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Abstract

One of the most promising approaches to building high

speed networks and distributed multiprocessors is the

use of optical interconnections. The basic component

of such a system is a switch (interconnection network)

that has a capacity of interconnecting a large number

of inputs to outputs. In this paper we present an anal-

ysis of an IVl x IV2 asynchronous crossbar switch model

for all-optical circuit-switching networks that incorpo-

rates multi-rate arrival traffic with varied arrival distri-

butions. We compare the model behavior using traffic

loads derived from the Binomial, Pascal, and Poisson

statistical distributions. We give efficient algorithms to

compute the performance measures. We analyze the ef-

fect of load changes from particular traffic distribution

streams on system performance and give a simple “eco-

nomic” interpretation.

1 Introduction

One of the most promising approaches to building high

speed networks and distributed multiprocessors is the

use of optical interconnections. The basic component

of such a system is a switch (interconnection network)

that has a capacity of interconnecting a large number

of inputs to outputs.

In this paper we present an analysis of an IVl x

fV2 asynchronous crossbar switch model for all-optical
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circuit-switching networks.

The performance analysis

been motivated by telephone

of crossbar switches has

switching systems [2] and

by the development of multiprocessor computer sys-

tems [3, 5, 26]. Recent developments towards wide-

band switches for future visual and data communica-

tions [18] have spurred increased interest in the design

and analysis of interconnection networks operating in

asynchronous mode. A practical implementation of an

asynchronous crossbar is described in [6]. A recent sur-

vey of performance results including congestion control

schemes is given in [25]; for other interconnection net-

works see [1, 4, 12, 14, 21, 22, 23, 31, 32, 34].

The electrical crossbar switch is a basic building block

in the design of many switching systems. Such a switch

is internally non-blocking and all electrical paths ex-

perience constant end-to-end delay. However, the cir-

cuit complexity of an N x IV crossbar is 0( IV2). As a

result, researchers proposed Multistage Interconnection

Networks [5]. A typical N x IV multi-stage interconnec-

tion network uses log IV stages of 2 x 2 crossbars with

N/2 number of switches per stage (O(IV log iV) circuit

complexity). Such multi-stage interconnection networks

have significantly greater delay characteristics compared

to the electrical crossbar and increased wiring complex-

ity when scaling-up the network.

Free space optical crossbar switches have the poten-

tial to overcome the above limitations of multi-stage in-

terconnection networks and electrical crossbars. Since

directed light beams may non-destructively cross, free

space optical crossbars overcome the circuit wiring com-

plexities of the electrical counterpart. Furthermore, the

number of input/output pins per substrate potentially

may exceed 104, thus overcoming the restrictive pin-out

limitations of electrical multi-stage interconnection net-

works and crossbara, and facilitating scalability of the

system [17]. Several design approaches, such as beam

stearing and beam spreading/masking have been pro-

posed [15]. To date, technological limitations, such as
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the switching speed of spatial light modulators, still in-

hibit implementation.

We believe that this technc,logy will become feasible

and that future networks could be comprised of asyn-

chronous non-buffered interm switching nodes imple-

mented by such optical crossbars. In such a system,

a request to establish a route will contain the infor-

mation encoded in its header that would specify which

output to use at each intermediate switch in the in-

terconnection network for the subsequent data transfer.

The system operates in circuit-switching mode where

all routing decisions are shifted to the periphery of the

interconnection network 1.

Asynchronous, non-buffered switch operation may be

required since light may not be buffered; light messages

may be converted to electrical energy, and then buffered

as such. This, however, introduces serious delay and

thus we believe that future optical networks will not uti-

lize optical-to-electrical conversion at intermediate net-

work stages.

Data flow in such a network would consist of different

traffic types (2. e., voice, video, interactive data) each

with different arrival and service statistics. Each traffic

type may have different bandwidth requirements. It is of

interest, therefore, to model and analyze such a network

switch for multiple classes of traffic in order to quantify

system performance and observe the effect of one traffic

source on another.

In this paper, we model an NI x IVz crossbar inter-

connection network with burst y arrival statist its. In

our previous papers [28, 29, 30], we analyzed the cases

of iVl = fVZ for simply one uniform arrival rate, non-

uniform (hot spot ) access patterns, and multiple Poisson

arrival traffic, respectively. In this paper, we consider

the more general case of multiple sources of uniform

traffic and multiple arrival rates with bursty statistics.

Furthermore, we assume that all input i to output j

connections support the same bandwidth. If a partic-

ular class of traffic requires a greater bandwidth than

that which is supported by one connection, several con-

nections may be acquired to support the traffic clam.

Since arrival traffic, in practice, may not necessar-

ily be Poisson, it is of interest to study the perfor-

mance characteristics of the model when it is sub-

1This is somewhat analogous to source-based Touting for some

emerging high-speed packet-switching networks [8]. In these net-

works, packets contain complete routing information from the

source. The intermediate nodes dc) not carry out any computa-

tions, just fast switching based on the information in the header.

The computation of routing, flow control and end-to-end error

control is the responsibility of the source and destination, not

of the intermedM,e switching nodes. Such departure from tra-

ditional networks is motivated by a tremendous increase in the
communication bandwidth and the low bit error rates due to re-
liable transmission mechanisms: tlhe intermediate nodes should

not perform any non-trivial computations so as not to become

the performance bottlenecks.

jetted to bursty (non-Poisson) arrival statistics. It

has been pointed out that pesky arrival traffic is well-

approximated by the Pascal distribution [33]. Similarly,

the Bernoulli distribution approximates smooth arrival

traffic [24]. Due to the similarity of the Pascal and

Bernoulli distributions, and since in the limiting case

both distributions degenerate to the Poisson distribu-

tion, it is possible to consider a unified approximation

of the smooth, regular and pesky arrival statistics [11].

The Bernoulli-Poisson-Pascal (BPP) distribution is a

useful approximation of varied arrival traffic statistics.

An important characteristic of the proposed model

is the assumption that connection requests are permit-

ted to propagate into the crossbar switch fabric asyn-

chronously (unslotted), as soon as the request arrives

at the switch input, This is contrasted with the well

known synchronous (slotted) crossbar model which has

been suggested as an implementation of non-blocking

ATM switches in fast packet switching networks. In a

synchronous crossbar, arrival requests are permitted to

propagate into the switch fabric with respect to a clock

pulse or slot time [26]. Furthermore, in the context of

today’s multiprocessor systems, one assumes that con-

tention does not exist at the switch inputs, since a pro-

cessor does not initiate two or more concurrent requests.

In the model of an asynchronous crossbar switch consid-

ered in this paper, however, switch interference can arise

both from concurrent requests to the same switch input

or the same output, making the model more difficult to

analyze,

The main contribution of this paper is the study of

bursty arrival statistics for an IVl x N2 multi-rate cross-

bar switch model. The paper is organized as follows:

The IVl x N2 crossbar switch model is developed, the

performance measures are derived and several efficient

recursive algorithms to compute the performance mea-

sures are presented. A “revenue” oriented performance

analysis is shown. Finally, some numerical examples are

presented.

2 The Model

Consider an IVl x fV2 crossbar network [21, 26]. Assume

that an input i can be connected to just one output

j at a given instant. There are R types or classes of

connection requests. Traffic of class r 6 R requests ar

inputs and outputs. Requests of type r for a particular

“ ) and a particular set of outputsset of inputs (21, . ., Za,
(j, “ .

, . . . . ~~r ) arrwe according to a discrete Markov pro-

cess with rate Ar (k~), where k~ is the number of concur-

rent connections of type r, Requests for a particular set

of inputs (ii, . . . , iar) and any set of outputs (jl, . . . . jar)

arrive with rate ~r(k,), where X. (k.) = (~) Ar(k,).

Assume a uniform traffic pattern. An established path
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of type r is used for a period of time distributed expo-

nentially with mean I/pr. This assumption will be re-

laxed to any distribution with mean l/#r. In the cross-

bar switch under consideration, there are no buffers.

Therefore, connection requests interfere if they try to ac-

cess the same input or output. We assume that blocked

requests are cleared from the system and that the re-

covery is managed by the corresponding end-points at

the boundaries of the network.

Define the state of the system by the row vector

k=(kl,.. ., kR), where k. is the number of concur-

rent connections of type r. Define A = (al, CLZ,. . . . UB)

as a column vector where ar is the number of inputs re-

quired by traffic type r. Let lr be the 1 x R row vector

with a 1 in position r, and zero elsewhere. In particular

kA = klal +.+k RaR. Define N = (NI, N2).

The state space of the system is then

r(N)={k I O<k A~min(Nl, N2)}.

If the system is in state k, then there are (Nl – k .

A) x (N2 – k ~A) connection requests that do not in-

t erfere wit h any other connections already in progress.

Therefore, if the system is in state k, the probability

intensity for a request of type r to be accepted is

q(k, k+ 1,) = (NI – k . A)(Nz – k . A) Jr(k, ),

and the probability intensity for a connection of type r

to be finished is given by

Let us now define V(.) and @, (.) by

N1 ! jv2 !

‘(k) =( N1–k A)! ’( N2-k A)!’

‘r A,(i – 1)
@,(k.) = ~ /pr “

1=1

It is easy to verify that

q(k, k + 1,) = @r(lcr + 1) V(k+ 1,)

Q,(h)
(1)

q(k -I- lr, k) W(k) “

It follows that if we define k(t) to be the state of the

system at time t, then the underlying stochastic pro-

cess {k(f), t > O} is Markov. The ratio of @-functions—
reflects the ratio of birth and death rates for connection

requests, whereas the ratio of W-functions represents the

modifying effect of resource availability. It can be shown

that the underlying process is reversible ([19] theorem

1.3). In particular, we can show that the process k(t)

has a unique steady-state probability distribution ~(k)

of the following product form:

1
— . V(k) ~fi%(kr)‘(k) = G(N)

r=l

1 NI ! N2 !
— — .
– G(N) (N1–k A)! ’( N2-k. A)!

R k.

n [II

Ar(l – 1)
x 1lpT‘

r=l /=1

where G(N) is the normalization function given by2

G(N) = z j!/l ! AT2!

ker(NJNI -k ~A)! “ (N2 -k A)!

R h.

rI [II

Ar(l – 1)
x

r=l 1=1
[p, 1

(2)

(3)

It is easy to verify the detailed balance equation

~(k)q(k, k + lr) = ~(k + Ir)q(k + lr, k). It can be

shown that the underlying stochastic process is insensi-

tive; we can replace the exponential service distribution

by any distribution with the same mean [7].

To model bursty traffic, we consider the Bernoulli-

Poisson-Pascal (BPP) state-dependent arrival process

of the form [11, 13]:

Ar(kr) = a. + prk?.,

where a and /3 are the statistical parameters char-

acterizing the state-independent and state-dependent

portions of the BPP process, respectively. This is

termed Bernoulli-Poisson-Pascal since, depending on

the parameters chosen, the distribution of the num-

ber of busy resources on an infinite server would be

Bernoulli for ,6, < 0, ar/f?, a negative integer and

El > –a,/max(Nl, Nz), Poisson for ,& = O, or Pascal

for a, ~ O and O < /3, <1. Note that in the Bernoulli

case, a, and ~, must be chosen so that a. + &n > 0

for n < max(Nl, N2). As stated earlier, the BPP distri-

bution is a unified approximation for pesky and smooth

traffic statistics [11]. The mean &l, variance V and

peakedness Z (Z-factor) of the BPP distribution are

given by

‘= (1 :“%)’ ‘= (1:;7 z=:= (l:pr)’

Note that the Z-factor indicates the peakedness of the

arrival traffic, either pesky (Z > 1), regular (Z = 1) or

smooth (Z < 1). Let us now partition all request classes

into two groups:

RI – The classes of requests with Poisson arrivals

(p, = o).

2When k. = O, the product [~~~1 A,(l – 1)/tLJ~] in equations Z

and 3 is defined to be 1.
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Rz – The classes of requests with Bernoulli or Pascal

arrivals (@r # O).

Define pr = ar/pr for r E RI and r c R2. Earlier we

()
defined Jr(k,) = ~T(k,.)/ (fl~ ) so that pr = ~r/ ~~ ,

CYr = ~r/ ~r(N2 ) and ,& = &/ (fl~ ). The probability

distribution ~(k) can then be rewritten in the following

form:

1 ~1 ! N2 !
n(k) = —

G(N) ”(N1–k A~”(Nz-k. A)!

‘II$ ‘ rI [ilIp’(ar’:r; ‘+’)]
rER2 /=1

1 NI ! N2 !
— — ,—

G(N) (N1–k A~”(Nz-k A)!

x
II,g ‘ rl [w)” (*JB’ ; 1 + ~’)]

T rTERZ

The model under consideration may also be inter-

preted in the following equivalent way: requests of class

r arrive according to a Poisson process with unit rate

but the service rate is of the state-dependent form:

~T(~r) = —*
VT + I& kr

Note that the steady-state distribution in this case

will be identical to that with BPP arrivals and state-

independent service times when ar = Vr + &r and

,0, = 6,. Such state-dependent service rates (with

v, + 6, = 1) have been considered in [16] within the

context of a queueing system. Note that the case & = O

corresponds to an infinite server node with Poisson ar-

rivals (@r = O). In a queueing system [16], the case

& > 1 can be used to model the slow-down due to

congestion, whereas the case () < iir < 1 models the im-

provement of efficiency with congestion. We generalize

this load dependence by omitting the restriction that

Vr + 6r = 1 to obtain a general parameterized service.

For example, if iir = 1 and v, is large, then p. (k.) is lin-

ear with kr for small ,@, and asymptotically approaches

a constant for large kr. For the purposes of this pa-

per, we view the model in terms of the state-dependent

arrival process rather than the state-dependent service

process.

3 The Performance Measures

We now turn to the derivation of the performance mea-

sures of interest. We start by computing the concur-

rency (the average number of connections for each traffic

type r where r E RI):

E.(N) =
8G(N)

~ k,@c) = G&) ~p,.

k~r(NJ

= p“KxlG(%r’)
where I is a unit row vector.

For the case in which T c R2, the average number of

connections for each traffic type r is given by

&/p, 8G(N)
E’(N) = ~ kr~(k) = — .

k~r(N)
G(N) ~(A/~r)

_ (3(3—
G(N)

{PrG(N – a,I) + & ~G(N – aJ)
P. wr/Pr) }

= (3 (~:) G(~&;rl){pr+EE’(N-arl)}

The non-blocking probability is found by summing

m(k) over all states where ar inputs and outputs are idle.

It can easily be shown that the non-blocking probability

is given by

Br(N) =
x

k,z(k) =
G(N – a,I)

G(N)
. (4)

ker(N-a,I)

4 Revenue Oriented

Performance Analysis

To provide an overall measure of the switch performance

and to see the effects of load changes for some types

of connection requests, we follow the approach used in

[20] and suppose that an accepted connection of type r

generates “revenue” w.. The average return from the

system is

W(N) = ~ w.-%(N)+ ~ w.-Z(N).

If we write W. = -1’ K,, then it is clear that the total

revenue (W(N)) is just the weighted throughput of the

system with -yr as weights. In particular, if ~1 = . . . =

~R = 1, then the revenue is just the throughput of the

system. These weights measure the relative significance

that we attach to different types of connection requests.

To see the effect of load changes on the system per-

formance, we compute the gradient of the weighted

throughput with respect to pr for Poisson arrival traf-

fic (r c RI) or with respect to ~, /pr for bursty arrival

traffic (r E R2). For the case of R2 = O, RI # O, the

gradient of the weighted throughput may be written as

([~w(N) = jv1N2&(N) W –

L?pr 1)W(N)– W(N–arI) .

From the above expression, the effect of increasing the

load for connections of type r has the following economic

interpretation:

ability B,. (N).

a reques~ if type r is accepted ‘with prob-

If accepted, it will generate revenue WT
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directly, but at a cost of AW’(N) = W’(N) -W(N-arI),

In other words, AW(N) has the interpretation of a

shadow cost. If w. > AtV(N) then the weighted

throughput increases as we increase p,. If, on the other

hand, w, < AW(N) then the weighted throughput de-

creases as we increase pT. Even though p, is higher,

connections of type r would prevent connections of other

types, resulting in the loss of revenue (t. e., decrease in

weighted throughput).

A closed form expression for the gradient of the

weighted throughput was not found for the more gen-

eral case of R2 # O, RI # O. We use numerical methods

to approximate the gradient 6’W(N) /d(fl, /pr ) where

r G R2 to show the effect of non-Poisson load changes

on system performance. The gradient d W(N) /13(P~ /p,)

is approximated via a forward difference.

5 Computation of the

Performance Measures

Despite the simple expressions for the performance mea-

suresj to compute them exactly we must compute the

normalization function, It is clear that a straightfor-

ward computation of G(N) is impractical due to the

factorial terms in equation 3. We therefore develop re-

cursive algorithms to compute the performance mea-

sures.

To that end, define Q(N) = G(N)/Nl !N2!. Let Z(t)

be the generating function of Q(N) where t = (tl, t2).

Using the identities

g(a-k+’)’k=(+J
co

x 1
Yk=— O<y <l,

‘=0
l–y’

* Yk
E
k=Om = ‘Xpy’

we have

= exp

(

tl + tz+ ~ prtyty

rERI )

)

O.IB.

‘rg, (1 - (Prim.)

We define tN = t~t~. Differentiating

respect to t% we have

~=

ati
E (N;+ l)Q(N + l,)tN

N.o

=

[

Z(t) 1 + ~ a,.p, t(u”l-l’)

rCRl

+ ~ “,p, t(a,I-l,)
(

1

1 – (Prtf”tj”/Pr)TERZ )]

(5)

Z(t) with

(6)

+ ~ “,Prt(”rI-lt)
rER2

(~(y:r)m)]l

(7)

where vector li is defined as 11 = (1, O) or 12 = (O, 1),

respectively.

Equating the corresponding powers oft~t~ we obtain

from equations 6 and 7

Q(N)
Q(N+ li) = —J/i+l+x””p’

Q(N +li – arI)

N~+l
TERI

+ lJPr~n!y(fjm

~ Q(N + li – (m + l)a,.1)

Ni+l 1
Let us define V(N + 1~, r) for r 6 R2 as

(8)

V(N+li, r) =

x

=

+

“’”:N2){H”
Q(N + li – (m + l)a.1)

}

Q(N + li – arI)

()~ V(N + li – a,I, r). (9)

Therefore, the recurrence relation in equation 8 maybe

re-written as

{ (
Q(N)

Q(N +li) = —
Q(N + li – arI)

x ~ (~r~:.t;r,pr)kr a./P. -1+ h )}1 Ni+l+~arp”Ni+l

kr
rGRl

rGR> V(N + li, r)
+ ~ a~pr

Ni+l “
(lo)

TISRZ
3a.e., the exponential zeneratin~ function of G(N)..,
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Also defineThe third term on the right lhand side of equation 10

may be computed recursively using equation 9. Given

the following definition of permutations,

Ni !

‘(Ni’ar)=~=q’
(11)

we obtain the following

performance measures:

Algorithm 1

algorithm for computing the

Step 1. Initialize n = (nl, nz) = O, Q(0) = 1

Step 2. For O < n < N compute:

Step 3. Compute the performance measures;

Br(N) =
Q(N - aJ)

P(fVl, a,) P(N2, ar)Q(N)

E,(N) =
p~Q(N – a~I)

P(NI – l,ar)p(IV2 – l,ar)Q(N)’r c ‘1

Q(N - arI)

‘T(N) = P(NI – 1, a,)P(N2 – 1, ar)Q(N)

x {p, + $JZ.(N -- aJ.)}, rcR2

where E.(O) = O.

Let us now evaluate the complexity of Algorithm 1.

For each successive step of the recurrence, the first term

on the right hand side of equat ion 10 requires 0(1) oper-

ations, the second term requires O(R1 ) operations and

the third term requires 0(R2) operations. Since N1 N2

iterations are required to compute Q(N1, N2), the com-

plexity of Algorithm 1 is O(NI N2(RI + R2)).

5.1 Mean Value Analysis

We now present a mean-value type of algorithm to com-

pute the blocking probabilities. This second algorithm

is cast directly in terms of blocking probabilities. The

main advantage of this approach is numerical stability.

The derivation presented here is analogous to the gen-

eralized approach presented in [27].

Define Fi (N) as a ratio of the normalization functions.

(12)

4 D ynarnic scaling could also be used as suggested in [1 O] and

dkcussed in Section 6.

~ (N)= Q(N - arI)
r

Q(N)

= fi fiF” (N -a~l+ (j- l)a~lj-~ +mlj). (13)

j=lm=l

Note that Il. (N) may be rewritten for any 1 ~ j ~ 2 as

H,(N) = Fj(N)J5jr(N – lj), (14)

where

ar-l

LJ,(N – lj) = ~ Fj(N – U,lj +klj)

k=l
a.

x fiF2(N -d+ ~b). (15)
m=l

.#J

We are now in a position to derive the proposed mean-

value algorithm. Dividing both sides of equation 8 by

Q(N + 1,) and multiplying by Ni + 1, we obtain

Q(N)
+ ~ %/%

Q(N + li – arI)

‘i+ 1 = Q(N+ li) ,ER, Q(N + li)

+ ~;,pr~ng(:)m

~ Q(N + Ii – (m + l)arI) 1Q(N + 1~) “

Let us now define for the class r E Rz

(16)

mQ(N – rna,I)
D(,, N) = ‘:$:)(:) Q(N) (17)

Given the above definitions, we may rewrite equation 16

as

(Ni + 1) = Fi(N+li)

+ ~P.a.Fj(N+ L)~j.(N + L – lj)

+ ‘jJPr%
[
Fj(N + li)Ljr(N + I.i – lj)

?-6R2

1
x D(r, N + li – a,I) . (18)

J

Manipulating equation 17, it maybe shown that

I)(r, N) = H,(N) + :D(r,N –arI). (19)

Using equations 12, 13 and 14, it may be shown that

H,(N – lj)
Ljr(N – lj) = F(N _a,l).

1

(20)

Equations 14, 18, 19 and 20, then

following mean-value algorithm.

form the basis of the
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Algorithm 2

Step l. Forl~i~2, l~r~R:

Fi(o) = o, Fl(nl, o) = n~ fo?-n~ >1

F’z(O,nZ) = nz jor nz ~ 1

~i(l) = 1/(1+ Er~R, arpr + ~r~& ar~T)

.Lir(o) = o, Lir(li) = 1

L;,(l) = 1/(1+ ~rE& af”~r + )&R2 a~~r)

Ll, (0, n2.) = nz for nz ~ 2

L~r(n~,O) = nl jor n~ ~ 1

Hr(0) = O, Hr(li) = H,(l) = 1, D(r, O) = O

For each r ~ 2:

Ltr(l) = o, .L~r(l,2) = 2, L2r(2,1) = 2

Llr(l, nz) = Ll, (l, nz – 1) .nz tornz >2

Lzr(nl, 1) = Lz,(n~ –l,l). n~$orn~>2

F~(o) = 1

Step 2. Forl < n < N:

Forl~i~2, 1~j~2andi #j,

compute:

F~(n+ 1~) = (n~ + 1)/

+ ~ at.p, Li, (n)D(r, n + Ii – arI)

rCR2 1

F’(n+ 1;) = (n; + 1) – F;(n+ Ii)/

IXarpr Ljr(n + li – lj)

For 1< r < R, compute Hr(n + li) using

equation. 14.

For 1< r ~ R, compute Lj, (n + li) and

Lir(n -I- li) uszng equation 20.

For 1 ~ r < R compute D(r, n + li) using

equations 19.

Step 3. For 1< r < Ii: Compute the remaining

performance measures:

B,(N) =
H. (N)

P(N~, ar)P(iVz, a,)

E.(N) = P.NIN2 ~B.(N), r ~ RI

JZ.(N) = NIN2137.(IW){P, + fi&(N - d)),

where Er(0) = O and r ~ R2.

Let us evaluate the complexity of Algorithm 2. The

main loop in step 2 requires O(N1 N2) iterations. The

computation of each successive Fi (n + 1~) value requires

O(R1 + R%) operations. Also, the computation of suc-

cessive values of Lj, (n+ Ii), H.(n+ 1~) and D, (n+ 1~)

for 1< r < (Rl + R2) can be computed in O(R1 + R2).

Thus, the computational requirements for Algorithm 2

are O((R1 + R2)N1 N2). Algorithm 2 is preferable com-

pared to Algorithm 1 because of its superior numerical

stability. Algorithm 2, however, requires substantially

more space in practice compared to Algorithm 1. Thus,

Algorithm 1 is preferable for computing the perfor-

mance measures of small dimension crossbars (N < 32)

whereas Algorithm 2 is advantageous for larger system

sizes.

6 Dynamic Scaling

During the computation of Q(N) in Algorithm 1, un-

derflow or overflow may occur. Dynamic scaling can be

used to compute the recurrence by introducing a scaling

factor w [9]. We may rewrite equation 10 as follows:

wQ(W
wQ(N+ Ii) . —AJi+l+za’f”

wQ(N +1; –a,I)

Ni+l
rCRI

+ ~ arpr
wV(N + 18, r)

Ni+l
rcRz

The scaling factor is used to prevent underflow or over-

flow, If it is determined that the subsequent computa-

tion of Q(n) will underflow or overflow, then we may

scale equation 10 as shown above so that the problem

is avoided. The scaling operation increases the com-

plexity of Algorithm 1 by a constant factor and may be

carried out at any step of the algorithm. Since the per-

formance measures are expressed in terms of the ratio

Q(N – arI)/Q(N), the scaling factor does not affect the

performance measure results.

7 Results

We now show some numerical examples to illustrate

the performance characteristics of the model. Figure 1

shows the blocking probability for N1 x N2 crossbar sys-

tems, where N1 = N2 = N, given one arrival traffic type

Rz (Rl = O), and bandwidth requirement of one connec-

tion per arrival (a, = 1). The arrival traffic parameters

are such that 6. = .0024, pr = 1.0 and & ranges from

0.0 to –4.0 x 10-6. The &r, ,& parameters are chosen

to drive the non-blocking probability to approximately

99.5%, which may be considered an acceptable operat-

ing point (blocking probability y x 0.5Yo). Figure 1 corre-

sponds to the Bernoulli approximation of smooth arrival

traffic. Note that CY./fir is a negative integer, & < 0

and crr + ~.n ~ O where n = max(N1, N2). The largest

system size used in Figure 1 is 128 x 128 (n = 128).

The solid curve shows the degenerate case (Poisson ar-

rivals) when ~, = O. We observe that the degenerate

case provides an upper bound for the smooth arrival

156



Table 1: Total Load Calculations

s=ivl -

4 .00;;00 .Ooofoo

8 .000300 .000171

16 .000150 .0000400

32 .0000750 .00000967

64 .0000375 .00000238

Table 1: Input parameters used to model two traffic

types with bandwidth requirements al = 1 and a2 = 2

trafic. Furthermore, we found that the smooth arrival

traffic affected the blocking probability proportionally

at other operating points. For example, it is noted that

for N1 = N2 = 128, the difference in blocking probabil-

ities between the degenerate Poisson case (ii, = .0024,

~, = O) and the case of d. = .01024, & = –4.o x 10-6 is

approximately O. l%. We founcl that at other operating

points, the difference in blocking probabilities for the

proportionally scaled 6. and ~, was again O. 1~0.

Figure 2 shows the blocking probability for system

sizes 1 ~ N s 128 (N1 = N2 = N) for pesky arrival

traffic (Rl = O, R2 = 1),and bandwidth requirement

of one connection per arrival (,zr = 1). The solid curve

shows the degenerate case (Poisson) where ii. = .0024,

,& = 1.0 and P. = O. It is observed that pesky arrival

traffic has a dramatic impact cm blocking probability,

Figure 3 shows a comparison of the asynchronous

crossbar blocking probabilities for two classes of arrival

traffic (Rl = 1, R2 = 1) versus one class (Rl = O,

R2 = 1), and bandwidth requirement of one connection

per arrival (a, = 1). We observe that the class RI type

traffic simply shifts the operating point of the crossbar.

Also, the amount of ~, (in class R2) causes the same

percentage change in blocking probability regardless of

operating point (iir from R1, R2). We observe from Fig-

ure 1, Figure 2 and Figure 3 that the blocking proba-

bility is relatively insensitive to moderate variations in

the statistical parameters. This was observed for large

ranges of statistical parameters.

Table 2 shows the revenue oriented performance re-

sults for two arrival traffic types (traffic 1 e R1 is Pois-

son and traffic 2 E R2 is bursty) with different weights,

and bandwidth requirement of a. = 1. In Table 2, the

first set of parameters are ~1 = .0012, @2 = .0012,

~z = .0012, WI = 1.0 and W2 = .0001. The traffic

types are weighted unequally so that traffic type 1 re-

turns a significantly higher revenue than traffic type 2.

The second set of parameters in Table 2 are adjusted

so that ~2 is increased from ,& = .0012 to ~z = .0036,

thus indicating a small increase in the peakedness or

Z-factor of traffic 2, All other parameters remain the

same. The third set of parameters are adjusted so that

~2 is increased from 62 = .0012 to ~2 = .0036, resulting

in a large increase in the operating point of the cross-

bar. Since the gradient 8 W/8(/3z /p2) is negative, the

overall weighted throughput (W(N)) decreases as load

@2/P2 is increased, resulting in a loss of revenue. These

results are consistent with the results presented in Fig-

ures 2 and 3 which showed that an increase in bursty

traffic impacts the blocking probability, and hence the

system throughput. It is observed that increasing 62

causes a. greater decrease in revenue (and increase in

non-blocking probability) compared to that resulting

from the proportional increase in PZ.

Figure 4 shows the effect of multi-rate traffic on the

crossbar blocking probability. Two traffic types are

compared, both of which are Poisson (r E R1 ). Traffic

J1 has the bandwidth requirement of one crossbar con-

nection per arrival (a,. = 1). Traffic ~2 has the band-

width requirement of two crossbar connections per ar-

rival (ar = 2). The total load ~r is kept constant at

~r = .0048 for all system sizes. The arrival rates ~1 and

()
jz are calculated using P, = rr/ ~~ . The blocking

probability is calculated analytically using the model,

considering each traffic type separately. Table 1 shows

the input parameters used for the analytical model. Fig-

ure 4 shows a comparison of the independent effect of

the two traffic types on blocking probability. We ob-

serve that traffic ~Z with a2 = 2 results in a signifi-

cantly higher blocking probability as compared to traffic

~1 with al = 1,for a constant overall crossbar load ~r.

This is due to the higher contention of two connection

requests per arrival event for ~z traffic as compared to

one connection request per arrival event for j71 traffic.

8 Conclusion

In this paper, we presented a model of an N1 x Nz

multi-rate crossbar switch for several arrival traffic dis-

tributions. The effects of bursty traffic on the perfor-

mance of the asynchronous crossbar switch was quanti-

fied analytically. Recurrence relations to exactly com-

pute the concurrency for each traffic type, and the

non-blocking probability were derived. A revenue ori-

ented approach to performance analysis was presented.

The model could be applied to the performance analy-

sis of all-optical circuit-switching networks which sup-

port various integrated multi-rate traffic types. Future

work includes extending this analysis to asynchronous

all-optical multi-stage networks, comparing our analyt-

ical results with simulation and analyzing other asyn-

chronous switches.
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Table 2: Revenue Oriented Analysis

W2 = .0001

j] = .0012
69 = .0012

jj = .0036

w] = 1.0

W2 = .0001

jl = .0012

~z = .0036

B, = .0012

WI = 1.0
W2 = .0001

m-
R=l

,
8 63.56 –0.00036904 0.00449504 0.00955782

16 254.21 –0.00399684 0.00467581 0.0191122

32 1016.68 –0.0363166 0.00481708 0.0382193

64 4065.93 –0.299452 0.00498953 0.0764266

128 16258.80 –2.09857 0.00527912 0.152817

256 64998.30 –68.6054 0.00582948 0.305646, 1 1

1 0.99 I – 0.00477707 I 0.00119463

II 2i
, ! I

3.96 I +7.13145e-07 [ 0.00714287 I 0.00238357

4 15.83 –6.30503e-05 0.0083221 0.00476149

8 63.28 –0.00109351 0.0089218 0.00951723

16 253.05 –0.0118788 0.00924611 0.0190283

Table 2: Loss in total revenue (W(N)) as traffic type 2

is increased
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Figure 1: Smooth arrival traffic for the case of one type

of class Rz = 1 traffic, no traffic of type RI = O (Pois-

son) and ar = 1

Probability (X 10-3)

I I I I I I I I
12.0– I
11.5– I

1
11.0- /“

I
105 – 1

/“

I /“
10.0– / /’

9.5 - I /’
/ /’

9.0 - 1 /“

83 – / /“
/ /“

8.0 – I /“

7.5– / /’
/ /“

7.0 - / /“
/

/
/

/

i ;~;

2.0 ---- -~llz = 0024, ~~z n .0096
15

0.0 20.0 43.0 60.0 pJ 80.0 103.0 120.0

Figure 2: Pesky arrival traffic for the case of one type of

class R2 = 1 traffic, no traffic of type R1 = O (Poisson)

and ar = 1
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Figure 3: Pesky arrival traffic for the case of RI = 1,

Rz = 1 compared with RI = O, R2 = 1 for a, = 1

Probabdity (x 103)

I I I I I I I I 1
20.0–

19.0–

18.0-

17,0–

16.0-

15.0.

14.0–

13.-

12.0–

11.0 –

10.0 -

9.0 –

8.0 –

7.0 –

6.0 –

5.0 –

4.0 -

3.0 –

2.0 —

1.0 –

0.0 -

PI

-\.
-...

. .. . .
--.. -—.._.__.._.”.. --._.-”_ .. . . ...-_— ..-—----

.1.00 I I I I I I I I I

0.0 10.0 20.0 300 ~ 40.0 50.0 600

Figure 4: Comparison of two Poisson traffic types ~1 and

~2 with bandwidth requirements al = 1 (one connection

per arrival) and a2 = 2 (two connections per arrival)
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