSE \{ 
I strcpy lstacHdel_locJ->info, stacHsucJ->infoJ; 
I stack(del_locl->fnum = stack(sucl->fnum: 

stack[del_locl->ownerpt = stack(sucJ-)ownerpt: 
I~ lstrcmpistacHhef_sucJ->info, stacHsucl->infol > Oi 

stack(bef_sucl-}lpt = stack[sucl->rpt; 
ELSE stacHbef _sucJ->rpt = stack[sucl->rpt; 
free (stack[sucJJ: 

L--·--·\} 

I~ (critical == TRUE! \{ 
I I~ (!stack _top - critical_nodel < 3) \{ 
1 I~ !strc[,p(stacHcritical_nodeJ->info, stacHcritical_node+1J->infol ) Ol 
I \ { 



169t 
16'17 
1698 
1-399 
r:cu 
l':Ji 
1702 

1704 
l7J5 

1707 
1708 
1709 

.(i'i.; 

.;./ i.i. 

i!i! 
.~., L: .. 

17i3 
1714 

1717 
1718 

i 7"1il 
.j.;,.;.·-.r 

172i 
; '7·i•'"\ 
l;:..i.. 

! ;---:·: 
.i..'.;....J 

1?26 
1727 
1728 
1729 
1730 
17"7-i 
• J ·~' .. 

L. ·,i 
;; 

i.: ~ RETURN: 

IF {stackL:ritical nodeJ->rpt = NULL} 

\} 

\{ stack(critical node+~] = stack[critical nodel->rpt: 
IF (stacklcritic,;l_nude+1J->ta~ == i: 

stack!crltlcal node+2l = stack!critica! node+!l->rot: 
ELSE IF '.stack[uitlcal no~e+il->tag == -1i 

stack[critical node~2J = stack[critical node+ll->lot; 
ELSE \( 

IF !stacklcritical_node+ll->rpt !: NULU 

'-. 
\J 

stack[critl:al node+2J = stack[critical node+1l->rot: 
ELSE IF istacHcritical nooe+ll->lot i: NULU 
stack[critical node+2l = stack[crrtlca! node+ll->lpt: 

ELSE 
\{ IF istacvfcnt!cal r.odel->lpt '= NULU 

\} 

\{ stack[critical_ncde+lJ = stack[critical_nodel->lpt~ 

\} 

IF \stacUcrJtical notle+iJ->tag == 1! 
stack[critical node+2J = stack(critical node~!l->rpt: 

ELSE IF ista:Hcri tlcal_node+1J-.>taq == -1) 
stack[critical node+2J = stack[critical node+ll->lot: 

ELSE 

\\. 
\J 

\{ IF \stacUcritlcal node~ll->lpt i: NULL! 
stack[critical nooe+2l = stack[critical node+il->lot~ 

', \i 

- -
ELSE IF (stacHcritical node+lJ->rpt 1= NULU 
stack[crltJcal node~21 = sta:k[cr:~lca! noJe+l]-:rpt: 

balance tree (head, DEL~ stack~ critical node~glol: 

!._ ...... ~ .. -·---------\} 

orint tree (!), thead,glo); 
fprintf (fout, u\nui: 
···\} 

1734 '·---·-·\} it end of deletion tJ 
,,,c lltttliJtttllltttttlttttltttttlllitlttttttttttttlttttll! 
1736 print_tree lnum_blank, tree_node,globall 
lP' INT lUili blank: 
1,38 STRUCT tree node rec Hree node; 
173~ INT ;lobal: 
~ 7 4(: 
1741 INTi~ loc; 
!74= FILE ifout: 
:743 
174.! IF :qlcta! == TF:UEl fcut = fq; 
1745 ELSE fout = fl; 

1747 loc = giobal: 
i748 IF (tr2e_node 1= NULL} 

118 



1749 
1750 
1751 
1752 
1753 
1754 
1755 
1756 
1757 
1758 
i759 
1760 
1761 
1762 
1763 
1764 
1765 
1766 
1767 
1768 
1769 
1770 
1771 
1772 
1773 
1774 
1775 
1776 
1777 
1778 
1779 
1780 
1781 
1782 
1783 
1784 
1785 
1786 
1787 
1788 
1789 
1790 
1791 
17¥2 
1793 
1794 
1795 
1796 
1797 
1798 
1799 
1800 
1801 

r-----\{ pnnt_tree (num_blank + 10, tree_node->rpt, locl; 
I FOR li = 1; i <= num_bla.nk; ++i) 
I fprintf (fout, "Ic", BLANKl; 
I print !tree_node->info,loci; 
I print_tree lnua_bla.nk + 10, tree_node->lpt,locl; 
'---\} 

L----\} It end of print_tree t/ 
/ttttttttttttttttttttttttttttltitlttttttttttlttt/ 
This mul.c is stored as another file and it will be linked to aain.c. 
The purpose of this multiplication function is to si1ulate the binary 
working of the actual hardware multiplication during the calculation of the 
system key using the Chinese Re1ainder Theorem. 
ttltttttttllttttttttttltttttttttttttttttttttttttttttttttttttttttttttttt/ 
#include 'header.h" 
CHAF: htul (om, oq) 
CHAR tom, ioq; 

r·--\{ 
C:HAF< a[MAXIMUMl,ql,result[MAXIMUHl,com_m[HAXIHUHl,carry,tq,ta; 
F<EGISTER INT cycle,indx,i,j,k,indu,indxq; 

q = oq; m = om; 
indxm = indxq = 0; 
indxm = strlen!ml; indxq = strleniql; 
indxm -= 1; indxq -= !; 

,-·-·-IF iindxm != indxql \{ 
I r--IF iindxq > indul \{ 

119 

I I IF (iind~q+ll > I'!AXIMUI'! l \{ printf(•number in div is too large \n"l; exitWJ; \} 
I I k = indxq; m[Hll = '\0'; 
I I r·----FOR ii=indu; i>=l; i--l \{ 

L---~·\} 

m[kl = m[iJ; k--; 
L--·\} 

FOF< !i= iind~q-indxml; i>=l; i--J mlil = '0'; 
indx = indxq; 

r----ELSE IF (indxm > indxqJ \{ 

L-.. --\} 

l---\} 

,---IF iii ndxm+l l > MAXIMUM l \ { 
L--printf("number in div is too large \n"i; exit\Ol; \} 

k = indxm; qEf.+lJ = '\0'; 
r----FOR !i=ind};q; D=!; i--l \{ 
I qUJ = q£il; k--; 
L--·---\} 

FOR \i=(indxm-indxql; i>=l; i--) q[i] = '0'; 
indx = indxm: 

ELSE indr. = 1nd:n11; 
com_m[indx+ll = '\0'; 
FOF< ii=O; i<=indx; i++J a[il ='0'; 

alil = '\0'; 
r---·---FOF< ij=indx; j>=O; j--i \{ 
I IF ill[j] == '0') com_m[j] = '0'; 
I ELSE BREAK; 



120 

1802 com_m[jJ = '1'; 
!803 r·-····-FOR O:=j-1: k>=O; k--l \{ 
1804 IF (m[U == '1'! com_mUJ = '0'; 
1805 ELSE COIIJ_ill[kJ = '1' j 
1806 ~--·-\} 

1807 q! = '0'; FOR !i=O; i<=ind:<; i++l a[il = '0'; 
!BOB a[il = '\0'; 
1809 FOR (cycle=O; cycle<= indx: cycle++! 
1810 r----\{ 
1811 IF (q[indxl == q!l It either 11 or 00 tl 
1812 r-·\{ 
1313 I ql = q[indd; 
1814 I FOR (j=indx; j)=l; j--i q[jl = q(j-11; 
1815 I q[OJ = a[indxl; 
1816 I FOR (j=indx; j>=1; j--l a[j] = a[j-11; 
1817 I IF (a[ll =='!') a[OJ = '1'; ELSE a[OJ = '0'; 
1818 L-·--\} 

1819 r--·-£LSE \ { 
1320 I r--IF (q[indxl == '0'! \{ /Ui case of 01 Ul/ 
1821 I I resul Uindx+ll = '\0'; carry = '()'; 
1822 I i r·-FOR (i=indx; i >=O; i --) \{ 
1823 I I r--IF !a[i] '= 11[ill \{ 
1824 I I I IF (carry== 'O'i \{carry= '0'; resultril='!'; \} 
1825 I I I ELSE\{ carry= '1'; resulUil = '0'; \} 

L-·-·\} 

,--·ELSE\[ 
1826 
1827 
1828 

I I 
I I 
I I I IF (a[il == '1' && carry== '1'! \{carry='!'; resu!Uil= '!'; 

1829 
1830 
1831 
1832 
1833 
1834 
1835 
1836 
1837 
1838 
!839 
1840 
1841 
1842 
1843 
1844 
1845 
1846 
1847 
1848 
1849 i 
1850 
1851 
1852 
1853 
!854 

I I 
I I 
I I 
I I 
I I 
! I 
I i 
l I 
I I 
I I 
I '-·-··\} 

L·-··-·\} 

r---ELSE IF (a[i] == '1' U carry== 'O'l \{ 
I carry= 'l'; result[il ='0 1 ; 

L---\} 

r--tLSE IF (alil == '0' U carry== 1 l'l \{ 
I carry= 1 01 ; resultriJ = 1 1'; 
i---\} 

~---ELSE IF la[iJ == '0' ~~carry== '0') \{ 
I carry= '0'; resulHiJ = '0'; 
'-----\} 

\} /tttt if loop of 01 ttt/ 
r··--ELSE \{ 
i resulUindx+1J = 1 \0'; carry= '0'; 

·1 r---FOR li=ind:q i>=O; i--) \{ 
I r---IF!a[iJ 1= com_m[iJl \{ 
I IF (carry== 'O'l \{carry= '0 1 ; resulHiJ = '1'; \} 
I ELSE\{ carrv = '!'; resultril = '0'; \} 

~--·--\} 

r--·€LSE \{ 
r·-·--· IF (a [i] == 1 1' H carry == 1 1 1 l \ { 
I carry= '1'; result[iJ =1 1'; 
L-·--\} 

r-····€LSE IF (a[iJ == '1' H carry== 'O'i \{ 
! carry= 'I'; result[iJ ='0'; 
L--·\} 



1855 
1856 
1857 
1858 
1859 
1860 
1861 

,--·--ELSE IF ia[iJ == '0' tt~ carry== '1': 
carry= '0': result[il = '1'; 

L--\} 

r---£LSE IF (a[iJ == '0' H carry== 'O'i \{ 
I carry= '0'; result[iJ = '0'; 
L-\} 

L-\} 

1862 L--\} 

1863 /itt case of 10 iii! 
1864 It printfi'ttttresult of addition with A-M is 4s\n"~resultl; 

1865 *' 
1866 L.....--\} 

1867 strcpyia,resultl; 
1868 q1 = q[indr.J; 
1869 FOR !j=indy,; j}=l; j--l q[jl = q~j-!J; 
1870 q[OJ = a[indxl: 
1871 FOR (j=ind:i; j)=l; j--) a[jJ = a[j-11; 
1872 IF (a[l] == '1'l a[OJ = '1'; ELSE a(OJ = '0'; 
1873 L--\} /U end of else for case 10 or 01 UlU/ 
1874 1--\} 1$ end of the cycle t/ 
1875 strcpy iresul t, al; strcatiresul t, ql; 
1876 r-~OR \j=O; j(=(2lindxl; j++) \{ 
1877 i IF (resul t[j J == '1' l BREAK; 
1878 L-\} 

1879 result£01 = '0'; k =1; 
1880 r--·-FOR!i=j; i<=i2tindxl+1; i++! \{ 
1881 I result(~:]= resuit£il; 
1882 I k++; 
1883 L----\} 

1884 result[kJ = '\0'; 
1885 RETURNiresulti; 
1886 
1887 /ttttttttttttttttttttttttttttttttttttttitttttttttttttttttttttttttttttitttttti 
1888 This binary division is to simulate the binary division inside the hardware 
1889 of the system. It could be called by anv function and them is the multiplier 
1890 and the q is the quotien. The needq is the fiag that tells this subroutine 
1891 that whether the remainder or the quotient is needed. 
1892 ittlltttltttttttttttittttttttttttJttttttttttltttttttltttttltttitttttlittttlti 
1893 #include "header.h" 
1894 CHAR tbdivim,q,needql 
1895 CHAR hi,tq; 
l8't6 I NT needq; 
1897 I r·-··-\ { 
1898 I I CHAR a[MiiX!I'IUMLresulWIAXII'IUMl,com_m[f'IAX!t1UMJ.sign,carry; 
1899 I I REGISTER INT i,cycle,j,k; 
1900 I! INT indxq,indxm,ind:q 
1901 I I indxq = strleniqi; indxm = strleniml; 
1902 I ! indxq -= 1; indxil -= i; 
19ij3 I i i----IF tindxm != indxqi \{ 
1904 I I I r--IF (indxq > indxmi \{ 

121 

1905 iII I IF i(indxq+!) >MAXIMUM)\{ printf('number in div is too large \n"i; e::itlOl; \} 
1906 I I I I k = 1ndxq; m[H1J = '\0'; 
1907 I i I I i----FOR ii=ind:un; i>=l; i--) \{ 



1909 I I I 
1909 I I I 
1910 I I I 
1911 I I I 

L-\} 

m[k] = m[iJ; k--; 
L--\} 

FOR !i= (indxq-indxal; i>=l; i--) m[il = '0'; 
i ndx = i ndxq; 

r-·t:LSE IF (indxs > indxqi \{ 
1912 I I I 
1913 I I I 
1914 I I I 
1915 i I I 
1916 I I I 
1917 I I I 
1918 I I I 

I IF ((indxa+1)} MXII'IU!'! l \{ printf("nuaber in div is too large \n"); exitWl; \} 
I k = indn; q£k+1l = '\0'; 
I r--FOR ii=indxq; i>=1; i--) \{ 
I I qEkl = q[iJ; K--; 
I L--·-\} 

1919 I I I I FOR !i=iindxm-indxql; i>=1; i--l q[i] = '0'; 
1920 I I I I indx = indxm; 
1921 I I I 
1 Q?? I I L----·\} 

1923 I I ELSE indY. = indxm; 
1924 I I com_afindx+ll = '\0'; 
1925 I I FOR !i=O; i<=indr.; i++l a[i] ='0'; 
!926 ! I a[iJ = '\0'; 
1927 I I r-·---FOR (j=ind:q j>=O; j--l \{ 
1928 ! I I IF !m[j] == '0' l coa_m[j] = '0': 
1929 I I I ELSE BREAK; 
1930 I I 1----\} 

1931 I I com_a[j] = '1'; 
1932 I I r·-·--FOR ik=H; D=O; k--i \{ 
1933 I I I IF (m[kJ == 'l'i coli_m[U = '0'; 
1934 j I I ELSE COII_I[U = '1'; 
1935 I I L---·-\} 

1936 I I r--FOR !cycle =0; cycle<=indx; cycle++) \{ 
1937 I I I sign = afOJ; 
1938 I I I FOR \i=O; i<=indx-1; i++l a[i} = a[i+1l; il shift left ii 
1939 I I I alindiJ = qlOJ; it shift left for A ti 
1940 I I I FOR !i=O; i <=indx-1; i++l q[iJ = qfi+ll; I* shift left for Q t/ 
1941 Ill r-·-·-·-·IF (a[OJ 1= m[OJl \{ 
1942 I I I I resultrindx+!J = '\0'; carry = '0'; 
1943 I I I I r--··-··-FOR i i =i rrdx: i>=O; i -- l \ { 
1944 I I I I r--·IF ia[i J != mfi Jl \{ 
1945 I I I I I IF (carry== 'O'l \{carry= '0'; resultril='l'; \} 
1946 I ! I I I ELSE\{ carry='!'; resultril = '0'; \} 
1947 I I I I L-\} 

1948 I I I I r-·-ELSE \{ 
1949 II I I I IF (a[iJ == '!' U carry=='!')\{ carry= '1'; resultriJ= '1'; 

1950 I I I r--ELSE IF !a[ i J -- ' 1' ~~ carry == '0') I f 
I I ' 

1951 I i I I carry = '1' ; resul Hi J ='0'; 
1'152 I I I 1---\} 

1953 ! I I r---ELSE IF (a[i] -- '0' ~& carry -- , 1 ' ) \ f 
" 

1954 I I I I carry = '0'; resul Hi J = • t'; I 

1955 ! i I l----\} 

1956 I I I r-·--ELSE IF (a [ i J -- '0' U carry == '0') \{ 

!957 I I i ! carry = '0'; result[iJ = '0'; I I 

1958 I I I L. ..... --·\} 

1959 I I I L •.•.. __ ..... \} 

1960 I I I i----\} 



L---\} 

r·--·£LSE \ { 
1 result(indx+ll = '\0'; carry = '0'; 
I r---FOR ii=indx; i>=O; i--l \{ 
I r-IF(a[iJ != c:om_a[iJl \{ 
I I IF (carry== '0') \{carry= '0'; resulHil = '1'; \} 
I I ELSE\{ carry= '1'; resulUiJ = '0'; \} 

L--\} 

r--ELSE \{ 
I r--IF (a[il == '1' U carry== 'l'l \{ 
I I carry= '1'; result[il ='1'; 
I L---\} 

123 

1961 
!962 
1%3 
1964 
!965 
1966 
1967 
1968 
!969 
1970 
1971 
!972 
1973 
1974 
1975 

i I i 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

I r--ELSE IF (a[iJ == '!' U carry== 'O'l \{ 

1976 I I ! 
1977 I i I 
!978 I I i 
1979 I I i 
1980 I I I 
1981 I I i 
!982 I I I 
1983 I I I 

. 1984 I I I '-\} 

l----\} 

I I c:arry='!';result[iJ='O'; 
I '--·-\} 
I r-·-·-ELSE IF ta(iJ == '0' U: carry== '!'l \{ 
I I carry= '0'; resultfil = '1'; 
I l-\} 

r---ELSE IF (a[iJ == '0' ~&carry== 'O'l \{ 
I carry= '0'; resultril = '0'; 
'--\} 

i..---\} 

!985 I I I r·--IF isign == resulHOJi \{ /i successful if 
1986 I I I I qfindxl = '1'; 
1987 I I I I strcpyia,resultl; 
1988 I I I L--·--\} 

!989 I I ! r-£LSE \{ /t unsuccessful t/ 
1990 I I I I qlindxl = '0'; 
1991 I I I L-·-\} 

1992 I I L .. ·--\} 

1993 ! I r---IF ineedq == 1l \{ 
1994 i i I strcpyiresult,ql; 
1995 I I I FOR (j=O; j{=indx; j++i \{ IF iresult[jJ == '1'l BREAI<; \} 
1996 I I I result[(l] = '0'; k=i; 
1997 IiI FOR (i=j; i<=ind::+1; i++i \{ resultfk] = resulUil: k++; \} 
1998 I I I resu!Hkl = '\0'; 
1999 l I I RETURN iresul tJ; 
2000 I I L-····-·--\} 

2001 i I r-··--£LSE \{ strcpy(result,al; 
2002 i I I FOR {j=O; j<=indx; j++i \{IF !resultrjl == '!') BREAI<; \} 
2003 I I I resultrOJ = '0'; k=1; 
2004 I ! I FOR (i=j; i(=indl:+1; i++l \{ resultckJ = resulUil; k++; \} 
2005 I I I resul t(U = '\0'; 
2006 I I I RETURNiresulU; 

2008 I L--\} 

2009 /tttttttttttitttttlttttttttitltttttittiitttttttttitittttttitttttttttlttttttt/ 
2010 This add routine will simulate the hardware addition of the binary calculation 
2011 The input are tr,e pointers to string and it will RETURN the pointer to string 
20!2 ~[)R the calling function. 
2013 itttitittttttttttttitttittttttittittttttttttttttttttttttttttttttttiittttttti 



2014 
2015 
2016 
2017 
2018 
2019 
2020 
2021 
2022 
2023 
2024 
2025 
2026 
2027 
2023 
2029 
2030 
2031 
2032 
2033 
2034 

#include "header.h" 
CHAR taddla,ml 

i CHAR H, tm; 
I r-·\( 
I I CHAR result["AXI"UIO,carry; 
I I REGISTER INT indx,i,k,indxm,ind:{a; 
I I 
I I indxm = strlen(ml; indxa = strlen(al; 
I I indxm -= 1; indxa -= 1; 
I I 
I I ,--IF (indu != indxal \{ 

2035 
2036 
2037 
2038 
2039 
2040 
2041 
2042 
2043 

I I I 
I I I 
I I I 
I I i 
I I I 
I I I 
I I i 
i I I 
I I I 
I I I 
I I I 
I I l 
I I I 

I I 
I I I 
I I I 
I I I 
I I I 
I I I 
i I I 
I I I 
I I 

r-IF 
I 
I 
I 
I 
I 
I 
I 

'---\} 

lindxa > indul \( 
!---IF ((indxa+l) >MAXIMUM l \{ 
L-.--'Printf ("number in div is too large \n"l; exit (Ol; \} 

k = indxa; m[k+1J = '\0': 
~-.... -FOR (i=indxm; i>=1; i--l \[ 
I 11fkl = m[iJ; i!--; 
L---\} 

FOR li= Ondxa-indxal; i>=1; i--l m(il = '0'; 
indx = indxa; 

r--£LSE IF !indu > indxal \{ 

L---\} 

r--IF i(indxm+ll >MAXIMUM l \{ 
L---printf("number in div is too large \n"l; exit!Ol; \} 

k = indxm; a[k+ll = '\0'; 
r----FOR (i=ind:<a; i>=!; i--) \{ 
I a[U = a[iJ; k--; 
!-\} 

FOR (i=(indxa-indxal; i>=1; i--1 a(i] = '0'; 
'* printfi"A --> Zs and M --> Zs \n",a,ml; 

if 
indx = indxm; 

2044 
2045 
2046 
2047 
2048 
2049 
2050 
2051 

I I L---·\} 
I I ELSE ind~ = indxm; 
I I 
I I resultfindx+1J = '\0'; carry= '0'; 
I I , .. ·--FOR ii=ind:i; i>=O; i--) \( 

2052 I I I 
2053 I I I 
2054 I I I 
2055 I I I 
2056 I I I 
2057 I I I 
2058 i ! I 
2059 I I I 
2060 ! I I 
2061 I I I 
2062 I i I 
2063 I I I 
2064 ! I I 
2065 I I i 
2066 I ! I 

r-·IF ta[i] 1= m(iJ) \{ 
I IF (carry== 'O'l \{carry= '0': result[i]='l'; \} 
I ELSE\{ carry= '1'; resultril = '0'; \} 
L--·-\} 

r---£LSE \{ 
I IF fa[il == '1' U carry== '1'1 \{carry= '1'; resulHil= '1': \} 

,----ELSE IF (a[il == '1' U carry== '0'1 \{ 
I carry= '1'; resultril ='0'; 
'--\'-. ' 
r·--ELSE IF (a(il == '0' H carry== 'l'l H 
I carry= '0'; resultril = '!'; 
L-.. -·\} 
,---ELSE IF (a[iJ == '0' &!.: carry == '0' l \{ 
i carry = '0'; result(il = '0'; 
L-··-\} 

124 



2067 ! ! I L--\} 

2068 I I L--\} 

2069 I I /t printf("result of addition before moving !s \n",resultl; 
2070 I I tl 
2071 I I r--·IF iresultfOJ == '1'l \{ 
2072 I I I resu1Hindx+2l = '\0'; 
2073 I I FOR (i = indx; i>=O; i--l resultci+ll = resulHil; 
2074 I I resul HOl = '0'; 
2075 i I L.-\} 

2076 I I It printf {"result of addition --> Y.s \n" ,resultl; 
2077 I I t/ 
2078 I ! RETURN(resultl; 
2079 I L-\} 

2oao 1 ttttttttttttattttttttttttttttttttttttttttttttttttttttttttttttttttttta 
2081 I This binary to integer routine will receive the ~inary character from the 
2082 ! calling routine and convert it to unsigned long integer. 
2083 I ttttttttttttttttttttttttttttttttttlttttttttttttttttttttttttttttttttttt/ 
2084 I UNSIGNED LONG INT bin2inUsl 
2085 I CHAR ts; 
2086 I r-\{ 
2087 I I REGISTER INT i,j,len,time; 
2088 I I UNSIGNED LONG INT locval,y; 
2089 I I 
2090 I I 1 en = str 1 en ! s i ; I en -= 1; 
2091 I I j =0; l ocval =0; 
2092 I I 
2093 I I r--FOR\i=len; i>=l; i--l \{ 
2094 I I I r--IF is[iJ == '1'l \{ 
2095 I ! I I IF lj == Ol locval += 1; 
2096 I I I I r·--ELSE \ { 
2097 I I i I I y =1; 
2098 I I I I I FOR (tile = 1; time<=j; till!++l y t= 2; 
2099 I I I I I locval = locval + y; 
2100 I I I I L.---\} 

2101 I I I l....-\} 

2102 I I I j++; 
2103 I I '--·\} 
2104 I i RETURNilocval l; 
2105 I l--\} 
2106 I ilttllltttllllttttttttttlttltttltiltltlttttttlttltttitlttttttttttlttt 
2107 I This integer to binary function get integer input and convert it into 
2108 binary number in character and return them as a pointer to string. 
2109 titlttltttttltttttttttlltlitlitttittlttlttltttlttittltttttttlitltttlttttti 
2110 linclude "header.h" 
2111 CHAR hnt2bin(nl 
2112 INT n; 
2113 I ~---\{ 

2114 I I CHAR sU1AXIMUMJ,strHI'IAXIMUMJ; 
2115 II INT index,i,k; 
2116 i I 
2117 I I i = 0; 
2118 I I IF ln == Ol \{ printf(•value send in is 0\n"l; exit(Ol; \} 
2119 ! I r--IF in == !l \{ 

125 



2120 I i I slOJ ='0'; s[l J = '1'; s[2J = '\0'; RETURN is); 
2121 i I L·--\} 

2122 I I r-DO \\ 
2123 I I I IF! in:; 2i == ll s[il = '1'; 
2124 I I I ELSE s[iJ = '0': 
2125 I I I r---n = n /2; i++; IF (i == I'IAXII'IUI'!l \{ 
2126 I I I L·-tJrintf("too large array in int2bin\n"l; exit(Oi; \} 
2127 I I I.--.\} WHILE ( n != 1 l; 
2128 I I 
2129 I I s[iJ = '1'; s[i+!J = '\0'; index= i: k= 1; strHOJ = '0'; 
2130 I I FOR (i =index; i>O; i--i \{ strHU = s[iJ; k++; \} 
2131 I I strHU = '1.0'; RETURN!strll; 
2132 I L--\} 

2133 I /tltlttttttttttttttttttttttltlttttttttttittttttttittittttttltltttttt/ 
2134 I 
2135 



VITA 

Kim S. Lee 

Candidate for the Degree of 

Master of Science 

Thesis: A HIERARCHICAL SINGLE-KEY-LOCK ACCESS CONTROL USING 
THE CHINESE REMAINDER THEOREM 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Tapah, Perak, West Malaysia, September 
11, the son of Choon Gan Lee and Ngan Siew Thong. 

Education: Graduated from Monk's Hill Secondary School, 
Singapore, in December 1981; received Bachelor of Science 
Degree 1n Business Administration (Majoring ln Accounting ) 
from Oklahoma State University at Stillwater in May, 1988; 
completed requirements for the Master of Science degree 
at Oklahoma State University in December, 1991. 

Professional Experience: Programmer Trainee, System 
Department of Ong's Construction Company, Singapore, 
January, 1982, to December, 1983; Junior Programmer, 
System Department, Hyatt Regency Hotel, Malaysia, 
January, 1984, to July, 1985; Student Programmer, 
Department of Agriculture Econom1cs, Oklahoma State 
University, August, 1990, to December, 1991. 


