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ABSTRACT
Application-specific system-on-chip platforms create the opportu-
nity to customize the cache configuration for optimal performance
with minimal chip estate. Simulation, in particular trace-driven
simulation, is widely used to estimate cache hit rates. However,
simulation is too slow to be deployed in the design space explo-
ration, specially when it involves hundreds of design points and
huge traces or long program execution. In this paper, we propose a
novel static analysis technique for rapid and accurate design space
exploration of instruction caches. Given the program control flow
graph (CFG) annotated only with basic block and control flow edge
execution counts, our analysis estimates the hit rates for multiple
cache configurations in one pass. We achieve this by modeling the
cache states at each node of the CFG in probabilistic manner and
exploiting the structural similarities among related cache configu-
rations. Experimental results indicate that our analysis is 24–3,855
times faster compared to the fastest known cache simulator while
maintaining high accuracy (0.7% average error), in predicting hit
rates for popular embedded benchmarks.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache memories

General Terms
Algorithms, Performance, Design

Keywords
Cache, Design Space Exploration, Probabilistic cache states

1. INTRODUCTION
The fixed functionality nature of embedded systems opens up the

opportunity to design a customized system-on-chip (SoC) platform
for a particular application or an application domain. The mem-
ory subsystem plays a critical role in the design of such customized
SoC both in terms of performance and energy consumption. Thus
careful tuning of the memory subsystems, in particular the cache
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parameters, is of paramount importance in meeting the design con-
straints of a specific embedded application. The cache design pa-
rameters include the size of the cache, the line size, the degree of
associativity, the replacement policy, and many others. This entire
design space has to be explored to identify the cache configuration
that optimizes certain objectives, such as performance, energy con-
sumption, or a combination of the two.

The design space exploration of caches is a well studied prob-
lem. The exploration process requires cache hit/miss rates for all
possible design points. The most popular approach to compute
the hit rate for a particular cache configuration is to employ trace-
driven simulation or functional simulation. Unfortunately, simula-
tion based approaches are too slow and huge trace sizes put prac-
tical limit on both the size of the application and its input. In this
paper, we explore static analysis method as an alternative to simu-
lation for fast and accurate estimation of cache hit rates.

Recently, we have introduced the concept of probabilistic cache
states [10], which captures the set of possible cache states at a pro-
gram point along with their probabilities. We have also proposed
a static analysis method [10] that models the cache behavior to es-
timate the expected (average) execution time of a program over all
possible program inputs. The notion of probabilistic cache states is
quite general. It can be easily adapted to construct a fast and ac-
curate static analysis method that estimates cache hit rate of a pro-
gram for a particular configuration. Unfortunately, when employed
in the context of design space exploration, the runtime of this static
cache analysis approach is not competitive compared to state-of-
the-art cache simulators such as Cheetah [13]. This is because fast
cache simulators employ single-pass simulation that estimates the
hit rates for a large number of cache configurations in one pass. In
contrast, static cache analysis has to estimate the hit rate for each
cache configuration individually leading to overall slower design
space exploration.

We observe that if a static analysis approach can model multi-
ple cache configurations in one pass, we get a very powerful tool
for design space exploration. In this paper, we extend the concept
of probabilistic cache states to achieve this goal. We borrow the
data structure, called Generalized Binomial Tree (GBT), proposed
by Sugumar and Abraham [13] to exploit the inclusion property
among related cache configurations. GBT enables us to capture the
cache states corresponding to a number of related configurations in
one succinct representation. However, as a program point can be
reached from different contexts, we may have a number of GBTs,
each associated with the probability of the corresponding context.

In this paper, we propose probabilistic GBT to capture the cache
states corresponding to all cache configurations and all contexts at
any program point. We also define operators for update and con-
catenation of probabilistic GBTs. These operators are employed



in our static program analysis to obtain the probabilistic GBTs at
every program point in an efficient manner. Given a probabilis-
tic GBT, we can easily estimate the hit rate of a memory access
for all possible cache configurations. However, maintaining these
probabilistic GBTs and operating on them can become space and
time inefficient as the number of contexts increases. Therefore, we
propose a number of optimizations for space and time efficiency.

In summary, we propose a static analysis method for rapid and
accurate design space exploration of instruction caches. Our anal-
ysis method can estimate the hit rates for all cache configurations
with varying number of sets and associativity in one pass as long
as the cache line size remains constant. The input to our analysis is
simply the basic block and control flow edge execution count pro-
files, which is significantly more compact compared to memory ad-
dress traces required by trace-driven simulators. Our experimental
evaluation for a number of embedded benchmarks reveal that our
estimation is highly accurate (0.7% average error) and our single-
pass static cache analysis is 24–3,855 times faster compared to the
fastest known single-pass cache simulator Cheetah.

2. ANALYSIS FRAMEWORK
The inputs to our analysis framework are the executable program

code and its corresponding input. We can obtain the basic block
and control flow edge counts through execution or quick functional
simulation of an instrumented version of the program. The instru-
mentation can be done very efficiently by using edge profiling [2].
More importantly, the profiling needs to be done only once, as basic
block and edge execution counts remain unchanged across different
cache configurations.

Our analysis first constructs the loop-procedure hierarchy graph
(LPHG) corresponding to the whole program [9]. The LPHG rep-
resents the procedure calls and loop nest relations in the program.
Loop and procedure bodies are represented as directed acyclic graphs
(DAG), where the nodes of a DAG are the basic blocks. If a loop
(procedure) contains other loops within its body, then the inner
loops are represented as dummy nodes in the DAG. For each loop
L, it is annotated with its loop count NL and its control flow graph
is transformed such that every loop has a loop pre-header, post-
loop, start, and end node (see Figure 6).

Given a basic block B and an edge B′ → B, we use NB and
NB′→B to denote their execution counts, respectively. For control
flow edge B′ → B, the edge frequency f(B′ → B) is defined as
the probability that B is reached from B′, that is, f(B′ → B) =
NB′→B

NB
. By definition,

∑
e∈In(B) f(e) = 1, where In(B) repre-

sents all the incoming edges of B.

Cache Hit Rate. Let us use B to represent the set of the basic
blocks of the program and Rhit to represent the cache hit rate of
the program. Let IB be the number of instructions and MB be the
set of memory blocks of B. Then, Rhit can be computed as

Rhit =

∑
B∈B

∑
m∈MB

NB ×Hm∑
B∈B NB × IB

(1)

where Hm is the cache hit rate of memory block m ∈MB . NB and
IB are constants across different cache configurations and are avail-
able through profiling. However, Hm is unknown and may change
across different cache configurations. In the following, we will il-
lustrate how to estimate Hm for all cache configurations through
our static cache modeling.

3. CACHE MODELING
We rely on General Binomial Forest (GBF) data structure to es-

timate Hm for multiple cache configurations simultaneously. GBF
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Figure 1: Cache content and construction of generalized binomial for-
est. Memory blocks are represented by tags and set number, for exam-
ple, for memory block 11(00), 00 denotes the set and 11 is the tag.

was originally proposed for simulating multiple cache configura-
tions in one pass [13]. In this section, we provide a brief back-
ground on GBF and then proceed to present our probabilistic GBF.
We use the probabilistic GBF for static cache analysis in Section 4.

3.1 GBF Background
Let us explain the GBF data structure with an example. In this

paper, we consider LRU as the cache replacement policy. Figure
1(a) shows, for the same memory address trace, the contents of
six caches with number of sets = 1, 2, 4 and associativity = 1, 2.
From the example, we observe that for the caches with the same
associativity, the memory blocks in the cache with 2(1) sets are
included in the cache with 4(2) sets. For the caches with the same
number of sets, the memory blocks in the cache with associativity
1 are included in the cache with associativity 2.

GBF exploits the aforementioned inclusion property that holds
between cache configurations. Let us denote a set-associative cache
with 2S sets, line size L, and associativity N as CL

S (N). A GBF
can represent a set of cache configurations {CL

S (n)|Smin ≤ S ≤
Smax; n ≤ N}, where 2Smin (2Smax ) is the minimum (maxi-
mum) number of sets among the group of cache configurations and
N is the maximal associativity.

A GBF consists of one or more Generalized Binomial Trees
(GBT). A GBT can be defined recursively as follows. A GBT of
degree 0 is a list of length N and the elements in the list are ordered
according to LRU policy (i.e., the top element is the most recently
accessed address, while the bottom element is the least recently
accessed address). A GBT of degree k is constructed by linking
two GBTs of degree k−1 together, with the most recently accessed
N references in either root lists of the two GBTs as the new root
list. By definition, a GBT of degree k has 2k ·N nodes.

Let us explain the construction of GBF based on the example
shown in Figure 1. The GBF for the cache configuration CL

2 (2)
consists of 4 GBTs of degree 0 (one corresponding to each set). We
use⊥ to denote an empty cache block. The GBF for the cache con-
figuration CL

1 (2) contains 2 GBTs of degree 1 (one corresponding
to each set). The GBT for a set s in CL

1 (2) is obtained by link-
ing two GBTs of CL

2 (2) that map to the set s. For example, the
memory blocks in set 0 and 2 of CL

2 (2) map to set 0 of CL
1 (2).

They are merged together with the most recently accessed 2 ref-
erences as the new root. The merging is done similarly for set 1
in CL

1 (2). This process is continued until the GBF for the cache
configuration with the minimum number of sets CL

0 (2) is con-
structed. Now the contents of all the cache configurations in the
set {CL

S (n)|0 ≤ S ≤ 2; n ≤ 2} can be found in the GBF for the
cache configuration CL

0 (2). A detailed description of GBT as well
as their search and update procedure can be found in [13].
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Array Implementation. We use an array based implementation
of GBT [13]. Let us assume the degree of GBT as M . The GBT is
implemented as a two-dimensional array with 2M+1 − 1 rows and
N columns. The rows are divided into M + 1 levels from 0 to M
and level k has 2k rows. As discussed before, a GBT of degree M
has 2M · N nodes. Thus, array implementation has about a factor
of two redundancy.

Figure 2 shows an example of the array implementation of GBT,
where M = 2 and N = 2. Given a node t in the GBT, we use
des(t) to denote the number of descendants (inclusive) of node t.
The rank of a node is defined as log(d des(t)

N
e). Memory block at a

node of rank k maps to level M − k and the row within the level is
determined by the least significant M−k bits of the memory block
address. There are at most N memory blocks in the same row and
they are arranged in the order in which they have been accessed
(i.e., the leftmost memory block is the most recently used, while
the rightmost memory block is the least recently used).

Given an incoming memory block address address, the search
and update procedure of GBT starts from the top level and only
one row in each level is checked. The row examined in level k
is determined by the least significant k bits of address and the tag
matches are done with the memory blocks in that row. For example,
in Figure 2, suppose we are searching for address 0101. We first
examine 1001 and 1100 in level 0. Then, in level 1, the address
0101 maps to row 1 and so 1011 is examined. Finally, in level 2,
the address 0101 maps to row 1 and it is found there.

Cache Hits Computation. A two dimension array hit is used for
storing the cache hits for multiple cache configurations. Array hit
will be updated if a memory block is cache hit, and the correspond-
ing entries will be increased by 1. However, hit[m][n] only stores
the number of references that hit in cache configuration CL

m(n)
but miss in smaller caches CL

m(n′) where n′ < n. According to
the inclusion property related to associativity, the number of hits in
CL

m(n) can be computed by summing up the hits of itself and those
from smaller caches as

∑n
i=1 hit[m][i].

3.2 Probabilistic GBT
We now describe the probabilistic cache modeling based on Gen-

eral Binomial Forest (GBF). The multiple cache configurations we
support are constant line size, varying number of cache sets and
degree of associativity. Based on the description in Section 3.1, we
are interested in the set of configurations {CL

S (n)|Smin ≤ S ≤
Smax; n ≤ N}, where 2Smin (2Smax ) is the minimum (maxi-
mum) number of cache sets and N is the maximum associativity.

Assumptions. For the set of cache configurations above, we will
have 2Smin GBTs with degree Smax−Smin in the GBF. However,
one memory block maps to only one GBT based on its index in
CL

Smin
(N). Thus, there is no interference between different GBTs.

Thus, we assume Smin = 0. In other words, there is only one GBT
of degree Smax in the GBF. For the configurations with more than
one GBTs, each GBT can be modeled independently.

More concretely, in the following, we consider a GBT of degree
M(Smax) and root list length as N . To indicate the absence of any
memory block in a cache line, we introduce a new element ⊥. We

use Ω to denote the set of all the possible GBTs of the program. We
also introduce a special empty GBT c⊥.

At any program point, the GBT is determined by the program
path taken before reaching this program point. Usually a program
point can be reached via multiple program paths leading to a num-
ber of possible GBTs at that point. Thus, we introduce the notion
of probabilistic GBT.

DEFINITION 1 (Probabilistic GBT). A probabilistic GBT C
is a 2-tuple: 〈C, X〉, where C ∈ 2Ω is a set of GBTs and X
is a random variable. The sample space of the random variable
X is Ω. Given a GBT c, we define Pr[X = c] as the proba-
bility of c in C. If c /∈ C, then Pr[X = c] = 0. By defini-
tion,

(∑
c∈Ω Pr[X = c]

)
= 1. Finally, we define a special prob-

abilistic GBT C⊥ denoting the empty probabilistic GBT. That is
C⊥ = 〈{c⊥}, X〉, where Pr[X = c⊥] = 1.

We use � to denote GBT search and update operator. Given
a memory block m and a GBT c, c � m returns the GBT after
accessing m. Meanwhile, we define new operator � as the search
and update operator of probabilistic GBT. Given a memory block
m and a probabilistic GBT C = 〈C, X〉, � will update each GBT
c ∈ C and C � m returns the updated probabilistic GBT.
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Figure 3: Concatenation for GBTs where M = 1 and N = 2.

3.2.1 Concatenation of Probabilistic GBTs
In this subsection, we introduce the concatenation of probabilis-

tic GBTs, which will be used later. We first define the operator �
for the concatenation of two GBTs in Algorithm 1.
Algorithm 1: Implementation of � operation

input : GBT c1 and c2

output : c = c1 � c2
c = c1;
for lev ←M to 0 do

Let T be the two dimension array at level lev in c2;
foreach row ∈ T do

for col← N to 1 do
if T [row][col] 6=⊥ then

c = c � T [row][col] ;

return c;

In the array based implementation of GBT, c2 is a multilevel two-
dimensional array. The concatenation is done by using the memory
blocks in c2 from the bottom level to top level and from right to
left to update c1. In other words, the update is done from the least
recently used to most recently used memory blocks of c2. An ex-
ample of GBT concatenation is shown in Figure 3. Let us assume
the GBT after the first and second memory traces are c1 and c2, re-
spectively. Then the GBT after accesses corresponding to the two
memory traces sequentially is c1 � c2. Next, we extend the con-
catenation operation to probabilistic GBTs.

DEFINITION 2 (Concatenation of Probabilistic GBTs). Given
probabilistic GBTs C1 = 〈C1, X1〉 and C2 = 〈C2, X2〉
C1

⊙
C2 = C where C = 〈C, X〉

C = {c|c = c1 � c2, c1 ∈ C1, c2 ∈ C2}
Pr[X = c] =

∑
c1∈C1,c2∈C2,c=c1�c2

(Pr[X1 = c1]× Pr[X2 = c2])



Let us assume the execution of two program fragments sequen-
tially each starting with an empty GBT. The probabilistic GBT after
the execution of the first and second program fragments are C1 and
C2, respectively. Then the probabilistic GBT after execution of the
two program fragments sequentially is C1

⊙
C2.

3.2.2 Merging GBTs in a Probabilistic GBT
A program path can be specified by the basic block sequence.

Although multiple paths could reach a program point, they proba-
bly traverse some common basic block subsequence. Thus, the set
of GBTs in a probabilistic GBT can include some identical mem-
ory blocks. By merging the similar GBTs together, we can reduce
the space requirement of probabilistic GBTs. More importantly,
the search and update of probabilistic GBTs will be much faster.

In the array based implementation, GBT is divided into M + 1
levels. We merge the GBTs level by level from top to bottom. More
concretely, given two GBTs, if the content of the top k (k ≤M+1)
levels are identical, then they are merged together to have only one
copy of the top k levels as shown in Figure 4(a). Also as the GBTs
are merged together, the probabilities are now associated with each
level rather than with the GBTs.
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Figure 4: Probabilistic GBT merging and concatenation.

It is possible to perform merging at finer granularity, for exam-
ple, using rows rather than levels. However, the complexity of the
merging process increases considerably leading to slower imple-
mentation. It is also possible that two GBTs are different at the top
levels, but they are identical at the bottom levels. We choose not to
perform merging for such GBTs. This is because, as the probabilis-
tic GBT is updated, the contents from the upper levels move to the
lower levels. Thus the commonality among the GBTs are lost and
they have to be split again. It is far more efficient to merge GBTs
only if they are identical at the top levels.

The implementation of a merged GBT can be viewed as a tree
with the sub-arrays (levels) of the original GBTs as nodes (see Fig-
ure 4(a)). The sub-array corresponding to the common top levels
0 − k is the root node of this tree. Level k, however, has multiple
children at level k + 1. Now the search and update of probabilistic
GBTs become more efficient. Consider a memory block m that is
present somewhere in the top k levels. Without merging, m will
be searched in all the original GBTs; now it will be searched only
once in the merged GBT. For example, in Figure 4(a), before merg-
ing, the reference to memory block 100 is searched in both c1 and
c2. With merged GBT, it is only searched once. In Figure 4(b), we
show the merged probabilistic GBT after concatenation operation.

3.2.3 Bounding the size of Probabilistic GBT
We observe that, in a probabilistic GBT, some of the constituent

GBTs have very low probabilities. That is, these GBTs correspond
to rare program paths. Based on this observation, we prune some
of the GBTs for space and time efficiency.

We define the metric dist for pruning. Consider a merged GBT
with two nodes at level k. Each node is a two dimension array

Level k
Pr[m] < Te+ P [ ]Level k+1 + Pr[m]

m1 m

Level k+2

Figure 5: Pruning in probabilistic GBT.

with 2k rows and N columns. Given two such nodes n1, n2 at
the same level, we define d(n1, n2) as the measure of the distance
between them. It is defined as a function of the number of different
memory blocks between them. But higher priority is given to the
more recently used memory blocks as shown in Equation 2.

dist(n1, n2) =
∑
∀i,j

{
N − j + 1, if n1[i][j] 6= n2[i][j]
0 otherwise (2)

We apply two merging strategies. First, if the probability of a
node n is too small (< Te), then the subtree rooted at n is pruned.
But its probability is added to the subtree rooted at the closest sib-
ling of n (the closest is defined by the dist metric). Second, if the
number of children of a node exceeds a pre-defined limit Z, then Z
children with highest probability are kept and the subtrees rooted
at the rest of the children are pruned. As before, the probability of
each pruned child is added to its closest surviving sibling defined
by the dist metric. The pruning process continues from top to bot-
tom. As shown in Figure 5, the subtree rooted at m (including m) is
pruned because its probability is too small. However, its probabil-
ity is added to the subtree rooted at m1, which is the closest sibling
of m. Similar pruning strategy can be applied across independent
or merged GBTs in a probabilistic GBT. In practice, we set Te to
10−6 and Z to 4.

3.2.4 Cache Hit Rate of a Memory Block
Recall that in Section 3.1, if a memory block m results in a cache

hit, the corresponding entries in the array hit are incremented by 1.
However, in our probabilistic cache modeling, we get a cache hit
probability by looking up the probabilistic GBT. The hit probability
is simply the sum of the probabilities of all the nodes where m can
be found in the probabilistic GBT. Now we add this hit probability
to the hit array.

For memory block m, we can get its hit rate Hm for different
cache configurations if the probabilistic GBT at that program point
is known. Then the cache hit rate of the whole program can be de-
rived from Equation 1. Now we present our static analysis method
to derive the probabilistic GBTs at every program point.

4. STATIC CACHE ANALYSIS
In this section, we first describe cache analysis for a loop in iso-

lation. Subsequently, we will extend this analysis to the whole pro-
gram. For loops, we consider its control flow graph as a directed
acyclic graph (DAG). We first perform the analysis on the DAG for
a single iteration, followed by modeling across iterations.

4.1 Analysis of DAG
Let Cin

B and Cout
B be the incoming and outgoing probabilistic

GBTs of a basic block B. Similarly, Cin
L and Cout

L denote the in-
coming and outgoing probabilistic GBTs of a loop L. Let start
and end be the unique start and end basic blocks of the DAG cor-
responding to the loop body. Then Cin

L = Cin
start and Cout

L = Cout
end.

As we are analyzing the loop in isolation at this point, Cin
L = C⊥.

Let genB = 〈m1, . . . , mk〉 be the sequence of memory blocks
accessed within a basic block B. Then Cout

B can be computed as

Cout
B = Cin

B � m1 � . . . � mk (3)
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The incoming probabilistic GBT of B is obtained from the out-
going probabilistic GBTs of its predecessors. We rely on following
new operator to do the combination.

DEFINITION 3 (Probabilistic GBTs Combination). We define⊕
as the combination operator for probabilistic GBTs. It takes in

n probabilistic GBTs Ci = 〈Ci, Xi〉 and a corresponding weight
function w as input s.t.

∑n
i=1 w(Ci) = 1. It produces a combined

probabilistic GBT C as follows.⊕
(C1, . . . , Cn, w) = C where C = 〈C, X〉, C =

n⋃
i=1

Ci,

Pr[X = c|c ∈ C] =
∑
∀i,c∈Ci

Pr[Xi = c]× w(Ci)

In other words, the set of GBTs in C is the union of all the GBTs
in C1, . . . , Cn. The probability of a GBT c ∈ C is a weighted
summation of the probabilities of c in the input probabilistic GBTs.
Let in(B) = {B′, B′′, . . .} be the set of predecessors of B. Then
the incoming probabilistic GBT of B can be derived as

Cin
B =

⊕
(Cout

B′ , Cout
B′′ , . . . , w) (4)

where the weight function w is defined as w(Cout
B′ ) = f(B′ → B).

Starting with C⊥, Figure 6 shows an example of probabilistic GBT
combination at basic block B4 and the probabilistic GBT after B4

in the first iteration of the loop, where M = 1 and N = 2.

4.2 Extension to Loop Iterations
In the previous subsection, we assume Cin

L = C⊥. However, for
a loop iterating multiple times, the input GBT at the start node
of the loop body is different for each iteration. More concretely,
let us add the subscript 〈n〉 for the nth iteration of the loop. Then
Cin

start〈n〉 = Cout
end〈n−1〉 for n > 1. However, in order to compute

Cin
start〈1〉, . . . , Cin

start〈N〉, where N = NL is the loop count, we do
not need to traverse the DAG N times. Instead, we can rely on the⊙

operator. First, we note that Cin
start〈1〉 = Cin

L = C⊥. Then for
iteration n > 1

Cin
start〈n〉 = Cout

end〈n−1〉
Cout

end〈n〉 = Cin
start〈n〉

⊙
Cout

end〈1〉
(5)

The final probabilistic GBT after N iterations starting with Cin
L =

C⊥, is denoted as Cgen
L where

Cgen
L = Cout

end〈N〉 (6)

The cache hit rate of a memory block is dependent on the input
probabilistic GBT Cin

B of the corresponding basic block B, which
in turn is dependent on Cin

start〈n〉 of the loop L. Computing the
cache hit rate for each memory block in each iteration is equivalent
to complete loop unrolling. Instead, we observe that we only need
to compute an “average" probabilistic GBT Cavg

L at the start node

of the loop body. This captures the input GBT of the loop over N
iterations. That is, Cavg

L is defined as

Cavg
L = ⊕(Cin

start〈1〉, . . . , C
in
start〈N〉, w) (7)

where w(Cin
start〈n〉) = 1

N
. Now, in Section 4.1, we simply replace

Cin
start = C⊥ with Cin

start = Cavg
L . The rest of the analysis for the

DAG remains unchanged.
More importantly, the operator

⊙
need not be invoked NL times

as the probabilistic GBTs across iterations may converge. After
convergence point, the size and content of the probabilistic GBT
as well as the probability of each GBT in the probabilistic GBT do
not change. In practice, we relax the convergence constraint. If the
difference of probabilities between every pair of identical GBTs in
Cout

end〈n〉 and Cout
end〈n+1〉 are within Te, we declare convergence. Ex-

perimental results confirm that convergence is reached quickly for
most of the loops in all the benchmark programs. In the worst case,
concatenation operations is terminated at a pre-defined threshold
of MaxN iterations. The average probabilistic GBT across these
MaxN iterations is used as an approximation of the average prob-
abilistic GBT across NL iterations. In practice, we set MaxN to
100 and Te to 10−6.

4.3 Analysis of Whole Program
We first traverse the LPHG in bottom-up fashion, i.e., we start

with the innermost loops/procedures and compute Cgen
L and Cavg

L

for all such loops/procedures. Next, we replace the innermost loops
or procedures with “dummy" nodes in the DAG of the enclosing
loop or procedure. While traversing the DAG of the enclosing loop
or procedure, special care is taken for the dummy nodes. Let Cin

L

be the input GBT for dummy node L during traversal of the DAG.
Then we treat the dummy node as a black box and compute the out-
put GBT of the dummy node as Cout

L = Cin
L

⊙
Cgen

L . At the end
of this bottom-up traversal process, we reach the root node (main
procedure). Then, we perform a top-down traversal to compute the
probabilistic GBT at each basic block in the context of the whole
program. Suppose L is a dummy node during this top-down traver-
sal with input probabilistic GBT Cin

L and start node start. Then
we traverse the DAG of L with Cin

start = Cin
L

⊙
Cavg

L and compute
the probabilistic GBT at each node of the DAG. This top-down
process continues till we traverse all the loops/procedures. At this
point, we have computed the “average" probabilistic GBT for each
basic block in the context of the whole program. Now the cache hit
rate for each memory block across multiple cache configurations
can be computed.

5. EXPERIMENTAL RESULTS
We evaluate the accuracy and efficiency of our static cache anal-

ysis by comparing it with cache simulator Cheetah [13]. Cheetah
is the fastest known cache simulator, which can simulate multiple
cache configurations in a single pass.

We select 10 programs from MiBench [5]. We fix a line size
for each benchmark, but vary the number of cache sets from 4
to 64 and associativity from 1 to 8. That is, a total of 20 cache
configurations are estimated and simulated. The line size for each
benchmark is selected such that the cache hit rate has a wide cov-
erage. The benchmarks, corresponding line size, and trace size are
shown in Table 1. For trace-driven simulation, trace size can be
quite large even for small programs as shown in column Trace. We
use SimpleScalar toolset [1] for the experiments. We instrument its
functional simulator to collect execution count of basic blocks and
control flow edges. The time spent in our instrumentation during
the functional simulation is shown in column Prof. Our estima-
tor first disassembles the executable to construct CFG and LPHG,



100%
sha

0%
20%
40%
60%
80%

1 3 5 7 9 11 13 15 17 19

H
it 

R
at

e

simulation
estimation

100%
susans

0%
20%
40%
60%
80%

1 3 5 7 9 11 13 15 17 19

H
it 

R
at

e

simulation
estimation

100%
susanc

0%
20%
40%
60%
80%

1 3 5 7 9 11 13 15 17 19

H
it 

R
at

e

simulation
estimation

100%
bitcount

0%
20%
40%
60%
80%

1 3 5 7 9 11 13 15 17 19

H
it 

R
at

e

simulation
estimation

100%
adpcmdec

0%
20%
40%
60%
80%

1 3 5 7 9 11 13 15 17 19

H
it 

R
at

e

simulation
estimation

100%
adpcmenc

0%
20%
40%
60%
80%

1 3 5 7 9 11 13 15 17 19

H
it 

R
at

e

simulation
estimation

100%
dijkstra

0%
20%
40%
60%
80%

1 3 5 7 9 11 13 15 17 19

H
it 

R
at

e

simulation
estimation

100%
gsmdec

0%
20%
40%
60%
80%

1 3 5 7 9 11 13 15 17 19

H
it 

R
at

e

simulation
estimation

100%
gsmenc

0%
20%
40%
60%
80%

1 3 5 7 9 11 13 15 17 19

H
it 

R
at

e

simulation
estimation

Figure 7: Comparison of cache hit rate for cheetah (simulation) and our method (estimation) across 20 cache configurations (horizontal axis).
Benchmark Line Trace Time(sec)

(Byte) (MB) Prof Cheetah Analysis Ratio
bitcount 8 3583 17.04 138.8 0.036 3855.56
dijkstra 8 4700 9.05 143.87 0.298 482.79

adpcmdec 8 791 3.22 33.055 0.086 384.36
adpcmenc 8 961 4.10 41.321 0.197 209.75

sha 8 706 0.69 21.524 0.063 341.65
rijndael 32 1600 0.99 32.827 0.065 505.03
susans 8 4206 5.70 118.9 0.268 443.66
susanc 16 896 0.25 28.234 0.577 48.93

gsmenc 16 2089 2.01 67.65 1.777 38.07
gsmdec 16 1800 8.29 35.26 1.462 24.12

Table 1: Runtime comparison of Cheetah simulator and our analysis.

and then proceeds with the cache hit estimation. We perform all
experiments on a 3GHz Pentium 4 CPU with 2GB memory.

The estimation and simulation times are shown in Table 1. Our
static analysis method is significantly faster (24–3,855 X speedup)
compared to Cheetah simulation. To compare accuracy, for each
benchmark, we show the cache hit rates of both simulation and es-
timation across all the 20 configurations in Figure 7. The estimation
for rijndael is identical to simulation for all configurations; so
it is not shown. The estimation results from analysis track the sim-
ulation results quite closely. For all the benchmarks and cache con-
figurations, we achieve high accuracy (0.7% average error). The
error is defined as |est − sim| where est(sim) is the estimated
(simulated) cache hit rate.

6. RELATED WORK
Trace-driven simulation is widely used for evaluating cache de-

sign parameters. A. Janapsatya et al. [7] propose an instruction
cache simulation methodology that can operate directly on a com-
pressed program trace file. Simulating reduced traces obtained by
statistical sampling is proposed in [8]. In addition, lossless tech-
niques for trace reduction are studied in [14, 15]. Inclusion prop-
erty is exploited to remove certain references from the trace prior to
simulation [14]. By simulating the cache configurations in a partic-
ular order, some redundant information can be stripped off from the
trace after each simulation [15]. Single pass simulation is proposed
in [13, 6, 11]. They are based on the inclusion property which states
that the content of a smaller cache is included in a bigger cache for
certain replacement policy. Various data structures, such as single
stack [11], forest [6], and generalized binomial tree [13], have been
proposed for utilizing the inclusion property.

Given an address trace, [3, 12] propose probability based ana-
lytical models to compute cache hit ratio. But their approaches are
either for only direct mapped caches or fully associative caches.
In contrast, our method works on the program control flow graph
and does not require address traces. We also predict hit rates for

multiple configurations in a single pass. Ghosh and Givargis [4]
propose an analytical approach for design space exploration that
can directly compute cache parameters satisfying the desired per-
formance.

7. CONCLUSION
In this paper, we present a fast and accurate design space ex-

ploration technique for instruction caches via static analysis. We
introduce probabilistic Generalized Binomial Tree (GBT) to repre-
sent the cache contents for multiple paths and configurations, de-
fine operations on the probabilistic GBT, and discuss optimization
to improve their space and time efficiency. Finally, we show how
to derive these probabilistic GBTs at any point in the program. The
experimental results indicate that our method achieves significant
speedup compared to simulation while maintaining high accuracy.
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