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ABSTRACT
Users increasingly interact with a heterogeneous collection
of computing devices. The applications that users employ
on those devices, however, still largely provide user
experiences that assume the use of a single computer. This
failure is due in part to the difficulty of creating user
experiences that span multiple devices, particularly the need
to manage identifying, connecting to, and communicating
with other devices. In this paper we present an infrastructure
based on instant messaging that simplifies adding that
additional functionality to applications. Our infrastructure
elevates device ownership to a first class property, allowing
developers to provide functionality that spans personal
devices without writing code to manage users’ devices or
establish connections among them. It also provides simple
mechanisms for applications to send information, events, or
commands between a user’s devices. We demonstrate the
effectiveness of our infrastructure by presenting a set of
sample applications built with it and a user study
demonstrating that developers new to the infrastructure can
implement all of the cross-device functionality for three
applications in, on average, less than two and a half hours.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. Graphical user interfaces.
General terms: Design, Human Factors
Keywords: multi-device services, multi-device user
experiences, application development, infrastructure
INTRODUCTION
Users are shifting from interacting with a single personal
computer to interacting with a heterogeneous collection of
computing devices (e.g., desktops, laptops, tablets, PDAs,
mobile phones). A recent study of 27 people from academic
and industrial research labs revealed that on average they
employ more than five computing devices [5]. While those
users may be at the leading edge of this trend, users with

just a work computer, home computer, and mobile phone
already employ three devices.
Users that work with multiple devices want a seamless
experience when interacting across them [5, 15]. They want
easy access to their files, but they also want access to meta-
information such as the history of websites they visit and
people they email. They want to be able to easily use one of
their computers to control or access the others. In short, they
want to employ their devices as a more integrated whole,
rather than as a collection of independent devices. The
current user experiences provided by devices and
applications, however, are far from fulfilling those desires.
Part of the problem is that extending an application’s user
experience across multiple devices requires additional
functionality. For example, a search application for a single
device generally consists of three basic parts: an indexer, a
query engine, and a user interface. An application for
searching across multiple user devices is more complex. It
also needs mechanisms for determining the addresses and
availability of a user’s devices, connecting to those devices,
sending and receiving messages, and preventing
unauthorized access. Implementing that additional
functionality represents a significant barrier for developers.
We set out to reduce that barrier by creating an
infrastructure that developers can use to allow their
applications to easily exchange information, events, and
commands across a user’s devices. While there are other
infrastructures that support the development of applications
that span multiple devices in general, our infrastructure
differs from them by explicitly focusing on supporting
applications that span personal devices.
More concretely, our infrastructure elevates device
ownership (or more broadly primary use, because users may
employ devices owned by other entities, such as their
companies) to a first class property and uses it to organize
communication among devices. Ownership is a useful
organizing relationship because, unlike other potential
relationships such as physical proximity, it implicitly
incorporates information about access permissions.
Ownership is also stable over time, changing over months
or years rather than hours or days.



In the next section we describe the basic design of our
infrastructure. We developed over twenty applications in
parallel with creating it in order to refine the functionality it
provides. We describe a subset of those applications and
discuss the refinements we made. We then walk through
implementing a sample Search application to provide a
sense of a developer’s experience using the infrastructure,
and we contrast our infrastructure with previous work. We
close with an evaluation of our infrastructure, some
additional lessons learned, and potential next steps.
BASIC INFRASTRUCTURE DESIGN
We started with two design goals: elevate device ownership
to a first class property, and allow applications on a user’s
personal devices to easily send information, events, and
commands to each other. We also decided to accept rather
than attempt to change some existing user practices, such as
turning off devices and employing firewalls, dynamic IP
addresses (DHCP), and network address translation (NAT)
on them. That decision led us to impose several constraints
on our infrastructure. Accepting that users turn off devices
meant that the infrastructure needed to be able to tell
applications of the availability as well as the existence of a
user’s devices in order to facilitate communication among
them. It also meant that the infrastructure needed to help
applications cope with devices that are only intermittently
available. Finally, accepting that devices may be behind a
firewall, that their IP addresses may change, and that they
may use NAT meant that the infrastructure had to help
applications communicate with devices that are difficult to
contact (e.g., that have IP addresses that are unreachable
outside of their local subnet).
Based on these goals and constraints, we chose to build our
infrastructure using an instant messaging (IM) architecture.
Current IM architectures address many of our needs. They
provide synchronous communication between entities
(traditionally users), facilities for describing relationships
and controlling communication among entities, and
presence updates to communicate availability. In addition,
clients open persistent, outgoing network connections to a
central server that routes messages between them, allowing
clients to receive incoming messages without needing to
accept incoming network connections. IM architectures also
assign fixed addresses to entities, allowing other entities to
route messages to them regardless of their actual IP address.
As an added bonus, most developers (and users) are familiar
with instant messaging.
We chose an IM architecture based on the IETF standard
Extensible Messaging and Presence Protocol (XMPP) [6],
also known as Jabber, for three reasons. First, several open
source libraries exist for XMPP, simplifying the
development of new XMPP clients. Second, XMPP
messages are extensible; they are just XML fragments, and
the protocol itself defines how to add custom elements to
them. Finally, most open source XMPP servers are
themselves extensible through plug-ins, allowing us to
incorporate new server functionality without building a

server from scratch. We took advantage of XMPP’s
extensibility to make three key changes to better fit our
needs. We describe the result as an infrastructure for
creating personal information environments (PIEs).
First, we added support for devices as well as users. We
considered simply treating devices as users (giving each its
own IM account), but to reduce the administrative overhead
(for both users and infrastructure) we chose to instead
affiliate devices with users. Users create a single account on
a server and affiliate their devices with it. Each device
authenticates to the server as the user and has an address of
the form userid@server/device. The server maintains a
persistent list of personal devices for each user that the
user’s applications can access and that the infrastructure
uses to determine which messages an application receives;
by default an application only receives messages from the
user’s own devices (avoiding the need for developers to
prevent access by devices owned by other users).

 

Figure 1: The server, clients, and services in our
infrastructure.

Second, we extended traditional IM to include support for
applications, which we call services in our infrastructure.
Users run a single client on each of their devices that
connects to the server. Individual services connect to that
client, and it handles routing messages to and from the
server for them (see Figure 1). We considered having each
service connect directly to the server, but that would
increase both the complexity of the services and the load on
the server. Our approach allows us to hide the details of
communication with the server from service developers. It
also allows us to provide functionality that is common
across services in the client itself. For example, our client
monitors the availability of the user’s other devices by
handling presence announcements from the server, allowing
service developers to ignore device availability unless their
service actively requires it.
Third, we improved support for asynchronous
communication. Some IM architectures queue messages for
later delivery to off-line entities, but queuing is problematic
for infrequently connected devices because of the potential
volume of (often outdated) information. We go beyond such
“store and forward” approaches by allowing services to
replace an outdated queued message with a new one (or
cancel the message altogether). We also extended our server
with a data repository that provides “store and retrieve”
functionality to services. Services can store arbitrary XML
fragments on the server by simply sending it a message



containing the XML data, an identifying tag, and the
identity of the associated service. To retrieve data, services
send a message containing just the tag and service identity.
Services can use the repository to, for example, store the
most recent version of shared state information so that
services on intermittently connected devices can quickly
determine the current state. The repository keeps each user’s
data separate, so that by default one user’s services cannot
access another user’s data.

Figure 2: The Java client running in Lotus Sametime.
Our current implementation consists of a server and two
versions of our client. Our server is an open source XMPP
server that we extended via a plug-in to support persistent
device collections and to improve asynchronous
communication. One version of our client is a Java Eclipse
extension that runs on Windows, Mac OS X, and Linux
devices and integrates directly into our corporate
environment’s standard IM (see Figure 2) or email (Lotus
Notes 8) applications, avoiding the need for users to run a
separate application. The other version is a .NET Compact
Framework client for Windows Mobile devices.
We also provide three libraries to simplify the creation of
new services. Our infrastructure provides two ways for
services to communicate with a client. First, services can
integrate directly with the Java client via an Eclipse
extension point. One of our libraries simplifies the
development of such services in Java. Second, services can
run as independent applications and communicate with a
client over a local socket (exchanging simplified XMPP
messages). Because these services run independently,
developers can write them in any language; a service just
needs to be able to read and write XML. These “socket”
services can leverage arbitrary native libraries to provide
functionality specific to particular device types or even add
multi-device functionality to extensible legacy applications.
We provide two libraries to simplify the development of

these “socket” services: a Java library and a library for
building services that are XPCOM extensions to Mozilla
applications, such as Firefox and Thunderbird.
SAMPLE MULTI-DEVICE SERVICES
We developed over twenty services in parallel with
implementing the infrastructure both to test the flexibility of
the infrastructure and to identify potential refinements to it
that might improve the developer experience. We initially
concentrated on services that address needs identified by
previous research, such as light-weight information
transfers and the ability to easily control one device from
another [5, 15]. However, we also built services that vary
widely in structure and functionality to verify that our
infrastructure offers breadth. For example, some of the
services store as much of their information on the server as
they can, while others adopt a peer-to-peer model and only
use the server to route messages. In this section we describe
a subset of the services we built.
The ability to more easily share information across devices
is a capability commonly requested by users [5, 15]; we
therefore built several services that send information
between devices. Our Notebooks service allow users to
create, access, and edit multiple text notebooks on any of
their devices. For example, a user could keep a log of
research ideas using the service and access or modify it
from any of his devices. The service shares changes to a
notebook on any particular device with the user's other
available devices in near real-time and ensures that devices
that connect later can get the most recent versions of the
notebooks by storing them on the server. We also built a
Shared Lists service (Figure 3) that offers the same
functionality for lists: users can create lists (e.g., a grocery
list) and access or modify them from any of their devices.
That service drove the addition of new functionality to
allow users to share lists with each other. For example, a
family could share their grocery list.

Figure 3: Desktop and mobile interfaces to the
Shared Lists service.

In addition to sharing small pieces of information, services
can also share entire files. We built a simple File
Synchronization service (Figure 4) that mimics services
such as FolderShare [8]. It allows users to synchronize sets



of files across their personal devices. Users can choose
which of their devices participate for each set of files.

Figure 4: An interface for managing the File
Synchronization service.

Of course, sometimes users only want to transfer
information between their devices once instead of
continually synchronizing it. We therefore built an
Information Transfer service that allows users to drag and
drop (or cut and paste) text, URLs, or files onto one of their
devices listed in the client’s interface to transfer them to the
target device. This service combines sending information
with sending commands. The receiving device will open
transferred text in a window, it will open a transferred URL
in its default browser, and it will store a received file in a
pre-specified directory and then open a file browser
showing that directory. We also built a Send a URL service
that mimics multi-browsing [11]. Built as a Firefox plug-in,
the service allows users to right-click on a URL and choose
a device to open the URL on (Figure 5).

Figure 5: The Firefox Send a URL service.
In addition to pushing information to other devices, services
can send commands to other devices to pull information
from them. For example, we built a Browse service that
allows users to visually traverse a remote device’s file
system and choose files to transfer to the local device. We
also built a multi-device search capability, composed of a
Search Console service and specialized Search services, to
allow users to search across their available devices. A user
initiates a search by typing keywords into a Search Console
service’s interface. That service sends those keywords to
Search services on the user's other available devices. Taking
advantage of the fact that developers can implement
services differently for different devices, a receiving Search
service may search for the keywords using Google Desktop
Search (Windows), Spotlight (Mac OS X), or Beagle [3]

(Linux) and will return the results to the requesting device.
The Search Console service aggregates and presents the
results to the user (Figure 6). The user can choose a
particular result and tell the service to retrieve that file (or
URL, for search tools that index URLs) and open it.
Previous research suggests that users would like to share
their interaction histories across devices [5]. We created a
Recent Shortcuts service [25] that shares the contact
information of people that the user has recently emailed or
instant-messaged, the identity of attachments in email
messages that the user has recently viewed, and the identity
of files that the user has recently accessed. In the service’s
interface (Figure 7) the user can click on a presented
individual's contact information to initiate an email or IM to
that person or double-click on a listed attachment or recent
file to retrieve and open it.

Figure 6: The Search Console service.

Figure 7: The Recent Shortcuts service.
Services can also send events to other services to help a
user’s devices coordinate their activities. We built a Phone
Events service that sends events from mobile and voice-
over-IP (VOIP) phones to a user's other devices when the
user makes or receives a call, when a call connects, and
when a call ends. A Phone Context service on each
receiving device monitors phone events and provides
possible context by employing the local Search service to
find content containing the other party’s phone number.
We also built a Context service that monitors keyboard and
mouse activity on the local device and uses that information
to add or remove the device from two server-side aliases:
InUseDevices that the user has interacted with in the last



minute and RecentlyUsedDevices that the user has
interacted with in the last five minutes. Other services can
use those aliases to route pertinent messages to appropriate
devices. For example, we built a Thunderbird extension that
sends alerts about new email messages to InUseDevices and
a Notification service that pops up a small window to
display such alerts.
REFINING THE INFRASTRUCTURE
Building sample services in parallel with implementing the
infrastructure helped us identify opportunities to simplify
service development. In this section we describe
refinements that we made to the infrastructure.
In order to send information, commands, or events to a
service on another device, the sending service needs to
specify both the receiving device and the receiving service.
We initially required that clients specify the full address
(userid@server/device) of a receiving device. However, we
quickly found this cumbersome; in many cases a service
would not otherwise need to know the userid or server. We
therefore also allow services to specify a receiving device
using just its device name. The client handles expanding
device names into full addresses before forwarding
messages to the server.
Sending a message to multiple devices initially required
sending separate messages to each one. Not only is this
cumbersome, it also increases network traffic between the
clients and the server. To simplify matters, we introduced
server-side aliases. The server provides default aliases for
each user, including one for all of the user’s devices and one
for just the user’s available devices. The server also allows
users and services to create, query, edit, and delete custom
user-specific aliases. Such custom aliases are useful for
communicating with subsets of devices that share a
common property (e.g., WorkDevices, HomeDevices,
InUseDevices, RecentlyUsedDevices, Laptops, Desktops,
Tables). Services can address messages to just an alias (e.g.,
allAvailableDevices) or to a full address (e.g.,
userid@server/allAvailableDevices). The server examines
each incoming message for an alias. If it finds one, it routes
a copy of the message to each of the alias’ members.
Services also need to specify the receiving service on a
device. Our initial design required that services include the
receiving service’s name (e.g., “Search”) in a message.
Services register a name with the client when they start to
allow it to route messages correctly. However, this approach
made sending a message to multiple services cumbersome,
and it required that sending services know the exact names
for receiving services. We therefore added the ability for
services to indirectly specify receiving services using the
XML namespaces on the extensions (custom XML
fragments) that they embed within a message. Services now
tell the client what XML namespaces they are interested in
(e.g., “ibm:pies:services:search”) as well as their name
when they start. Multiple services can register for the same
namespace, and a service can register interest in multiple
namespaces. When a client receives an incoming message,

it first checks for a named recipient service and forwards the
message appropriately if one exists. Otherwise it forwards a
copy of the message to every service expressing interest in
any of the XML namespaces on the message’s extensions.
The XML namespaces thus function like types: services tag
sections of a message as having a particular type, and clients
route the message to services that handle that type. This
approach provides more flexibility for composing services,
allowing multiple services to handle a message and services
to send messages without knowing the exact recipients.
We found that sending and receiving files is a common
component of services. We therefore added functionality to
the client that allows services to request a file transfer to or
from another device. Services requesting a transfer can
specify a remote service to notify when the transfer
completes (or fails), and they can request that the client also
notify them. Clients provide a default behavior (opening a
file browser on the receiving device showing the directory
containing the transferred file) that services can request in
lieu of notifying a service on the receiving device.
Our client’s user interface lists active services in a separate
tab from the user’s devices and allows users to select a
service and start, stop, or configure it. However, we found
that in some cases it made more sense to allow services to
extend the client’s interface by adding context menu items
to listed devices. We therefore allow services to specify
whether they provide device context menu items and, if so,
the item labels. Services can notify the client if the enabled/
disabled status of a menu item changes, and the client
notifies a service if the user selects a menu item it provides.

Figure 8: A device context menu with items from two
services

While we initially assumed that each device would run its
own client, we realized that some devices might not be
sufficiently capable. We encountered the latter case for our
Phone Events service, where we wanted to allow users to
include their office VOIP phones in their device collections
in order to broadcast events from them to their other
devices. We therefore now allow proxies (typically one of
the user’s more capable devices or a trusted third party
device) to run a client on behalf of another device.
Although our primary focus is communication between a
user’s devices, we realized that developers might also want
services to send messages to other users’ devices (e.g., to
share changes to a grocery list among family members).
While our basic infrastructure allowed services to send



messages to other users’ devices or aliases, the receiving
client would not deliver them for security reasons. We
added the ability for services to tell the local client that they
want to receive all the messages addressed to them, not just
those from the user’s own devices. This addition affords
developers more flexibility, but requires that they
implement filtering for inappropriate messages. We also
extended the server so that services can set read and write
access permissions for other users on their server-stored
information. That extension improves asynchronous
communication between users by allowing services to share
information that they store on the server on a per-user basis.
IMPLEMENTING AN EXAMPLE SERVICE
Our infrastructure thus provides a variety of capabilities to
simplify implementing multi-device services. In this section
we describe implementing a sample service in order to
convey a sense of the developer experience, focusing on
how the developer employs the infrastructure’s capabilities.
We will use one variant of our Search service as our
example. This service will take incoming search requests,
run the search using Spotlight (Mac OS X’s built-in search
mechanism), and return a list of candidate matches.
Creating a new service requires specifying three things: the
service configuration, how the service handles changes in
the state of the service and the client, and how the service
handles incoming messages. Specifying the configuration is
the easiest. Assuming that we want an Eclipse extension
service (the process is similar for services that connect to
the client via a socket), we first create a new class
SearchService that extends a provided Service base class.
We then implement a constructor that sets the service name
and builds a list of the namespaces of interest. This service
will use Mac OS X’s Spotlight to search, so we assign it a
name that differentiates it from services using other search
mechanisms. We want this service to respond to search
requests in general, not just Spotlight searches, so we assign
it interest in a general namespace that a variety of services
can use to communicate search requests and results.
public SearchService() {

serviceName = "Spotlight Search";
namespaces = new ArrayList();
namespaces.add("ibm:pies:services:search");

}
Finally, we choose whether to override the default methods
that configure whether the client should wait to start the
service after instantiating it, whether the service provides a
user interface for configuring it, whether the client interface
should not show the service in its list of active services,
whether the service wants updates in the availability or
membership of the user’s personal devices, whether the
service provides context menu items for the client
interface’s list of devices, and whether the service accepts
messages from other users’ devices. All default to no; this
service will keep those defaults.
Next a service has to handle changes in its own state and in
the client’s state. The client will notify a service when it

should start (passing the client’s connection status as a
parameter) or stop running. The client will also notify a
service when it needs to suspend sending messages because
the client is no longer connected to the server or when it can
resume sending because the client regained its connection.
Our search service will simply use those methods to keep
track of its own state and the client’s state.
The last step is to specify how a service responds to
incoming messages. XMPP refers to these as “packets” and
distinguishes three types: presence, IQ (for information-
query), and message. Presence packets indicate a change in
the availability of a device, while IQ packets are primarily
for setting data on or retrieving it from the server. Our
service does not need to handle either of those types, so it
will ignore them. Message packets are for general
communication between entities, and as such are what
services primarily use to communicate. The XML for a
simple outgoing message packet with a single custom
service extension might look like this (the server later adds
the sender’s ID to the message):
<message to="bob@pieserver/availableUserDevices"

id="Initiate Search">
<x xmlns="ibm:pies:services:search">

<keywords>multi-device service</keywords>
<numberOfResults>15</numberOfResults>

</x>
</message>
While message packets can contain multiple custom
extensions, each consisting of an XML fragment, in most
cases a message between services only requires a single
extension. A notable exception is an infrastructure-specific
extension that services can include to cause the server to
store the data from another extension; this allows messages
to simultaneously transmit data to other devices and update
stored data on the server. Our service will handle incoming
message packets in order to process search requests.
public void handleMessagePacket(MessagePacket

mPacket) {
Inside this method our service first determines what this
message is about. The service shares interest in its XML
namespace with other services that are initiating searches or
returning results, so it needs to confirm that this message is
initiating a search. It does that by examining the packet’s ID
field, which services can use to indicate the purpose of a
message. We will assume the convention that services using
the “ibm:pies:services:search” namespace will start their
packet ID with the phrase “Initiate” when sending requests.
String packetID = mPacket.getID();
if (!packetID.startsWith("Initiate")) { return; }
If it is a search request, the service will determine what
keywords to search for by locating the extension with the
search namespace and retrieving the child XML elements
within the extension’s XML fragment. The infrastructure
parses the fragment into a hash of key:value pairs, where
keys are XML tags and values may be strings, nested XML
fragments, or a list containing either of those two (when a



tag repeats within a fragment). Our service retrieves the
contents of the tag “keywords”. It also checks if the
fragment optionally specifies the number of desired results.
String namespace = (String) namespaces.get(0);
PacketExtension extension =

mPacket.getExtension(namespace);
PacketFragment fragment =

extension.getChildElements();
String keywords = (String)

fragment.get("keywords");
int numResults = 10;
if (fragment.containsKey("numberOfResults")) {

numResults = Integer.parseInt((String)
fragment.get("numberOfResults"));

}
The service then executes the local search for those
keywords; we elide those details as they are independent of
how the service interacts with our infrastructure. Once the
service has completed the search it formats the results as an
XML fragment. Our service will do that by creating one
fragment to contain all of the search results and then
creating additional nested fragments for each individual
search result.
SearchResult[] searchResults = search(keywords,

numResults);
PacketFragment results = new PacketFragment();
for (int i = 0; i < searchResults.length; i++) {

SearchResult searchResult = searchResults[i];
PacketFragment result = new PacketFragment();
result.put("category", 

searchResult.category());
result.put("title", searchResult.title());
result.put("time", searchResult.time());
result.put("url", searchResult.url());
result.put("snippet", searchResult.snippet());
results.put("result", result);

}
The service next determines the return address (in this case,
the sender of the request) and assembles a new packet ID by
removing “Initiate” from the front of the ID and adding
“Results” to the end of it. The service creates a new
message packet and adds the results fragment as an
extension with the service’s namespace of interest. If the
client is currently connected to the server the service asks it
to send the packet; otherwise the service assumes the search
results will not be timely and discards the packet.
String to = mPacket.getFrom();
String newPacketID =

packetID.replaceAll("Initiate ", "");
newPacketID += " Results";
MessagePacket newPacket = new MessagePacket(to,

packetID);
String namespace = (String) namespaces.get(0);
newPacket.addExtension(namespace, results);
if (clientIsConnected) client.sendPacket(mPacket);
Those are the basic steps to implement our service. Two of
the other sample services we built can interact with it. Our
Search Console service sends search request messages using
the search namespace to each of the user’s available devices
and processes the results. It uses an ID of “Initiate Search”
in its requests and looks for replies with the ID “Search

Results”. Our Phone Context service also leverages search
services. The Phone Context service on a particular device
looks for incoming phone events, and when it receives one
it sends a search request with the phone number of the other
party to the local device. It uses an ID of “Initiate Phone
Context Search” in its requests and looks for replies with the
ID “Phone Context Search Results”.
RELATED WORK
This example service implementation highlights three key
aspects of our infrastructure. Previous products and research
projects share some of these aspects, but our infrastructure
is the first to combine all three:
1. It supports developing services that enhance interaction

across personal devices.
2. It makes device ownership a first class property,

allowing service developers to leverage a list of a user’s
personal devices and enabling the infrastructure to
provide services with additional functionality such as
default aliases and access control.

3. It provides simple mechanisms for sending
information, commands, or events to other devices.

A variety of research projects and commercial products
share our third aspect: they provide simple mechanisms to
exchange data between devices. Shared folders, file transfer
programs, and USB flash drives all allow users to transfer
files between arbitrary devices. Groove [12] is a somewhat
special case that sends more fine-grained information
between devices; while primarily designed for multi-user
collaboration, users can synchronize information across
their devices by logging into their Groove account on each
one. Other programs send events and commands as well as
information to allow users to remotely access [18] or control
[23] another computer.
Other work allows users to explicitly build collections of
devices that persist beyond a single interaction session.
Much of this work has focused on synchronizing or
transferring files across devices [1, 8, 20], but researchers
have also explored transferring meta-data about activities
[2, 26]. That body of work, however, consists of a set of
independent services, rather than infrastructures or tools to
help developers create their own services.
There has been research on infrastructures that facilitate the
development of services that span devices, but that research
has not focused on using device ownership to organize
device collections. Interest in ubiquitous computing has
driven research on “roomware” or “meta-operating system”
infrastructures that assemble devices in a shared physical
environment into a persistent collection [9, 19, 24]. Users'
personal devices are second-class citizens in these
collections, however; the infrastructures focus on allowing
users to temporarily add their personal devices to the
environment to enhance its capabilities, rather than on
allowing them to organize and employ their devices
independent of it. These infrastructures also provide little
support for creating multiple collections of devices (e.g.,



one for each user) or for communicating between
collections.
Researchers have also explored infrastructures that span ad
hoc collections of devices [13, 14, 16, 17, 22]. Most of this
work focused on allowing users to improve interaction with
their personal mobile devices by temporarily annexing
devices in the local environment, but some also explored
how to allow users to collaborate by temporarily combining
the resources of their physically proximate devices.
Our infrastructure differs from both infrastructure types by
focusing on users and the devices they employ rather than
on physical proximity (whether ad hoc or based on the
semantics of local environments). We believe that this
approach is more likely to aid the development of a variety
of services that improve interaction across personal devices.
There is a class of related work that has explored an
alternate solution to improving interaction across multiple
devices. Rather than making it easier to send information,
commands, and events between personal devices, that work
has explored how to turn different physical computers into
the same logical computer. The data required to provide the
same user experience across devices may transfer over the
network [7, 21], or it might reside on physical memory that
users carry between devices [4]. However, this work makes
two big assumptions: that users want the same interaction
experience across all of their devices, and that their devices
are physically similar. Both assumptions are problematic.
Some users employ multiple devices to get different
interaction experiences, while some devices that users
employ (e.g., smart phones vs. laptops) have drastically
different form factors and capabilities. We therefore believe
that focusing on improving coordination among personal
devices is a more promising approach.
EVALUATION
Evaluating a developer toolkit, framework, or infrastructure
typically requires examining both utility and usability. An
infrastructure’s utility depends on whether developers can
use it to build the types of applications they want. In
general, the broader the set of applications that developers
can build with it, the more utility it provides. We argue that
the set of services we presented demonstrates by example
that our infrastructure supports the development of many
interesting applications.
An infrastructure’s usability, on the other hand, is a measure
of how easily developers can build applications with it.
Rigorous evaluation of the usability of a developer
infrastructure is challenging for a variety of reasons: a lack
of standard tasks, variation between developers, time-
intensive tasks, etc. However, we wanted to explore whether
our infrastructure does indeed make it easy to build services
that span personal devices. We also wanted to identify areas
for improvement. We therefore recruited five programmers
at our company to participate in a user study.
All participants had more than 5 years of general
programming experience. All also had more than 3 years of

Java experience (the development language for the study),
but only participant 1 still actively used it (and only on a
monthly basis). Participant 4 had no experience with
Eclipse (the development environment for the study), while
the others had at least 3 years of experience and employed it
on a daily or weekly basis. Participants 2, 3, and 5 had
previous experience building client-server or distributed
computing systems. No participants had previous
experience using our infrastructure.
Tasks
We asked participants to complete three services: a Search
Console service that issues search queries to other devices
and displays returned results, a Search service that runs
requested searches and returns results, and a Contacts
service that provides a consistent address book across a
user’s devices. We did not have participants create the
services from scratch because we were uninterested in
whether users could implement the local functionality for
them (e.g., creating user interfaces, running searches on a
local device). We instead chose to provide participants with
pre-built skeletons for the services: partial implementations
of the service classes that participants had to complete by
adding methods to send information to other devices and
methods to process information coming from them.
We divided the completion of the services into four tasks:
1. Add functionality to the Search Console service to send

out search requests to the user’s other devices and to
process the returned search results. Participants also
had to add functionality to the Search service to take an
incoming search request and return the relevant search
results (generated by our skeleton code).

2. Add functionality to the Contacts service to send
notifications to the user’s other devices when the user
adds, deletes, or contacts a person (the service keeps
track of when and how a user contacts other people).
Participants also had to add functionality to process
incoming notifications.

3. Extend the Contacts service to add queueing of
messages sent to offline devices for later delivery.

4. Extend the Contacts service again to make it keep the
most recent version of its information on the server.
Participants also had to make the service ask the server
for the most recent information when it starts and
process the information returned by the server.

Method
We provided participants with a laptop computer and a
desktop computer, each running Windows XP and a PIE
client. Participants developed on the laptop, which had
Eclipse and the service skeletons installed, and tested on
both devices. We also provided participants with written
study instructions, a copy of the developer’s guide that we
wrote for the infrastructure, and a Java reference manual.
We instructed participants to work at their own pace and to
ask clarification questions when necessary (to help us
identify where they experienced difficulties).



Results
Table 1 shows the task completion times in minutes for each
participant. Participants completed all tasks in an average of
147.4 minutes. While the first two tasks are roughly
equivalent, participants completed task 2 in one-third of the
time that they completed task 1. This substantial decrease in
task completion time suggests that two-thirds of the time
participants required to finish task 1 was spent learning our
infrastructure’s conceptual structure, programming model,
and API. Our observations reinforce this possibility (e.g.,
participants typically spent the first 15 minutes skimming
the developer guide and referred to it frequently during the
first task), as does the faster completion time of participant
5 (who read the developer guide the day before the study).
The completion times for task 3 were minimal because
requesting that the server queue messages for offline
devices requires the addition of a single line of code;
participants spent more time looking through the guide than
coding. Task 4, by contrast, took participants almost an hour
on average. We believe that participants spent much of this
time learning the concepts and the part of the API required
to make a service store information on and retrieve it from
the server. We suspect that, similar to the decrease in task
completion time between tasks 1 and 2, participants would
complete a subsequent task similar to 4 much more quickly.

We believe that these results demonstrate that our
infrastructure does indeed make it easy for developers to
create services that span multiple personal devices. With no
previous experience using the infrastructure, participants
implemented the cross-device functionality for all of the
three services in, on average, less than two and a half hours.
We did, however, identify areas for improvement. While the
infrastructure made addressing and sending messages easy,
participants reported that formatting outgoing messages and
retrieving data from incoming messages were still
somewhat time-consuming and error-prone. One potential
solution would be to use reflection to automatically convert
simple classes to and from messages. Improved error
handling was another common request. Participants wanted

more and better error messages, particularly to help them
diagnose silent failures (e.g., why a service was not
receiving a message). Creating easy-to-use tools to help
developers debug functionality distributed across multiple
computers is a potentially valuable area for future research.
ADDITIONAL LESSONS LEARNED
While our user study helped us assess the usability of our
infrastructure and identify areas that need additional
improvement, we also learned a few additional lessons in
the process of implementing our sample services:
• Our loosely-coupled approach to service interoperation

(i.e., allowing services to exchange information by
directing messages using XML namespaces rather than
named services) made it easy for us to reuse services
for purposes we had not originally intended. We believe
that our infrastructure’s support for such reusability
will be particularly valuable as developers begin to
build more multi-device services and identify
additional functionality that the infrastructure can or
should provide, because any developer can create a
service that extends the infrastructure by providing
higher-level functionality to other developers’ services.

• Some services fit a peer-to-peer model where they only
use the central server to route messages, while others
are easier to build when they store most or all of their
data on the central server. Our experience suggests that
an infrastructure should support both models and let
developers choose which to use.

CONCLUSIONS AND FUTURE WORK
Users increasingly employ multiple computing devices, but
the user experiences currently provided by applications
when users interact across those devices leaves significant
room for improvement. One of the barriers to improving
those experiences is the amount of additional effort required
to implement the functionality necessary for an application
to communicate across a user’s devices. We contribute an
instant messaging-based infrastructure that makes it easy to
add that functionality. Our infrastructure:
• Extends previous work by elevating device ownership

to a first class property, allowing developers to provide
functionality that spans personal devices without
writing code to identify and manage users’ devices or
establish connections among them.

• Provides simple mechanisms for services to send
information, events, or commands between a user’s
devices.

• Provides simple access control by blocking messages
sent to services by other users’ devices unless a service
explicitly asks to receive them.

• Incorporates a number of refinements, such as default
and customizable aliases for sending messages to
multiple devices and support for extending the client’s
user interface, that we identified by building over
twenty services with it.

Table 1: Task Completion Times (Minutes)

Participant Task 1 Task 2 Task 3 Task 4

1 71 23 3 66

2 96 20 6 49

3 77 22 2 63

4 80 17 5 55

5 33 19 3 27

Average 71.4 20.2 3.8 52.0

Std. Dev. 23.4 2.4 1.6 15.5



• Supports service composition, particularly through
loose coupling between services, and allows developers
to structure communication between services using a
peer-to-peer, centralized, or hybrid approach.

We evaluated both the utility and usability of our
infrastructure. We demonstrated its utility by presenting a
subset of the services we built with it. We demonstrated its
usability by presenting a study of five developers that used
it to implement the cross-device functionality for three
services. Although none of the developers had previous
experience using our infrastructure, they were able to
implement all of the required functionality in less than two
and a half hours on average.
Our next steps are to study our infrastructure and sample
services more broadly. We recently released our
infrastructure and sample services to our internal early
adopter and developer communities. We intend to study
which services users employ, which they avoid, and why,
with the goals of improving the general multi-device
interaction experience and of identifying specific
opportunities for new services. We also intend to examine
how developers employ the infrastructure to identify
additional opportunities to improve it.
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