
Compile-time Type-checking for Custom Type Qualifiers in Java

Matthew M. Papi Michael D. Ernst

MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA, USA

{mpapi,mernst}@csail.mit.edu

Abstract
We have created a system that enables programmers to add
custom type qualifiers to the Java language in a backward-
compatible way. The system allows programmers to write
type qualifiers in their programs and to create compiler plug-
ins that enforce the semantics of these qualifiers at compile
time. The system builds on existing Java tools and APIs, and
on JSR 308.

As an example, we introduce a plug-in to Sun’s Java
compiler that uses our system to type-check the NonNull
qualifier. Programmers can use the@NonNull annotation
to prohibit an object reference from being null; then, by
invoking a Java compiler with the NonNull plug-in, they
can check for NonNull errors at compile time and rid their
programs of null-pointer exceptions.

Categories and Subject DescriptorsD3.3 [Programming
Languages]: Language Constructs and Features—data types
and structures; F3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs;
D1.5 [Programming Techniques]: Object-oriented Program-
ming

General Terms Languages, Theory

Keywords annotation, compiler, Java, javac, NonNull, type
qualifier, type system, verification

1. Introduction
We have created a system for adding new type qualifiers to
the Java language and enforcing their semantics at compile
time. Our system provides a framework that extends existing
Java APIs to facilitate compile time type-checking; it builds
upon JSR 308 [3]. JSR 308 extends the syntax for Java
annotations [1] so that they may be written anywhere that
types are used, and extends the Java class file format so
that these annotations are represented in the class file. The

Copyright is held by the author/owner(s).

OOPSLA’07, October 21–25, 2007, Montréal, Qúebec, Canada.
ACM 978-1-59593-786-5/07/0010.

system includes features that are planned for inclusion in
Java 7 (under JSR 308), and it is backward-compatible with
Java 5.

In addition, we have developed type-checkers for sev-
eral type qualifiers that are useful to programmers. One of
these qualifiers, NonNull, provides an implicit subtype of
each Java type that excludes the value null (i.e., a reference
whose type is NonNull can never be null). Another, Interned,
provides an implicit subtype denoting that a variable may
be safely tested using the== operator (versus theequals
method). A third [4] implements the Javari [5] language. A
fourth implements the IGJ [6] language.

2. Motivation
Types help to detect and prevent errors by helping program-
mers to organize and document data, and by allowing tools
like compilers to check that a program does not violate the
type system’s constraints. However, in languages like Java,
there is often much information about a type that a program-
mer cannot express.

For instance, suppose a programmer wishes a variable
to have the type “non-negative integer”. The variable can
be declared with the typeint, but there is ordinarily no
mechanism for expressing “non-negative”. A custom type
qualifier solves this problem: the programmer could use our
tools to create a NonNegative qualifier and checker.

3. Implementation
Our system consists of two components.

The first component of the system, the extended annota-
tions compiler, is an implementation of the JSR 308 spec-
ification [3]. It is composed of modifications to thejavac
Java compiler for parsing and compiling annotations on Java
types. Java annotations are normally permitted on the decla-
rations of classes, methods, and variables; the extended an-
notations compiler permits them anywhere types are written,
including typecasts, type tests (instanceof), object cre-
ation expressions (new), method receivers, methodthrows
clauses, generic type arguments, multidimensional arrays,
type parameter bounds, and class literals. Moreover, the ex-
tended annotations compiler can write all annotations to
the class file in a backward compatible way. This permits
type-checking against binary versions of annotated classes



Cause Errors
User type errors 3
User omissions 31
Run-time checks (application invariants) 23
Tool weaknesses 15

Incomplete flow-sensitivity 8
No qualified generic type inference 7

Table 1. Causes for errors issued by the NonNull type-
checker plug-in during the case study.

(e.g., an annotated library) and will facilitate type-checking
of Java bytecode. The extended annotations compiler also
parses annotations written in C-style comments (/* */), so
that code can be written for both the extended annotations
compiler and older Java compilers.

The system’s second component, the checkers frame-
work, extends Java’s annotation processing API [2] for
compile-time type-checking of type qualifier annotations.
The framework provides several features that reduce the
time and effort required to create a new type-checker. First,
it provides data structures for querying the annotations on a
program element regardless of whether that element is found
in a source file or in a class file. Second, it provides a tem-
plate (using the visitor design pattern) for applying a type
qualifier’s rules to an input program, and it interfaces this
component to the Java compiler. Third, the framework uses
the Java compiler’s messaging interface for reporting and
collecting errors during type checking. Finally, the frame-
work provides additional utilities for qualifiers that are either
subtypes or supertypes of the unqualified type. For instance,
NonNull and Interned types are subtypes of their unqualified
types, and ReadOnly types are supertypes of their unquali-
fied types.

Individual type-checkers may also include extra fea-
tures beyond those provided by the checkers framework.
The NonNull type-checker includes a flow-sensitive anal-
ysis that performs limited NonNull inference after explicit
null checks.

4. Case study
In order to demonstrate that the current implementation is
both usable and effective, we have conducted a case study
in which we ran the NonNull checker on the NonNull-
annotated source code for a library. The library, which pro-
vides routines for working with an “index file” that describes
the type qualifiers in a class, consists of 4,640 lines of source
code and contains 699@NonNull annotations (out of 3,700
locations where a@NonNull annotation may have been writ-
ten). The library author (who is not an author of this paper)
added the annotations manually and without the aid of the
NonNull type-checker (before the checker was written).

Table 1 shows the errors and warnings that resulted from
running the type-checker on the annotated library. The first

class of errors, user errors, are those for which the program-
mer’s conception of a type was incorrect (i.e., thinking that
a type was NonNull when it was possibly-null). These are
serious errors that may lead to null-pointer exceptions at run
time. The second class of errors, user omissions, are those in
which the programmer forgot to write a@NonNull annota-
tion for a NonNull type; they are easily fixed. The third class
of errors, run-time checks, are those in which a possibly-null
type but could be safely used as NonNull at certain locations
where an application-specific invariant guarantees that the
value is not null. We suppressed errors of this type by adding
a run-time assertion (e.g.,assert x!=null;) for each appli-
cation invariant. The final class of errors, tool weaknesses,
are those for which it was necessary to add an explicit null
check to the subject code to satisfy the type-checker. We ex-
pect that improvements to the flow-sensitive analysis and in-
ference for qualified generic types will eliminate this final
class.

Using the framework described in Section 3, the NonNull
type-checker consists of only 300 lines of Java source code
(including comments), plus an additional 474 lines for the
flow-sensitive analysis.

5. Downloads
The NonNull type-checker plug-in, the other three plug-ins
mentioned in Section 1, the checkers framework, and the
JSR 308 extended annotations Java compiler are publicly
available for download from the JSR 308 web site,http:
//pag.csail.mit.edu/jsr308.

References
[1] Gilad Bracha. JSR 175: A metadata facility for the Java

programming language.http://jcp.org/en/jsr/detail?
id=175, September 30, 2004.

[2] Joe Darcy. JSR 269: Pluggable annotation processing API.
http://jcp.org/en/jsr/detail?id=269, May 17, 2006.
Public review version.

[3] Michael D. Ernst and Danny Coward. JSR 308: Annotations
on Java types.http://pag.csail.mit.edu/jsr308/,
October 17, 2006.

[4] Telmo Luis Correa Jr., Jaime Quinonez, and Michael D. Ernst.
Tools for enforcing and inferring reference immutability in
Java. InOOPSLA Companion, October 2007.

[5] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding
reference immutability to Java. InOOPSLA, pages 211–230,
October 2005.

[6] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam
Kieżun, and Michael D. Ernst. Object and reference im-
mutability using Java generics. InESEC/FSE, September
2007.


