
Ontology Assisted Query Reformulation Using the Semantic and Assertion

Capabilities of OWL-DL Ontologies

Kamran Munir
University of the West of England

Centre for Complex Coop. Systems
BS16 1QY, Bristol, UK

+44-1173-283279

Kamran.Munir@cern.ch

Mohammed Odeh
University of the West of England

Centre for Complex Coop. Systems
BS16 1QY, Bristol, UK

+44-1173-283700

Mohammed.Odeh@uwe.ac.uk

Richard McClatchey
University of the West of England

Centre for Complex Coop. Systems
BS16 1QY, Bristol, UK

+44-1173-283176

Richard.McClatchey@cern.ch

ABSTRACT
End users of recent biomedical information systems are often
unaware of the storage structure and access mechanisms of the
underlying data sources and can require simplified mechanisms
for writing domain specific complex queries. This research aims
to assist users and their applications in formulating queries
without requiring complete knowledge of the information
structure of the underlying data sources. To achieve this, query
reformulation techniques and algorithms have been developed that
can interpret ontology-based search criteria and associated domain
knowledge in order to reformulate a relational query. These query
reformulation algorithms exploit the semantic relationships and
assertion capabilities of OWL-DL based domain ontologies. In
this paper, this approach is applied to the integrated database
schema of the EU funded Health-e-Child (HeC) project with the
aim of providing ontology assisted query reformulation
techniques to simplify the global access that is needed to millions
of medical records across the UK and Europe.

1. INTRODUCTION

1.1 The Problem in General and Motivation
Information technology today has been widely adopted in modern
medical practice, especially in the support of data management.
However little has been achieved in the use of computational
techniques to exploit integrated medical information in research.
In recent years, there has been a substantial increase in the volume
and complexity of data and knowledge available to the medical
research community. To enable the use of this knowledge in
clinical studies, users generally require an integrated view of
medical data across a number of data sources [1]. Clinicians, who
are mostly the end users of medical data analysis systems, are
normally unaware of the storage structure and access mechanisms
of the underlying data sources. Consequently, they require
simplified mechanisms for generating queries.

The Health-e-Child (HeC) project [2] aims to develop an
integrated platform for European paediatrics, enabling data
integration between spatially distributed clinicians and bringing
together information produced in different departments or

multiple hospitals. The emphasis of the HeC data integration
process is on providing “universality of information”. Its
cornerstone is the integration of information across biomedical
abstractions, whereby all layers of biomedical information can be
‘vertically integrated’ [3] (i.e. integration across cellular, organ,
disease, patient and population data). The approach advocated in
this paper surrounds the provision of access to an HeC Integrated
Data Model [4] plus semantics-driven and transparent query
services using manually developed description logic based
ontologies. In this regard a framework has been previously
presented in [5] which provides transparent query services to
access the data.

1.2 HeC Query Reformulation Services
The work presented in this paper exploits the semantic
relationships and assertion capabilities of an OWL-DL based
ontology in order to capture the domain knowledge and to provide
query formulation and reformulation services to the clinicians and
their medical applications. To this end a query reformulation
system has been developed as middleware between the client
applications and distributed data sources (as shown in figure 1).
This query reformulation system parses the query and interprets
the meaning of the end-user’s query terms. In the case where the
client request is not automatically resolved or the end-user does
not really know what he/she is looking for (or how to ask for
available information), the system allows him/her to see and
interpret such information. Both of these features enable the
construction of a meaningful query.

The process of parsing and interpreting the meaning of the query
terms is enabled by the use of source metadata information and
domain knowledge that is defined in terms of ontological
concepts. These concepts are classified within the internal
structure of the ontology. The ontological information is then used
for situation-based information querying.

1.3 Query Reformulation and Ontologies
An ontology generally represents a shared, agreed and detailed
model (or set of concepts) of a problem domain. One advantage in
the use of ontologies in the HeC system is their ability to resolve
any semantic heterogeneities that are present within the data.
Ontologies can define links between different types of semantic
knowledge. Hence, they can aid particularly the resolution of
terms for queries and other general search strategies, thus
improving the search results that are presented to clinicians. The
facts that ontologies are machine-processable and human
understandable are especially useful in this regard [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IDEAS08 2008, September 10-12, Coimbra [Portugal]
Copyright ©2008 ACM 978-1-60558-188-0/08/09 $5.00

81

Figure 1. Query Reformulation System Architecture in

Health-e-Child

There are many biomedical ontologies in existence although few,
if any, that support query reformulation. The example below
explains how ontologies can be used in formulating a query. Due
to space limitations, it is not practical to describe the complete
HeC database scheme. Thus, as a running example in this paper,
we use the following small subset of the database relations from
our Patients’ database, the complete HeC integrated data model
can be found in [4].

(1) patients_data (patient_id, clinical_test_name, clinical_

test_value, description, ...)

(2) clinical_test (clinical_test_id, clinical_test_name, …)

(3) clinical_test_values (id, clinical_test_id, ct_value, ...)

(4) patient (id, description, …)

The rows in the table clinical_test store all the possible clinical
tests that can be taken for a particular patient. The
clinical_test_values table stores all the possible clinical test results
for any particular clinical test. The patients_data table references
the patients, their clinical tests and results of medical tests.

As mentioned previously, ontologies can aid in the area of query
reformulation. One example is when a query is reformulated
according to the HeC ontology with the concept of ‘Astrocytoma
Tumor’ (a form of tumor in the brain). The user may enter a query

into the system stating “Give me all MRI scan images of brains
for children with an Astrocytoma Tumor disease in a specific age
group”. This query cannot be fully resolved by the HeC data
model because there is no direct information available in the
databases that matches with the term ‘Astrocytoma Tumor’. Here
the query reformulation system receives a simple input into the
system as ‘Astrocytoma Tumor’, the system then extracts all of
the clinical tests and related values that confirms the possibility of
Astrocytoma Tumor disease in the brain.

The system uses the power of the HeC ontology to determine that
clinical test results for example orthopedic_sequelea with values
severe symptomatic and life threatening are the related clinical
tests for Astrocytoma Tumor. Hence, the system not only returns
the result as a set of related clinical tests but also returns the
respective reformulated query to access this information
according to the underlying data model. Such requirements which
require resolution of terms from the query reformulation system
can occur frequently. Examples of queries with similar
requirements include: (1) when a clinician wants to study a
particular disease (2) when a clinician wants to study patients who
are suspected of having a particular disease and (3) when a
clinician wants to compare a patient’s medical data with patients
who have a particular disease, and within a specific age group.

The subset of the above mentioned HeC patients’ database does
not contain information that is directly related to some of the
above mentioned terms in queries. Therefore, in order to retrieve
the desired query results in the absence of a query reformulation
system, clinicians are normally required to perform all of the
following operations:

1. To describe the clinical tests that are related to the study of
particular diseases;

2. To describe clinical tests and associated results that need to be
“true” for one particular patient to be selected as a suspect for
particular diseases;

3. To understand how clinical test data is stored in the integrated
HeC database; and

4. To write complex SQL queries to select the desired
information.

A user may want to write a more complex query by involving any
number of comparisons using union, intersection, equivalence or
negation operations. Current developments in the field of
ontology languages allow ontologies to be more expressive when
ontological information is used to formulate complex queries. To
achieve this, generic query reformulation techniques have been
developed that interpret ontological knowledge to reformulate
queries or to assist the users in formulating their queries.

The remainder of this paper is organised as follows. Section 2
presents related work in this area. Section 3 introduces the Query
Reformulation system architecture. This section also focuses on
the ontological representation for reformulating queries, and
discusses the ontology-relational translations that provide
(relational) query reformulation services. Finally, Section 4
concludes the paper and considers the current status of research
and directions for future work.

2. RELATED WORK
Currently, there are several tools available that can transform
relational databases into ontologies. DataGenie [7] is a plug-in for
Protégé [8] that imports data from a relational database to an

82

ontology. Similarly, related work has been carried out by [9], [10]
and [11] on the transformations between relational databases and
ontologies. These mappings are fairly trivial: each table maps to a
class, each column to a data type property and each row to an
instance. In addition, the foreign key columns are used to link an
instance of a class to instances of another class. In this research,
while using domain ontologies to reformulate relational queries,
some of the basic rules to generate domain ontology from
relational schema remain the same. However, our relational
schema to ontology transformation is different in the sense that
‘all’ relational data are not transformed and then stored as
ontology instances.

The work presented in [12] supports the specialisation or
generalisation of the base or filler concepts to build database
specific queries interactively. However, that querying facility
cannot generally be applied to queries where the corresponding
data is not available as ontology instances in the respective data
sources. Therefore, implementing such a querying facility in the
situation where there are legacy data sources would require
significant changes to the database schema. For example, such
legacy data sources could involve the medical records of patients
(as in HeC). In these cases it is likely to be difficult to manipulate
the database schema because of the huge database volume, the
associated security protocols and the legacy applications that
access them. However, in our approach other than the metadata
information no data is stored as ontology instances or directly
linked to ontological concepts. Therefore, no manipulation of the
data at the schema level is required. The database metadata is
defined within the domain ontology without limiting user queries
to the specialisation or generalisation of ontological concepts.

Some of the existing ontology-based information retrieval
approaches use RDF [12], [13], [14] and [15] structures which,
although yielding schema information, provide insufficient
knowledge for query reformulation. These approaches also lack
the details of what needs to be included in the ontology from the
data sources along with the domain knowledge to drive the
process of query reformulation. The focus of these approaches
(for example [15]) remains towards interactive query generation
through nondirected graphs supporting multiple natural languages.
Furthermore, considerable work has been carried out by [16] in
addressing the problem of data integration and the interoperation
of heterogeneous XML sources using an ontology-based
framework, where a global ontology is generated and expressed in
an RDF Schema (RDFS) [17]. This system depends on an
ontology to define the set of terms that can be used in a query. To
query data, users need to be familiar with the overall terms and
relationships in the ontology. This can sometimes be problematic
for users who do not fully understand the system and thus face
difficulty while navigating through large ontologies to select the
appropriate terms.

Unlike the approaches in [18], [19], [20], [21] and [22] our system
does not store all data from a data-source as part of the ontology
or link it directly with ontology concepts. Often it is not
practically feasible to store all data as part of a certain domain
ontology especially for systems with large amounts of data. The
data that is stored as part of the ontology needs to be loaded in
memory to perform Select query operations. Most of these
approaches have used RDF as an ontology development language.
However RDF is too weak to describe resources in sufficient
detail since it lacks localised range and domain constraints and

there is no support for cardinality constraints. In the current
research OWL-DL is the ontology development language that is
used to specify the concepts with related assertions that drive the
process of query reformulation, since it has greater support for
expressing semantics when compared to RDF and RDFS. Work
has been carried out in [23] to map a domain ontology to a
domain conceptual data model. In this research several mapping
rules have been proposed that guide the transformation from
domain ontology to conceptual schema. One of these mapping
rules describes the transformation of ontology properties to
entities-attributes in the conceptual model. In this paper, this rule
has been extended to define mappings between an OWL ontology
to a data source schema.

A database relational schema provides a logical map of the
information content of the database along with related semantic
data control assertions, following the relational model. On the
other hand, although ontology schemas share the
conceptualisation aspects of relational schemas, the ontology
model specifications and, in particular OWL ontologies, (used in
this research) are based on Description Logic theory [24] and are
referred to as OWL-DL. In order to represent a relational data
model in OWL-DL, respective transformations of the relational
model to DL remain a critical requirement in order to achieve
consistency and completeness of these transformations. In relation
to this, work has been carried out in [25] which describes the
relationship between entities in the entity-relationship (ER) model
and DL theory. In the current research some of the basic ontology
to DL transformation rules are employed and extended to handle
the requirements for reformulating database queries.

3. THE QUERY REFORMULATION

SYSTEM
The query reformulation system reported in this paper has two
major subsystems: (1) the Ontology Knowledge Interface and (2)
the Query Reformulation Engine. The Ontology Knowledge
Interface subsystem is composed of three components: (a) an
ontology creation process to assist in reformulating queries, (b) an
ontology server, and (c) an ontology assisted query reformulation
process. The Query Reformulation Engine is composed of (a)
query reformulation algorithms and (b) ontology to data source
mappings.

3.1 The Ontological Knowledge Interface
As a first step towards ontology assisted query reformulation, an
OWL-DL ontology is created which stores database metadata
information within the basic ontology structure. In order to
support the re-use, maintainability and evolution of the ontology,
a traditional iterative process is adapted for ontology engineering
consisting of ontology modeling and ontology validation. In this
regard, the metadata from the HeC integrated data model is
mapped into disjoint independent trees which are recombined into
an ontology using definitions and axioms to represent the
relationships in an explicit fashion.

The main elements of a relational database include relations
(tables), columns, and constraints (assertions). Equivalently, the
ontological model includes classes, properties, assertions and
other semantics. However, for the purpose of query reformulation
our approach does not require the domain ontology to include all
constructs of the relational model. The domain knowledge is
expressed in terms of ontology property assertions that need to be

83

consistent with the basic ontology structure. It is also possible to
include the domain knowledge from widely available domain
ontologies. The mapping rules were developed and have been
presented in [5]; that paper explains what needs to be included in
the ontology to support the query reformulation process.

In our system either the client applications or the user (through an
interactive GUI) interacts with the ontology knowledge interface
layer to describe the query terms that cannot be automatically
resolved from the data sources. The ontology knowledge interface
provides access to ontological concepts classified within the
internal structure of the ontology.

3.1.1 Ontological Representation
This section explains how a subset of the patients’ database
metadata, used to drive the process of generating queries, is
represented in an OWL-DL ontology. Both the domain knowledge
and the metadata of the HeC data model are stored in the
ontology; a small subset of this metadata is shown here:

DB relation: clinical_tests (PK: ct_id)
ct_id name

1 Headaches

2 double_vision

3 orthopedic_sequelea

4 bacterial_infection

… … … …

DB relation: clinical_test_values (PK: id, ct_id)
id ct_id ct_value(classifications)

3 2 True

4 2 False

5 3 moderate symptomatic

6 3 life threatening

7 3 sever symptomatic

… … … … …

FK: ct_id reference clinical_tests(ct_id)

The clinical_test_values table stores the possible clinical test
results for any particular clinical test id (ct_id). Here ct_id
(clinical test id) is referenced using the clinical_test table. Firstly,
a clinical_tests class is added to the ontology that contains all of
the clinical tests. These would include for example, headache,

double_vision, thrombosis_sequelea, orthopaedic_sequelea as
subclasses, and containing only one instance for each class. The
second class, namely clinical_test_values, has been defined as a
(common) parent class to hold all possible clinical test values for
each clinical.

Due to the fact that patients’ clinical tests can hold diverse result
set values for each clinical test the further subclasses of
clinical_test_values (e.g. headachesValues, doubleVisionValues,

thrombosisSequeleaValues and orthopedicSequeleaValues) have
been created. Each of these subclass concepts contains
individuals; some of them are shown in Figure 2. We define
clinical_tests and clinical_test_values classes as disjoint so that an
individual (or object) cannot be an instance of more than one of
these two classes.

Secondly, the object properties, namely hasClinicalTestName, and
the sub-properties of object property hasClinicalTestValue are
added. In order to provide a two-way search capability through
query reformulation algorithms, these sub-properties have a
corresponding inverse property. If a property links individual ‘a’
to individual ‘b’, then its inverse property links individual ‘b’ to

individual ‘a’. For example, the Clinical_Tests individual
‘orthopaedic_sequelea’ is linked with the individuals:
moderate_symptomatic, life_threatening and severe_symptomatic

with the property hasOrthopaedicSequeleaValue. But, OWL’s
inverse property isValueOf links the individuals
moderate_symptomatic, life_threatening and severe_symptomatic
with the concept orthopaedic_sequelea.

 R

 R

 R

 U

Figure 2. An Example of Ontology Knowledge Representation

If the end users (i.e. clinicians) are accessing the query
reformulation system for interactive query generation then during
the whole process the users are guided to select the next
applicable ontology concept with the corresponding individuals or
values. To achieve this task each of the ontology properties has a
domain and a range specified. Object properties link individuals
from the domain to individuals from the range. For example, the
sub-properties of hasClinicalTestValue link individuals belonging
to the class Clinical_Tests to individuals belonging to the
Clinical_Test_Values class. This is applied to all of the properties
available in the ontology, for example the domain of the
hasOrthopaedicSequeleaValue property is orthopaedic_sequelea

and the range is orthopaedic_sequelea_values as shown (as
property links) in Figure 2.

Once the properties with domains and ranges have been defined,
then specific class instances are associated with other instances

84

using these object properties. These property links are used to
capture the user search criteria within the ontology concepts, or
independently from the domain ontology if it is to be further
utilised by other users.

Once the basic structural elements of the domain ontology have
been defined they are further enriched with domain knowledge.
The domain knowledge is expressed in terms of OWL-DL
property assertions that need to be consistent with the basic
ontology structure. We store this domain knowledge as ontology
concepts. In this way the consistency of the domain knowledge
with ontology concepts is verified using an Ontology Reasoner
[26]. Concept restrictions are used to describe conditions for the
selection of records that match some given criteria. These
restrictions could be either singular or complex involving many
conditions. The query reformulation engine uses these restrictions
to reformulate queries by translating the DL constructs into
relational queries. For the purpose of reformulating queries, the
OWL-DL property restrictions are utilised. The ontology concepts
describing a particular disease study embody the associated
domain knowledge as well as the search criteria.

3.1.2 The Ontology Server
Once the ontology has been defined it is then processed and stored
in a database. The ontological knowledge interface (as shown in
Figure 1) interacts with the ontology server to retrieve the
ontological information. This information is then used to assist
the users to define their search criteria (if required) and to
generate reformulated database queries by receiving unresolved
query terms from client applications. The consistency of the
domain knowledge with ontology concepts can be verified using
an ontology Reasoner (e.g. FaCT++, Racer) [26]; however, if the
domain knowledge is to be accessed from a database then this
requires the implementation of a consistency check mechanism to
ensure coherence with the ontology. This domain knowledge is
used by the query reformulation algorithms to reformulate queries
conforming to the schema(s) of the underlying data sources.

3.1.3 The Ontology Assisted Query Formulation

Process
The ontology knowledge interface can receive requests from the
client applications as well as from the end users. In situations
when end users are directly accessing the ontology knowledge
interface, the user could define a new search criterion or select
from the existing domain knowledge to formulate a query. The
users’ search criteria are described using the ontology property
restrictions, concepts/sub-concepts and instances. An individual
must satisfy all the conditions that are specified as ontology
property restrictions to be a member of any named concept. These
restrictions could be either singular or complex ones involving
many conditions. For example, restrictions are used to define
conditions for the selection of relevant patient records that match
a given criteria. A GUI interface, the so-called “Ontology Assisted

Query Formulation Wizard”, is provided for this task which
guides the user in defining the search conditions by making full
use of the supporting domain ontology.

For example, in order to generate the query (query-1) where a user
wants to retrieve clinical data for each patient related to the study
of Brain Tumor Disease-X, the selection criterion is described as
OWL property assertions, e.g. by using an ontology property
namely “hasClinicalTestName”. Once defined, the whole search

criteria are saved as a new ontological concept for example,
brain_tumor_disease_x_study. In this example, it is assumed that
the double_vision, headaches and orthopaedic_sequelea are the
clinical test names related to brain tumor disease-X. This
information is described and saved as follows:

Concept name: brain_tumor_disease_x_study
(OWL expression)
hasClinicalTestName some double_vision union

hasclinicaltestname some headaches union hasclinicaltestname

some orthopaedic_sequelea

For the situations where the ontology knowledge interface
receives requests from the client applications to reformulate
queries for the ‘unresolved query terms’, the ontology access API
accesses the ontology to extract relevant OWL-DL assertions. For
example (query-2), when a user wants to retrieve information
about patients who are suspected to have a particular Brain Tumor
Disease-Y (e.g. ‘Astrocytoma Tumor’) the system receives the
query term ‘Astrocytoma Tumor’ and extracts all of the clinical
tests and related values that confirms the possibility of the
Astrocytoma Tumor disease in the brain. The system uses the
HeC ontology to determine that the clinical test results for
example orthopaedic_sequelea with values severe_symptomatic

and life_threatening are the related clinical tests for Astrocytoma
Tumor. These conditions need to be satisfied in order to indicate a
suspected case of brain tumor disease x:

Concept name: brain_tumor_disease_y_suspects

OWL expression: {someValuesRestriction

 (hasClinicalTestName some orthopedic_sequelea

Intersection

hasClinicalTestStringValue has severe_symptomatic)

someValuesRestriction

 (hasClinicalTestName some orthopedic_sequelea

Intersection

hasClinicalTestStringValue has life_threatening)}

These query conditions could, of course, be more complex since it
could involve multiple ontology assertions using a mixture of
union, intersection, equivalence and negation operations even
within each property restriction. The query reformulation for such
cases involves the handling of all different situations. In the next
section, we show how these object property assertions, domain
knowledge and associated database mappings are utilised to
reformulate the respective query.

3.2 The Query Reformulation Engine
The Query Reformulation Engine is composed of query
reformulation algorithms and ontology-database mappings. The
query reformulation interface passes the extracted relevant
ontological information to the query reformulation engine. The
query reformulation algorithms interpret and transform the OWL
Description Logic constructs into corresponding Relational
queries. The ‘mappings’ table is created automatically during the
ontology processing that stores the information about ontology
property links, database name, table name, column name, primary
and foreign keys. Once created this mapping table only contains
the information about ontology properties, which is then updated
with the database metadata information.

For example, from the selection conditions defined for query 1 (as
discussed in section 3.1.3), it can be deduced that the

85

double_vision, headaches and orthopaedic_sequelea are the
clinical tests related to Brain Tumor Disease-X Study and defined
with the ‘OR’ condition. Here the ‘OR’ condition for all parts of
the test condition implies that there is a ‘UNION’ operation within
each test condition for the data in Patients’ database. Finally, the
formulated query in this case will retrieve the patient data from
the Patient_Information database view/table where patient_-

information. clinical_test_name matches any of the following
values {double_vision, headaches, orthopaedic_sequelea}. Query
2 is more complex than query 1 and from the previously defined
selection conditions for query 2, we deduce that the following
asserted restrictions are indicative of Brain Tumor Disease-X:

Table 1. Ontology asserted restrictions for the Brain

Tumor Disease-X suspects

Ontology

Restrictions

Ontology Properties Test Conditions

condition-1A hasClinical

TestName

orthopaedic_

sequelea

AND(condition

1B)

hasOrthopedic

SequeleaValue

severe_

symptomatic

condition-2A hasClinical

TestName

orthopaedic_

sequelea

AND(condition

2B)

hasOrthopedic

SequeleaValue

life_threatening

Here the clinical test variable orthopaedic_sequelea with the
clinical test values ‘severe_symptomatic’ and ‘life_threatening’
respectively are defined as restrictions for brain_tumor_-

disease_x_suspects. In this case the reformulated query for query
2 will retrieve all patients that have all Clinical Tests recorded for
Disease-X with specific values for each Clinical Test i.e.
orthopaedic_sequelea = ‘severe_symptomatic’ and orthopaedic_-

sequelea = ‘life_threatening’.

 As described previously (in section 3.1) the property
hasClinicalTestValue is a parent property of the hasDoubleVision-

Value, hasHeadachesValue and hasOrthopaedicSequeleaValue

objects. In this approach we require mapping definitions only for
the parent properties. The following are the mappings for the
ontology properties hasClinicalTestName and

hasClinicalTestValue for the Patient_Information database view.

hasClinicalTestName � (belongs to) clinical_test_name

hasClinicalTestValue � (belongs to) clinical_test_value

In the next section, we outline the mappings between an ontology
model and a relational database model. These mappings provide
us with the ground on which we have based (and implemented)
our query reformulation algorithms in the query reformulation
engine to handle the possible Description Logic expressions to
respective Relational Query translations.

3.3 Mappings from an Ontology Model to a

Relational Model
A relational data model aims at establishing links between user
and domain requirements and describes the logical structure and
contents of the data. However, it is often necessary to clarify the
meaning of the entities and their properties for a specific domain
of interest to aid understanding. An ontology is one way of
describing these entities along with their properties in the real
world [6]. Recently, semantic web ontology languages have been

used to express different types of ontologies and associated
languages such as OWL to help in modeling the real world more
accurately. These ontologies play a significant role in information
system modeling and have the ability to represent the conceptual
data models using ontological theories [23]. Moreover (as
discussed previously in sections 1.3 and 2), work has also been
reported in [10] and in particular the R2O System [11] that
describes the mappings between a relational database schema and
an ontology.

One DB relation

maps to one

concept in the

ontology. In this

case the

columns

of the relation

map the

properties and

each column

value maps to

an instance of

the concept.

Relation (R)Concept (C)

Columns

 (A1, A2 " An)
Properties

 (P1, P2 " Pn)

Column Values

 (V1, V2 " Vn)

Instances

(I1, I2 " In)

One concept

in the

ontology

maps to one

DB relation. In

this case the

corresponding

properties

map to each

column and

each instance

of a concept

maps to a

column value.

Ontology Model Relational Model

(a)

One DB relation

instantiates

more than one

concept in the

ontology, but

only one

instance per

concept. In this

case columns

of the relation

maps the

properties and

each column

value to an

instance of

each concept.

Relation (R)
Records (R1, R2 " Rn)

Concepts

 (C1, C2 " Cn)

Columns

 (A1, A2 " An)
Properties

 (P1, P2 " Pn)

Column Values

 (V1, V2 " Vn)

Instances

(C1 I1, C2 I2 " Cn In)

One concept in

the ontology

having only

one instance

maps to one

record in a DB

relation. In this

case the

corresponding

properties map

to each column

and each

instance of a

concept maps

to a column

value.

Ontology Model Relational Model

(b)

One DB relation

instantiate more

than one

concept in the

ontology, but

multiple

instances per

concept. In this

case columns

of the relation

maps the

properties and

each column

value to one or

more instances

of each

concept.

Concepts

 (C1, C2 " Cn)

Ontology Model

Columns

 (A1, A2 " An)

Properties

 (P1, P2 " Pn)

Column Values

 (V1, V2 " Vn)

Instances

 (C1 I1, C1 I2 " C1 In),

 (C2 I1, C2 I2 " C2 In)

"...

 (Cn I1, Cn I2 " Cn In)

Relation (R)

Records (R1, R2 " Rn)

One concept in

the ontology

having multiple

instances map

to one or more

then one

record in a DB

relation. In this

case

corresponding

properties map

to each column

and the

instances of a

concept map

to the column

values.

Relational Model

(c)

Figure 3(a, b, c). Mappings between an ontology model and a

relational model

Figure 3 presents different mapping situations that arise from
ontology-to-relational and relational-to-ontology model mapping
scenarios and are covered by our query reformulation algorithms
(detailed examples of these mappings are reported in [5]). Here
the mappings are expressed as a set of correspondences that relate

86

the vocabulary of a relational model (table/relation, column etc)
with an ontology model (concept, property etc) and vice versa.

In the relational database paradigm, a logical data model may be
accessed through SQL which is based on the Relational Algebra
(RA), whereas OWL-DL is based on Description Logic [24].
Therefore, we base our translations on Description Logic and
Relational Algebra, to work with any database that implements
the SQL standard. In DL, a given DL is defined by a set of
concepts and a role forming operator. The smallest set
propositionally closest to DL is ALC (Attributive Language with
Complements) where the concepts are constructed using Union,

Intersection, allValuesFrom, someValuesFrom and complementOf
written as ¬∃∀ and,,,,IU , respectively. The ‘all’ in

allValuesFrom is the universal qualifier whereas the ‘some’ in
someValuesFrom is the extensional qualifier. The
someValuesFrom (hasClass) and allValuesFrom (toClass)

constructs are applied on classes or subclasses while specifying
classes and restrictions, whereas the hasValue is used with
instances.

In the next section, we outline the DL to Relational Algebra (RA)
translation heuristic rules rather than a formal approach to achieve
this translation from OWL-DL ontological queries to relational
queries that can be executed by the relational query processor of a
relational database management system.

3.4 Translation of OWL DL Constructs into

Relational Queries
From this point onwards, the following conventions (according to
the mappings defined in the previous section) have been used in
the translation rules from DL to RA queries.

- ζ represents an ontology or ontology fragment
- QR is the formulated query in RA
- R is a database relation/view
- C is the ontology concept/class
- C1, C2 … Cn are multiple ontology concepts/classes
- P is an ontology property (mapped to a database column)
- P1, P2 …. Pn represent multiple ontology properties (mapped to

database columns)
- I is an ontology instance (mapped to a database column-value)
- I1, I2 …. In represent ontology concept-instances (mapped to

database column values)
- pk_column is the primary key column for a database relation R

3.4.1 Translations for the allValuesFrom DL

construct
The allValuesFrom restriction excludes the possibility of further
additions for a given property. The ‘allValuesFrom’ is interpreted
as “only”, such that saying all values coming from a given class is
the same as saying that values may only come from that class.
While defining OWL property assertions the “allValuesFrom”
may be used in the following ways:

(1) Concept (C) having only one instance (I):
 <object-property>allValuesFrom(Class)
(2) Concept (C) having multiple instances (I1 … In):
 <object-property>allValuesFrom{class-instance <space>
 class-instance ……}

For both of these cases the following query reformulation rules
are used to generate a relational query.

1. An Ontology assertion with an allValuesFrom(∀) restriction
for a property (P) on a concept (C), implies:

If ‘C ∈ ζ | allValuesFrom (∀) of P toClass C’ then the

translated relational algebra query will be:

)(
))(((.__

RQ
RINPR

CPcolumnpkcolumnpk ><¬
=

σπ
σ

2. If C ∈ ζ | allValuesFrom (∀) of P toClass (class-instances)

(I1 I2 …. In) then
(Here {I1 <space> I2 <space>….. In} are the class instances for
property P)

)())(((
).....21(_

_

RR

INPR

nIPIPIPcolumnpk

columnpk

Q

=∨∨=∨=¬

¬
=

σπ

σ

3.4.2 Translations for the someValuesFrom DL

construct
The “someValuesFrom” is interpreted as ‘some’, such that the
values may come from a given class. The DL to RA translation
for a single someValuesFrom property restriction on a concept
(C), having only one instance (I) is fairly straightforward. For
example, in such a case the ontology property maps to the column
name and the concept maps to the column value. Therefore, we
only present the translations concerned with the more than one
occurrence of the someValuesFrom property restriction, and with
the Union or Intersection or both operations within each
restriction. For such cases the following scenarios (and
combinations of all these) can occur:

Scenario 1: Multiple someValuesFrom (∃) (restrictions), with a
Union operation within each restriction, and a (similar) property
defines each concept.

Such a scenario only occurs for a class having subclasses, and a
property defines the parent class as a Range class.

((<property P> someValuesFrom <class C1>) Union

 (<property P> someValuesFrom <class C2>))> …….

(<property P> someValuesFrom <class Cn>

Here, the ontology assertions with the someValuesFrom (∃)
property restrictions for (C1, C2 … Cn) with Union operation
within each someValuesFrom property restriction, imply:

If C ∈ ζ | (someValuesFrom (∃) of P some (C1, C2 … Cn)) then

)(
n21 C....CC RQ PPPR =∨∨=∨=

=σ

Scenario 2: Multiple someValuesFrom (∃), with a Union
operation within each restriction, and a distinct property defines
each concept.

((<property P1> someValuesFrom <class C1>) Union
 (<property P2> someValuesFrom <class C2>))

If C ∈ ζ | (someValuesFrom (∃) of P (P1 U P2 U … U Pn) some

(C1, C2 … Cn) then
(Here (P1, P2 … Pn) are the ontology properties for the concepts
(C1, C2 … Cn) having only one instance per class.)

)(.....2211
RQ

nn CPCPCPR =∨∨=∨=
=σ

87

Scenario 3: Multiple someValuesFrom (∃), with an Intersection
operation within each restriction, and a distinct property defines
each concept.

Such a scenario only occurs for distinct someValuesFrom
properties, and a property defines the parent class as a Range
class.
((<property P1> someValuesFrom <class C1>)Intersection

 (<property P2> someValuesFrom <class C2>))

If C ∈ ζ | (someValuesFrom (∃) of P (P1 I P2 I … I Pn) some

(C1, C2 … Cn) then

)(.....2211
RQ

nn CPCPCPR =∧∧=∧=
=σ

Scenario 4: A someValuesFrom (∃) restriction with the multiple
instances of a concept.

Such a scenario can occur when multiple instances of concept are
defined with a someValuesFrom property restriction.

<object-property> someValuesFrom {class-instance

<space> class-instance ……}

If C ∈ ζ | someValuesFrom (∃) of P hasClass (class-instances)

{I1, I2 …. In} then)().....21
RQ

nIPIPIPR =∨∨=∨=
= σ

(Here {I1 <space> I2 <space>….. In} are the class instances for
property P)

3.4.3. Translations for the complementOf DL

construct
The complementOf DL construct selects all individuals that do not
fall under the specified restriction(s). For a single ontology
assertion with only one complementOf property restriction the
translation is trivial. For example, in such a case the ontology
property maps to the column name and the individual maps to the
column value with a NOT equal-to condition. Therefore, here we
only present the translations concerned with the more than one
occurrence of the complementOf (hasValues) property restriction,
and with the Union or Intersection or both operations within each
restriction. For such cases the following three scenarios (and
combinations of all these) can occur:

Scenario 1: A complementOf construct, with a Union operation
within each hasValue property restriction.

complementOf (hasValues of I1 Union hasValues of I2 Union

…… Union hasValues of In)

If C ∈ ζ | complementOf (hasValues (∋) of P has (I1 U I2

U …U In)) then)().....(21
RQ

nIPIPIPR =∨∨=∨=¬
=σ

Scenario 2: Multiple complementOf constructs, with an
Intersection operation within each restriction.

complementOf (hasValues of I1) Intersection complementOf

(hasValues of I2) Intersection …… Intersection complementOf

(hasValues of In)

If C ∈ ζ | <complementOf> hasValues (∋) of P has (I1 I I2

I …I In) then

)()(.....)()(21
TQ

nIPIPIPR =¬∧∧=¬∧=¬
=σ

3.4.4 Translations for the hasValue DL construct
A hasValue(has) restriction, denoted by the symbol (∋),

describes the set of individuals that have at least one relationship
along a specified property to a specific individual. Some of the
basic translations for hasValue property restrictions are almost
similar to the scenarios 1, 2 and 3 described previously for the
suggested someValuesFrom DL construct translation. The only
major difference between them is that hasValue describes the set
of individuals and someValuesFrom describes the ontology
concept(s). Therefore, in this section we present two further
example translations concerned with the more than one
occurrence of the hasValues property restriction, with the Union
or Intersection or both operations within each property restriction.

Scenario 1: Multiple hasValue constructs, with the Union or
Intersection or both operation(s).

((<property P1> hasValue <instance I1i>) Union

 (<property P1> hasValue <instance I2i>) Union……)

 Intersection

(<property P2> hasValue <instance I1j>) ……

If C ∈ ζ | (hasValues (∋) of P1i has (I1i U I2i U … U Ini)) UI |

(hasValues (∋) of (P1j I P2j I … I Pnj) has (I1j , I2j … Ini)) then

)())(.....)()((

/)..... (

njnjj22j1j1j

1i2i1i1i1i

R

Q

IPIPIP

orandIPIPIPR ni

=∧∧=∧=

=∨∨=∨=
= σ

Scenario 2: Multiple assertions of a hasValue construct.

Such a scenario can occur only with the distinct properties.

<property P1> hasValue(has) <instance I>

<property P2> hasValue(has) <instance I>……

<property Pn> hasValue(has) <instance I>

If C ∈ ζ | multiple assertions | (hasValues (∋) of P1 has I),

(hasValues (∋) of P2 has I) …… (hasValues (∋) of Pn has I)

then)(.....21
RQ IPIPIPR n =∧∧=∧=

=σ

3.4.5 Translations for the combinations of the

someValuesFrom (i.e. hasClass) and the

hasValue (i.e. hasInstance) DL constructs
As described previously, the “someValuesFrom” DL construct is
interpreted as “some”, such that the values may come from a
given class and a hasValue restriction describes the set of
individuals. In this section, we present the example translations
concerning the combinations of both, the someValuesFrom (i.e.
hasClass) and the hasValue (i.e. hasInstance) DL constructs. For
such cases the following three scenarios (and also the all possible
combinations of the previously specified scenarios for the
someValuesFrom, the hasValue and the complementOf DL

constructs can occur:

For the following examples, Ps represents the someValuesFrom

(∃) and Ph represents the hasValue (∋) related ontology

properties.

Scenario 1: A single restriction with the (combination of)
someValuesFrom (i.e. hasClass) and the hasValue (i.e.
hasInstance) DL constructs.

88

The someValuesFrom and hasValue constructs are used together
when restrictions are to be placed on the instance(s) (as hasValue)
of a particular concept (i.e. hasClass). The following combination
can be interpreted as ‘value may come from a class ‘C’ that
matches the instance ‘I’. This is particularly useful when a
selection condition is to be applied on more then one column of a
DB relation/view.

((<property Ps >someValuesFrom <class C>)

Intersection (<property Ph > hasValue <instance I>))

If C ∈ ζ | (someValuesFrom (∃) of Ps some C) I (hasValue

(∋) of Ph has I) then)(RQ IhPCPR s =∧=
= σ

In such a case the Intersection (And) operation is applied between
the hasClass and hasValue constructs, and both of the conditions
need to be true for the selection of a particular record.

Scenario 2: Multiple restrictions with the (combination of)
someValuesFrom and the hasValue DL constructs, with a Union
operation within each combine (someValuesFrom, hasValue)
restriction.

In such a scenario the conditions are applied to the multiple
concepts and their corresponding instances.

(<property Ps> someValuesFrom <class C1>

Intersection <property Ph> hasValue <instance I>) Union

(<property Ps> someValuesFrom <class C2>

Intersection <property Ph> hasValue <instance I>)Union …

If C ∈ ζ | ((∃ of Ps some C1 I ∋ of Ph has I) U

(∃ of Ps some C2 I ∋ of Ph has I) …..

(∃ of Ps some Cn I ∋ of Ph has I)) then

(Here ‘∃’ is represents someValuesFrom and ‘∋’ represents

hasValues.)

)()(.....

)()(21

R

Q

IPCP

IPCPIPCPR

hns

hshs

=∧=∨∨

=∧=∨=∧=
= σ

As mentioned earlier in this paper, the ontology-to-database
mapping information is stored within the ontology server, which
includes the information about ontology property links, database
name, table names, column names, primary and foreign keys.
Once the query reformulation engine transforms the DL constructs
into respective relational constructs, the ontology property
information is updated with the database information. Finally, the
reformulated relational query is passed to the query processing
engine for execution.

Although the SQL relational algebra operations cover many cases
as specified above, there are situations in which some additional
translations are required. For example, matching for different date
formats, partial string matching etc.; these are not covered in this
paper. Regarding database join operations, we have considered
only the natural join operation and have not dealt directly with the
theta, semi and outer join operations between the database tables.
For these join operations database views have been used to test
the translations.

This approach has been applied on a part of the integrated HeC
patients’ database schema along with the implementation of a
graphical user interface (GUI) to perform query formulation and
reformulation tasks. Due to scope and space limitations, detailed
GUI descriptions have not been discussed in this paper. The

prototype system has been presented to the HeC consortium and
domain experts who have confirmed its potential functionality.

The current work in the project centres around evaluating the
correctness of the above translation heuristics applied to a larger
data-set and to extend the query reformulation algorithms, where
necessary.

4. CONCLUSIONS
The central aim of this work was to provide the end users and
their applications with query reformulation services using a
domain ontology, with the main task of generating relational
queries without requiring a complete knowledge of the
information structure and access mechanisms of the underlying
data sources. This involved the design of a query reformulation
architecture with two main layers, the ontological knowledge

interface and the query reformulation engine respectively.

The task of query reformulation has been automated by the
successive incremental development of algorithms, to test the
extent to which this procedure could be effectively automated.
One of the key merits of this approach is that no interpretation of
data needs to be carried out to be stored as ontology instances.
This is clearly beneficial since the interpretation of data in
existing data sources may cause serious scalability issues with
existing legacy applications. Secondly, it does not require its users
to be familiar with the overall contents of the ontology to generate
queries. This is helpful for the users who do not fully understand
the system; navigating in large ontologies to select appropriate
terms can itself be problematic. Moreover, the ontological
information is accessed from the ontology server through
customized wrapper methods, which is favorable while using
large domain ontologies. Furthermore, the query reformulation

engine is composed of generic Description Logic to Relational
Query translation algorithms, and therefore can be easily
employed for other domains.

While the implemented rules to translate OWL-DL queries to
respective relational queries are heuristic based, further work is
being carried out in the context of the HeC project to provide a
formal ground to translate from description logic based ontologies
to relational queries. The latter work will enable us to formally
inform the verifiability of these anticipated translations from a
point of view of correctness and consistency. Also, there are
issues that remain to be handled when using this heuristic
approach. This is especially true when establishing the order and
combinations of ontological expressions before they can be
translated to relational queries.

Despite these limitations, the current research work has provided
us with a deeper insight into the problem by formulating a set of
heuristics as a step to guiding the anticipated automation of this
ontology-relational translation process. Finally, we anticipate that
this approach will pave the way for a reflective process where
results of queries’ execution will enrich the current repository of
domain ontologies.

5. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the EU in
funding this work and the valuable assistance of all partners in the
Health-e-Child project, with special thanks to colleagues working
for UWE at CERN, Geneva and colleagues at UWE, Bristol in
particular Dr Peter Bloodsworth.

89

6. REFERENCES
[1] D. Caragea, J. Pathak, J. Bao, A. Silvescu, C. Andorf, D.

Dobbs and V. Honavar , "Information Integration from
Semantically Heterogeneous Biological Data Sources",
DEXA Workshops: Proceedings of the 3rd International

Workshop on Biological Data Management , pp. 580-584 ,
IEEE Computer Society, Copenhagen, Denmark, 2005

[2] The Information Societies Technology Project: Health-e-
Child, EU Contract IST-2004-027749

[3] A. Anjum, P. Bloodsworth, A. Branson, T. Hauer, R.
McClatchey, K. Munir, D. Rogulin and J. Shamdasani , "The
Requirements for Ontologies in Medical Data Integration: A
Case Study", Eleventh International Database Engineering

& Applications Symposium (IDEAS) vol. 6, , pp. 308-314 ,
IEEE Press, Banff, Canada, 2007

[4] A. Branson, T. Hauer, R. McClatchey, D. Rogulin and J.
Shamdasani , "A Data Model for Integrating Heterogeneous
Medical Data in the Health-e-Child Project", Accepted at the

HealthGrid'08 Conference, Chicago USA, 2008

[5] K. Munir, M. Odeh, P. Bloodsworth and R. McClatchey,
"Using Assertion Capabilities of an OWL-Based Ontology
for Query Formulation", 3rd International Conference on

Information & Communication Technologies: from Theory

to Applications (ICTTA) , IEEE, Damascus, Syria, 2008

[6] A. Gómez-Pérez and O. Corcho "Ontology Languages for
the Semantic Web," IEEE Intelligent Systems vol. 17, no. 1,
pp. 54-60, 2002

[7] Z. Xu, S. Zhang and Y. Dong , "Mapping between Relational
Database Schema and OWL Ontology for Deep Annotation",
Web Intelligence, 2006. WI 2006. IEEE/WIC/ACM

International Conference on Web Intelligence , pp. 248-552 ,
ISBN: 0-7695-2747-7, Hong Kong, 2006

[8] "The Protégé Ontology Editor and Knowledge Acquisition
System", Access URL: http://protege.stanford.edu ,
Accessed on: Feb, 2008

[9] N. Konstantinou, D. E. Spanos et.al. , "An Approach to an
Intermediate Layer between Ontologies and Relational
Database Contents", International Workshop on Web

Information Systems Modeling (WISM), 2006

[10] Y. An, A. Borgida and J. Mylopoulos, "Inferring Complex
Semantic Mappings between Relational Tables and
Ontologies from Simple Correspondences", In Proceedings

of On The Move to Meaningful Internet Systems (OTM'05):

CoopIS, DOA, and ODBASE , pp. 1152-1169 , Springer
Verlag, Agia Napa, Cyprus, 2005

[11] J. Barrasa, O. Corcho, G. Shen and A. Gomez-Perez , "R2O,
an Extensible and Semantically Based Database-to-ontology
Mapping Language", 2nd Workshop on Semantic Web and

Databases (SWDB) , 2004

[12] N.W. Paton, R. Stevens, P. Baker, C.A. Goble, S. Bechhofer
and A. Brass , "Query Processing in the TAMBIS
Bioinformatics Source Integration System", Proceedings of

the IEEE International Conference on Scientific and

Statistical Databases (SSDBM) , pp. 138-147 , 1999

[13] E. Mena, A. Illarramendi, V. Kashyap and A. Sheth
"OBSERVER: An Approach for Query Processing in Global
Information Systems based on Interoperation across Pre-

existing Ontologies," Journal on Distributed and Parallel

Databases vol. 8, no. 2, pp. 223-271, 2000

[14] P.G. D. Baer, E. Kapetanios, S. Keuser , "A Semantics
Based Interactive Query Formulation Technique", User

Interfaces to Data Intensive Systems: Second International

Workshop on User Interfaces to Data Intensive Systems , pp.
43-49 , ISBN: 0-7695-0834-0, Zurich, Switzerland, 2001

[15] E. Kapetanios, D. Baer, B. Glaus and P. Groenewoud , "Data
Querying and Analysis through Integration of Intentional
and Extensional Semantics", 16th International Conference

on Scientific and Statistical Database Management

(SSDBM) , pp. 353-356 , ISBN: 0-7695-2146-0, 2004

[16] H. Xiao and I. Cruz "Integrating and Exchanging XML Data
using Ontologies," Journal on Data Semantics VI: Special

Issue on Emergent Semantics vol. 6, pp. 67-89, 2006

[17] D. Brickley and R. Guha ,"RDF Vocabulary Description
Language 1.0: RDF Schema", Accessed on: 10-10, 2006

[18] C. B. Necib and J. C. Freytag, "Query Processing using
Ontologies",CAiSE , pp. 167-186 , Porto, Portugal, 2005

[19] A.L. Rector, S. Bechhofer, C.A. Goble, I. Horrocks, W.A.
Nowlan and W.D. Solomon "The GRAIL Concept
Modelling Language for Medical Terminology," Artificial

Intelligence in Medicine vol. 9, pp. 139-171, 1997

[20] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini, A.
Poggi and R. Rosati , "Ontology-based Database Access",
Proc. of the 15th Italian Conf. on Database Systems (SEBD)
, pp. 324-331 , 2007

[21] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini, A.
Poggi and R. Rosati , "Linking Data to Ontologies: The
Description Logic DL-LiteA", In Proc. of the 2nd Workshop

on OWL: Experiences and Directions (OWLED) , 2006

[22] Y. Arens, C. A. Knoblock and W. M. Shen "Query
Reformulation for Dynamic Information Integration,"
Journal of Intelligent Information Systems - Special Issue on

Intelligent Information Integration vol. 6, no. 2, pp. 99-130,
1996

[23] H. El-Ghalayini, M. Odeh, R. McClatchey and T.
Solomonides, "Reverse Engineering Domain Ontologies to
Conceptual Data Models", Proceedings of the 23rd IASTED

International Conference on Databases and Applications ,
pp. 222-227 , Austria, 2005

[24] F. Baader, I. Horrocks and U. Sattler , "Description Logics
as Ontology Languages for the Semantic Web", Mechanizing

Mathematical Reasoning: Essays in Honor of Jörg

Siekmann, number 2605 in Lecture Notes in Artificial

Intelligence , pp. 228-248 , Springer, 2005

[25] A. Borgida, M. Lenzerini and R. Rosati, "Description Logics
for Databases "The description logic handbook: theory,

implementation, and applicationspp. 462-484,., ISBN: 0-
521-78176-0, Cambridge University Press , 2003

[26] V. Haarslev and R. Möller , "An OWL Reasoning Agent for
the Semantic Web", In Proc. of the International Workshop

on Applications, Products and Services of Web-based

Support Systems, in conjunction with IEEE/WIC

International Conference on Web Intelligence , pp. 91-95 ,
Halifax Canada, 2003

90

