
Pruning Attribute Values From Data Cubes with Diamond Dicing

Hazel Webb and Owen Kaser
University of New Brunswick

hazel.webb@unb.ca, o.kaser@computer.org

Daniel Lemire
Université du Québec à Montréal

lemire@acm.org

October 28, 2018

Abstract

Data stored in a data warehouse are inherently multidimensional, but most data-pruning techniques
(such as iceberg and top-k queries) are unidimensional. However, analysts need to issue multidimensional
queries. For example, an analyst may need to select not just the most profitable stores or—separately—
the most profitable products, but simultaneous sets of stores and products fulfilling some profitability
constraints. To fill this need, we propose a new operator, the diamond dice. Because of the interaction
between dimensions, the computation of diamonds is challenging.

We present the first diamond-dicing experiments on large data sets.
Experiments show that we can compute diamond cubes over fact tables containing 100 million facts

in less than 35 minutes using a standard PC.

terms Theory, Algorithms, Experimentation

keywords Diamond cube, data warehouses, information retrieval, OLAP

1 Introduction

In signal and image processing, software subsamples data [29] for visualization, compression, or analysis

purposes: commonly, images are cropped to focus the attention on a segment. In databases, researchers have

proposed similar subsampling techniques [3,14], including iceberg queries [13,27,33] and top-k queries [21,

22]. Formally, subsampling is the selection of a subset of the data, often with desirable properties such as

representativity, conciseness, or homogeneity. Of the subsampling techniques applicable to OLAP, only the

dice operator focuses on reducing the number of attribute values without aggregation whilst retaining the

original number of dimensions.

Such reduced representations are sometimes of critical importance to get good online performance in

Business Intelligence (BI) applications [2, 13]. Even when performance is not an issue, browsing and visu-

alizing the data frequently benefit from reduced views [4].

Often, business analysts are interested in distinguishing elements that are most crucial to their business,

such as the k products jointly responsible for 50% of all sales, from the long tail [1]—the lesser elements.

The computation of icebergs, top-k elements, or heavy-hitters has received much attention [7–9]. We wish

to generalize this type of query so that interactions between dimensions are allowed. For example, a busi-

ness analysts might want to compute a small set of stores and business hours jointly responsible for over

1

ar
X

iv
:0

80
5.

07
47

v1
 [

cs
.D

B
]

 6
 M

ay
 2

00
8

Table 1: Sales (in million dollars) with a 4,10 sum-diamond shaded: stores need to have sales above $10 mil-
lion whereas product lines need sales above $4 million

Chicago Montreal Miami Paris Berlin
TV 3.4 0.9 0.1 0.9 2.0

Camcorder 0.1 1.4 3.1 2.3 2.1
Phone 0.2 8.4 2.1 4.5 0.1

Camera 0.4 2.7 6.3 4.6 3.5
Game console 3.2 0.3 0.3 2.1 1.5
DVD Player 0.2 0.5 0.5 2.2 2.3

80% of the sales. In this new setting, the head and tails of the distributions must be described using a mul-

tidimensional language; computationally, the queries become significantly more difficult. Hence, analysts

will often process dimensions one at a time: perhaps they would focus first on the most profitable business

hours, and then aggregate sales per store, or perhaps they would find the must profitable stores and aggregate

sales per hour. We propose a general model, of which the unidimensional analysis is a special case, that has

acceptable computational costs and a theoretical foundation. In the two-dimensional case, our proposal is a

generalization of ITERATIVE PRUNING [18], a graph-trawling approach used to analyze social networks. It

also generalizes iceberg queries [13, 27, 33].

To illustrate our proposal in the BI context, consider the following example. Table 1 represents the sales

of different items in different locations. Typical iceberg queries might be requests for stores having sales of

at least 10 million dollars or product lines with sales of at least 4 million dollars. However, what if the analyst

wants to apply both thresholds simultaneously? He might contemplate closing both some stores and some

product lines. In our example, applying the constraint on stores would close Chicago, whereas applying the

constraint on product lines would not terminate any product line. However, once the shop in Chicago is

closed, we see that the product line TV must be terminated which causes the closure of the Berlin store and

the termination of two new product lines (Game console and DVD player).

This multidimensional pruning query selects a subset of attribute values from each dimension that are

simultaneously important. The operation is a diamond dice [32] and produces a diamond, as formally defined

in Section 3.

Other approaches that seek important attribute values, e.g. the Skyline operator [6, 23], Dominant Rela-

tionship Analysis [20], and Top-k dominating queries [35], require dimension attribute values to be ordered,

e.g. distance between a hotel and a conference venue, so that data points can be ordered. Our approach

requires no such ordering.

2 Notation

Notation used in this paper is tabulated below.

2

C a data cube
σ aggregator COUNT or SUM

Cdim,j σ(slice j of dimension dim in cube C)

|C| =
P

j C1,j the number of allocated cells in cube C
A, B cubes
Di ith dimension of a data cube
ni number of attribute values in dimension

Di

k number of carats
ki number of carats of order 1 for Di

d number of dimensions
p max. number of attribute values per dim
pi max. number of attribute values for Di

κ(C) maximum carats in C
COUNT-κ(C) maximum carats in C, σ is COUNT

3 Properties of Diamond Cubes

Given a database relation, a dimension D is the set of values associated with a single attribute. A cube C is

the set of dimensions together with a map from some tuples in D1×· · ·×Dd to real-valued measure values.

Without losing generality, we shall assume that n1 ≤ n2 ≤ . . . ≤ nd, where ni is the number of distinct

attribute values in dimension i.

A slice of order δ is the set of cells we obtain when we fix a single attribute value in each of δ different

dimensions. For example, a slice of order 0 is the entire cube, a slice of order 1 is the more traditional

definition of a slice and so on. For a d-dimensional cube, a slice of order d is a single cell. An aggregator is

a function, σ, from sets of values to the real numbers.

Definition 1. Let σ be an aggregator such as SUM or COUNT, and let k be some real-valued number. A cube

has k carats over dimensions i1, . . . , iδ, if for every slice x of order δ along dimensions i1, . . . , iδ, we have

σ(x) ≥ k.

We can recover iceberg cubes by seeking cubes having carats of order d where σ(x) returns the measure

corresponding to cell x. The predicate σ(x) ≤ k could be generalized to include σ(x) ≥ k and other

constraints.

We say that an aggregator σ is monotonically increasing if S′ ⊂ S implies σ(S′) ≤ σ(S). Similarly, σ

is monotonically decreasing if S′ ⊂ S implies σ(S′) ≥ σ(S). Monotonically increasing operators include

COUNT, MAX and SUM (over non-negative measures). Monotonically decreasing operators include MIN and

SUM (over non-positive measures).

We say a cube C ′ is restricted from cube C if

• they have the same number of dimensions

• dimension i of C ′ is a subset of dimension i of C

• If in C ′, (v1, v2, . . . , vd) 7→ m, then in C, (v1, v2, . . . , vd) 7→ m

3

Definition 2. Let A and B be two cubes with the same dimensions and measures restricted from a single

cube C. Their union is denoted A ∪ B. It is the set of attributes together with their measures, on each

dimension, that appear in A, or B or both. The union of A and B is B if and only if A is contained in B: A

is a subcube of B.

Proposition 1. If the aggregator σ is monotonically increasing, then the union of any two cubes having k

carats over dimensions i1, . . . , iδ has k carats over dimensions i1, . . . , iδ as well.

Proof. Any slice x of the union of A and B contains a slice x′ from at least A or B. Since x′ is contained in

x, and σ(x′) ≥ k, we have σ(x) ≥ k.

Hence, as long as σ is monotonically increasing , there is a maximal cube having k carats over dimen-

sions i1, . . . , iδ, and we call such a cube the diamond. When σ is not monotonically increasing, there may

not be a unique diamond. Indeed, consider the even-numbered rows and columns of the following matrix,

then consider the odd-numbered rows and columns. Both are maximal cubes with 2 carats (of order 1) under

the SUM operator:

1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

Because we wish diamonds to be unique, we will require σ to be

The next proposition shows that diamonds are themselves nested.

Proposition 2. The diamond having k′ carats over dimensions i1, . . . , iδ is contained in the diamond having

k carats over dimensions i1, . . . , iδ whenever k′ ≥ k.

Proof. Let A be the diamond having k carats and B be the diamond having k′ carats. By Proposition 1,

A ∪B has at least k′ carats, and because B is maximal, A ∪B = B; thus, A is contained in B.

For simplicity, we only consider carats of order 1 for the rest of the paper. We write that a cube has

k1, k2, . . . , kd-carats if it has ki carats over dimension Di; when k1 = k2 = . . . = kd = k we simply write

that it has k carats.

One consequence of Proposition 2 is that the diamonds having various number of carats form a lattice

(see Fig. 1) under the relation “is included in.” This lattice creates optimization opportunities: if we are given

the 2, 1-carat diamond X and the 1, 2-carat diamond Y , then we know that the 2, 2-carat diamond must lie

in both X and Y . Likewise, if we have the 2, 2-carat diamond, then we know that its attribute values must

be included in the diamond above it in the lattice (such as the 2, 1-carat diamond).

Given the size of a sum-based diamond cube (in cells), there is no upper bound on its number of carats.

However, it cannot have more carats than the sum of its measures. Conversely, if a cube has dimension sizes

n1, n2, . . . , nd and k carats, then its sum is at least kmax(n1, n2, . . . , nd).

Given the dimensions of a COUNT-based diamond cube, n1 ≤ n2 ≤ . . . ≤ nd−1 ≤ nd, an upper bound

for the number of carats k of a subcube is
∏d−1
i=1 ni. An upper bound on the number of carats ki for dimension

4

2,3,2

2,3,3

1,2,3

2,2,3 1,3,3

1,1,2

1,1,31,2,2 2,1,2

2,1,3

2,1,1

2,2,1

2,3,1 2,2,2

1,1,1

1,2,1

1,3,1

1,3,2

Figure 1: Part of the COUNT-based diamond-cube lattice of a 2× 2× 2 cube

i is
∏d
j=1,j 6=i ni. An alternate (and trivial) upper bound on the number of carats in any dimension is |C|, the

number of allocated cells in the cube. For sparse cubes, this bound may be more useful.

Intuitively, a cube with many carats needs to have a large number of allocated cells: accordingly, the next

proposition provides a lower bound on the size of the cube given the number of carats.

Proposition 3. For d > 1, the size S, or number of allocated cells, of a d-dimensional cube of k carats sat-

isfies S ≥ kmaxi∈{1,2,...,d} ni ≥ kd/(d−1); more generally, a k1, k2, . . . , kd-carat cube has size S satisfying

S ≥ maxi∈{1,2,...,d} kini ≥ (
∏
i=1,...,d ki)

1/(d−1).

Proof. Pick dimension Di: the subcube has ni slices along this dimension, each with k allocated cells,

proving the first item.

We have that k(
∑

i ni)/d ≤ kmaxi∈{1,2,...,d} ni so that the size of the subcube is at least k(
∑

i ni)/d.

If we prove that
∑

i ni ≥ dk1/(d−1) then we will have that k(
∑

i ni)/d ≥ kd/(d−1) proving the sec-

ond item. This result can be shown using Lagrange multipliers. Consider the problem of minimizing∑
i ni given the constraints

∏
i=1,2,...,j−1,j+1,...,d ni ≥ k for j = 1, 2, . . . , d. These constraints are nec-

essary since all slices must contain at least k cells. The corresponding Lagrangian is L =
∑

i ni +∑
j λj(

∏
i=1,2,...,j−1,j+1,...,d ni − k). By inspection, the derivatives of L with respect to n1, n2, . . . , nd

are zero and all constraints are satisfied when n1 = n2 = . . . = nd = k1/(d−1). For these values,∑
i ni = dk1/(d−1) and this must be a minimum, proving the result. The more general result follows

similarly, by proving that the minimum of
∑
niki is reached when ni = (

∏
i=1,...,d ki)

1/(d−1)/ki for all

i’s.

We calculate the volume of a cube C as
∏i=d
i=1 ni and its density is the ratio of allocated cells, |C|, to the

volume (|C|/
∏i=d
i=1 ni). Given σ, its carat-number, κ(C), is the largest number of carats for which the cube

has a non-empty diamond. Intuitively, a small cube with many allocated cells should have a large κ(C).

5

One statistic of a cube C is its carat-number, κ(C), which is the largest number of carats for which the

cube has a non-empty diamond. Is this statistic robust? I.e., with high probability, can changing a small

fraction of the data set change the statistic much? Of course, typical analyses are based on thresholds (e.g.

applied to support and accuracy in rule mining), and thus small changes to the cube may not always behave as

desired. Diamond dicing is no exception. For the cube C in Fig. 3 and the statistic κ(C) we see that diamond

dicing is not robust against an adversary who can deallocate a single cell: deallocation of the second cell on

the top row results means that the cube no longer contains a diamond with 2 carats. This example can be

generalized.

Proposition 4. For any b, there is a cube C from which deallocation of any b cells results in a cube C ′ with

κ(C ′) = κ(C)− Ω(b).

Proof. Let C be a d-dimensional cube with ni = 2 with all cells allocated. We see that C has 2d−1 carats

and κ(C) = 2d−1 (assume d > 1). Given b, set x = b (d−1)b
2d c. Because x ≥ (d−1)b

2d − 1 ≥ b
4 − 1 ∈ Ω(b),

it suffices to show that by deallocating b cells, we can reduce the number of carats by x. By Proposition 3,

we have that any cube with 2d−1− x carats must have size at least (2d−1 − x)d/(d−1). When x� 2d−1, this

size is approximately 2d−1 − 2dx
d−1 , and slightly larger by the alternation of the Taylor expansion. Hence, if

we deallocate at least 2dx
d−1 cells, the number of carats must go down by at least x. But x = b (d−1)b

2d c ⇒ x ≤
(d−1)b

2d ⇒ b ≥ 2dx
d−1 which shows the result. It is always possible to choose d large enough so that x� 2d−1

irrespective of the value b.

Conversely, in Fig. 3 we might allocate the cell above the bottom-right corner, thereby obtaining a 2-carat

diamond with all 2n + 1 cells. Compared to the original case with a 4-cell 2-carat diamond, we see that a

small change effects a very different result. Diamond dicing is not, in general, robust. However, it is perhaps

more reasonable to follow Pensa and Boulicaut [28] and ask whether κ appears, experimentally, to be robust

against random noise on realistic data sets. We return to this in Subsection 6.5.

Many OLAP aggregators are distributive, algebraic and linear. An aggregator σ is distributive [16] if

there is a function F such that for all 0 ≤ k < n− 1,

σ(a0, . . . , ak, ak+1, . . . , an−1) = F (σ(a0, . . . , ak), σ(ak+1, . . . , an−1)).

An aggregator σ is algebraic if there is an intermediate tuple-valued distributive range-query function G

from which σ can be computed. An algebraic example is AVERAGE: given the tuple (COUNT, SUM), one can

compute AVERAGE by a ratio. In other words, if σ is an algebraic function then there must exist G and F

such that

G(a0, . . . , ak, ak+1, . . . , an−1) = F (G(a0, . . . , ak), G(ak+1, . . . , an−1)).

An algebraic aggregator σ is linear [19] if the corresponding intermediate query G satisfies

G(a0 + αd0, . . . , an−1 + αdn−1) = G(a0, . . . , an−1) + αG(d0, . . . , dn−1)

for all arrays a, d, and constants α. SUM and COUNT are linear functions; MAX is not linear.

6

4 Related Problems

In this section, we discuss four problems, three of which are NP-hard, and show that the diamond—while

perhaps not providing an exact solution—is a good starting point. The first two problems, Trawling the Web

for Cyber-communities and Largest Perfect Subcube, assume use of the aggregator COUNT whilst for the

remaining problems we assume SUM.

4.1 Trawling the Web for Cyber-communities

In 1999, Kumar et al. [18] introduced the ITERATIVE PRUNING algorithm for discovering emerging com-

munities on the Web. They model the Web as a directed graph and seek large dense bipartite subgraphs or

cores, and therefore their problem is a 2-D version of our problem. Although their paper has been widely

cited [30, 34], to our knowledge, we are the first to propose a multidimensional extension to their problem

suitable for use in more than two dimensions and to provide a formal analysis.

4.2 Largest Perfect Cube

A perfect cube contains no empty cells, and thus it is a diamond. Finding the largest perfect diamond is

NP-hard. A motivation for this problem is found in Formal Concept Analysis [15], for example.

Proposition 5. Finding a perfect subcube with largest volume is NP-hard, even in 2-D.

Proof. A 2-D cube is essentially an unweighted bipartite graph. Thus, a perfect subcube corresponds directly

to a biclique—a clique in a bipartite graph. Finding a biclique with the largest number of edges has been

shown NP-hard by Peeters [26], and this problem is equivalent to finding a perfect subcube of maximum

volume.

Finding a diamond might be part of a sensible heuristic to solve this problem, as the next lemma suggests.

Lemma 1. For COUNT-based carats, a perfect subcube of size n1 × n2 × . . . × nd is contained in the∏d
i=1 ni/maxi ni-carat diamond and in the k1, k2, . . . , kd-carat diamond where ki =

∏d
j=1 nj/ni.

This helps in two ways: if there is a nontrivial diamond of the specified size, we can search for the

perfect subcube within it; however, if there is only an empty diamond of the specified size, there is no perfect

subcube.

4.3 Densest Cube with Limited Dimensions

In the OLAP context, given a cube, a user may ask to “find the subcube with at most 100 attribute values

per dimension.” Meanwhile, he may want to keep as much of the cube as possible. We call this problem

DENSEST CUBE WITH LIMITED DIMENSIONS (DCLD), which we formalize as: pick min(ni, p) attribute

values for dimension Di, for all i’s, so that the resulting subcube is maximally dense.

Intuitively, a densest cube should at least contain a diamond. We proceed to show that a sufficiently

dense cube always contains a diamond with a large number of carats.

7

Proposition 6. If a cube does not contain a k-carat subcube, then it has at most 1 + (k − 1)
∑d

i=1(ni − 1)
allocated cells. Hence, it has density at most (1 + (k− 1)

∑d
i=1(ni − 1))/

∏d
i=1 ni. More generally, a cube

that does not contain a k1, k2, . . . , kd-carat subcube has size at most 1 +
∑d

i=1(ki − 1)(ni − 1) and density

at most (1 +
∑d

i=1(ki − 1)(ni − 1))/
∏d
i=1 ni.

Proof. Suppose that a cube of dimension at most n1×n2× . . .×nd contains no k-carat diamond. Then one

slice must contain at most k − 1 allocated cells. Remove this slice. The amputated cube must not contain a

k-carat diamond. Hence, it has one slice containing at most k − 1 allocated cells. Remove it. This iterative

process can continue at most
∑

i(ni − 1) times before there is at most one allocated cell left: hence, there

are at most (k − 1)
∑

i(ni − 1) + 1 allocated cells in total. The more general result follows similarly.

The following corollary follows trivially from Proposition 6:

Corollary 1. A cube of size greater than 1 + (k − 1)
∑d

i=1(ni − 1) allocated cells, that is, having density

greater than
1 + (k − 1)

∑d
i=1(ni − 1)∏d

i=1 ni
,

must contain a k-carat subcube. If a cube contains more than 1 +
∑d

i=1(ki − 1)(ni − 1) allocated cells, it

must contain a k1, k2, . . . , kd-carat subcube.

Solving for k, we have a lower bound on the maximal number of carats: κ(C) ≥ |C|/
∑

i(ni − 1)− 3.

We also have the following corollary to Proposition 6:

Corollary 2. Any solution of the DCLD problem having density above

1 + (k − 1)
∑d

i=1(min(ni, p)− 1)∏d
i=1 min(ni, p)

≤ 1 + (k − 1)d(p− 1)∏d
i=1 ni

must intersect with the k-carat diamond.

When ni ≥ p for all i, then the density threshold of the previous corollary is (1 + (k − 1)d(p− 1))/pd:

this value goes to zero exponentially as the number of dimensions increases.

We might hope that when the dimensions of the diamond coincide with the required dimensions of the

densest cube, we would have a solution to the DCLD problem. Alas, this is not true. Consider the 2-D cube

in Fig. 2. The bottom-right quadrant forms the largest 3-carat subcube. In the bottom-right quadrant, there

are 15 allocated cells whereas in the upper-left quadrant there are 16 allocated cells. This proves the next

result.

Lemma 2. Even if a diamond has exactly min(ni, pi) attribute values for dimension Di, for all i’s, it may

still not be a solution to the DCLD problem.

We are interested in large data sets; the next theorem shows that solving DCLD and HCLD is difficult.

Theorem 1. The DCLD and HCLD problems are NP-hard.

8

1 1 1 1 1
1 1 1 1 1
1 1
1 1
1 1

1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

Figure 2: Example showing that a diamond (bottom-right quadrant) may not have optimal density.

Proof. The EXACT BALANCED PRIME NODE CARDINALITY DECISION PROBLEM (EBPNCD) is NP-complete [10]—

for a given bipartite graph G = (V1, V2, E) and a number p, does there exist a biclique U1 and U2 in G such

that |U1| = p and |U2| = p?

Given an EBPNCD instance, construct a 2-D cube where each value of the first dimension corresponds to

a vertex of V1, and each value of the second dimension corresponds to a vertex of V2. Fill cell corresponding

to v1, v2 ∈ V1 × V2 with a measure value if and only if v1 is connected to v2. The solution of the DCLD

problem applied to this cube with a limit of p will be a biclique if such a biclique exists.

It follows that HCLD is also NP-hard by reduction of DCLD.

4.4 Heaviest Cube with Limited Dimensions

In the OLAP context, given a cube, a user may ask to “find a subcube with 10 attribute values per dimension.”

Meanwhile, he may want the resulting subcube to have maximal average—he is, perhaps, looking for the

10 attributes from each dimension that, in combination, give the greatest profit. Note that this problem does

not restrict the number of attribute values (p) to be the same for each dimension.

We call this problem the HEAVIEST CUBE WITH LIMITED DIMENSIONS (HCLD), which we formalize

as: pick min(ni, pi) attribute values for dimension Di, for all i’s, so that the resulting subcube has maximal

average. We have that the HCLD must intersect with diamonds.

Theorem 2. Using the SUM operator, a cube without any k1, k2, . . . , kd-carat subcube has sum less than∑d
i=1(ni + 1)ki + max(k1, k2, . . . , kd) where the cube has size n1 × n2 × . . .× nd.

Proof. Suppose that a cube of dimension n1 × n2 × . . . × nd contains no k1, k2, . . . , kd-sum-carat cube.

Such a cube must contain at least one slice with sum less than k, remove it. The remainder must also not

contain a k-sum-carat cube, remove another slice and so on. This process may go on at most
∑d

i=1(ni +
1) times before there is only one cell left. Hence, the sum of the cube is less than

∑d
i=1(ni + 1)(ki) +

max(k1, k2, . . . , kd).

Corollary 3. Any solution to the HCLD problem having average greater than∑d
i=1(ni + 1)ki + max(k1, k2, . . . , kd)∏d

i=1 ni

9

must intersect with the k1, k2, . . . , kd-sum-carat diamond.

5 Algorithm

We have developed and implemented an algorithm for computing diamonds. Its overall approach is illus-

trated by Example 1. That approach is to repeatedly identify an attribute value that cannot be in the diamond,

and then (possibly not immediately) remove the attribute value and its slice. The identification of “bad”

attribute values is done conservatively, in that they are known already to have a sum less than required (σ

is sum), or insufficient allocated cells (σ is count). When the algorithm terminates, we are left with only

attribute values that meet the condition in every slice: a diamond.

Example 1. Suppose we seek a 4,10-carat diamond in Table 1 using Algorithm 1. On a first pass, we can

delete the attribute values “Chicago” and “TV” because their respective slices have sums below 10 and 4.

On a second pass, value “Berlin,” “Game console” and “DVD” can be removed because the sums of their

slices were reduced by the removal of the values “Chicago” and “TV.” The algorithm then terminates.

Algorithms based on this approach will always terminate, though they might sometimes return an empty

cube. The correctness of our algorithm is guaranteed by the following result.

Theorem 3. Algorithm 1 is correct, that is, it always returns the k1, k2, . . . , kd-carat diamond.

Proof. Because the diamond is unique, we need only show that the result of the algorithm, the cube A, is a

diamond. If the result is not the empty cube, then dimension Di has at least value ki per slice, and hence it

has ki carats. We only need to show that the result of Algorithm 1 is maximal: there does not exist a larger

k1, k2, . . . , kd-carat cube.

Suppose A′ is such a larger k1, k2, . . . , kd-carat cube. Because Algorithm 1 begins with the whole cube

C, there must be a time when, for the first time, one of the attribute values of C belonging to A′ but not A

is deleted. This attribute is not written to the output file because its corresponding slice of dimension dim

had value less than kdim. At the time of deletion, this attribute’s slice cannot have obtained more cells after

it had been deleted, so it still has value less than kdim. Let C ′ be the cube at the instant before the attribute

is deleted, with all attribute values deleted so far. We see that C ′ is larger than or equal to A′ and therefore,

slices in C ′ corresponding to attribute values of A′ along dimension dim must have more than kdim carats.

Therefore, we have a contradiction and must conclude that A′ does not exist and that A is maximal.

For simplicity of exposition, in the rest of the paper, we assume that the number of carats is the
same for all dimensions.

Our algorithm employs a preprocessing step that iterates over the input file creating d hash tables that

map attributes to their σ-values. When σ = COUNT, the σ-values for each dimension form a histogram,

which might be precomputed in a DBMS.

These values can be updated quickly as long as σ is linear: aggregators like SUM and COUNT are good

candidates. If the cardinality of any of the dimensions is such that hash tables cannot be stored in main

memory, then a file-based set of hash tables could be constructed. However, given a d-dimensional cube,

10

input: file inFile containing d−dimensional cube C, integer k > 0
output: the diamond data cube
// preprocessing scan computes σ values for each slice
foreach dimension i do

Create hash table hti
foreach attribute value v in dimension i do

if σ(slice for value v of dimension i in C) ≥ k then
hti(v) = σ(slice for value v of dimension i in C)

end
end

end
stable← false
while ¬stable do

Create new output file outFile // iterate main loop
stable← true
foreach row r of inFile do

(v1, v2, . . . , vd)← r
if vi ∈ dom hti, for all 1 ≤ i ≤ d then

write r to outFile
else

for j ∈ {1, . . . , i− 1, i+ 1, . . . , d} do
if vj ∈ dom htj then

htj(vj) = htj(vj)− σ({r})
if htj(vj) < k then

remove vj from dom htj
end

end
end
stable← false

end
end
if ¬stable then

inFile← outFile // prepare for another iteration
end

end
return outFile

Algorithm 1: Diamond dicing for relationally stored cubes. Each iteration, less data is processed.

11

1 1
1 1

1 1
1 1

.
1 1

1 1

Figure 3: An n× n cube with 2n allocated cells (each indicated by a 1) and a 2-carat diamond in the upper
left: it is a difficult case for an iterative algorithm.

there are only
∑d

i=1 ni slices and so the memory usage is O(
∑d

i=1 ni): for our tests, main memory hash

tables suffice.

Algorithm 1 reads and writes the files sequentially from and to disk and does not require potentially

expensive random access, making it a candidate for a data parallel implementation in the future.

Let I be the number of iterations through the input file till convergence; ie no more deletions are done.

Value I is data dependent and (by Fig. 3) is Θ(
∑

i ni) in the worst case. In practice, we do not expect I to

be nearly so large, and working with our largest “real world” data sets we never found I to exceed 100.

Algorithm 1 runs in time O(Id|C|); each attribute value is deleted at most once. In many cases, the input

file decreases substantially in the first few iterations and those cubes will be processed faster than this bound

suggests. The more carats we seek, the faster the file will decrease initially.

The speed of convergence of Algorithm 1 and indeed the size of an eventual diamond may depend on

the data-distribution skew. Cell allocation in data cubes is very skewed and frequently follows Zipfian/-

Pareto/zeta distributions [24]. Suppose the number of allocated cells Cdim,i in a given slice i follows a zeta

distribution: P (Cdim,i = j) ∝ j−s for s > 1. The parameter s is indicative of the skew. We then have

that P (Cdim,i < ki) =
∑ki−1

j=1 j−s/
∑∞

j=1 j
−s = Pki,s. The expected number of slices marked for deletion

after one pass of over all dimensions using σ = COUNT, prior to any slice deletion, is thus
∑d

i=1 niPki,s.

This quantity grows fast to
∑d

i=1 ni (all slices marked for deletion) as s grows (see Fig. 4). For SUM-based

diamonds, we not only have the skew of the cell allocation, but also the skew of the measures to accelerate

convergence. In other words, we expect Algorithm 1 to converge quickly over real data sets, but more slowly

over synthetic cubes generated using uniform distributions.

5.1 Finding the Largest Number of Carats

The determination of κ(C), the largest value of k for which C has a non-trivial diamond, is a special case of

the computation of the diamond-cube lattice (see Proposition 2). Identifying κ(C) may help guide analysis.

Two approaches have been identified:

1. Assume σ = COUNT. Set the parameter k to 1 + the lower bound (provided by Proposition 6 or

Theorem 2) and check whether there is a diamond with k carats. Repeat, incrementing k, until an

empty cube results. At each step, Proposition 2 says we can start from the cube from the previous

iteration, rather than from C. When σ is SUM, there are two additional complications. First, the value

12

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

ex
pe

ct
ed

 fr
ac

tio
n

of
 th

e
sl

ic
es

 d
el

et
ed

s

k=2
k=5

k=10

Figure 4: Expected fraction of slices marked for deletion after one pass under a zeta distribution for various
values of the skew parameter s.

of k can grow large if measure values are large. Furthermore, if some measures are not integers, the

result need not be an integer (hence we would compute bκ(C)c by applying this method, and not

κ(C)).

2. Assume σ = COUNT. Observe that κ(C) is in a finite interval. We have a lower bound from Proposi-

tion 6 or Theorem 2 and an upper bound
∏d−1
i=1 ni or |C|. (If this upper bound is unreasonably large,

we can either use the number of cells in our current cube, or we could start with the lower bound and

repeatedly double it.) Execute the diamond-dicing algorithm and set k to a value determined by a

binary search over its valid range. Every time the lower bound changes, we can make a copy of the

resulting diamond. Thus, each time we test a new midpoint k, we can begin the computation from the

copy (by Proposition 2). If σ is SUM and measures are not integer values, it might be difficult to know

when the binary search has converged exactly.

We believe the second approach is better. Let us compare one iteration of the first approach (which

begins with a k-carat diamond and seeks a k + 1-carat diamond) and a comparable iteration of the second

approach (which begins with a k-carat diamond and seeks a (k+kupper)/2-carat diamond). Both will end up

making at least one scan, and probably several more, through the k-carat diamond. Now, we experimentally

observe that k values that slightly exceed κ(C) tend to lead to several times more scans through the cube than

with other values of k. Our first approach will make only one such unsuccessful attempt, whereas the binary

search would typically make several unsuccessful attempts while narrowing in on κ(C). Nevertheless, we

believe the fewer attempts will far outweigh this effect. We recommend binary search, given that it will find

κ(C) in O(log κ(C)) iterations.

If one is willing to accept an approximate answer for κ(C) when aggregating with SUM, a similar ap-

proach can be used.

5.2 Diamond-Based Heuristic for DCLD

In Section 4.4, we noted that a diamond with the appropriate shape will not necessarily solve the DCLD

problem. Nevertheless, when we examined many small random cubes, the solutions typically coincided.

Therefore, we suggest diamond dicing as a heuristic for DCLD.

13

A heuristic for DCLD can start with a diamond and then refine its shape. Our heuristic first finds a

diamond that is only somewhat too large, then removes slices until the desired shape is obtained. See

Algorithm 2.

input: d-dimensional cube C, integers p1, p2, . . . pd
output: Cube with size p1 × p2 × . . .× pd
// Use binary search to find k
Find max k where the k-carat diamond ∆ has shape p′1 × p′2 × . . .× p′d, where ∀i.p′i ≥ pi
for i← 1 to d do

Sort slices of dimension i of ∆ by their σ values
Retain only the top pi slices and discard the remainder from ∆

end
return ∆

Algorithm 2: DCLD heuristic that starts from a diamond.

6 Experiments

We wish to show that diamonds can be computed efficiently. We also want to review experimentally some of

the properties of diamonds including their density (count-based diamonds) and the range of values the carats

may take in practice. Finally, we want to provide some evidence that diamond dicing can serve as the basis

for a DCLD heuristic.

6.1 Data Sets

We experimented with diamond dicing on several different data sets, some of whose properties are laid out

in Tables 2 and 5.

Cubes TW1, TW2 and TW3 were extracted from TWEED [12], which contains over 11,000 records of

events related to internal terrorism in 18 countries in Western Europe between 1950 and 2004. Of the 52 di-

mensions in the TWEED data, 37 were measures since they decomposed the number of people killed/injured

into all the affected groups. Cardinalities of the dimensions ranged from 3 to 284. Cube TW1 retained

dimensions Country, Year, Action and Target with cardinalities of 16 × 53 × 11 ×11. For cubes TW2 and

TW3 all dimensions not deemed measures were retained. Cubes TW2 and TW3 were rolled-up and stored

Table 2: Real data sets used in experiments
TWEED Netflix Census income

cube TW1 TW2 TW3 NF1 NF2 C1 C2
dimensions 4 15 15 3 3 28 28
|C| 1957 4963 4963 100,478,158 100,478,158 196054 196054∑d

i=1 ni 88 674 674 500,137 500,137 533 533
measure count count killed count rating stocks wage
iters to converge 6 10 3 19 40 6 4
κ 38 37 85 1,004 3,483 99,999 9,999

14

in a MySQL database using the following query and the resulting tables were exported to comma separated

files. A similar process was followed for TW1. Table 3 lists the details of the TWEED data.

INSERT INTO tweed15 (d1 , d2 , d3 , d4 , d5 , d6 , d7 , d8 ,

d31 , d32 , d33 , d34 , d50 , d51 , d52 , d49)

SELECT d1 , d2 , d3 , d4 , d5 , d6 , d7 , d8 ,

d31 , d32 , d33 , d34 , d50 , d51 , d52 , sum (d9)

FROM ‘ tweed ‘

GROUP BY (d1 , d2 , d3 , d4 , d5 , d6 , d7 , d8 ,

d31 , d32 , d33 , d34 , d50 , d51 , d52)

We also processed the Netflix data set [25], which has dimensions: MovieID×UserID×Date×Rating

(17766 × 480189 × 2182 × 5). Each row in the fact table has a distinct pair of values (MovieID, UserID).

We extracted two 3-D cubes NF1 and NF2 both with about 108 allocated cells using dimensions MovieID,

UserID and Date. For NF2 we use Rating as the measure and the SUM aggregator, whereas NF1 uses the

COUNT aggregator. The Netflix data set is the largest openly available movie-rating database (≈ 2 GiB).

Our third real data set, Census-Income, comes from the UCI KDD Archive [17]. The cardinalities of the

dimensions ranged from 2 to 91 and there were 199,523 records. We rolled-up the original 41 dimensions

to 27 and used two measures, income from stocks(C1) and hourly wage(C2). The MySQL query used to

generate cube C1 follows. Note that the dimension numbers map to those given in the census-income.names

file [17]. Details are provided in table 4

INSERT INTO c e n s u s i n c o m e s t o c k s (‘ d0 ‘ , ‘ d1 ‘ , ‘ d2 ‘ , ‘ d3 ‘ , ‘ d4 ‘ , ‘ d6 ‘ ,

‘ d7 ‘ , ‘ d8 ‘ , ‘ d9 ‘ , ‘ d10 ‘ , ‘ d12 ‘ , ‘ d13 ‘ , ‘ d15 ‘ , ‘ d21 ‘ , ‘ d23 ‘ ,

‘ d24 ‘ , ‘ d25 ‘ , ‘ d26 ‘ , ‘ d27 ‘ , ‘ d28 ‘ , ‘ d29 ‘ , ‘ d31 ‘ , ‘ d32 ‘ , ‘ d33 ‘ ,

‘ d34 ‘ , ‘ d35 ‘ , ‘ d38 ‘ , ‘ d18 ‘)

SELECT ‘ d0 ‘ , ‘ d1 ‘ , ‘ d2 ‘ , ‘ d3 ‘ , ‘ d4 ‘ , ‘ d6 ‘ , ‘ d7 ‘ , ‘ d8 ‘ , ‘ d9 ‘ , ‘ d10 ‘ ,

‘ d12 ‘ , ‘ d13 ‘ , ‘ d15 ‘ , ‘ d21 ‘ ‘ d23 ‘ , ‘ d24 ‘ , ‘ d25 ‘ , ‘ d26 ‘ ,

‘ d27 ‘ , ‘ d28 ‘ , ‘ d29 ‘ , ‘ d31 ‘ , ‘ d32 ‘ , ‘ d33 ‘ , ‘ d34 ‘ , ‘ d35 ‘ , ‘ d38 ‘ , sum (‘ d18 ‘)

FROM c e n s u s i n c o m e

GROUP BY ‘ d0 ‘ , ‘ d1 ‘ , ‘ d2 ‘ , ‘ d3 ‘ , ‘ d4 ‘ , ‘ d6 ‘ , ‘ d7 ‘ , ‘ d8 ‘ , ‘ d9 ‘ ,

‘ d10 ‘ , ‘ d12 ‘ , ‘ d13 ‘ , ‘ d15 ‘ , ‘ d21 ‘ , ‘ d23 ‘ , ‘ d24 ‘ , ‘ d25 ‘ , ‘ d26 ‘ , ‘ d27 ‘ ,

‘ d28 ‘ , ‘ d29 ‘ , ‘ d31 ‘ , ‘ d32 ‘ , ‘ d33 ‘ , ‘ d34 ‘ , ‘ d35 ‘ , ‘ d38 ‘ ;

We also generated synthetic data. As has already been stated, cell allocation in data cubes is skewed.

We modelled this by generating values in each dimension that followed a power distribution. The values in

dimension i were generated as bniu1/ac where u ∈ [0, 1] is a uniform distribution. For a = 1, this function

generates uniformly distributed values. The dimensions are statistically independent. We picked the first

250,000 distinct facts. Since cubes S2A and S3A were generated with close to 250,000 distinct facts we

decided to keep them all.

The cardinalities for all synthetic cubes are laid out in Table 6. All experiments on our synthetic data

were done using the measure COUNT.

15

Table 3: Measures and dimensions of TWEED data. Shaded dimensions are those retained for TW1. All
dimensions were retained for cubes TW2 and TW3 (with total people killed as its measure)

Dimension Dimension cardinality
d1 Day 32
d2 Month 13
d3 Year 53
d4 Country 16
d5 Type of agent 3
d6 Acting group 287
d7 Regional context of the agent 34
d8 Type of action 11
d31 State institution 6
d32 Kind of action 4
d33 Type of action by state 7
d34 Group against which the state action is directed 182
d50 Group’s attitude towards state 6
d51 Group’s ideological character 9
d52 Target of action 11

Measure
d49 total people killed
people from the acting group military police
civil servants politicians business executives
trade union leaders clergy other militants
civilians
total people injured
acting group military police
civil servants politicians business
trade union leaders clergy other militants
civilians
total people killed by state institution
group members other people
total people injured by state institution
group members other people
arrests convictions executions
total killed by non-state group at which the state directed an action
people from state institution others
total injured by non-state group
people from state institution others

16

Table 4: Census Income data: dimensions and cardinality of dimensions. Shaded dimensions and mea-
sures retained for cubes C1 and C2. Dimension numbering maps to those described in the file census-
income.names [17]

Dimension Dimension cardinality
d0 age 91
d1 class of worker 9
d2 industry code 52
d3 occupation code 47
d4 education 17
d6 enrolled in education last week 3
d7 marital status 7
d8 major industry code 24
d9 major occupation code 15
d10 race 5
d12 sex 2
d13 member of a labour union 3
d15 full or part time employment status 8
d21 state of previous residence 51
d23 detailed household summary in household 8
d24 migration code - change in msa 10
d25 migration code - change in region 9
d26 migration code - moved within region 10
d27 live in this house 1 year ago 3
d28 migration previous residence in sunbelt 4
d29 number of persons worked for employer 7
d31 country of birth father 43
d32 country of birth mother 43
d33 country of birth self 43
d34 citizenship 5
d35 own business or self employed 3
d38 weeks worked in year 53
d11 hispanic origin 10
d14 reason for unemployment 6
d19 tax filer status 6
d20 region of previous residence 6
d22 detailed household and family status 38
ignored instance weight
d30 family members under 18 5
d36 fill inc questionnaire for veteran’s admin 3
d37 veteran’s benefits 3
d39 year 2
ignored classification bin

Measure Cube
d18 dividends from stocks C1
d5 wage per hour C2
d16 capital gains
d17 capital losses

17

Table 5: Synthetic data sets used in experiments
cube S1A S1B S1C S2A S2B S2C S3A S3B S3C
dimensions 4 4 4 8 8 8 16 16 16
skew factor 0.02 0.2 1.0 0.02 0.2 1.0 0.02 0.2 1.0
|C| 250k 250k 250k 251k 250k 250k 262k 250k 250k∑d

i=1 ni 11,106 11,098 11,110 22,003 22,195 22,220 38,354 44,379 44,440
iters to converge 12 9 2 6 12 12 8 21 6
κ 135 121 30 133 32 18 119 8 15

Table 6: Dimensional cardinalities for our synthetic data cubes
Cube Dimensional cardinalities
S1A 6× 100× 1000× 10000
S1B 2× 100× 1000× 9996
S1C 10× 100× 1000× 10000
S2A 10× 100× 1000× 9881× 10× 100× 1000× 9902
S2B 10× 100× 1000× 9987× 10× 100× 1000× 9988
S2C 10× 100× 1000× 10000× 10× 100× 1000× 10000
S3A 10× 100× 1000× 8465× 10× 100× 1000× 8480

×10× 100× 1000× 8502× 10× 100× 1000× 8467

S3B 10× 100× 1000× 9982× 10× 100× 1000× 9987
×10× 100× 1000× 9988× 10× 100× 1000× 9982

S3C 10× 100× 1000× 10000× 10× 100× 1000× 10000
×10× 100× 1000× 10000× 10× 100× 1000× 10000

All experiments were carried out on a Linux-based (Ubuntu 7.04) dual-processor machine with Intel

Xeon (single core) 2.8 GHz processors with 2 GiB RAM. It had one disk, a Seagate Cheetah ST373453LC

(SCSI 320, 15 kRPM, 68 GiB), formatted to the ext3 filesystem. Our implementation was done with Sun’s

SDK 1.6.0 and to handle the large hash tables generated when processing Netflix, we set the maximum heap

size for the JVM to 2 GiB.

6.2 Iterations to Convergence

Algorithm 1 required 19 iterations and an average of 35 minutes to compute the 1004-carat κ-diamond for

NF1. However it took 50 iterations and an average of 60 minutes to determine that there was no 1005-carat

diamond. The preprocessing time for NF1 was 22 minutes. For a comparison, sorting the Netflix comma-

separated data file took 29 minutes. Times were averaged over 10 runs. Fig. 5 shows the number of cells

present in the diamond after each iteration for 1004–1006 carats. The curve for 1006 reaches zero first,

followed by that for 1005. Since κ(NF1) = 1004, that curve stabilizes at a nonzero value. We see a similar

result for TW2 in Fig. 6 where κ is 37. It takes longer to reach a critical point when k only slightly exceeds

κ.

As stated in Section 5, the number of iterations required until convergence for all our real and synthetic

18

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 0 10 20 30 40 50

c
e
ll
s
 l
e
ft

iteration

1004 carats

1005 carats

1006 carats

Figure 5: Cells remaining after each iteration of Algorithm 1 on NF1, computing a 1004-, 1005- and 1006-
carat diamonds.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8 9 10 11

c
e
ll
s
 l
e
ft

iteration

35 carats

36 carats

37 carats

38 carats

39 carats

40 carats

Figure 6: Cells remaining after each iteration, TW2

cubes was far fewer than the upper bound, e.g. cube S2B: 2,195 (upper bound) and 12 (actual). We had

expected to see the uniformly distributed data taking longer to converge than the skewed data. This was not

the case. It may be that a clearer difference would be apparent on larger synthetic data sets. This will be

investigated in future experiments.

6.3 Largest Carats

According to Proposition 6, COUNT-κ(NF1) ≥ 197. Experimentally, we determined that it was 1004. By

the definition of the carat, it means we can extract a subset of the Netflix data set where each user entered

at least 1004 ratings on movies rated at least 1004 times by these same users during days where there were

at least 1004 ratings by these same users on these same movies. The 1004-carat diamond had dimensions

3082× 6833× 1351 and 8,654,370 cells, for a density of about 3× 10−4 or two orders of magnitude denser

than the original cube. The presence of such a large diamond was surprising to us. We believe nothing

similar has been observed about the Netflix data set before [5].

Comparing the two methods in Section 5.1, we see that sequential search would try 809 values of k

before identifying κ. However, binary search would try 14 values of k (although 3 are between 1005 and

1010, where perhaps double or triple the normal number of iterations are required). To test the time difference

for the two methods, we used cube TW1. We executed a binary search, repeatedly doubling our lower bound

to obtain the upper limit, and thus until we established the range where κ must exist. Whenever we exceeded

19

 0

 20

 40

 60

 80

 100

 120

 140

 160

S
1
A

S
1
B

S
1
C

S
2
A

S
2
B

S
2
C

S
3
A

S
3
B

S
3
C

T
W

1

T
W

2

c
a
ra

ts

cube

Lower bounds

Actual value

Figure 7: Comparison between estimated κ, based on the lower bounds from Proposition 6, and number of
(COUNT-based) carats found.

κ, a copy of the original data was used for the next step. Even with this copying step and the unnecessary

recomputation from the original data, the time for binary search averaged only 2.75 seconds. Whereas a

sequential search, that started with the lower bound and increased k by one, averaged 9.854 seconds over ten

runs.

Fig. 7 shows our lower bounds on κ, given the dimensions and numbers of allocated cells in each cube,

compared with their actual κ values. The plot indicates that our lower bounds are further away from actual

values as the skew of the cube increases for the synthetic cubes. Also, we are further away from κ for TW2,

a cube with 15 dimensions, than for TW1. For uniformly-distributed cubes S1C, S2C and S3C there was

no real difference in density between the cube and its diamond. However, all other diamonds experienced an

increase of between 5 and 9 orders of magnitude.

Diamonds found in C1, C2, NF2 and TW3 captured 0.35%, 0.09%, 66.8% and 0.6% of the overall sum

for each cube respectively. The very small fraction captured by the diamond for TW3 can be explained by

the fact that κ(TW3) is based on a diamond that has only one cell, a bombing in Bologna in 1980 that killed

85 people. Similarly, the diamond for C2 also comprised a single cell.

6.4 Effectiveness of DCLD Heuristic

To test the effectiveness of our diamond-based DCLD heuristic (Subsection 5.2), we used cube TW1 and

set the parameter p to 5. We were able to establish quickly that the 38-carat diamond was the closest to

satisfying this constraint. It had density of 0.169 and cardinalities of 15× 7× 5× 8 for the attribute values;

year, country, action and target. The solution we generated to this DCLD (p = 5) problem had exactly

5 attribute values per dimension and density of 0.286.

Since the DCLD problem is NP-complete, determining the quality of the heuristic poses difficulties. We

are not aware of any known approximation algorithms and it seems difficult to formulate a suitably fast ex-

act solution by, for instance, branch and bound. Therefore, we also implemented a second computationally

expensive heuristic, in hope of finding a high-quality solution with which to compare our diamond-based

heuristic. This heuristic is based on local search from an intuitively reasonable starting state. (A greedy

steepest-descent approach is used; states are (〈A1, A2, . . . , Ad〉, where |Ai| = pi, and the local neighbour-

hood of such a state is 〈A′1, A′2, . . . , A′d〉, whereAi = A′i except for one value of i, where |Ai∩A′i| = pi−1.

20

The starting state consists of the most frequent pi values from each dimension i. Our implemention actually

requires the ith local move be chosen along dimension i mod d, although if no such move brings improve-

ment, no move is made.)

input: d-dimensional cube C, integers p1, p2, . . . pd
output: Cube with size p1 × p2 × . . .× pd
foreach dimension i do

Sort slices of dimension i of ∆ by their σ values
Retain only the top pi slices and discard the remainder from ∆

end
repeat

for i← 1 to d do
// We find the best swap in dimension i
bestAlternative← σ(∆)
foreach value v of dimension i that has been retained in ∆ do

foreach value w from dimension i in C, but where w is not in ∆ do
Form ∆′ by temporarily adding slice w and removing slice v from ∆
if σ(∆′) > bestAlternative then

(rem, add)← (v, w); bestAlternative← σ(∆′)
end

end
end
if bestAlternative > σ(∆) then

Modify ∆ by removing slice rem and adding slice add
end

end
until ∆ was not modified by any i
return ∆

Algorithm 3: Expensive DCLD heuristic.

The density reported by Algorithm 3 was 0.283, a similar outcome, but at the expense of more work.

Our diamond-based heuristic, starting with the 38-carat diamond, required a total of 15 deletes. Whereas our

expensive comparision heuristic, starting with its 5× 5× 5× 5 subcube, required 1420 inserts/deletes. Our

diamond heuristic might indeed be a useful starting point for a solution to the DCLD problem.

6.5 Robustness against randomly missing data

We experimented with cube TW1 to determine whether diamond dicing appears robust against random

noise that models the data warehouse problem [31] of missing data. Existing data points had an independent

probability pmissing of being omitted from the data set, and we show pmissing versus κ(TW1) for 30 tests each

with pmissing values between 1% and 5%. Results are shown as in Table 7. Our answers were rarely more

than 8% different, even with 5% missing data.

21

Table 7: Robustness of κ(TW1) under various amount of randomly missing data: for each probability,
30 trials were made. Each column is a histogram of the observed values of κ(TW1).

κ(TW1) Prob. of cell’s deallocation
1% 2% 3% 4% 5%

38 19 12 3 2
37 10 17 17 10 4
36 1 1 10 16 18
35 2 7
34 1

7 Conclusion and Future Work

We introduced the diamond dice, a new OLAP operator that dices on all dimensions simultaneously. This

new operation represents a multidimensional generalization of the iceberg query and can be used by analysts

to discover sets of attribute values jointly satisfying multidimensional constraints.

We have shown that the problem is tractable. We were able to process the 2 GiB Netflix data with

500,000 distinct attribute values and 100 million cells in about 35 minutes, excluding preprocessing. As

expected from the theory, real-world data sets have a fast convergence using Algorithm 1: the first few

iterations quickly prune most of the false candidates. We have identified potential strategies to improve

the performance further. First, we might selectively materialize elements of the diamond-cube lattice (see

Proposition 2). The computation of selected components of the diamond-cube lattice also opens up several

optimization opportunities. Second, we believe we can use ideas from the implementation of ITERATIVE

PRUNING proposed by Kumar et al. [18]. Third, Algorithm 1 is suitable for parallelization [11]. Also,

our current implementation uses only Java’s standard libraries and treats all attribute values as strings. We

believe optimizations can be made by the preprocessing step that will greatly reduce overall running time.

We presented theoretical and empirical evidence that a non-trivial, single, dense chunk can be discovered

using the diamond dice and that it provides a sensible heuristic for solving the DENSEST CUBE WITH LIM-

ITED DIMENSIONS. The diamonds are typically much denser than the original cube. Over moderate cubes,

we saw an increase of the density by one order of magnitude, whereas for a large cube (Netflix) we saw

an increase by two orders of magnitude and more dramatic increases for the synthetic cubes. Even though

Lemma 2 states that diamonds do not necessarily have optimal density given their shape, informal experi-

ments suggest that they do with high probability. This may indicate that we can bound the sub-optimality, at

least in the average case; further study is needed.

We have shown that sum-based diamonds are no harder to compute than count-based diamonds and we

plan to continue working towards an efficient solution for the HEAVIEST CUBE WITH LIMITED DIMEN-

SIONS (HCLD).

References

[1] C. Anderson. The long tail. Hyperion, 2006.

22

[2] K. Aouiche, D. Lemire, and R. Godin. Collaborative OLAP with tag clouds: Web 2.0 OLAP formalism
and experimental evaluation. In WEBIST’08, 2008.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for approximate query processing.
In SIGMOD’03, pages 539–550, 2003.

[4] R. Ben Messaoud, O. Boussaid, and S. Loudcher Rabaséda. Efficient multidimensional data represen-
tations based on multiple correspondence analysis. In KDD’06, pages 662–667, 2006.

[5] J. Bennett and S. Lanning. The Netflix prize. In KDD Cup and Workshop 2007, 2007.

[6] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE ’01, pages 421–430. IEEE
Computer Society, 2001.

[7] M. J. Carey and D. Kossmann. On saying “enough already!” in SQL. In SIGMOD’97, pages 219–230,
1997.

[8] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Diamond in the rough: finding hierarchical
heavy hitters in multi-dimensional data. In SIGMOD ’04, pages 155–166, New York, NY, USA, 2004.
ACM Press.

[9] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most frequent items dynami-
cally. ACM Trans. Database Syst., 30(1):249–278, 2005.

[10] M. Dawande, P. Keskinocak, J. M. Swaminathan, and S. Tayur. On bipartite and multipartite clique
problems. Journal of Algorithms, 41(2):388–403, November 2001.

[11] F. B. Dehne, T. B. Eavis, and A. B. Rau-Chaplin. The cgmCUBE project: Optimizing parallel data
cube generation for ROLAP. Distributed and Parallel Databases, 19(1):29–62, 2006.

[12] J. O. Engene. Five decades of terrorism in Europe: The TWEED dataset. Journal of Peace Research,
44(1):109–121, 2007.

[13] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries
efficiently. In VLDB’98, pages 299–310, 1998.

[14] V. Ganti, M. L. Lee, and R. Ramakrishnan. ICICLES: Self-tuning samples for approximate query
answering. In VLDB’00, pages 176–187, 2000.

[15] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms based on Galois
(concept) lattices. Computational Intelligence, 11:246–267, 1995.

[16] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-total. In ICDE ’96, pages 152–159, 1996.

[17] S. Hettich and S. D. Bay. The UCI KDD archive. http://kdd.ics.uci.edu, 2000. last checked
April 28, 2008.

[18] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for emerging cyber-
communities. In WWW ’99, pages 1481–1493, New York, NY, USA, 1999. Elsevier North-Holland,
Inc.

[19] D. Lemire and O. Kaser. Hierarchical bin buffering: Online local moments for dynamic external
memory arrays. ACM Trans. Algorithms, 4(1):1–31, 2008.

23

http://kdd.ics.uci.edu

[20] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. DADA: a data cube for dominant relationship analysis.
In SIGMOD’06, pages 659–670, 2006.

[21] Z. X. Loh, T. W. Ling, C. H. Ang, and S. Y. Lee. Adaptive method for range top-k queries in OLAP
data cubes. In DEXA’02, pages 648–657, 2002.

[22] Z. X. Loh, T. W. Ling, C. H. Ang, and S. Y. Lee. Analysis of pre-computed partition top method for
range top-k queries in OLAP data cubes. In CIKM’02, pages 60–67, 2002.

[23] M. D. Morse, J. M. Patel, and H. V. Jagadish. Efficient skyline computation over low-cardinality
domains. In VLDB, pages 267–278, 2007.

[24] T. P. E. Nadeau and T. J. E. Teorey. A Pareto model for OLAP view size estimation. Information
Systems Frontiers, 5(2):137–147, 2003.

[25] Netflix, Inc. Nexflix prize. http://www.netflixprize.com, 2007. last checked April 28,
2008.

[26] R. Peeters. The maximum-edge biclique problem is NP-complete. Research Memorandum 789, Faculty
of Economics and Business Administration, Tilberg University, 2000.

[27] J. Pei, M. Cho, and D. Cheung. Cross table cubing: Mining iceberg cubes from data warehouses. In
SDM’05, 2005.

[28] R. G. Pensa and J. Boulicaut. Fault tolerant formal concept analysis. In AI*IA 2005, volume 3673 of
LNAI, pages 212–233. Springer-Verlag, 2005.

[29] D. N. Politis, J. P. Romano, and M. Wolf. Subsampling. Springer, 1999.

[30] P. K. Reddy and M. Kitsuregawa. An approach to relate the web communities through bipartite graphs.
In WISE’01, pages 302–310, 2001.

[31] E. Thomson. OLAP Solutions: Building Multidimensional Information Systems. Wiley, second edition,
2002.

[32] H. Webb. Properties and applications of diamond cubes. In ICSOFT 2007 – Doctoral Consortium,
2007.

[33] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Computing iceberg cubes by top-down and bottom-
up integration. In VLDB, pages 476–487, 2003.

[34] K. Yang. Information retrieval on the web. Annual Review of Information Science and Technology,
39:33–81, 2005.

[35] M. L. Yiu and N. Mamoulis. Efficient processing of top-k dominating queries on multi-dimensional
data. In VLDB’07, pages 483–494, 2007.

24

http://www.netflixprize.com

	Introduction
	Notation
	Properties of Diamond Cubes
	Related Problems
	Trawling the Web for Cyber-communities
	Largest Perfect Cube
	Densest Cube with Limited Dimensions
	Heaviest Cube with Limited Dimensions

	Algorithm
	Finding the Largest Number of Carats
	Diamond-Based Heuristic for DCLD

	Experiments
	Data Sets
	Iterations to Convergence
	Largest Carats
	Effectiveness of DCLD Heuristic
	Robustness against randomly missing data

	Conclusion and Future Work

