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Bytecode verification is a key point in the security chain of the Java platform. This feature is only
optional in many embedded devices since the memory requirements of the verification process are
too high. In this article we propose an approach that significantly reduces the use of memory by
a serial/parallel decomposition of the verification into multiple specialized passes. The algorithm
reduces the type encoding space by operating on different abstractions of the domain of types. The
results of our evaluation show that this bytecode verification can be performed directly on small
memory systems. The method is formalized in the framework of abstract interpretation.
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1. INTRODUCTION

The Java platform was developed in the early 1990s in order to give developers
flexible tools for programming smart electronic devices. The core of the Java
platform is a Java Virtual Machine (JVM). The JVM is a software CPU with
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a stack-based architecture that creates an execution environment between the
operating system of the device and the program. The JVM guarantees that the
program is independent from the operating system, and programs are always
compiled in a standardized binary code, called Java bytecode.

In the last decade, the Java platform moved to mobile and embedded systems
as well, such as mobile phones and electronic smart cards. Ad hoc versions of
the JVM were produced in order to suit the hardware constraints of the devices:
the Kilo Virtual Machine (KVM), and the Java Card Virtual Machine (JCVM).
These kinds of mobile and embedded technologies represent an interesting re-
search challenge: such systems have limited memory, limited computing speed,
and sometimes even limited energy budgets; on the other hand, they have to
provide secure execution environments since programs may handle sensitive
information.

The Java bytecode verifier is one of the key components of Java’s security
system. The verifier checks that the bytecode of programs is correct before ex-
ecution. The verifier not only checks that bytecode is well formed, but it also
ensures that no execution can violate any of the language typing rules. This
is accomplished through a dataflow analysis which checks the type-correctness
of the code. In the dataflow analysis performed by the bytecode verifier, each
method is executed abstractly, using types instead of actual values. The veri-
fier checks that the operands of each instruction match the required type. The
verification algorithm must store the abstract execution state of the virtual
machine (VM) at each branch target of the method [Leroy 2003]. An abstract
execution state of the VM consists of the type information for the operand stack
and the local variables.

With mobile and embedded devices, bytecode verification enables post is-
suance download of programs, even when such programs are not downloaded
directly from the vendor but also from other sources. However, bytecode ver-
ification in its standard form cannot be performed directly on-board for some
resource-constrained devices, since the analysis requires too much memory.
Several approaches have been proposed in the literature to perform bytecode
verification directly on-board. They modify the standard verification process so
that the memory available is sufficient for the verification to be carried out. The
current trend is to perform verification based on Proof Carrying Code (PCC)
[Necula 1997] techniques, such as Lightweight Bytecode Verification (LBV)
[Rose 2003]. In LBV verification is executed off-line and produces a certificate
that must be distributed with the bytecode and checked on-board on the device.
This on-board check requires much less memory than standard verification.

In this article, we propose and evaluate an alternative approach which checks
the correctness of the bytecode by means of a progressive analysis (multipass
verification) requiring much less memory than the standard analysis. The idea
is to reduce the space needed for encoding the abstract execution states by de-
composing the analysis into smaller subanalyses (requiring very small amount
of memory) in such a way that the verification can be obtained by executing the
subanalyses separately. We propose a serial/parallel decomposition of bytecode
verification. In the parallel decomposition, a set of independent subanalyses is
applied, each of which checks only a subset of types. In the serial decomposition,
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a subanalysis can use some information produced by a previously applied
analysis.

The approach is developed within the framework of abstract interpretation
[Cousot and Cousot 1992, 1977]. An abstract interpreter executes the program
in an abstract (approximated) way to statically check dynamic properties. The
actual domain of computation (called the concrete domain) is replaced by an
abstract domain, and the operators of the concrete computation are replaced by
correct abstract operators. Correctness of the abstract interpretation is proved
a standard way.

We give a formal semantics of the verification process, which is taken as the
concrete semantics of verification. In the parallel decomposition, each subanal-
ysis is modeled as a different abstract interpretation of bytecode verification
and corresponds to a different abstraction of the domain of types. In each of
these analyses, only a given subset of the type constraints are checked. There-
fore, each type can be encoded with fewer bits (only one in the best case) and
the memory requirements are reduced.

The best results can be obtained when we need to look only at one type at a
time (the so-called decomposition into basic domains). Unfortunately, due to the
nature of some bytecode instructions, this is not always possible. To solve this
problem, we propose serial decomposition which simplifies some subanalyses
by exploiting the results of some other subanalyses done previously. Serial de-
composition is defined combining abstract interpretation with program trans-
formation: at each step, the invariant properties discovered in the previous
subanalyses are used to simplify the code to which the next analysis has to be
applied. In this way decomposition into basic domains is always possible—there
is only a small penalty of memory due to the saving of temporary results.

The paper proves that the proposed method is both sound and complete. This
means that:

—if a program is not correct, that is, it does not pass standard bytecode verifi-
cation, then at least one of the subanalyses reports an error;

—if a program is correct, that is, it passes standard bytecode verification, then
all the subanalyses report no errors.

We remark the advantages of using abstract interpretation as a framework
in which multipass verification is defined. First, abstract interpretation is a
well-assessed theory allowing to prove correctness of static analyses in a stan-
dard way. Secondly, the complete shell theory [Giacobazzi et al. 2000], which is
part of the abstract interpretation framework, suggests the effective definition
and construction of the abstract domain for each subanalysis in which veri-
fication is decomposed. Moreover the abstract interpretation which we define
does not affect the behavior of the bytecode verifier since only the domain of
types is abstracted and the verifier is executed with the same algorithm on the
abstract domain. Hence it is possible to combine our method with other verifi-
cation algorithms, possibly achieving advantages in memory requirements. For
example, the proposed method can be combined with LBV. This way a multipass
algorithm can be obtained, where each pass is performed with LBV technique.
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This adds flexibility in the management of the certificate, and in some cases
produces a smaller certificate.

Finally, we think that the parallel/serial decomposition technique, defined in
the paper for bytecode verification, can be generalized as a standard technique
for static analysis decomposition, and formalized in the general case within the
abstract interpretation theory.

The article is organized as follows. In Section 2 we recall basic notions
about Java bytecode language, bytecode verification and abstract interpreta-
tion; moreover, we give an overview of our approach (Section 2.2). Then, we
formalize the bytecode verification algorithm in such a way that abstract inter-
pretation can be applied easily (Section 3). Parallel decomposition is presented
in Section 4. Serial decomposition is described in Section 5. Section 6 evaluates
the memory requirements of the multipass verification and compares this al-
gorithm with the standard bytecode verification and with LBV. Related work
is reviewed in Section 7, and Section 8 concludes the work.

2. OVERVIEW

In this section we summarize the basic notions about the Java Virtual Machine
(JVM), its language and bytecode verification, and we outline our approach.

2.1 JVML and Bytecode Verification

For our purposes, a Java program consists of a set C of user defined classes.
Each class τ ∈ C defines a set of class fields and methods. Each field has a type,
while each method accepts a fixed number of typed parameters and returns a
typed value. The set T of types includes the set B = {i, f, b, . . . } of primitive (or
base) types and the set C ′ = {Object} ∪ C of user defined classes, together with
the predefined Object class, and the set of array types defined in Section 4.2.

Classes are related by a user-defined extends binary relation, extends ⊆ C ′ ×
C ′. Moreover, set C ′, together with the extends relation, is required to form a
tree rooted at Object.

Given a class τ , we use the syntax τ. f : τ ′ to denote field f of class τ , of
type τ ′. Each method is denoted by an expression of the form τ0.m(τ1, . . . , τn) : τ̄ ,
where τ0 ∈ C ′ is the class which method m belongs to, τ1, . . . , τn ∈ T are the
argument types, and τ̄ ∈ T is the type of the return value.

The result of the compilation of a Java program is a set of class files. A class
file is generated by the Java compiler for each class defined in the program, and
it is made up of the declaration of the class and by the JVM Language (JVML)
bytecode for each class method. Each method μ = τ0.m(τ1, . . . , τn) : τ̄ is compiled
into a (finite) sequence of bytecode instructions. Figure 1 shows the bytecode
instructions available. In the figure, B′ = B ∪ {Object}.

Let I be the set of bytecode instructions defined in Figure 1, L = {1, 2, . . . } be
the set of instruction addresses, and Lμ = [1, lμ] the set of instruction addresses
of method μ, where lμ is the size of the method. We use Bμ : Lμ → I to map
each method address to the corresponding bytecode instruction. We assume
that Bμ(1) is the entry point of method μ. Moreover, we assume that, if Bμ(h) =
τreturn for some h ∈ Lμ, then τ = τ̄ (the type returned by method μ). To
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Fig. 1. Instruction set I.

simplify the exposition, we study JVML in steps, where each subsequent step
considers a richer subset of the instructions in I. We will denote by Ii the subset
of I containing all instructions in Figure 1, from the top of the figure to the line
labeled with (i).

The JVM interprets the bytecode instructions of a method using a context,
made up of a fixed set of rμ registers and an operand stack, whose maximum
height, tμ, is also fixed. Bytecode instructions are typed: for example, iload x
(where i is an abbreviation for int) assumes that register x contains an integer
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value and pushes this value into the stack, while astore x (where a stands for
Object) assumes that the top of the stack contains a reference (which may point
to any type in C ′), pops it off the stack, and stores it into register x.

Whenever a class file is loaded by the JVM, it is first examined by the byte-
code verifier, whose main purpose is to check the type correctness of the class.
The bytecode verifier performs a dataflow analysis of the code by abstractly exe-
cuting the instructions over types instead of over actual values. A Java bytecode
verification algorithm is presented in Lindholm and Yellin [1999]: almost all
existing bytecode verifiers implement this algorithm. An overview can be found
in Leroy [2002]. The verification process is performed method per method: when
verifying a method, the other methods are assumed to be correct. The algorithm
uses a lattice of types, containing a minimum type ⊥ and a maximum type 	
representing an erroneous type. The order relation in the lattice models the
“assignable to” relation in JVML. For example, basic types are unrelated, while
a subclass is less than its superclass. The data structures used by the veri-
fier can be modeled using a context vector, which maps each instruction onto
a context. Given a context vector v, for each instruction address h, the context
v(h) models the abstract state (containing types instead of actual values) of the
JVM whenever an instruction at address h is about to be executed (before state).
Using the lattice of types, contexts and context vectors are pointwise ordered.
When an instruction at address h is executed by the verifier (in state v(h)), three
actions are performed: a) a check is made on whether the context contains the
expected type for the instruction: for example, if the instruction is τload x, then
the contents of register x must be τ (or a subtype of τ ); if this does not occur,
the verifier stops and signals an error; b) if the check succedes, the instruction
at h is executed and thus produces the after state of h: for example, in the case
of τload x, the after state is the context in which τ is pushed onto the stack; c)
the after-state of h is merged with the state v(k) of each successor instruction at
address k, producing a new state for v(k). Merging is necessary since, due to the
conditional and unconditional jumps, exceptions and calls (returns) to (from)
subroutines, there are instructions corresponding to a join of different paths
of the control flow graph. Merging two states consists in merging (by a least
upper bound operation on the type domain) the types of each memory register
and stack element. Merging unrelated types gives 	 as the result. Only stacks
with the same length can be merged. Whenever two stacks of different length
have to be merged, the bytecode verifier rejects the code. This behavior simpli-
fies the implementation of the verifier and rejects programs that may cause a
stack overflow/underflow during execution (e.g., due to loops where the stack
grows indefinitely).

Given a method τ0.m(τ1, . . . , τn) : τ̄ , the initial context vector assigns ⊥ to the
stack and the registers in each context, except for context v(1) (the before con-
text of the entry point), where register 0 is assigned τ0, register i, i ∈ [1, n], are
assigned the type τi of the ith actual parameter, the remaining registers are
assigned 	 and the stack is empty. Starting from the execution of the first in-
struction, the verifier continues to iteratively execute the program instructions
until an error is encountered or a fixpoint is reached. In the second case, the
bytecode is certified and accepted for execution.
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2.2 Multipass Verification

The goal of this work is to propose and evaluate an alternative approach to byte-
code verification, which checks the correctness of the bytecode by means of a
progressive analysis (multipass verification) which requires much less memory
than the standard verification. The main idea consists of decomposing byte-
code verification into multiple phases (or passes) that can be executed sepa-
rately. Each phase analyzes the propagation and usage of a subset of types (and
in particular of a single type), independently from the other types, and deals
with a subset of errors, thereby allowing a more space-efficient handling of the
verification.

Modeling bytecode verification. First we give a formal semantics of the byte-
code verifier, based on a least fixpoint calculation on suitable data domains. In
order to introduce a uniform formalism to define and compare standard verifica-
tion and multipass verification, we adopt a verification algorithm for standard
verifier which differs slightly from the one usually defined. We assign a type
to each typing error, in such a way that errors with type τ are those that are
found when τ is required and a type different from τ is encountered. Moreover,
the verification algorithm does not stop on the first error encountered, but con-
tinues execution until the fixpoint is reached, collecting all errors found and
maintaining their type. This is achieved by splitting the semantic function into
one part that models the execution (next function) and another part that checks
typing errors (error function).

Example 2.1. Figure 2(a) shows an example of bytecode verification ac-
cording to our formalization. It shows B(h), 1 ≤ h ≤ 2, for a simple method
μ = C.m(i) : f of a class C. Note that B(0) is a pseudo-instruction that models the
initialization of context v(1). Context vectors are represented as tables, where
each line h is the before context of the instruction at address h. Each context
shows the contents of the registers and of the stack. Registers and stack are
visually separated by a double line. Stacks are represented with fixed size (tμ),
whose top is on the left and whose unused elements are equal to 	. The it-
eration starts with a context vector v(0) initialized with all values equal to ⊥.
At the first step all instructions are executed on v(0) to produce v(1). The only
instruction modifying the context vector is start C.m(i) : f, since the effect of
any other instruction with an empty before context (composed of all ⊥) is null.
Instruction start C.m(i) : f affects only context v(1)(1): it stores C in register 0
and i in register 1, and pushes 	 onto the stack (modeling the empty stack).
At the second iteration the instructions are evaluated on context vector v(1). At
this point an error with type f is found: instruction fload requires an f type
in register 1, but the register contains i. The type f of the error is recorded
and execution continues, producing v(2) from v(1). In this iteration fload 1 pro-
duces context v(2)(2) from its before context v(1)(1) by propagating the values
in the registers and copying register onto the stack. The other instructions do
not modify the context vector. Finally, the three instructions are once more ex-
ecuted on context v(2). Now, when ireturn is executed, it is verified that i is on
top of the stack. Note that the effect of the last instruction is not included in
the context vector, since it is not before context of any instruction. The context
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Fig. 2. Examples of verification: (a) standard verification, (b) multipass verification (analyses for
integer and float errors).

vector is not modified by the instructions and hence v(2) is the least fixpoint of
the iteration process. The code is not correct, since an f error has been found.

The formal semantics of the bytecode verifier is given in Section 3. In partic-
ular Section 3.5 shows our modeling of the verifier.

Parallel decomposition. In parallel decomposition, the verification is split
into subanalyses (passes) each of which checks only errors in a subset of all
possible types.

We use abstract interpretation to model the decomposition: the semantics of
the verifier is taken as concrete semantics, and each subanalysis is modeled as
an abstract interpretation of it. We show that each subanalysis is univocally
determined by choosing a subset of the domain of types. The intended meaning
is that the abstract interpretation should analyze the propagation and use of
those types only. With a proper choice of a family of subsets of types, the results
of the corresponding subanalyses can be put together to recover the result of
the original analysis.

To prove the correctness and completeness of the Parallel decomposition
we use the complete shell theory [Giacobazzi et al. 2000]. We show that the
minimum set of types that have to be considered in each subanalysis coincides
with the complete shell of the errors checked by that subanalysis. Thus, the
complete shell theory is taken as the basis to constructively build the abstract
type domain to be considered at each pass and ensures that considering only
these types is sound and complete. In order to make this theory practically
applicable, we characterize the semantic function next, which is a function from
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context vectors to context vectors, by means of a set of simple one-argument
functions from types to types, each one associated with a pair of context items
(Section 4.1.2).

Example 2.2. In Figure 2(b), the analysis is split into two subanalyses. The
first analysis considers only integer errors, that is, errors found when an integer
is required and a noninteger type is encountered. All other errors are ignored.
To perform this, complete shell calculations show that we can use the abstract
interpretation determined by the set of types B i = {i, 	}. In the abstraction,
type i represents any type assignable to i, while type 	 represents all types.
Function ϕB i

maps a type to its most precise representative in B i. We place a
“dot” above the function to denote its pointwise extension to context vectors. The
first line in Figure 2(b) shows the iterations performed by the multipass verifier
for this subanalysis. The subanalysis uses the same algorithm as the original
analysis of Example 2.1, using the abstract domain B i instead of the domain of
all types. Therefore, context vector v(0) is abstracted in context vector v(0)

i where
every ⊥ is replaced by i. The effect of each instruction in B is interpreted over
the B i domain. This corresponds to computing ϕ̇B i

◦ next. No error is found,
since Bμ(2) is type-correct and the execution of Bμ(1) ignores the error (i instead
of f in register 1). We then apply the multipass verification to analyze errors of
type f only. Again, we can calculate a new abstract domain for this purpose, and
obtain B f = {f, 	}. The second line in Figure 2(b) show the resulting analysis.
In this case, when executing Bμ(1), an f type is expected in register 1, which
holds 	 instead. Hence, an f error is collected. Note that when executing Bμ(2),
the top of the stack is 	, instead of the type i expected by the instruction.
This is not a real error, since it is due to abstraction of type i onto 	. This
error is ignored during this subanalysis. The execution of the two subanalyses,
each of which corresponds to a single type, obtains exactly the same result as
performing the standard verification.

Since we are interested in saving space, we want the set of types checked
by the subanalyses to be as small as possible. The best results can be obtained
when we only need to look at one type at a time, the so-called decomposition
in basic domains. When this is possible (as in the above example), each context
item can be implemented using a single bit, while standard implementations of
bytecode verification usually require 24 bits for each context item [Leroy 2001].
A discussion of space requirements will be given in Section 6.

Unfortunately, due to the nature of some bytecode instructions, a decompo-
sition in basic domains is not always possible. There are cases in which taking
into account only one type achieves correctness, but not completeness. For ex-
ample, let us consider instructions that manipulate arrays. We will denote the
type “array of elements of type τ ” as [τ . Figure 3 shows a simple example of
verification of a method μ = C.m1([C) : C whose argument is an array of refer-
ences and contains an aaload instruction. The first line in the figure shows the
fixpoint of the standard verification (using the whole lattice of types), certifying
that the method is correct. Let us now consider the parallel decomposition of
the verification that analyses one error at a time. Consider the pass checking
errors for type C. The complete shell for an error of type C is {C, [C, null, 	}.
ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 3, Pub. date: December 2008.
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Fig. 3. Three analyses of the same method: using T, only the basic domain B C, and the domain
A 1

C = {	, C, [C, n} where n is shorthand for null.

Note that, in this case, the shell is not a basic domain, since other types besides
C belong to the domain, and in particular [C and null (a type that models null
references). This happens whenever some instruction in the method may create
a type τ from an unrelated type σ , and τ is not specified in the opcode of the
instruction. For array types, this is the case for the aaload instruction, that
creates C from [C, but C does not appear in the aaload opcode.

Example 2.3. To see that a basic domain would cause the verification to be
imprecise, let us consider domain {C, 	}, with both i and [C mapped onto 	 (see
the left-hand side of the second line in Figure 3). Instructions Bμ(1) and Bμ(2)
load 	 onto the stack (instead of [C and i, respectively). Instruction Bμ(3) leaves
	 on the stack. When Bμ(4) is executed, type C is expected on top of the stack,
since the type of the returned value is C. Hence an error of type C is signaled,
which is not ignored since we are in the pass that checks C. However, we know
that the method is correct, so the analysis is imprecise. The problem is that,
having abstracted [C onto 	, the relation between C and [C is lost and C can no
longer be recovered by instructions such as aaload. The right hand side in the
second line in Figure 3 shows the verification that uses {C, [C, null, 	}, which
correctly certifies the method.

In this example, the implementation of each context item requires at least
two bits to encode the four different types in {C, [C, null, 	}. In general, the
number of required bits may be higher (see Section 4.6), but we found that it is
statistically much less than the number of bits required by standard verification
(Section 6.1).

The basic concepts of abstract interpretation and complete shell theory are
recalled in Section 2.3. Parallel decomposition is defined in Section 4. In partic-
ular, the problem with array types is addressed in Section 4.2.1. In Section 4.3
we show that the same problem arises for object initialization.
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Fig. 4. Serial decomposition for method C.m1.

Serial decomposition. Taking more than one type in a pass of the verification
increases the memory space needed by the verifier at each pass. To overcome
this problem, we propose another kind of decomposition, denoted as serial de-
composition, which allows us to maintain the “one type at a time” analysis. In
serial decomposition some passes of the verification give some information to
the next passes. This information is exploited to perform a complete analysis
using a basic domain even when the complete shell is larger. There is only a
small penalty in memory space due to the saving of temporary results. Consider
a bytecode with an instruction having as operand a type σ and producing a type
τ unrelated to σ (thus, the complete shell for τ errors is not a basic domain).
We perform first an enriched pass for {σ, 	} which, besides checking errors for
σ , also records the elements of the fixpoint context vector where τ would oc-
cur. Using this information, the next pass for τ is performed on a transformed
bytecode. Every instruction h that takes σ and produces τ is transformed into
an instruction that produces the constant result τ irrespectively of the type of
operands.

Example 2.4. Let us reconsider the method presented in Figure 3. In the
serial decomposition approach, first the multipass analysis obtained with the
basic domain {[C, 	} is performed (see the first line of Figure 4). Besides checking
type [C, this pass releases also the information that the aaload instruction is
applied to a stack whose second element is [C. In the pass of the analysis which
uses the basic domain {C, 	}, the aaload instruction is replaced by a fictitious
instruction aaload′ which takes two elements out of the stack and pushes C onto
the stack. In this way this occurrence of C type is also visible in the pass for C,
the analysis does not raise any error and correctly accepts the method.

In the previous example, only one additional bit is required. This bit records
whether the aaload instruction is applied to a [C type. The space requirements
for serial decomposition are discussed in Section 6.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 1, Article 3, Pub. date: December 2008.



3:12 • C. Bernardeschi et al.

Fig. 5. Table of symbols.

In Section 5 we define Serial Decomposition. In Section 5.1 we apply Serial
Decomposition to array types. Section 5.2 shows how to obtain decomposition
in basic domains in the presence of object initialization.

The reader may refer to Figure 5, where we have collected the main symbols
used throughout the paper, together with a short description and the section
number where they are first introduced.
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2.3 Background on Abstract Interpretation

Abstract interpretation [Cousot and Cousot 1977] is a framework that allows
an approximate evaluation of the semantics of a discrete dynamic system. The
semantics is modeled as a couple (C, f ) of a complete lattice 〈C; ≤〉, called the
concrete domain, and a semantic function f , where f maps each element of
the system (e.g., each program of a programming language) to an element in C.
Abstraction is introduced by defining a new complete lattice 〈A; �〉, called the
abstract domain. The relationship between the concrete and abstract domain
must be defined precisely by means of two functions α : C → A, the abstraction
function, and γ : A → C, the concretization function, such that (C, α, γ , A) is
a Galois connection (i.e., ∀c ∈ C, a ∈ A, α(c) � a ⇔ c ≤ γ (a)). Then, the
theory shows how to design an abstract semantic function f � that correctly
approximates function f in the abstract domain.

In this article we use an alternative, but equivalent, characterization of ab-
stractions, given by upper closure operators [Cousot and Cousot 1979]. An
(upper) closure operator ρ on a poset 〈C; ≤〉 is a monotone, extensive (i.e.,
∀c ∈ C, c ≤ ρ(c)) and idempotent (i.e., ρ ◦ ρ = ρ) operator on C. If (C, α, γ , A) is
a Galois connection, then γ ◦ α is an upper closure operator on C. Vice versa, if
ρ is an upper closure operator on C and ι is any isomorphism between ρ(C) and
A, then (C, ι ◦ ρ , ι−1, A) is a Galois connection. Thus, an upper closure operator
ρ can be used, instead of functions α and γ , to define an abstraction on C (leav-
ing ι implicit or letting ι = λc.c). The abstract domain A, in these settings, is
simply the image of C through ρ, denoted by A = ρ(C). Thus, A is a subset of C.
The idea is to abstract each element of C by replacing it with a representative,
taken from C itself.

Note that ρ(C) coincides with the set of fixpoints of ρ. Moreover, any closure
operator is uniquely determined by its set of fixpoints [Davey and Priestley
2002]. If 〈C; ≤〉 is a complete lattice, then ρ(C) is a Moore family, that is, a
poset closed under arbitrary meets (

∧
). Likewise, every Moore family M ⊆ C

uniquely determines a closure operator ϕM such that ϕM (C) = M . An expression
for ϕM is given by

ϕM (x) =
∧

{ y ∈ M | x ≤ y}. (1)

All this means that any abstraction of C can be intuitively represented, and
defined, by an appropriately chosen subset (i.e., a subset that is a Moore family)
of C. For this reason, we denote with abs(C) (abstractions of C) the set of all
Moore families contained in C.

Any Moore family is a complete lattice (and vice versa). In particular, if 〈C; ≤〉
is a complete lattice with meet ∧, join ∨, top element 	 and bottom element ⊥,
then ρ(C) is a complete lattice with meet ∧, join λx, y .ρ(x ∨ y), top element 	
and bottom element ρ(⊥) [Ward 1942]. In particular, note that the top element
of C belongs to all Moore families of C.

Moore families of a complete lattice 〈C; ≤〉 can be characterized as the fix-
points of the Moore operator M on ℘(C), defined as

M (A) �
{∧

X | X ⊆ A
}

. (2)
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Since the Moore operator is itself an upper closure operator on the complete
lattice 〈℘(C); ⊆〉, the set of its fixpoints M (℘(C)) = abs(C) (i.e., the set of all
Moore families of C) is a complete lattice, with meet given by set intersection,
join given by λA, B.M (A ∪ B), top element C and bottom element M (∅) = {	}
(taking

∧ ∅ = 	).
The set of all upper closure operators on a complete lattice 〈C; ≤〉, denoted by

uco(C), is also a complete lattice, when closure operators are ordered pointwise.
In particular, the meet operation in uco(C) is simply the pointwise extension of
the meet operation in C. Since each closure operator on C determines a unique
Moore family of C and vice versa, there is a bijection between uco(C) and abs(C).
This bijection is also an order isomorphism between 〈uco(C); ≤〉 and 〈abs(C); ⊇〉,
so that 〈uco(C); ≤〉 and the order dual of 〈abs(C); ⊆〉 are isomorphic lattices.

2.3.1 Soundness and Completeness. Let us consider two complete lattices
〈C; ≤〉 and 〈D; �〉, together with a semantic function f : C → D. We want to
abstractly interpret function f , when working with abstractions of C and D.
Let us suppose that the abstractions of C and D are given in the form of a pair
〈ρ , η〉 of closure operators, where ρ : C → C and η : D → D. Then, a function
f � : ρ(C) → η(D) is a correct (or sound) abstraction of f with respect to 〈ρ , η〉, iff
η ◦ f � f � ◦ ρ. Among all correct abstractions of f wrt 〈ρ , η〉 there is a function
f b which is the best abstraction, in the sense that all correct abstractions f � are
such that f b � f � (in the pointwise ordering). It is well known from abstract
interpretation theory that f b = η ◦ f |ρ(C) [Cousot and Cousot 1979].

Completeness [Mycroft 1993] is the natural strengthening of correctness: f �

is a complete abstraction of f (is complete for f ) wrt 〈ρ , η〉, iff

η ◦ f = f � ◦ ρ. (3)

When C = D, we can define abstractions using a single closure operator. More-
over, we can calculate lfp( f ) and lfp( f �). We say that f � is fixpoint complete for
f wrt (closure operator) ρ iff

ρ(lfp( f )) = lfp( f �). (4)

It is well known that completeness implies fixpoint completeness: if f � is com-
plete for f wrt 〈ρ , ρ〉, then f � is fixpoint complete for f wrt ρ (the converse, in
general, is not true).

Giacobazzi et al. [2000] have observed that completeness and fixpoint com-
pleteness for f are properties of the closure operators (Moore families) that
define the abstractions on C and D (ρ and η), rather than properties of the
functions ( f �) that interpret f . In fact, a function f �, complete for f wrt 〈ρ , η〉,
can be found if and only if the best abstraction of f in 〈ρ , η〉 is itself complete
for f wrt 〈ρ , η〉. Then, the observation follows from the fact that the best ab-
straction f b of f in 〈ρ , η〉 is solely defined in terms of f , ρ and η. Thus, it
is meaningful to talk about the completeness of 〈ρ , η〉 wrt f , and of fixpoint
completeness of ρ wrt f . These can be checked directly, replacing f � with the
definition of f b in (3) and (4).

In the same article, Giacobazzi et al. give a constructive characterization of
what they call the relative complete shell of ρ wrt η and f . The meaning of this
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construction is as follows: we imagine to keep η fixed, and we search for the
“greatest” (i.e., the most abstract) abstraction ρ ′, which is “more precise” (i.e.,
less abstract) than ρ, such that 〈ρ ′, η〉 is complete wrt f . Here, “more precise”
means that ρ(C) ⊆ ρ ′(C), and ρ ′ is the “greatest” abstraction when its codomain
is the least in the inclusion order on abs(C). If such an abstraction ρ ′ can be
found, then ρ ′ is the relative complete shell of ρ wrt η and f . They show that,
if f is a continuous function from C to D, then the codomain ρ ′(C) (and, thus,
operator ρ ′) of the relative complete shell ρ ′ of ρ wrt η and f can be obtained as
ρ ′(C) = S

η(C)
f (ρ(C)), where S B

f : abs(C) → abs(C), with B ∈ abs(D), is defined
as

S
B
f (A) = M (A ∪ R f (B)), (5)

where R f : abs(D) → ℘(C) is

R f (B) =
⋃
b∈B

max{c ∈ C | f (c) � b}. (6)

They also show that, if δ is any closure operator on C such that S
η(C)

f (ρ(C)) ⊆
δ(C), then 〈δ, η〉 is also complete wrt f .

Example 2.5. Consider sets C = ℘(Z), D = ℘(R), lattices 〈C; ⊆〉, 〈D; ⊆〉,
and the semantic function f : C → D such that f (X ) = {2n | n ∈ X } (i.e., the
exponential function extended to set of integers). If we have

ρ(X ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∅ if X = ∅,

{n > 0} if X �= ∅ and X ⊆ {n > 0},
{n < 0} if X �= ∅ and X ⊆ {n < 0},
Z otherwise,

η(Y ) =
{{1} if Y ⊆ {1},

R otherwise,

as closure operators on C and D, respectively, then the relative complete shell
of ρ wrt η and f can be calculated as follows. From Equation (6) we have

R f (η(D)) = max{X ∈ C | f (X ) ⊆ R} ∪
max{X ∈ C | f (X ) ⊆ {1}} = {Z, {0}},

then,

S
η(D)

f (ρ(C)) = {∅, {n < 0}, {0}, {n > 0}, Z}.

The lattices induced by ρ, η, and S
η(D)
f (ρ(C)) are depicted in Figure 6.

In the cases where C = D, Giacobazzi et al. also define the absolute complete
shell of ρ wrt f , as the greatest abstraction ρ ′, more precise than ρ, such that
〈ρ ′, ρ ′〉 is complete wrt f . If f is continuous, then we can define S f : abs(C) →
abs(C) as

S f (A) = lfp(λQ ∈ abs(C).M (A ∪ R f (Q))). (7)

The absolute complete shell of ρ wrt f is the closure operator induced by the
Moore family S f (ρ(C)) (as given by (1)).
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Fig. 6. An example of a relative complete shell (C = ℘(Z) and D = ℘(R)).

All these notions are extended, in a natural way, by replacing function f
with a set F of functions, where each function in F may have an arity greater
than 1. In this case, R F (B) must be calculated taking the union over all func-
tions in F and, for each function, considering each argument in turn and taking
the maximal by letting the argument vary, while keeping the remaining argu-
ments fixed (and repeating this for each possible combination of values of the
remaining arguments).

Other results of interest for us are that 〈ρ , ρ〉 is always complete for
λx1, . . . , xn.x1 ∨ · · · ∨ xn, and that if 〈ρ , ρ〉 is complete wrt f and g , it is also
complete wrt f ◦ g .

3. MODELING THE STANDARD BYTECODE VERIFIER

In this section we give a formalization of the informal Verification algorithm
presented in Lindholm and Yellin [1999], to obtain a formal semantics suitable
for abstract interpretation. Sections 3.1 to 3.3 contain some preliminary defini-
tions. Section 3.4 contains an initial formalization of the Verification algorithm,
for which we only give informal justifications, since it is sufficiently close to the
specification in Lindholm and Yellin [1999]. Section 3.5 gives a second formal-
ization, which is more suitable to our study, and shows its equivalence with the
former. The main difference between the formalization given in Section 3.4 and
the one given in Section 3.5 is that the former stops on the first error encoun-
tered during verification, while the latter goes on and collects all errors that
may be present.

3.1 The Complete Lattice of Types

The types used during the verification of method μ = τ0.m(τ1, . . . , τn) : τ are
organized in a partially ordered set (poset) whose definition depends on the
instruction set used. For instruction set I1, we can define 〈T1; �1〉, where

T1 = {	, ⊥, null} ∪ B ∪ C ′. (8)

The partial order �1 is the smallest reflexive, antisymmetric and transitive
relation containing all of the following:

(∀τ ∈ T1) τ �1 	 and ⊥ �1 τ,
(∀τ ∈ C ′) null �1 τ,

(∀τ ′, τ ′′ ∈ C ′ such that τ ′ extends τ ′′) τ ′ �1 τ ′′.
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The partial order is deduced from the Java language specification, in such a way
that, if the bytecode verifier reports no error for a state containing type τ1, it
will report no error for a state where type τ1 is replaced by type τ2, with τ2 � τ1.
Informally, we call � the assignable to relation. The fictitious types 	 and ⊥
have been added to turn 〈T1; �1〉 into a complete lattice, that is, a poset where
each subset of elements has a least upper bound (and, thus, also a greatest
lower bound). Type 	 should be interpreted as an unknown type. If soundness
must be preserved, the unknown type cannot safely satisfy any type constraint;
thus, it can also be regarded as an erroneous type. It can be used to model the
initial, undefined value of uninitialized registers. Type ⊥, instead, should be
regarded as an impossible type, that is, no actual value used by any reachable
instruction may have this type. The fact that we require that all instructions
should safely accept an impossible type (since ⊥ is assignable to every other
type) does not cause problems. Indeed, it will be clear that type ⊥ may only
be used by unreachable instructions (dead code). Since these instructions can
never be executed, their type correctness is irrelevant.

PROPOSITION 3.1. 〈T1; �1〉 is a lattice, that is, each pair of elements τ1, τ2 ∈ T1
has a least upper bound (join) τ1 � τ2 and a greatest lower bound (meet) τ1 � τ2.

PROOF SKETCH. By cases.

In particular, if we take τ1 and τ2 in T1 with τ1 �= τ2, we have τ1 �1 τ2 = 	 and
τ1 �1 τ2 = ⊥ if either τ1, or τ2, or both are in B. If both τ1 and τ2 are in C ′ and
neither τ1 �1 τ2, nor τ2 �1 τ1, then τ1�1τ2 = null and τ1�1τ2 is the first common
ancestor of τ1 and τ2 in the extends tree.

PROPOSITION 3.2. 〈T1; �1〉 is a complete lattice, that is, each subset D of T1
has a least upper bound

⊔
1 D (and a greatest lower bound�1 D).

PROOF. Since 〈T1; �1〉 is a lattice by Prop. 3.1 and T1 is finite.

In particular, we have
⊔

1 ∅ = ⊥ and �1∅ = 	. Hereafter, we will omit the “1”
subscript from T1, �1 etc., when not required.

3.2 Contexts and Context Vector

The standard verifier models the state of the JVM using registers and stacks
that contain types taken from T. For a method μ with a maximum number of
registers rμ and a maximum stack size tμ, a memory is an element of Mμ =
[0, rμ) → T (registers contain types) and a stack is an element of Sμ = T

{0,tμ},
the set of sequences of elements of T, with size between 0 and tμ. For any
element s ∈ Sμ, we denote by |s| the size (number of elements) of s. If s ∈ Sμ

and |s| = n > 0, then s = s0 · · · sn−1, where s0, . . . , sn−1 are the elements of s and
s0 is the top of s. If |s| ≥ i, then s�i denotes a sequence of size |s| − i, which is
equal to s with the i topmost elements removed (the i subscript will be omitted
when i = 1). We use ε to denote the empty stack (where |ε| = 0).

The partial order � on T is extended pointwise to Mμ (for any M1, M2 ∈ Mμ,
M1 � M2 iff M1(x) � M2(x), ∀x ∈ [0, rμ)). Since 〈T; �〉 is a complete lattice
(Prop. 3.2), so is 〈Mμ; �〉. Ordering between any two elements s1 and s2 of Sμ is
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defined (by pointwise extension of �) only when |s1| = |s2|, so that 〈Sμ; �〉 is not
a lattice (since there is no join, nor meet, of s1 and s2 when they have different
size).

A context is an element of Cμ = (Mμ × Sμ) ∪ {�}, where � denotes a context
containing an error. By pointwise ordering Cμ, using the partial orders defined
on Mμ and Sμ, and letting c � �, ∀c ∈ Cμ, we have that join is defined for
any non-empty subset of Cμ. In particular, (M1, s1) �μ (M2, s2) = � whenever
|s1| �= |s2|. Finally, if we add a fictitious bottom element ⊥S to Sμ, 〈Cμ; �〉 becomes
a complete lattice, whose bottom is given by (λx ∈ [0, rμ).⊥, ⊥S).

A context vector maps each instruction address to a context. The idea is that
the context associated with address h models the state of the JVM whenever
instruction at address h is about to be executed (before state). For the sake of
uniformity, we also need an additional context, that models the state before the
beginning of the execution of the method. We map this context to address 0.
Thus, a context vector is an element of (omitting the μ subscript) V = L0 → C,
where L0 = L ∪ {0}. The partial order on C is extended pointwise to V, turning
〈V; �〉 into a complete lattice.

3.3 Control Flow Graph

Given a method μ = τ0.m(τ1, . . . , τn) : τ̄ , with bytecode instructions B, we define
the control flow graph of μ as follows. First, we extend B to address 0, by letting
B(0) = start μ, and add a special address, −1, to model method termination:
L

′
0 = L0 ∪ {−1}. Then, the control flow graph of μ is graph (L′

0, �), with � ⊆
L

′
0 ×L

′
0. We write h�k to denote (h, k) ∈ �. The � relation is defined as follows:

for all h ∈ [0, l ), h�h + 1 if B(h) �= goto k and B(h) �= τreturn; h�k if B(h) =
ifcond k or B(h) = goto k; h� − 1 if B(h) = τreturn.

3.4 Standard Verifier

Figure 7 shows the standard interpretations for all instructions in I1, together
with the additional instruction start μ. The semantic function [[•]] : I → (C →
C) maps each instruction I ∈ I to a function that simulates the effect of I on
its context. Figure 7 uses the following notation: given a function f : A → B,
function f [z/x] : A → B, for x ∈ A and z ∈ B, is defined as follows:

f [z/x]( y) =
{

z if y = x,
f ( y) otherwise.

A computation step is modeled by defining function std : V → V as

std(v) = λk ∈ L0.
⊔

{[[B(h)]]v(h) | h�k}. (9)

Standard verification requires calculation of the least fixpoint of function std,
denoted by lfp(std). A method μ is rejected iff ∃h ∈ L0 such that lfp(std)(h) = �.

PROPOSITION 3.3. Function std is continuous (and, thus, monotone).

PROOF SKETCH. Since the least upper bound in Equation (9) is obviously mono-
tone, monotonicity of std follows from monotonicity of [[I ]] for all I ∈ I1. Since
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Fig. 7. Standard interpretation of bytecode instructions in I1.

every monotone function on a finite poset is continuous, and 〈V; �〉 is finite,
then std is continuous.

Since function std is continuous, by Prop. 3.3, its least fixpoint can be calculated
as the limit of an ascending Kleene sequence:

lfp(std) =
⊔

n≥0

stdn(⊥V),

where, for any function f , f 0 is the identity function, f i+1 = f ◦ f i and ⊥V =
λh ∈ L0.⊥C.

3.5 A Modified Verifier

In this section we define a different verification algorithm that does not stop
when an error is found, but continues execution collecting all errors found with
the associated type.

To simplify management of stack elements, we assume that all condition
on stack size are checked in an initial separate verification step. For example,
a condition is that, whenever an instruction is reachable from two (or more)
different instructions, the incoming stack sizes are always the same. The step
checking stack constraints can be performed by a simple data flow analysis,
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Fig. 8. The next[[I ]] function for all instruction I ∈ I1.

mapping a stack size to each method instruction. Once this step has been per-
formed and method μ has not been rejected, we say that μ is stack safe and we
can assume that stacks can be simply modeled using T

t (t-uples of elements in
T), ordered pointwise, where t is the maximum stack size declared for method
μ. We still denote stacks using the sequence of their t elements, with the stack
top being the leftmost element. To manage typed errors, we first split � into a
set for errors. The definition of the set of errors depends on the instruction set.
For instruction set I1 we define

E1 = B ∪ C ′, (10)

where τ ∈ E1 represents an error on type τ . Such an error can be generated
by an instruction that requires a type assignable to τ . Now, the special context
� is no longer needed, and we can define C

′ simply as M × T
t . Accordingly,

we let V
′ = L0 → C

′. Finally, we remove type constraints from instruction
interpretations by introducing a new semantic function next[[•]] : I → (C′ → C

′),
defined in Figure 8 for instructions in I1. Type checking is delegated to a
separate function error[[•]] : I → (C′ → ℘(E)), defined in Figure 9. Since all
type constraints can be expressed as inequalities, we have defined the helper
function check : T × E → ℘(E) as follows:

check(σ, τ ) =
{

∅ σ � τ,
{τ } otherwise.

(11)

The analogous of function (9) can be defined as

next(v) = λk ∈ L0.
⊔

{next[[B(h)]]v(h) | h�k}, (12)

and we obtain the analogous properties:

PROPOSITION 3.4. Function next : V
′ → V

′ is monotone and continuous.

Proposition 3.4 allows us to compute lfp(next) as the limit of the ascending
Kleene sequence v(n) = nextn(⊥V′ ), where ⊥V′ = λh ∈ L0.⊥C′ and ⊥C′ = (λx ∈
[0, rμ).⊥, ⊥tμ ).
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Fig. 9. The error[[I ]] function for all instructions I ∈ I1.

Fig. 10. The chain E (i) is derived from the chain v(i) by applying the function error.

Moreover, we define the function error : V → ℘(E), which, when applied to a
context vector v, returns the set of types E = error(v) such that, if τ ∈ E, then
at least one constraint of type τ failed in checking the context vector v:

error(v) =
⋃

h∈L0

error[[B(h)]]v(h). (13)

Therefore from the context vector chain we can derive an “error” chain E (i),
i ≥ 0, such that E (i) = error(v(i)) for all i ≥ 0 (see Figure 10).

PROPOSITION 3.5. Function error : V → ℘(E) is monotone.

By Propositions 3.4 and 3.5, the sequence E (i) is an ascending chain; thus, the
complete set of errors can be obtained by applying error to the fixpoint of next. A
method is rejected iff error(lfp(next)) �= ∅. We show that the verification defined
in this section, is equivalent to standard verification, as defined in Section 3.4.

THEOREM 3.6. Let μ be a method. There exists k ∈ L0 such that lfp(stdμ)(k) =
�, iff either μ is not stack safe, or error(lfp(next)) �= ∅.
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PROOF SKETCH. Note that, if μ is not stack safe, then an error will be found
in standard verification. On the other hand, if a stack size error is found in
standard verification, then μ is not stack safe. Thus, it remains to show that,
if μ is stack safe, then the two verifications are equivalent. The proof proceeds
by induction on the iterates q(i) of std and v(i) of next, showing that, as long
as there are no errors, the two iterates are equivalent. We say that v ∈ V and
v′ ∈ V

′ are equivalent iff, ∀h ∈ L0, context v(h) is equivalent to context v′(h).
Two (correct) contexts, c = (M , s) ∈ C and c′ = (M ′, s′) ∈ C

′ are equivalent iff
M = M ′ and s′ = s	t−|s|. Then, it must be shown, by cases, that, whenever
c ∈ C and c′ ∈ C

′ are equivalent, then [[I ]]c = � iff error(c′) �= ∅, for all I ∈ I1.
Thus, as soon as an error is found in q(i), an error is found in v(i), and vice
versa. Monotonicity of std, next and error will then propagate the error to the
fixpoint. We only examine a single case here, since they are all similar. Assume
I = τo p : τ ′ and let c = (M , s) and c′ = (M ′, s′), with M = M ′ and s′ = s	t−|s|.
Since we are assuming that μ is stack safe, we know that |s| ≥ 2, so s = s0s1s�2
and also s′ = s0s1s�2	t−|s|. If s0 � τ and s1 � τ , context c is correct and [[I ]]c
must be equivalent to next[[I ]]c′. In fact, [[I ]]c = (M , τ ′s�2) = (M , s̄), with |s̄| =
1 + |s�2| = |s| − 1, and next[[I ]]c′ = (M ′, τ ′s�2	t−|s|	) = (M , s̄	t−|s̄|). If s0 �� τ or
s1 �� τ , then [[I ]]c = � and also error(c′) = check(s0, τ ) ∪ check(s1, τ ) = {τ } �= ∅,
as required.

Hereafter we will always use C
′ instead of C, and we will omit the “prime,” for

the sake of simplicity.

4. PARALLEL DECOMPOSITION

In this section we will exploit abstract interpretation to decompose a fixpoint
analysis into a set of simpler subanalyses. Each of the subanalysis will be an
abstract interpretation of the original analysis. Under some conditions, the re-
sults of the subanalyses can be put together to recover the result of the original
analysis. The lemma at the end of this section will describe such conditions.

We first define the term decomposition [Cortesi et al. 1997].

Definition 4.1. A decomposition of an abstraction ρ : C → C is a family
{ρi}i∈I of abstractions such that�i∈Iρi = ρ.

Given the isomorphism between 〈uco(C); �〉 and 〈abs(C); ⊇〉, we can also say
that a decomposition of domain C is a set of abstract domains {Ci}i∈I , such that
M (

⋃
i∈I Ci) = C (recall that join, in abs(C), is given by the Moore closure of set

union).
Note that the most space efficient decomposition of a domain is the decom-

position into basic domains [Ward 1942]. Given a domain C and an element
c ∈ C, a basic domain Bc is given by the two element domain {c, 	}. Instanti-
ating formula (1) to this simple case, we obtain the associated closure operator,
ϕB c , as

ϕB c (d ) =
{

c if d � c,
	 otherwise.

(14)
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Fig. 11. Decomposition of the concrete analysis.

A decomposition in basic domains is always possible. However, it is not guar-
anteed that the decomposition preserves any property that the original domain
may have, such as completeness wrt a given semantic function.

Consider two semantic operations: one is used to compute a fixpoint, and an-
other is used to extract the requested information from the fixpoint. We want to
“decompose” the fixpoint calculation into several fixpoint calculations. We start
by decomposing the requested information into several parts and, from this, we
show how to obtain a corresponding decomposition of the fixpoint calculation,
such that from each calculation we can retrieve the corresponding information
part. Then, we want complete information to be recovered, by putting all parts
together. Figure 11 illustrates the idea. Function f : C → C, is the function for
which a fixpoint is calculated, and function g : C → D is the function that ex-
tracts the requested information. Function g is used to obtain a parallel chain
of values in D, from the iterates of f . Then, we introduce a set of abstraction
pairs 〈ρi, ηi〉, where each ρi abstracts set C and each ηi abstracts set D. Then
we reproduce the fixpoint iteration and the parallel chain with respect to each
abstraction pair.

We show that this can be done without losing precision, that is, that we
can retrieve the result of the initial analysis by composing the results of the
decomposed analyses.

The following straightforward lemma shows sufficient requirements for this
decomposition. It acts as a guideline for the design of the decomposition.
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LEMMA 4.2 PARALLEL DECOMPOSITION. Let 〈C; �〉 and 〈D; ≤〉 be complete
lattices, f : C → C and g : C → D. Moreover, let:

(a) {ρi}i∈I be a set of closure operators on C, and { f �

i }i∈I be a set of functions,
where f �

i : ρi(C) → ρi(C) is fixpoint complete for f wrt ρi , ∀i ∈ I ;

(b) {ηi}i∈I be a set of closure operators of D, and {g �

i }i∈I be a set of functions,
where g �

i : ρi(C) → ηi(D) is complete for g wrt 〈ρi, ηi〉, ∀i ∈ I .

If {ηi(D)}i∈I is a decomposition of D, then∧
i∈I

g �

i (lfp( f �

i )) = g (lfp( f )).

PROOF.∧
i∈I

g �

i (lfp( f �

i )) = since each f �

i is fixpoint complete for f wrt ρi∧
i∈I

g �

i (ρi(lfp( f ))) = since each g �

i is complete for g wrt 〈ρi, ηi〉∧
i∈I

ηi(g (lfp( f ))) = since {ηi}i∈I is a decomposition of D

g (lfp( f )).

4.1 Parallel Decomposition of Bytecode Verification

We now apply the parallel decomposition method to bytecode verification, in
order to execute simpler and more space efficient analyses. In particular, we
use Lemma 4.2 with C = 〈V; �〉, D = 〈℘(E); ⊆〉, f = next and g = error (compare
Figure 10 with Figure 11). The idea is that each analysis in the decomposition
should only look for a subset of all possible errors, in such a way that, when
taken together, the set of analyses will check all possible errors. To focus on a
subset E ⊆ E of errors, we consider the abstraction αE : ℘(E) → ℘(E), where
αE (Q) = Q ∩ E. The corresponding concretization function γE : ℘(E) → ℘(E)
is γE (Q) = Q ∪ E (where E = E \ E is the set-theoretic complement of E). It is
easy to prove that (℘(E), αE , γE , ℘(E)) is indeed a Galois Connection. Note that
the concretization function makes it explicit that, by focusing on a subset E of
errors only, we are making no precise statement on all other possible errors.
Thus, each abstraction αE can only be used to prove the absence of errors on the
types in E. The closure operator corresponding to the above Galois Connection
is ηE (Q) = γE (αE (Q)) = (Q ∩ E) ∪ E = (Q ∪ E) ∩ (E ∪ E) = Q ∪ E.

Take now any family {Ei}i∈I of subsets of errors that covers E (i.e.,
⋃

i∈I Ei =
E) and let ηi = λQ ∈ ℘(E).Q ∪ Ei, for all i ∈ I . The family of abstractions {ηi}i∈I
is a decomposition of ℘(E). In fact, for any Q ∈ ℘(E), we have:⋂

i∈I

ηi(Q) =
⋂
i∈I

Q ∪ Ei = Q ∪
⋂
i∈I

Ei = Q ∪
⋃
i∈I

Ei = Q ∪ E = Q .

The intuitive meaning of the decomposition is that we can prove that a method is
correct if we can separately prove the absence of each possible error. The family
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of functions {g �

i } = {error�i } can be taken as the family of best abstractions of error
wrt each ηi, that is, errorb

i = ηi◦error = λv ∈ V. error(v)∪Ei. To apply Lemma 4.2,
we need to find, for each abstraction ηi, a corresponding abstraction ρi of V, such
that each ρi is fixpoint complete for next, and each pair 〈ρi, ηi〉 is complete for
error. Then Lemma 4.2 ensures that we can recover error(lfp(next)) by taking
the intersection of all errorb

i (lfp(nextbi )), where nextbi is the best abstraction of
next wrt ρi. The required family {ρi}i∈I can be found in two separate steps:

(1) for each ηi, find a ρ ′
i such that 〈ρ ′

i, ηi〉 is complete for error;
(2) for each ρ ′

i, find a ρi more precise than ρ ′
i (i.e., ρ ′

i(V) ⊆ ρi(V)), such that
〈ρi, ρi〉 is complete wrt next.

Step 2 ensures that 〈ρi, ρi〉 is complete wrt next and, thus, also that ρi is fixpoint
complete for next. Moreover, since ρ ′

i(V) ⊆ ρi(V), we also have that 〈ρi, ηi〉 is
complete wrt error (see Section 2.3.1). We perform steps 1 and 2 in the following
sections.

4.1.1 Completeness for error. In this section, given E ∈ ℘(E) and ηE =
λQ ∈ ℘(E).Q ∪ E, we find an abstraction ρ ′ of V, such that 〈ρ ′, ηE〉 is complete
for error. Abstraction ρ ′ can be obtained in the following way: start with the
“most abstract” abstraction of V and find its relative complete shell wrt ηE and
error. The most abstract abstraction of V is ϕ̇{	}, the pointwise extension from
T to V of ϕ{	} = λσ ∈ T.	. Note that it is much simpler to begin calculating
an abstraction ρ ′ of T, rather than of V, and then use ρ ′ to build the desired
abstraction of V (by pointwise extension of ρ ′). We will show that, for any E ⊆ E,
the corresponding abstraction of T can be chosen as P = M (E). Then, the
desired abstraction of V is simply ϕ̇P . Intuitively, this means that, if we have a
vector v and we want to find all errors contained in v, and related to a subset E of
types, we can “forget everything” about those types in v that are not assignable
to types in E. In fact, all types in T that are not assignable to a type in E are
mapped to the unknown type 	 by ϕP .

First, let us consider function fτ = λσ ∈ T. check(σ, τ ) (i.e., function (11) with
the second parameter fixed to τ ) for any τ ∈ E and let us compute the relative
complete shell of ϕ{	}(T) = {	} wrt ηE and fτ . According to Equation (5), this is
computed as

S
B
fτ

({	}) = M ({	} ∪ R fτ
(B)),

where B = ηE (℘(E)) is the Moore family of ℘(E) that corresponds to closure ηE
and (by Equation (6))

R fτ
(B) =

⋃
Q∈B

max{σ ∈ T | check(σ, τ ) ⊆ Q}.

Note that each Q ∈ ηE (℘(E)) has the form Q = E ′ ∪ E, with E ′ ⊆ E. Now,
either τ ∈ E or τ �∈ E. In the former case, we have τ �∈ E and we can choose
E ′ ⊆ E such that τ �∈ E ′, so that τ �∈ Q = E ′ ∪ E. Then, the maximal σ

such that check(σ, τ ) ⊆ Q is σ = τ , since check(σ, τ ) = ∅ ⊆ Q when σ � τ ,
but check(σ, τ ) = {τ } �⊆ Q when σ �� τ . In all other cases, check(σ, τ ) ⊆ Q ,
∀σ ∈ T, and the maximal is σ = 	. The net result is that R fτ

(ηE (E)) is {τ, 	}
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if τ ∈ E, and {	} otherwise. If we let τ vary over E, we obtain the final result
that P = M (E) is complete wrt ηE and each fτ , that is,

(∀σ ∈ T, τ ∈ E) ηE (check(σ, τ )) = ηE (check(ϕP (σ ), τ )).

Since error(v) is simply the union of several check(v[i], τ )’s functions, each ap-
plied to an element v[i] ∈ T of vector v and a τ ∈ E, we obtain the final result
that 〈ϕ̇P , ηE〉 is complete for error.

4.1.2 Breaking up Bytecode Instructions. In this and in the following sec-
tion we turn to completeness wrt next. Given P ∈ abs(T), we look for an ab-
straction ρ of V that is more precise than ρ ′ = ϕ̇P , and such that 〈ρ , ρ〉 is
complete wrt next. This matches the definition of the absolute complete shell
of ϕ̇P wrt next, thus we could instantiate Equation (7) and try to compute
ρ = S next(ϕ̇P (V)). However, this is a rather complex computation, since the
exact form of method, including its Control Flow Graph, is taken into account.
A more reasonable approach would be to use definition (12) for function next,
disregarding relation � (i.e., the Control Flow Graph). In this approach, we
would find the complete shell S F (ϕ̇P (C)) wrt the set F of all next[[B(h)]] func-
tions for h ∈ Lμ, that is, wrt the set of all bytecode instructions occurring in
the method. This would greatly simplify the computation, since the complete
shell wrt a set of functions is simply obtained from the union of the complete
shells computed wrt each function taken separately. However, this is still a
fairly complex computation, since all effects of the instructions are taken into
account, even those not related to types, such as popping elements from the
stack. Here, we go a step further, and define a new expression for next, where
simple functions are composed according to a finer grained � relation between
individual context elements (i.e., single registers or stack positions). Then, the
complete shell will be computed wrt the set of simple functions, disregarding
relation �.

First, we represent contexts as arrays of types so that we can adopt a uniform
index j for all elements in a context, where c( j ) is a register if 0 ≤ j < rμ, and
it is a stack item if rμ ≤ j < rμ + tμ. In particular, c(rμ) denotes the top of
the stack. Each transition function next[[I ]] : C → C can be decomposed into
subfunctions, each of which gives the “next” type of a different stack or memory
item in the target context:

next[[I ]] j = λc ∈ C.(next[[I ]]c)( j ).

For the language subset we are considering, the subfunctions are particularly
simple, since each of them depends only on the type stored in at most one specific
stack or memory item of the source context c, and not on c as a whole. Let
nμ = rμ + tμ be the size of a context for method μ. Relation �I⊆ [0, nμ)× [0, nμ)
is the relation between each item in the target context and the item(s) in the
source context that may affect it in the execution of instruction I . We define
relation �I indirectly as the complement of relation i ��I j (i does not affect j
in instruction I ) where

i ��I j iff (∀c′, c′′ ∈ C) c′ = c′′[c′(i)/i] =⇒ next[[I ]] j c′ = next[[I ]] j c′′,
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that is, if element j in the after context of instruction I is always the same
for all before contexts that only differ in element i, then i does not affect j in
instruction I .

Example 4.3. Consider instruction I = τload x. We have:

—for all j ∈ [0, rμ), j �I j , with next[[I ]] j = λc.c( j ), modeling the fact that
registers are not modified by instruction I ;

—x �I rμ, with next[[I ]]rμ
= λc.c(x), modeling the push of register x on the

stack;
—for all j ∈ (rμ, nμ), j − 1 �I j with next[[I ]] j = λc.c( j − 1), modeling stack

shift of one position.

And i ��I j in all other cases.

For all instructions in the language subset we are considering, any j may be
affected by at most one i, that is, i′ �I j and i′′ �I j implies i′ = i′′ for all I ∈ I1
(the only exception will be found in I3 in Section 4.3). For some instructions,
some element j of the after context may be not affected by any element of
the before context, that is, function next[[I ]] j may be constant. For example,
instruction I = τop τ ′ always pushes τ on the stack, irrespectively of the before
context. Thus, next[[I ]]rμ

= λc.τ and i ��I rμ, for all i ∈ [0, nμ). To simplify the
notation and to have each element affected by exactly one other element, we
will assume a fictitious dependency j �I j whenever next[[I ]] j is a constant
function.

Now, we turn to context vectors and linearize them as unidimensional vectors
of types. Each context vector for a method μ will contain mμ = (lμ +1) ·nμ types.
Let ÷ denote natural division and mod division remainder. Then, if i ∈ [0, mμ)
is the index of an item in context vector v, (i ÷ nμ) ∈ [0, lμ] is the index of the
context c that contains item i, and (i mod nμ) ∈ [0, nμ) is the index of item i
within context c. We define relation �μ⊆ [0, mμ)× [0, mμ) in the following way:

i �Bμ(h) j and h�k =⇒ nμh + i �μ nμk + j .

Relation �μ encodes all the dependencies between individual context vector el-
ements for the whole method μ. We now make it explicit that (for the language
subset we are considering) all functions next[[I ]] j depend on (at most) one el-
ement of the appropriate before context by defining functions nexti j : T → T

as

nexti j (τ ) = next[[Bμ(i ÷ nμ)]] j modnμ
c[τ/i mod nμ].

For any c ∈ C and i �μ j . The definition is independent of c, since j mod nμ is
affected only by i mod nμ in instruction Bμ(i ÷ nμ).

Example 4.4. Let h ∈ [0, lμ] and assume Bμ(h) = τ ′add : τ , rμ = 1, and
tμ = 3 (see Figure 12 for a graphical representation of this example). In this
case, h�k means that k = h + 1. Consider j ∈ [4k, 4k + 4) (that is the context
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Fig. 12. The detail of the execution of a τ ′add : τ instruction when there is only one register and
the stack contains up to three items: the register is not affected, the two topmost items of the stack
are consumed, and τ is pushed into the stack.

corresponding to the instruction k). Then, i �μ j only when:

—i = 4h and j = 4k. Then, nexti j = λσ.σ (identity function on T). This models
the fact that the register is not modified by τ ′add : τ

—i = 4h + 3 and j = 4k + 2. Then, nexti j = λσ.σ . This models the stack shift
of one position, due to a) the pop of the two operands and b) the subsequent
push of the result.

—i = 4h + 1 and j = 4k + 1. Then, nexti j = λσ.τ . This models the push of the
result on the stack

—i = 4h + 3 and j = 4k + 3. Then, nexti j = λσ.	. This is the last element in
the stack, after stack pop.

Note that, in the last two cases, we have used the convention that j �I j
whenever the effect of instruction I on j is constant.

The effect that the τ ′add : τ instruction of Example 4.4 has on the types con-
tained in the context vectors can be summarized by the set of simple functions
λσ.σ , λσ.τ and λσ.	 (i.e., the functions in the boxes in the middle of Figure 12).
The other effects of the instruction (e.g., shifting elements of the stack) are
captured by the �μ relation. The point is that relation �μ, no matter how com-
plex, will be automatically preserved by any abstraction we will introduce. This
means that abstractions can be defined on types and then readily extended to
context vectors. Moreover, in the complete shell computations, we can ignore
relation �μ and use only the set of subfunctions.

Using this decomposition, we can finally write another expression for next,
as

next(v) = λ j ∈ [0, m).
⊔

{nexti j (v[i]) | i � j }. (15)

Where v[i] = v(i ÷nμ)(i mod nμ) and we have omitted subscript μ for simplicity.
We can simplify this expression by assuming nexti j = λσ.⊥ whenever i �� j
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Fig. 13. The F [[I ]] function for all I ∈ I1.

(since ⊥ has no effect on join) and rewrite Equation (15) as

next(v) = λ j ∈ [0, m).
m−1⊔

i=0

nexti j (v[i]). (16)

A method is characterized by the set of different nexti j functions that are
implied by its bytecode. Thus, for a method μ, we introduce the set F μ that con-
tains all distinct nexti j functions appearing in formula (15) for method μ. First,
we define F [[•]] : I → ℘(T → T) as follows. Given f : T → T and I ∈ I, then
f ∈ F [[I ]] iff there exists a method μ and i, j ∈ [0, mμ) such that Bμ(i÷nμ) = I ,
i �μ j and f = nexti j . That is, F [[I ]] contains all subfunctions of next[[I ]].
Figure 13 shows function F for all functions in I1 (plus instruction start). Fi-
nally, we define the set of functions that may be used in the interpretation of
method μ:

F μ �
⋃

h∈Lμ,0

F [[Bμ(h)]]. (17)

4.1.3 Completeness for next. In this section, we use the characterization
of next given in the previous section and find an abstraction ρ of T, such that
ρ � ϕP and 〈ρ , ρ〉 is complete for F μ. Then, we show that ρ̇ is an abstraction
of V that meets our requirements.

The following calculation shows that we can choose ρ = ϕP , that is, that,
for any P ∈ abs(T) and for any method μ (in instruction set I1), 〈ϕ̇P , ϕ̇P 〉 is
complete for nextμ. Intuitively, this can be expressed as follows: assume that
P = M (E) (as obtained in Section 4.1.1) and let us call E-assignable types
all types assignable to types in E. Let us assume that we know, for a vector
v, where all E-assignable types can be found, while we know nothing about
all other types. This means that we are able to precisely know where all E-
assignable types in next(v) will be (assuming we are using instruction set I1
only). This is a direct consequence of the fact that all subfunctions in Figure 13
are either constant functions (whose value we know from the program text) or
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the identity function. Thus, E-assignable types in next(v) can only come from
facts we already know. Together with Section 4.1.1, this shows that keeping
track of E-assignable types is not only necessary, but also sufficient to find all
errors in E.

Closure ρ can be easily calculated as ρ = S F μ
(ϕP (P )) = S F μ

(P ). According
to (7), we have

S F μ
(P ) = lfp(λA ∈ abs(T).M (P ∪ RF μ

(A))),

where

RF μ
(A) =

⋃
f ∈F μ

⋃
σ∈A

max{τ ∈ T | f (τ ) � σ }.

The least fixpoint can be calculated using an ascending Kleene sequence start-
ing at ⊥abs(T) = {	}. We note that, for instruction set I1, S F μ

(P ) = P , for any
P ∈ abs(T). In fact:

RF μ
({	}) =

⋃
f ∈F μ

max{τ ∈ T | f (τ ) � 	} = {	}

S(0) = M (P ∪ {	}) = M (P ) = P,

RF μ
(P ) =

⋃
f ∈F μ

⋃
σ∈P

max{τ ∈ T | f (τ ) � σ } = P ′ ⊆ P

S(1) = M (P ∪ P ′) = M (P ) = P.

The reason for RF μ
(P ) ⊆ P lies in the fact that all f ∈ F μ are either constant

functions or the identity function (see Figure 13). For the identity function, the
maximum value τ such that τ � σ is σ itself, which is in P . Consider now a
constant function f = λt.τ̄ . If τ̄ � σ , then max{τ | f (τ ) � σ } = 	 ∈ P (since P
is a Moore family). If τ̄ �� σ , f gives no contribution to RF μ

(P ).
Thus, we have found that, for any P ∈ abs(T), if we let ρ = ϕP , then 〈ρ , ρ〉 is

complete wrt all functions f in F μ, that is,

(∀ f ∈ F μ) ρ ◦ f = ρ ◦ f ◦ ρ.

Note that this result could have been obtained directly, since it holds trivially
whenever f is a constant or identity function. However, we have shown the
absolute complete shell computation, since it will be useful in the rest of the
paper. The above equation also holds for f = λσ.⊥, which we have used in
Equation (15) but which is not in F μ.

Now, we show that 〈ρ̇, ρ̇〉, the pointwise extension of 〈ρ , ρ〉, is complete for
next, that is,

ρ̇ ◦ next = ρ̇ ◦ next ◦ ρ̇.
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In fact, for any v ∈ V, we have:

ρ̇(next(ρ̇(v))) = by (16) and definition of ρ̇

λ j .ρ

(
m−1⊔

i=0

nexti j (ρ(v[i]))

)
= since 〈ρ , ρ〉 is complete wrt all nexti j and join

λ j .ρ

(
m−1⊔

i=0

nexti j (v[i])

)
= by definition of ρ̇ and (16)

ρ̇(next(v)).

We are interested in reducing the space required by each pass of the verification
and this space is directly related to the number of different types that must be
distinguished in each pass. Therefore we would like to choose the abstractions
{ρi}i∈I so that the maximum cardinality of ρi(T), i ∈ I , is as small as possible.
Since, for the language we are considering, S F μ

(P ) = P for any P ∈ abs(T), we
are free to choose a decomposition in basic domains (Section 4.1.2).

Thus, we partition E into singletons Ei = {τi} and choose {Pi}i∈I ⊆ ℘(E), such
that Pi = M (Ei) = B τi = {	, τi}, with the associated closure operator, as given
in (14). Given our interpretation of �, ϕPi has an intuitive meaning: all types
that are assignable to τi are identified with τi itself, while all other types are
identified with the unknown/error type.

4.2 Array Types

In this section, we consider instruction set I2 ⊃ I1. Set I2 includes instructions
that manipulate arrays. Following the Java language specification [Gosling
et al. 2000]:

In the Java programming language arrays are objects, are dynam-
ically created, and may be assigned to variables of type Object. All
methods of class Object may be invoked on an array.

and later:

All the components of an array type have the same type, called the
component type of the array.

If the component type of an array is τ , we will denote the type “array of τ ” as
[τ . The component type may be itself an array type, therefore we define the set
A of (multidimensional) arrays of types τ ∈ B ∪ C ′, as follows:

[0
τ = τ ;

[n
τ = [[n−1

τ is an array of elements of type [n−1
τ ;

A = {[n
τ | τ ∈ B ∪ C ′, n ≥ 1}.

We define a new poset 〈T2; �2〉 and a new set of errors, E2, in this way:

T2 = T1 ∪ A, (18)
E2 = E1 ∪ A. (19)
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and the partial order �2 (omitting the μ subscript, as before) is the smallest
reflexive, antisymmetric and transitive relation such that (∀τ1, τ2 ∈ T1), τ1 �1
τ2 =⇒ τ1 �2 τ2 and:

(∀α ∈ A) α �2 Object, null �2 α,
(∀[τ ′, [τ ′′ ∈ A) τ ′ �2 τ ′′ =⇒ [τ ′ �2 [τ ′′.

Poset 〈T2; �2〉 is still a lattice. In particular, note that [n′
Object � [n′′

Object
whenever 1 ≤ n′′ ≤ n′. However, since A is an infinite set,1 we have to prove
that 〈T2; �2〉 is still a complete lattice.

PROPOSITION 4.5. 〈T2; �2〉 satisfies the Ascending Chain Condition (ACC):
given any sequence τ1 �2 τ2 �2 · · · �2 τn �2 · · · of elements of T2, there exists
k ∈ N such that τk = τk+1 = . . . .

PROOF SKETCH. Note that (ACC) may fail in T2 only for chains containing
arrays, since all other chains in T2 are of finite height. So, we can restrict
ourselves to chains where τi ∈ A for some i ∈ N. Moreover, if there exists a ı̄ ∈ N

such that τ j �∈ A, ∀ j ≥ ı̄, then (ACC) is still satisfied. So, (ACC) may fail only if
there exists a chain containing an infinite number of different array types, but
this is impossible, since each pair of successive different array elements in the
chain must either be of type [n

τ ′ �2 [n
τ ′′, with both τ ′ and τ ′′ in B ∪ C ′ (which is

finite), or be of type [n′
Object �2 [n′′

Object, with 1 ≤ n′′ < n′.

PROPOSITION 4.6. 〈T2; �2〉 is a complete lattice.

PROOF. By a well known result of lattice theory, since it has a bottom element
and satisfies (ACC) (by Proposition 4.5).

Instruction set I2 contains I1, plus the instructions that manipulate arrays:
newarray, τaload, τastore. Figure 14 shows the next[[•]] function for the new
instructions. It is worth noting that, while in instruction newarray τ type τ

ranges over T , in τaload and τastore type τ ranges over B′, that is the basic
types (i, f, b, . . . ) plus Object. In the case of τastore, not all type errors can be
caught at verification time, but some are delayed to execution time, raising the
exception ArrayStoreException [Lindholm and Yellin 1999]. This is because
only an approximation (from above) of the runtime type of the array reference
is available during verification, when class types are involved. Assume, for
example, that B extends A and C extends A, but classes B and C are unrelated.
Assume also that, during verification, the stack in the before context of an
aastore (where the first a stands for Object) is [AiBs. Then, checking that B � A
is unsafe, since the actual run-time type of the array reference may well be [C.

Note that we have considered separately the case of τaload, when τ = Object.
This case corresponds to the actual JVM opcode aaload.

The aaload instruction is used to access arrays of objects and pops two items
from the stack: the first type, let us say τ , should be an array reference, and the

1According to the virtual machine specification [Lindholm and Yellin 1999] the maximum number
of dimensions of an array is 256. However, the generalization to any number of dimensions does
not cause problems.
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Fig. 14. The functions next[[I ]], error[[I ]] and F [[I ]] for I ∈ I2 \ I1.

second type should be an integer index. In the after-state, the type of the top of
the stack is inferred from type τ using a function [−1 : T → T such that:

[−1
τ =

⎧⎨
⎩

τ ′ if τ = [τ ′ and null � τ ′ � Object,
τ if τ � null,
	 otherwise.

(20)

Function [−1 removes a dimension from a reference to an array of objects. It is
the identity function when applied to ⊥ or null, and it is 	 otherwise. Note that
in semantics of the standard verifier (not shown here) for the aaload instruction,
the third case in the definition of [−1 would cause a type error (i.e., a transition
to state �). Function [−1 is a monotonic extension to T of the function used
in the standard semantics. Figure 14 shows the value of F [[I ]] for I equal to
newarray τ , τaload, aaload or τastore and the error[[I ]] function for the same
instructions.

4.2.1 Completeness in the Presence of Arrays. In Section 4.1.3 we have
shown that, in instruction set I1, for any E ∈ ℘(E), P = M (E) = S F μ

(P ). This
means that abstraction P can be used to find all errors in E, and only them.
This is no longer true if we have array types, as anticipated in the overview.
This is due to the presence of subfunction [−1, which can generate E-assignable
types from non-E-assignable types. Worse, S F μ

(P ) may also be infinite. In fact,
let us suppose ∃h ∈ Lμ such that Bμ(h) = aaload, and consider P ∈ abs(T)
such that P contains a type τ̄ , with null � τ̄ � Object. Now, let us compute
S F μ

(P ). We obtain S(0) = {	} and S(1) = P . To compute S(2), we must calculate
RF μ

(P ). Since μ contains the aaload instruction, F μ contains function [−1. The
maximal τ in T, such that [−1

τ � τ̄ is [τ̄ , thus [τ̄ ∈ S(2). Then, S(3) will contain
[[τ̄ (since this is the maximal τ ∈ T such that [−1

τ � [τ̄ ) and so on. Finally, the
fixpoint will contain all (infinite) multidimensional arrays of τ̄ . Note that this
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Fig. 15. Lattice A k
τ for null � τ � Object.

would not be the case if we had calculated S next instead of S F μ
; thus, this is a

limitation of breaking up bytecode instructions. However, the problem can be
overcome by noting that most of these array types will never appear in any of
the iterates when calculating lfp(next), therefore we can remove them from the
set of possible types. More precisely, let T μ be the set of types that may actually
appear during the fixpoint iteration of function nextμ. It can be shown that, if
we use T μ instead of T as concrete domain for types, then S F μ

(B τ ) will only
contain the finite set {[i

τ | 0 ≤ i ≤ κμ,τ }, where κμ,τ = max{i | ∃σ � τ, [i
σ ∈ T μ}.

More precisely, let us define A k
τ = {[i

τ | 0 ≤ i ≤ k} ∪ {null, 	}. An example A k
τ

is depicted in Figure 15. Using κ as shorthand for κμ,τ , we have A κ
τ = S F μ

(B τ ).
Note that the only parameter that is required to build A κ

τ is κ, and this can be
easily obtained by inspecting the program text. In fact, if [i

σ ∈ T μ, then there
exists a function f ∈ F μ, f constant, such that [ j

τ ∈ rng( f ) with σ � τ and
i ≤ j (rng( f ) is the range of f ). Thus, κμ,τ must appear explicitly in the opcode
of at least one instruction in Bμ.

Reconsider Figure 3. Parallel decomposition using the basic domain B C is
incomplete since [−1 ∈ F μ and S F μ

(B C) �= B C. The complete shell is A 1
C =

{	, C, [C, null}. In fact, κμ,C = 1 since the only array of C in the method is [C
created by instruction start and, during verification, the aaload instruction
may only reduce its dimension.

4.3 Object Creation and Initialization

The creation of a class instance in Java is split into two phases. In the first
phase, the object is created, and its fields are filled with the default values. In
the second phase, one of the constructors is called on the object, to perform other
initializations. In JVML, the first phase is performed by executing an instruc-
tion new τ that has the class τ ∈ C ′ as argument. Its effect is to leave on the top of
the operand stack a reference to an uninitialized instance of class τ . The second
phase is simply an invoke τ.<init>, where <init> is the name that the JVM
uses for all constructors. For simplicity’s sake we will consider only constructors
without arguments and use the abbreviation init τ for invoke τ.<init> (see
Figure 1). Both phases are mandatory and must be performed in order. The
bytecode verifier checks that:

—objects are not initialized more than once;
—as long as an object stays uninitialized, it is not used for field manipulation

(either putfield or getfield) or method invocation.
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However, a reference to an object that has not yet been initialized can be stored
in a local variable or in a stack location. The Sun verifier tags each uninitialized
reference of class τ with the label of the new τ instruction that created it. When
processing an init τ , if the top of the stack is a reference to an uninitialized ob-
ject of type τ created at instruction h, (we denote it by τ (h)), then all occurrences
of τ (h) in memory and stack are replaced by τ , and the stack is modified by
popping the reference. Otherwise, if the top of the stack is not a reference to an
uninitialized object of type τ , the verification ends with a failure. The Java lan-
guage specification also mandates that no uninitialized object may exist when
a “backward branch” is taken [Leroy 2003]. The purpose of this requirement
is to avoid that distinct objects created by the same new τ instruction inside a
loop may be mistakenly assumed to be the same object. However, Coglio [2003]
has shown that under some conditions, that are met by our proposed analysis,
this requirement is unnecessary. Accordingly, we can avoid to cope with this
additional complexity.

We introduce the new instruction set I3, which includes I2 and the instruc-
tions for object creation and initialization, namely new and init. These are
described in Figure 1. We require that, if B(k) = h : new τ , then k = h. Note
that we have included the label h of the new instruction in the opcode itself,
since this is the only instruction that produces a type that depends on h (i.e.,
τ (h)). Otherwise, we would have had to let next[[•]] depend on B, thus making
the notation heavier.

Note that types τ (h) and σ (k), with k �= h, are not assignable to each other,
even when τ = σ . Moreover, τ (h), for any τ and h, is not assignable to Object,
but can be used by the same astore and aload instructions used for Object. To
correctly express the typing condition of these two instructions, we introduce a
new type addr, which is the least upper bound of Object and all τ (h)’s, and we
assume that the a in astore and aload stands for addr.

We introduce the new lattice 〈T3; �3〉 and the new set E3 of errors, where:

T3 = T2 ∪ {addr} ∪ U, (21)
E3 = E2 ∪ {addr} ∪ {τ (∗) | ∃τ (h) ∈ U}, (22)

where U = {τ (h) | τ ∈ C ′ and h ∈ L} is the set of uninitialized types. We also
define Uμ as the set of all uninitialized types that may be created in method μ.
It is useful to define this set stepwise by defining U

τ
μ = {τ (h) | Bμ(h) = h : new τ }

and U
�τ
μ = ⋃

σ�τ U
σ
μ. Then, Uμ = U

�Object
μ .

Note that E3 is the first set of errors that differs substantially from the
corresponding T3, since it contains the new type τ (∗) instead of all τ (h)’s in U.
This is due to the fact that an error of the form τ (h) does not make sense, since
an init τ instruction may accept an uninitialized version of τ created by any
h′ : new τ instruction in the method.

The partial order �3 is the smallest reflexive, transitive and antisymmetric
relation such that (∀τ1, τ2 ∈ T3), τ1 �2 τ2 =⇒ τ1 �3 τ2 and

(∀τ (h) ∈ U) ⊥ �3 τ (h) �3 addr,
Object �3 addr �3 	.
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Fig. 16. Functions next[[I ]], error[[I ]] and F [[I ]] for I ∈ I3 \ I2.

It is easy to prove that Theorem 4.5 and Proposition 4.6 are also valid for
〈T3; �3〉. Figure 16 shows function next[[•]], error[[•]] and F [[•]] for the new
instructions.

Functions İτ in the definition of next[[init τ ]] in Figure 16 are the pointwise
extensions to memories and stacks of function Iτ : T × T → T, defined as

Iτ (σ, δ) =
{

τ if σ = δ = τ (h) ∈ U
τ
μ,

δ otherwise.
(23)

The purpose of these functions is to model the effect of the init τ instruction
on a single item of the context: the item must be compared with the stack top
and, if they are equal to the same uninitialized version of τ , the item must be
converted into τ (thus modeling initialization). Functions Iτ are monotone in
both their arguments. Thus they do not alter the monotonicity of next and, more
generally, all the previous theorems and propositions. Unlike all other functions
introduced so far, they are functions of two arguments. However, everything still
works, with the appropriate modifications.

Function check* : T × T → ℘(E) is defined as

check*(σ, τ ) =
{

∅ if ∃h > 0, σ � τ (h),
{τ (∗)} otherwise.

(24)

This function reflects the fact that an init τ instruction may accept any τ (h)

type.

4.3.1 Completeness in the Presence of Object Creation. We now repeat steps
1 and 2, introduced in Section 4.1, for language I3. We choose a family {Ei}i∈I of
sets of errors that covers E3. If method μ contains a h : new τ̄ instruction, then
at least one Ei set will contain τ (∗). Without loss of generality, let us assume
that there exists j ∈ I such that E j = {τ̄ (∗)} and let us focus on this set only.
The closure operator on ℘(E) that checks for absence of errors of type τ̄ (∗) is
ητ̄ (∗) = λQ .Q ∪ {τ̄ (∗)}. Using arguments similar to those used in Section 4.1.1,
it is easy to see that, for any τ̄ ∈ C ′, any complete abstraction of V wrt error
and ητ̄ (∗) must contain all τ̄ (h)’s in U

τ̄
μ. This is also a sufficient condition for

completeness wrt error and ητ̄ (∗) . More precisely, if we let U μ,τ = M (Uτ
μ) =

U
τ
μ ∪ {	, ⊥}, fτ = λσ. check*(σ, τ ) and B = ητ̄ (∗) (℘(E)), then U μ,τ̄ = S B

f τ̄
({	}).

Intuitively, the knowledge of where all uninitialized versions of τ̄ can be found
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in a vector v, is necessary and sufficient to check all error[[init τ̄ ]] conditions in
the method. This completes step 1.

For step 2, we have to find the absolute complete shell of any abstraction P
of T3 wrt F μ. The interesting case is when P contains a class type τ̄ and the
method contains an init σ̄ instruction, with σ̄ � τ̄ . In this case, S F μ

(P ) must
contain all uninitialized versions of σ̄ (taken from U

σ̄
μ). We call such domain

U μ,�τ̄ where

U μ,�τ = M
(
U

�τ
μ

)
.

The intuition behind this is the same as for array types: we must keep track of
all σ̄ (h)’s, since function I σ̄ may produce new {τ̄ }-assignable types from them.

We show that all types in U �τ̄ (μ subscript omitted for simplicity) are needed
by means of a simple example, which can be easily generalized. Let P = {τ̄ , 	},
for some τ̄ ∈ C ′, and assume that F μ contains I σ̄ only, with σ̄ � τ̄ . According
to Section 4.1.3, we have to compute S F μ

(P ) using equation (7). The arity of I σ̄

is 2 and, according to the last paragraph of Section 2.3, R F μ
becomes

RF μ
(A) =

⋃
σ∈A

(⋃
δ′∈T

max{τ ∈ T | I σ̄ (τ, δ′) � σ }∪
⋃
δ′′∈T

max{τ ∈ T | I σ̄ (δ′′, τ ) � σ }
)

.

The fixpoint iteration starts at A = {	} and we have that RF μ
({	}) = {	}. Thus,

the first iterate of the fixpoint calculation is S(0) = P . Next, we have to calculate
RF μ

(P ). When we take σ = 	, the above formula gives 	. When we take σ = τ̄ ,
we have the following cases, for the first maximal in the expression.

—(∀h) δ′ �= σ̄ (h). Then I σ̄ (τ, δ′) = δ′ and either the first maximal does not exist
(if δ′ �� τ̄ ), or it is 	.

—(∃h) δ′ = σ̄ (h). Then, I σ̄ (τ, σ̄ (h)) gives σ̄ � τ̄ if τ = σ̄ (h), and σ̄ (h) �� τ̄ otherwise.
Thus, the first maximal is σ̄ (h).

For the second maximal in the expression, we have the following cases.

—(∀h) δ′′ �= σ̄ (h). Then I σ̄ (δ′′, τ ) = τ and the second maximal is τ̄ .
—(∃h) δ′′ = σ̄ (h). Then, I σ̄ (σ̄ (h), τ ) gives σ̄ if τ = σ̄ (h), and τ otherwise. Thus, the

second maximal is either σ̄ (h) or τ̄ .

Summarizing, we have that RF μ
(P ) contains 	, τ̄ and all uninitialized versions

of all types σ̄ assignable to τ̄ . Then, S(1) will add ⊥ (because of the Moore closure)
and a further iteration will add no more types, signaling that the fixpoint has
been reached.

4.3.2 Instance Initialization Methods. When the method μ being ana-
lyzed is an instance initialization method τ̄ .<init> (constructor from now
on), some additional constraints must be checked [Lindholm and Yellin 1999,
Section 4.9.4]. Let us assume that τ̄ extends τ̂ (i.e., τ̂ is the direct base class
of class τ̄ ). At the beginning of the analysis, register 0 contains a special
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uninitialized type τ̄ (0). Before returning normally, the method must initialize
τ̄ (0) by invoking either another constructor of class τ̄ , or a constructor of class τ̂ .
Until either constructor is called, only assignments to instance fields declared
in class τ̄ (and not, for example, in a super class of τ̄ ) are allowed on τ̄ (0). Once τ̄ (0)

has been initialized, all its occurrences in the current context are transformed
into type τ̄ .

Here, we discuss how we can deal with these constraints in our framework,
without going into full details. The semantics of the verifier must be refined to
encode the additional constraints. Type τ̄ (0) must be added to the type hierarchy,
with ⊥ � τ̄ (0) � addr. Contexts must be extended with a flag that remembers
whether the proper constructor has been called on τ̄ (0). More formally, we intro-
duce C

′′ = {⊥τ̄ , 	τ̄ } × C
′, with ⊥τ̄ ≤ ⊥τ̄ < 	τ̄ ≤ 	τ̄ , ordered pointwise. The flag

is the first component of the context, with 	τ̄ representing a state where the
proper constructor has not yet been called, and ⊥τ̄ representing the opposite
situation. Note that, if a context coming from a path where the constructor has
not been called (flag set to 	τ̄ ) joins a path where the constructor has been called
(flag set to ⊥τ̄ ), the result of the merge operation on the flag is 	τ̄ ∨ ⊥τ̄ = 	τ̄ ,
correctly encoding the fact the constructor has not been called in all paths.
Semantic function next[[•]] must be modified for instructions start and init.
Instruction start must set the flag to 	τ̄ , and register 0 to τ̄ (0). Instruction
init τ must behave differently whenever τ ∈ {τ̄ , τ̂ } and the top of the stack is
τ̄ (0). In this case, all occurrences of τ̄ (0) must be transformed into τ̄ and the flag
must be set to ⊥τ̄ . All other instructions must leave the flag unaltered. The se-
mantic function error[[•]] must be modified for instructions init, putfield and
return. Besides their normal behavior, instruction init τ must also accept τ̄ (0)

when τ ∈ {τ̄ , τ̂ } and instruction putfield τ̄ . f : τ ′ must also accept τ̄ (0) (if f is
declared in class τ̄ ). Finally, instruction return must check that the flag is set
to ⊥τ̄ , returning a ⊥τ̄ error otherwise. A ⊥τ̄ errors signals that the method may
reach a return without calling the proper constructor on the object.

When this changes are in place, we can apply our theory and obtain the
following results:

—to check for absence of the new error ⊥τ̄ , it is sufficient to remember the value
of the flag and use B τ̄ (0) = {τ̄ (0), 	} for registers and stack items;

—because of the modifications to instruction init, type τ̄ (0) belongs to the com-
plete shells of both B τ̄ and B τ̂ .

In summary, the pass that checks for absence of errors on type τ̄ must also track
type τ̄ (0). If, during this pass, we also remember the value of the flag, we can
use this pass to check for absence of error ⊥τ̄ .

4.4 Subroutines

The bytecode instructions that deal with subroutines are jsr and ret. Sub-
routines are used by the Java compiler to translate try . . . finally statements
of the Java language: since the finally block may be reached from several
points in the method (e.g., normal or exceptional exit from the corresponding
try block), it is translated only once and reached through the use of the jsr
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Fig. 17. Functions next[[I ]], error[[I ]] and F [[I ]] for I ∈ I4 \ I3.

instruction. A jsr k instruction at label h saves the address h + 1 of the follow-
ing instruction on the stack, then jumps at instruction k. The subroutine can
store label h+ 1 in a register x using an astore x instruction, and then resume
execution from instruction at label h + 1 using a ret x instruction.

To model these new instructions, the lattice of types must include a new type
raddr, which is the type of the return address saved on the stack by the jsr
instruction and checked by the ret instruction. Moreover, since a raddr may
be used by an astore instruction, but not by an aload instruction, we must
assume the existence of a type laddr (loadable address) to which both Object
and uninitialized types can be assigned, but which is unrelated to raddr. Then,
we assume that aload stands for laddrload, while astore stands for addrstore
as before.

Thus we have:

T4 = T3 ∪ {raddr, laddr}, (25)
E4 = E3 ∪ {raddr, laddr}. (26)

The partial order �4 is the smallest reflexive, transitive, and antisymmetric
relation such that (∀τ1, τ2 ∈ T4) τ1 �3 τ2 =⇒ τ1 �4 τ2 and

⊥ � raddr � addr,
(∀τ (h) ∈ Uμ) ⊥ �4 τ (h) �4 laddr,

Object �4 laddr �3 addr.

Subroutine verification has been extensively studied in the literature (see,
for instance, the related section of Coglio [2004] for a complete state of the
art). Here we refer mostly to the implementation suggested by Sun. Figure 17
shows functions next[[•]], error[[•]] and F [[•]] for jsr and ret instructions. These
new instructions also require modifications to the definition of the control flow
graph. The modification is obvious for jsr k. Instruction ret x, instead, is
more difficult. Following Sun, we make the simple assumption that h�k + 1
for all k ∈ callers(subr(h)), whenever B(h) = ret x. The purpose of function
subr : L → L is to map each ret x instruction to a subroutine entry point
k, as specified in some jsr k instruction, also found in the method. Function
subr has to be calculated using a separate data flow analysis. Then, function
callers : L → ℘(L) is simply defined as callers(k) = {h ∈ L | B(h) = jsr k}.
The effect of this assumption is that all call sites of a given subroutine are
considered successors of the same ret instruction. The new function J̇ is the
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pointwise extension to M and S of function J : T → T defined as

J (τ ) =
{

	 if τ ∈ Uμ,
τ otherwise.

The purpose of this function is to (conservatively) solve the problem pointed out
by Freund and Mitchell [1999].

Note that J is a new nonconstant, nonidentity function that adds to F μ.
However, unlike [−1 and Iτ , this new function is “benign,” since it does not
cause types to be added to any complete shell. In fact, for any D ⊆ T and σ ∈ D,
max{τ | J (τ ) � σ } is either σ itself (if σ �∈ Uμ), 	 (if σ = 	) or does not exist.

Another problem with subroutines is related to the join of the contexts at
the instructions that follow a jsr. Due to the simple assumption made in the
construction of the control flow graph, contexts coming from different call sites
of the same subroutine get joined at all possible call sites of that subroutine.
This approximation is too rough and causes code actually generated by the Java
compiler to be rejected. The solution proposed by Sun is to treat as a special
case the join of contexts for instructions that follow a jsr: the state of registers
used by the subroutine is taken by the context generated by the ret instruction,
while the state of registers not used by the subroutine is taken by the context
of the jsr instruction. This strategy is implemented as follows. First, for each
subroutine k, a set used(k) ⊆ [0, rμ) is built. This set contains the names of all
registers read or written by any instruction belonging to subroutine k. Assume
subroutine k is exited by a ret instruction at label w and that h̄ ∈ callers(k).
Then:

next(v)(h̄ + 1) =

⎛
⎜⎜⎝ ⊔

h�h̄+1
h�=w

next[[B(h)]]v(h)

⎞
⎟⎟⎠ � (next[[B(h̄)]]v(h̄) �k next[[B(w)]]v(w)),

where:

(M1, s1) �k (M2, s2) = (M1 �k M2, s2),

M1 �k M2 = λx ∈ [0, r).

{
M1(x) if x �∈ used(k),
M2(x) otherwise.

It should be clear that, for our purposes, this algorithm only affects the �
relation, and, thus, has no influence on our proposed decompositions.

Example 4.7. Consider a method with rμ = 4 and tμ = 2 and n = rμ+tμ = 6.
Assume the method contains a subroutine, located at instruction k, and called
at instruction h̄. Moreover, suppose the subroutine ends at instruction w and
modifies only register 0 and 2. Then, the relation � is such that (see Figure 18):

—for i ∈ [r, n), wn + i � (h̄ + 1)n + i, (the stack comes from the subroutine),
—for i ∈ used(k), wn + i � (h̄ + 1)n + i (the registers used by the subroutine

affect the instruction following the jsr, and
—for i �∈ used(k) and i ∈ [0, r), h̄n + i � (h̄ + 1)n + i (the register not touched

by the subroutine are taken from the jsr instruction).
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Fig. 18. How the relation �μ describes registers propagation across method μ and subroutine
located at instruction k. The nexti j functions, all equal to λσ.σ , are omitted.

4.5 Other Features of JVML

Other features of JVML have been left out of our discussion, mainly because
they are largely orthogonal to our proposed decomposition.

The first feature is interface types. For our purposes, interfaces are an addi-
tional set of user defined types, similar to classes. Interfaces are arranged in an
extends acyclic relation which is separated from the class tree (apart from com-
mon derivation of classes and interfaces from Object). The connection between
classes and interfaces is introduced by a distinct implements relation. Each
class may implement any number of interfaces. The � order relation includes
both the class and interface extends relations, and the implements relation. This
means that the inclusion of the set of types, ordered by �, in a lattice is generally
no longer trivial. For example, when two unrelated classes both implement two
unrelated interfaces there is no least upper bound (�) for the two classes. This is
a problem in standard verification, since � is used whenever two contexts need
to be merged. For this reason, the Sun implementation of the bytecode veri-
fier ignores type constraints on interface types. These constraints, instead, are
checked at runtime by the bytecode interpreter. In our proposed verification we
do the same. However, we discuss some alternatives in the Related Work section.

The second feature is the JVM exception handling mechanism. Exceptions
are represented by objects derived from the predefined Throwable class. Excep-
tions are thrown either explicitly (through the athrow bytecode instruction) or
implicitly by the JVM itself. This causes a transfer of control to a matching ex-
ception handler entry (an index in the bytecode array). Each exception handler
entry is mapped to a specific type of exception, and a specific range of bytecode
instructions (the active range of the exception handler entry). This mapping
is implemented in an exception table for each method. As far as bytecode ver-
ification is concerned, each exception handler entry must be considered as a
possible successor of each instruction in its active range, thus causing a mod-
ification of the Control Flow Graph. Again, this does not affect our proposed
decomposition.

Finally, not all bytecode instructions in JVML are listed in Figure 1. However,
all missing instructions do not add any nonconstant nonidentity function to F μ,
so they have been omitted for simplicity. Note that type conversion instructions
like i2f or checkcast contain the target type in their opcode, so their effect can
be modeled using constant functions.
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4.6 Implementation

In this section we present some implementation guidelines for multipass veri-
fication. The implementation of the multipass algorithm for the verification of
a method μ proceeds as follows.

(1) Structural constraints and stack safeness are checked (Section 3.5).
(2) If subroutines are used, tables implementing subr and used are built

(Section 4.4).
(3) The set E μ ⊆ E of types that must be checked is computed. This amounts to

evaluating E μ = ⋃
h∈L0,μ

rng(error[[Bμ(h)]]), and can be performed in a single
pass over the bytecode of the method.

(4) For each type τ in E μ, the complete shell Sτ = S F μ
(B τ ) is computed and

the verification algorithm is performed using abstraction Sτ .

The verification algorithm is performed using a standard chaotic fixpoint it-
eration [Qian 2000] and a dictionary of contexts. The dictionary only stores
contexts for instructions that are targets of a branch instruction (i.e., goto or
ifcond) [Leroy 2001].

In step 3, Sτ may be different from {	, τ } only when null � τ � Object. In
this case, the following steps are sufficient to determine Sτ :

(1) if the method contains an aaload instruction, find κμ,τ (see Section 4.2.1);
(2) find all h : new σ instructions, where σ � τ (see Section 4.3.1).

When Sτ contains both arrays of τ and uninitialized versions of types assignable
to τ , we represent a type σ ∈ Sτ using a two-fields representation: the first field,
with a fixed size of two bits, determines four kinds of types (e.g., “11” for 	, “01”
for array, “10” for uninitialized type, “00” for null); the second field contains,
depending on the value of the first field, the dimension of the array (0 for type τ

itself), the index in the method bytecode of the corresponding new instruction for
an uninitialized type, or an undefined value. The size of the second field depends
on the method being verified and can be calculated during step 3. There is no
need to have a representation for ⊥, since this type never appears. The two-
fields representation wastes some space, but allows for an easy implementation
of all operations that must be performed on types.

5. SERIAL DECOMPOSITION

Parallel decomposition gives a satisfactory solution to the problem of simplify-
ing the analysis of programs written in I1. However, this is due to the extreme
simplicity of the characteristic functions involved in I1: if we are verifying a
method μ, we only focus on a subset E of types in T, and, for a given context
vector v, we know precisely where all E-assignable types can be found, then
we can obtain the same precise knowledge on next(v). For more complex in-
struction sets, however, we can obtain only partial information; that is, next(v)
may contain some E-assignable types which we miss. As we have seen, this
is possible if some characteristic function in F μ may produce an E-assignable
type from a non-E-assignable type. We would miss this new type, since we
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have no knowledge of where non-E-assignable types can be found in v. This
partial knowledge on next(v) implies loss of precision in type checking. In fact,
for some instruction of μ that requires an E-assignable type, we may not be
able to prove that it can be correctly executed in next(v). Thus, we would have
to conservatively reject the method, even though it might be correct.

In Sections 4.2.1 and 4.3.1 this problem has been solved by enlarging the
set of types that we must keep track of at the same time. In fact, the purpose
of the complete shell computation is to include the set E ′ of types that may
generate (through functions in F μ) E-assignable types, then the set E ′′ of types
that may generate E ′-assignable types, and so on. However, keeping track of
several types at the same time requires more space. An alternative solution is
to compute next(v) considering only types in E ′′, but remembering where new
E ′-assignable types are generated, then use this information to compute next(v)
for types in E ′, and so on.

Let us consider, for example, a class C and the corresponding array type [C,
which both appear in the method we are verifying. Assume that no [kC with
k > 1 is used in the method, and the method contains no init C instruction.
We know from Section 4.2.1 that, if the method contains an aaload instruction,
both C and [Cmust be analyzed together using abstraction A 1

C = {[C, C, null, 	},
otherwise completeness is lost. This is because the aaload instruction brings
function [−1 into the set of functions used in the method, and this function
may produce a C from a [C. The idea developed in this section is to perform
an initial analysis using type [C only (i.e., compute the fixpoint of next using
abstraction {[C, 	}). This analysis is used to discover which aaload instructions
have a [C type on the proper stack element of their fixpoint before context.
Then, this information is used to replace [−1 functions with constant functions,
each of which either produces C or 	. After this replacement, abstraction {C, 	}
becomes (fixpoint) complete. The effect is that we have decomposed abstraction
{[C, C, null, 	} into abstractions {[C, 	} and {C, 	}. However, this decomposition
is serial rather than parallel, since information obtained in the former is used
to make the latter possible (without losing completeness). The crucial property
that makes the serial decomposition possible is that {[C, 	} is complete wrt
{C, 	} and [−1 (as shown in Section 5.1 below, Proposition 5.4), that is, knowing
whether a type τ is assignable to [C is all that is needed for knowing whether
[−1

τ is assignable to C.
Let us consider type C again, but assume now that instructions h : new C and

init C are found in the method. Assume that the method contains no other
h′ : new τ instruction, with τ assignable to C, and either no array of C, or no
aaload instruction. Recall from Section 4.3.1 that a complete abstraction for
this method is M ({C} ∪ U μ,�C) = {C, C(h), 	, ⊥}, since instruction init C may
produce C from C(h) using function IC. Applying the idea of serial decomposi-
tion, we could perform an initial analysis using abstraction B C(h) = {C(h), 	}
and discover which instances of function IC (there is a distinct instance for
each element of the before context of the init C instruction) produce a C type.
Unfortunately, abstraction {C(h), 	} is not complete wrt {C, 	} and IC. In fact,
since IC(σ, τ ) produces τ whenever σ �= τ or σ �= C(h), then IC(σ, C) = C. Since
C is unknown in abstraction {C(h), 	}, there is no way to know if τ = C, so this
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abstraction may miss some C’s produced by some IC(σ, τ ) function. In other
words, abstraction {C(h), 	} is able to predict some of the necessary information
on the output of IC functions, but not all. Thus, functions IC cannot be replaced
by constant functions. To overcome this problem, we define the residual of a
semantic function f with respect to a given abstraction ρ of its domain. The
idea is that the residual function gives all that is missed of the output of f ,
after its abstraction through ρ.

Definition 5.1 Residual. Let 〈C; ≤〉 and 〈D; �〉 be complete lattices, ρ ∈
uco(C) and f : C → D. We call a residual of f wrt ρ any function g : C → D
such that g � ( f ◦ ρ) = f .

In our example, f is ϕB C
◦ IC and ρ is (the closure operator corresponding to)

abstraction {C(h), 	} × {C(h), 	} (the Cartesian product is necessary, since IC is a
function of a pair of types). Note that, if f � f ◦ ρ (and, in particular, if f is
monotone), there always exists at least one residual of f wrt ρ, namely f itself.
If f = f ◦ ρ, we can take g = λc ∈ C.	D as a residual of f . This reflects the
intuition that, if ρ keeps all information that is necessary to compute f , then
any residual g of f wrt ρ does not need to give any additional information.

Now, instead of replacing each function IC with a constant function, the idea
is that we can replace them with the meet of a constant and their residual
function. The constant is discovered using abstraction {C(h), 	}, while the resid-
ual function gives the rest of the information produced by IC which cannot be
discovered by the abstraction. Recall that we want to replace IC functions be-
cause they make abstraction {C, 	} incomplete. In the case of arrays, we are
able to replace functions [−1’s with constant functions. This is certainly better,
since all abstractions are complete wrt constant functions. However in the case
of IC, the replacement introduces other non constant functions. Nevertheless,
the replacement is still useful, if abstraction {C, 	} is complete for the residual
function.

In the following theorem, we show how information obtained from an abstract
interpretation ϕB can be used to replace functions in F μ, to be used in a different
abstract interpretation ϕA.

THEOREM 5.2 SERIAL DECOMPOSITION. Let A, B ∈ abs(T), F = { fh}h∈H ⊆ F μ

and G = {gh}h∈H with gh a monotone residual of ϕA ◦ fh wrt ϕB, ∀h ∈ H. Let
L = lfp(nextμ) and define method μ′ using next′i j where

next′i j =
{

λτ.gh(τ ) � ϕA( fh(ϕB(L[i]))) if nexti j = fh ∈ F,
nexti j otherwise.

If 〈ϕA, ϕA〉 is complete for (F μ \ F ) ∪ G and ϕA is join-distributive, then

lfp(ϕ̇A ◦ nextμ′ ) = ϕ̇A(lfp(nextμ)).

PROOF SKETCH. 2 First, we show that ϕ̇A(L) is a fixpoint of ϕ̇A ◦ nextμ′ and
thus lfp(ϕ̇A ◦ nextμ′) � ϕ̇A(L). Then, we show that the reverse inequality also

2See the companion technical report [Bernardeschi et al. 2007] for a full proof.
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Fig. 19. Serial decomposition in the presence of array types.

holds, by showing that each iterate of the Kleene sequence for nextμ is � of the
corresponding iterate for nextμ′ .

In the definition of method μ′, we replace each function fh in F with a function
built from the meet of the residual gh of ϕA ◦ fh, and a constant which is the
value that ϕA◦ fh would assume when evaluated on the proper element of ϕB(L).
An important special case is when 〈ϕB, ϕA〉 is complete for each fh, so that there
is no need for a residual.

THEOREM 5.3. Let A, B ∈ abs(T) such that 〈ϕB, ϕA〉 is complete for F ⊆ F μ,
〈ϕA, ϕA〉 is complete for F μ \ F and ϕA is join-distributive. Then, there exists
a method μ′ such that 〈ϕA, ϕA〉 is complete for F μ′ and ϕ̇A ◦ nextμ′ is fixpoint
complete wrt ϕ̇A and nextμ.

PROOF. Let f be any function in F . Since 〈ϕB, ϕA〉 is complete for F , meaning
that ϕA ◦ f ◦ϕB = ϕA ◦ f , a residual g of ϕA ◦ f wrt ϕB is simply g = λτ.	. Since
this is a constant function, it is monotone and 〈ϕA, ϕA〉 is trivially complete for
it. Thus, we can apply Theorem 5.2, obtaining the requested method μ′. Note
that the definition of next′i j simplifies to

next′i j =
{

λτ.ϕA(nexti j (L[i])) if nexti j ∈ F ;
nexti j otherwise.

The additional claim that 〈ϕA, ϕA〉 is complete for F μ′ is trivially proved as
follows: F μ′ contains all functions in F μ \ F , for which 〈ϕA, ϕA〉 was already
complete by hypothesis, plus a set of constant functions, for which any abstrac-
tion is complete.

5.1 Serial Decomposition in the Presence of Arrays

In this section we show how to combine Parallel and Serial Decomposition to
further decompose lattice A k

τ , defined at the end of Section 4.2.1, so that each
separate analysis is performed using a two-element lattice, without losing com-
pleteness. We illustrate the idea in Figure 19, where m = κμ,τ . We decompose
A m

τ into basic domains, disregarding type null (since it cannot generate er-
rors). We then start from domain {[m

τ, 	}, compute the corresponding fixpoint
and remember where [m−1

τ ’s appear (if any). Finally, we proceed to domain
{[m−1

τ, 	} and so on, until we reach domain {τ, 	}.
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First, we use Lemma 4.2 with C = A m
τ and D = ℘(A m

τ ∩ E) = ℘(A m
τ \

{	, null}). Now let L = [0, m], {Dl }l∈L = {[l
τ }l∈L and ηl = λQ .Q ∪ Dl . We

know from Section 4.1.1, that if we decompose A m
τ into the basic domains

Pl = B [l
τ = {[l

τ, 	}, for each l ∈ L, then each pair 〈ϕ̇Pl , ηl 〉 is complete wrt
error. Abstraction ϕ̇Pl is not complete for next, instead, for all l < m. The reason
for this incompleteness is that an aaload instruction in the method may pro-
duce an [l

τ from an [l+1
τ . In fact, when we abstract a context vector according

to Pl , [l+1
τ is abstracted into 	, and the presence of a new [l

τ , produced by
the aaload instruction, is missed. Nonetheless, we note that Lemma 4.2 only
requires fixpoint completeness wrt next, and fixpoint completeness is a weaker
requirement than completeness [Giacobazzi et al. 2000].

Note that ϕ̇Pm is complete wrt next, since m = max{l | [l
σ ∈ T and σ �

τ } and therefore type [m+1
τ may never appear in the verification. Therefore,

we can start the analysis of A m
τ using abstraction ϕ̇Pm , and obtain fixpoint

Lm = ϕ̇Pm(lfp(nextμ)). Fixpoint Lm can be used to find all errors, if any, on
type [m

τ . Then, we want to use Theorem 5.3, with A = Pm−1, B = Pm, and
F = {[−1}, to compute Lm−1 = ϕ̇Pm−1 (lfp(nextμ)). Since ϕPm−1 is join distributive
and 〈ϕPm−1 , ϕPm−1〉 is certainly complete for F μ \ {[−1} (Section 4.1.3). We then
still have to prove that 〈ϕPm , ϕPm−1〉 is complete for [−1. We prove a more general
result in the following proposition.

PROPOSITION 5.4 [−1
COMPLETENESS. Let τ ∈ T, with null � τ � Object and

let Pl = B [l
τ = {[l

τ, 	}. Then, for all l ≥ 0, 〈ϕPl+1 , ϕPl 〉 is complete wrt [−1.

PROOF SKETCH. We will show that, for every σ ∈ T, ϕPl ([
−1(ϕPl+1 (σ ))) =

ϕPl ([
−1(σ )). The proof proceeds by cases on σ .

{σ � null} It holds since ϕPl ([
−1(ϕPl+1 (σ ))) = ϕPl ([

−1([l+1
τ )) = ϕPl ([

l
τ ) = [l

τ , and
ϕPl ([

−1(σ )) = ϕPl (σ ) = [l
τ .

{σ �� null, σ � [l+1
τ } Thus, the left-hand can be re-written as ϕPl ([

−1(ϕPl+1

(σ ))) = ϕPl ([
−1([l+1

τ )) = ϕPl ([
l
τ ) = [l

τ . We have that σ = [l+1
σ ′, with σ ′ � τ .

Then the right-hand member can be simplified as ϕPl ([
−1(σ )) = ϕPl ([

l
σ ′) =

[l
τ .

{σ �� null, σ �� [l+1
τ } Then, the left-hand member is equal to ϕPl ([

−1(ϕPl+1

(σ ))) = ϕPl ([
−1(	)) = ϕPl (	) = 	. The right-hand member is also equal

to 	, since it can be shown that, whatever the value of [−1(σ ) is, it cannot
be � [l

τ .

Thus, we can use Theorem 5.3 and find a new method, say μm−1, such that
lfp(ϕPm−1 ◦ nextμm−1 ) = ϕPm−1 (lfp(nextμ)) = Lm−1. We can use Lm−1 to find all
errors, if any, for type [m−1

τ . Moreover, we are now in the position to apply
Theorem 5.3 again, with A = Pm−2, B = Pm−1 and F = {[−1}, to find Lm−2,
and so on. At each step l , a new method μl must be found. When we have
performed all steps, we will have built {nextμl }l∈L (with μm = μ), which is a set
of functions that are fixpoint complete for nextμ wrt ϕPl . Thus, we have checked
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all the hypotheses of Lemma 4.2, and we can conclude that the process we have
described allows us to precisely find all errors in A m

τ ∩ E.
Using the same definition introduced in the proof of Theorem 5.3, we can

define, for all l ∈ [0, m):

nextμl (v) = λ j .
m−1⊔

i=0

next(l )
i j (v[i]),

where

next(l )
i j =

{
ϕPl ([

−1(Ll+1[i])) if nexti j = [−1,
nexti j otherwise.

Note that function nextμl , used in the computation of fixpoint Ll , needs some
information from fixpoint Ll+1. The memory needed to store this information
adds to the total memory requirements of the decomposition. However in this
simple case the additional memory requirements amount to a single bit for each
aaload instruction in method μ. In fact, to compute next(l )

i j , we only need to know
whether the stack top in the before context of each aaload instruction, taken
from Ll+1, is � [l+1

τ or not.

5.2 Serial Decomposition in the Presence of Object Initialization

As noted in Section 4.2.1, the presence of a nonconstant, nonidentity function
in F μ may cause the complete shell of some abstractions of T to contain more
than two elements. In this case, the complete shell (wrt next) of any τ ∈ C ′,
for which some new instruction is found in the method, must contain all the
uninitialized versions of types assignable to τ .

Object initialization poses an additional problem, since the form of its error
function is different from all the others. In particular, function check* defined
in Section 4.3.1 implies that all uninitialized versions of τ must be tracked to
check for the presence of error τ (∗) (for any τ ∈ C ′).

In this section, we apply similar ideas to those in Section 5.1 to obtain a
decomposition into basic domains, without losing completeness. We do this in
two steps: first, we show that the check of initialization errors, for any τ ∈ C ′, can
be decomposed using a basic domain. Then, we show how to use information,
gathered during the first step, to obtain a fixpoint complete (wrt next) analysis
that only uses the basic domain B τ = {τ, 	}.

5.2.1 Decomposition of the Check for Initialization Errors. For a fixed
method μ and any τ ∈ C ′, recall that U τ is the least domain that contains
the set of uninitialized versions of τ (restricted to those that may actually be
created by method μ). We can easily verify that ϕ̇U τ

is complete wrt error and
λQ .Q ∪ {τ (∗)}. Moreover, it holds that S F μ

(U τ ) = U τ for any μ, so that 〈ϕ̇U τ
, ϕ̇U τ

〉
is also complete (and, thus, fixpoint complete) for nextμ. This means that, as far
as error τ (∗) is concerned, we can work in domain U τ , without losing precision
wrt standard verification.

We now want to decompose domain U τ . Assume that domain U τ is not a
basic domain (otherwise there would be no need for a decomposition). This is
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the case when there is more than one new τ instruction in the method, since U τ

will contain a distinct τ (h) for each h : new τ instruction, together with 	 and
⊥. Now, we apply Lemma 4.2, with C = V = D, f = next, g = ϕ̇U τ

, I = U τ and
ρi = ηi = ϕ̇Pi , where Pi, given i ∈ U τ , is the basic domain B τ (h) = {τ (h), 	} for
some i = τ (h) ∈ U τ . Finally, we choose f �

i = nextbi = ϕ̇Pi ◦ next, the abstraction
of f wrt ϕ̇Pi , and g �

i as the best abstraction gb
i of g = ϕ̇Pi wrt ϕ̇Pi , which is

gb
i = ϕ̇Pi itself. Now, an easy calculation shows that S F μ

(Pi) = Pi, for any
i ∈ U τ . Thus, 〈ϕ̇Pi , ϕ̇Pi 〉 is always complete and, thus, fixpoint complete for next
and hypothesis (a) is satisfied. Hypothesis (b) requires completeness of 〈ρi, ηi〉
wrt g , for all i ∈ U τ . This requires proving that ηi ◦ g = ηi ◦ g ◦ ρi. Note that
all functions involved are functions on V. However, the equivalent condition
can be checked on T and then pointwise extended to V. When checked on T,
the previous condition translates to ϕPi ◦ ϕU τ

= ϕPi ◦ ϕU τ
◦ ϕPi . It is well known

that, if ρ and η are two closure operators on C, then ρ(C) ⊆ η(C) implies that
ρ◦η = ρ. Thus, the previous condition holds, due to Pi ⊆ U τ and idempotency of
ϕPi . This satisfies hypothesis (b). Finally, hypothesis (c) is also satisfied, since
M (

⋃
i∈U τ

Pi) = U τ (the only element that may be missing from the union,
namely ⊥, is added by the Moore closure, as the meet of any two, or more,
distinct τ (h) types in U τ ). Thus, we can apply Lemma 4.2 and obtain:

L = ϕ̇U τ
(lfp(next)) = �

i∈U τ

ϕ̇Pi (lfp(nextbi )) = �
i∈U τ

Li.

This means that we can recover the least fixpoint L of the analysis that uses
ϕ̇U τ

, by calculating the meet of the least fixpoints Li, obtained in the separate
analyses, each involving a different Pi. We recall that we need L only to apply
error to it and look for the presence, or absence, of a τ (∗) error. Since this error
can only be produced by the init τ instructions, we do not need all of vector
L, but only some relevant elements (i.e., the stack top of the before context of
all init τ instructions). Thus, during computation of least fixpoint Li, we only
need to remember the type observed in these elements, in order to perform the
final meet. This meet can, obviously, be performed incrementally, so there is
no need to store the partial results of each Li in separate locations. Moreover,
an analysis of the possible cases that may occur, shows that, for each element,
we only need to know if it is 	 or not. In conclusion, this decomposition only
requires an additional bit for each init τ instruction in the method.

5.2.2 Decoupling Class Types from Their Uninitialized Versions. The exis-
tence of function Iσ in F μ, with σ � τ , forces the complete shell of B τ = {τ, 	}
wrt F μ to contain all types in U �τ . Thus, type errors on τ cannot be directly
checked using basic domain B τ . However, assume for the moment that method
μ contains no aaload instructions or no arrays of τ . Then, we can use Theo-
rem 5.2, with A = B τ , B = U �τ and F = {Iσ ∈ F μ | σ � τ }3. This allows us
to gather sufficient information during the calculation of ϕ̇U �τ

(lfp(nextμ)) and
use this information to compute ϕ̇B τ

(lfp(nextμ)).

3Theorem 5.2 only considers functions with arity 1. However, it can be generalized in a natural
way to functions of any arity.
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We have that 〈ϕB τ
, ϕB τ

〉 is complete for F μ \ F (since all functions in this set
are either constant or the identity function). Moreover, ϕB τ

is join distributive.
Finally, we have to find for each function Iσ ∈ F , a residual of ϕB τ

◦Iσ wrt ϕU �τ
.

We have:

ϕB τ
(Iσ (τ1, τ2)) =

{
τ if Iσ (τ1, τ2) � τ ⇔ τ1 = τ2 ∈ U

σ
μ or τ2 � τ ,

	 otherwise,

while:

ϕB τ
(Iσ (ϕU �τ

(τ1), ϕU �τ
(τ2))) =

{
ϕB τ

(σ ) if ϕU �τ
(τ1) = ϕU �τ

(τ2) ∈ U
σ
μ

ϕB τ
(ϕU �τ

(τ2)) otherwise
=

=
{

τ if τ1 = τ2 ∈ U
σ
μ

	 otherwise.

The main point in these calculations is that the result of the test τ1 = τ2 ∈ U
σ
μ

can be completely determined in U �τ . A residual function g such that ∀(τ1, τ2) ∈
T × T, g (τ1, τ2) � f (ρ(τ1), ρ(τ2)) = f (τ1, τ2) is g = λτ1, τ2.ϕB τ

(τ2). This function
is monotone and 〈ϕB τ

, ϕB τ
〉 is trivially complete for it. Thus, we can apply The-

orem 5.2, and implement the following strategy:

(1) during fixpoint calculation of ϕ̇U �τ
◦nextμ, we collect ϕB τ

◦Iσ for all relevant
elements in the context vector. This requires a bitmap of size tμ + rμ for
each init σ instruction in μ, σ � τ . Note that parallel decomposition can
be applied to U �τ , so these bitmaps can be easily calculated, incrementally,
as the meet of the corresponding bitmaps obtained in each substep (this is
another application of Lemma 4.2).

(2) B τ is analyzed by replacing each Iσ (τ1, τ2) function with the meet of τ2 and
the appropriate element computed in step 1.

In summary, a basic domain can be used even in this case, with only a (generally)
small penalty in memory requirements.

If F μ contains both [−1 and Iσ , σ � τ , then S F μ
(B τ ) = M (A

κμ,τ
τ ∪ U μ,�τ ).

In this case, serial decomposition can still be used, but all [−1 and Iσ must be
replaced before abstraction B τ can be used. First, serial decomposition is used
to decouple B τ from S = M (A

κμ,τ

[τ ∪ U μ,�τ ). Then, parallel decomposition is
used to decompose S in A

κμ,τ

[τ and the set of basic domains contained in U μ,�τ .
Finally, serial decomposition is applied to A

κμ,τ

[τ .

5.3 Implementation

To implement the strategies described in Sections 5.1 and 5.2, we can replace
step 4 in the implementation outlined in Section 4.6 with the procedure that
follows. For each type τ ∈ C ′, found in step 3, Sτ = S F μ

(B τ ) is computed
as before, but now the result is used to implement the strategy illustrated in
Section 5.1 and/or the strategy of Section 5.2 as needed. Note that this simple
implementation may cause some abstract interpretation to be repeated two or
more times, but has minimal memory requirements.
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6. DISCUSSION

In this section we will compare multipass verification to two other bytecode
verification techniques: the standard verification and the Lightweight Bytecode
Verification (LBV).

6.1 Multipass vs. Standard Verification

To perform the fixpoint iteration, both standard and multipass verification must
save the types of each register and stack item at each branch target. This
information is stored in a data structure which we call dictionary.

In the standard verification each type is represented with three bytes [Leroy
2002]. Hence, the size in bits of the dictionary used in the standard verification
is

DStd = 24nb,

where b is the number of branch targets and n is the number of items in a
context (number of registers plus stack size) of a given method.

If we use the multipass algorithm without applying serial decomposition the
space occupancy of the dictionary is equal to

DPar = max
σ∈E ′

μ

( fPar(σ )),

where E ′
μ is the set of types corresponding to the passes of the parallel verifi-

cation of method μ, and fPar(σ ) is the space occupancy of the dictionary during
the analysis that checks σ -correctness. Note that E ′

μ ⊆ E μ, since some passes
of the parallel verification may keep track of more than one type at a time, and
thus can also check more than one type error in a single pass. Function fPar
can be calculated as (see Section 4.6)

fPar(σ ) =
{

nb Naaload = 0 or σ ∈ B or κμ,τ = 0,
(2 + ⌈

log(max(κμ,σ ,
∣∣U�τ

μ

∣∣))⌉)nb otherwise,

where Naaload is the number of aaload instructions in the method. On the other
hand, when using serial decomposition for dealing with arrays and object ini-
tialization, the size of the dictionary is

DSer = max
σ∈E ′′

μ

( fSer(σ )),

where E ′′
μ is the set of types corresponding to the passes of the serial verification

of method μ, and fSer(σ ) is equal to the memory requirements of the analysis
with the basic domain {σ, 	}. In serial decomposition we have E ′′

μ ⊇ E μ, since
this decomposition may introduce some passes over types that are used but
not checked in method μ. When we use the decomposition in basic domains,
we can represent each type with a single bit. However, we have to use some
additional memory for aaload and init instructions. We must use at least one
bit for each aaload (Section 5.1) and then save one whole context for each init
(Section 5.2.2). Therefore the value fSer(σ ) can be calculated as

fSer(σ ) = nb + Naaload + n
∣∣U�σ

μ

∣∣ .
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We measured the value of DPar, DSer, and DStd for two classes of packages: Java
Card applets and J2ME applets. For the first class we have chosen the examples
bundled with JCDK v.2.2.2 and the PACAP case study [Bieber et al. 2001]. This
set of applets is a superset of the benchmarks used by other papers on this
topic (see Section 7 for references). For the second class we chose the examples
contained in the Sun Wireless Toolkit v. 2.2 because we would like to show some
statistics about bigger applications that run on memory constrained devices.

When there are no inits and no aaloads the ratios DPar/DStd and DSer/DStd
are minimum and equal to 1/24 = 4.17%, therefore the space occupancy of
the dictionary in multipass verification is substantially lower than in standard
verification. However, for particular methods that have high number of unini-
tialized objects and a small number of branch targets, the standard verification
may require less memory—for instance when a class has a long list of static
object fields of the same type. The initialization method of such a class will have
many inits without having many targets. Luckily, such methods are extremely
rare (e.g., for each of the tested packages only less than 0.1% of the methods have
a ratio DSer/DStd > 0.5). Applet developers could find such pathological meth-
ods and refactor them in order to have less object initializations per method.

Figure 20 shows the values of DPar, DSer (in bytes), of the ratios DPar/DStd
and DSer/DStd in the worst case, that is the ratio is between the most space
consuming method with multipass and the most space consuming method with
standard verification (i.e., the ratio can refer to two distinct methods). When
the serial decomposition is not used, in packages that use arrays and objects,
the ratio grows a bit, but without going beyond 13% (Java Card applets) and
21% (J2ME applets). Using serial decomposition, the ratio is around 5%. These
results confirm that multipass verification greatly reduces the space occupancy
of the dictionary.

Figure 21 shows the average number of passes needed (i.e., the number of
abstraction interpretations) with and without serial decomposition. In most
cases the number of passes ranges from 5 to 10.

However, even though we believe that multipass verification is slower than
Standard Verification, some facts suggest that this slowdown might be toler-
able. First, the total time of verification is not entirely due to the dataflow
analysis, but also to the verification of structural constraints, which must be
performed in any case. Moreover, verification is performed only when the ap-
plet is installed, and in Java Card most of the installation time is due to the
transfer of code to the device (Deville and Grimaud [2002] report that the load
time is from 5 to 8 times greater than the verification time). Finally, even if the
algorithm must be repeated n times, the time penalty with respect to Standard
Verification is generally not n. In fact, in bitmap representation, a join of two
contexts can be easily implemented as bitwise logical OR, which is always a
simpler and faster operation than that performed by Standard Verifier. Com-
paring the other operations is less clear, though. For example, take τ, σ ∈ C ′. If
we want to check for τ � σ , we need to traverse the class hierarchy, starting
at τ , until σ is found, or the top of the hierarchy is reached. In Standard Veri-
fication, this traversal must be performed whenever a type checking involving
class types is performed. On the other hand, in our bitmap representation this
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Fig. 20. The space occupancy of the dictionary for some J2ME applets (at the top) and some
Java Card applets (at the bottom). The Mth column reports the number of methods. The Size
column indicates the maximum size of the dictionary using our algorithm (in bytes). The %Std
column shows the percentage ratio of maximum sizes of the dictionary between our algorithm and
Standard Verification.

traversal must be performed whenever a new class type is created (since we
must know whether this new class type must be abstracted into 1 or 0), while
type checking only requires testing for a 0. Thus, the comparison depends on
the ratio of the number of instructions that create new class types versus the
number of class type constraints, and on the average “distance” in the class hi-
erarchy of the types to be compared in the two cases. The check τ � σ can also
be done more efficiently with the aid of some sort of caching [Click and Rose
2002; Cohen 1991] and therefore at the expense of some additional memory.
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Fig. 21. The average number of passes needed to perform multipass verification of (a) some J2ME
applets, and (b) some JavaCard applets (with and without serial decomposition).

Fig. 22. The statistics concerning some large/medium applications/libraries. The Mth column re-
ports the number of methods. The Size column indicates the maximum size of the dictionary using
our algorithm (in bytes). The %Std column shows the percentage ratio of maximum sizes of the
dictionary between our algorithm and Standard Verification. The Passes column shows the average
number of analyses per method.

Finally, in Figure 22, we present statistics on a set of large/medium
applications/libraries. We analyzed: a) JDK (the runtime environment of Sun
Java Development Kit, v.1.5.0.12), b) Azureus (a Bittorrent client), c) Jedit (a
programmer’s text editor), d) Bcel (the Byte Code Engineering Library, a library
for manipulating Java classfiles, developed by the Jakarta project of the Apache
Foundation), e) Jclasslib (a Java class file library with a Java byte code viewer,
developed by ej-technologies GmbH) e) JCDK (the Sun Java Card Development
Kit APIs, v. 2.2.2). We believe that this class of statistics is less significant than
the others because these applications run on devices for which the memory is
not a concern. However, the results confirm the trend predicted by the other
experiments.
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6.2 Multipass vs. LBV

The Proof Carrying Code was proposed by Necula [1997] and tailored to byte-
code verification by Rose and Rose [1998]. The verification process is split into
two phases: lightweight bytecode certification (LBC) and lightweight bytecode
verification (LBV). LBC is performed off-board and produces a certificate that
must be distributed and downloaded into the device together with the bytecode.
LBV is performed on-board and checks that the certificate is correct. LBV is cur-
rently used in the KVM of Sun’s Java 2 Micro Edition. In this implementation,
LBC performs a standard verification through fixpoint iteration, then it records
the fixpoint into the certificate. Thus, the certificate contains, for each method,
the contents of each before context (registers plus stack) of each branch target.
The certificate is then stored in the classfile as a StackMap attribute. LBV is a lin-
ear verification process that exploits the certificate to avoid a full dataflow anal-
ysis. During LBV, only one context is constantly updated and needs to be stored
in RAM. Certificates, instead, are never updated and therefore can be stored
in slow-write memories (Flash, EEPROM) together with the application code.
Thus, LBV can be performed in RAM constrained devices. Moreover, the linear
verification performed by LBV is quite faster than standard verification, and
for this reason LBV has become [JSR 2006] the predefined method of verifica-
tion in the JSE as well, leaving the standard verification as a fall-back strategy
when LBV fails (for instance due to an invalid or missing StackMap attribute).

One drawback of this technique is that each code must be distributed with
its certificate, thus increasing the size of data that must be downloaded to the
device. Leroy [2003] reports that the certificate is about 50% the size of the cor-
responding bytecode, and Deville and Grimaud report an increase of 10 to 30%
in the size of the downloaded code due to the certificate [Deville and Grimaud
2002]. However, Rose [2003] reports that the certificate could be furtherly op-
timized at the cost of using more memory during the lightweight verification.
In the following, we refer to the implementation present in the KVM. Reduc-
ing the size of the certificate is important in embedded devices, where: 1) the
transmission of the additional bytes of the certificate could have a nonnegli-
gible cost; 2) even slow-write memories may have severe size constraints. To
make the certificate smaller, the encoding of types in LBC is not of uniform size:
reference types need 3 bytes, while basic types need only one. Moreover, also
the number of context elements stored for each branch target is not uniform:
the certificate stores only the registers up to the first unused one, and only the
stack elements up to the actual size of the stack for each branch.

We now compare the memory requirements of LBV wrt multipass verifica-
tion, then suggest a combined multipass+LBV strategy.

Since LBV only needs one context, the requested amount of RAM is

DLBV = 24n = DStd/b,

therefore the ratio of DLBV and DStd only depends on the number of branch
targets. In multipass verification, each context is much smaller than the context
used in both LBV and standard verification. However, multipass verification
still needs a context for each branch target.
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Fig. 23. Dictionary requirements of the multipass verification versus LBV.

Figure 23 summarizes the ratio of DSer and DLBV, and of DPar and DLBV,
respectively, on the same benchmarks used in Section 6.1. The ratio refers
to the worst case (i.e., between the largest dictionary per application). Multi-
pass verification is competitive only on very small applications, such as Java
Card applets—serial decomposition uses at most 80% of the RAM used by LBV.
However, the computation performed by serial decomposition is more time-
consuming that that of LBV, and this time penalty should be compared with
the time gained by avoiding the download of the certificate. The LBV, with only
one context to store in RAM, outperforms multipass verification on the other
benchmarks. This is because the larger the package is, the greater the chance
of finding a method with many branch targets.

However, LBV is orthogonal wrt our strategy. In fact LBV and multipass ver-
ification do not exclude each other and can be combined in a “multipass+LBV”
strategy: LBC can be used to build a subcertificate for each subanalysis of
multipass verification. The multipass+LBV certificate, containing all subcer-
tificates, can be downloaded in the memory-constrained device. The on board
algorithm (multipass+LBV) checks the certificate by first computing the se-
quence of passes, as in multipass, then checks the subcertificate that corre-
sponds to each pass, as in LBV. The combined multipass+LBV strategy has two
potential benefits.

(1) Each subcertificate can be loaded separately on the device and deleted as
soon as it has been checked. This would allow the use of RAM memory
to store the certificate, instead of slower memories. Moreover, when some
form of DMA is available the verification can proceed in pipeline with the
download of the certificate.

(2) Even if the multipass+LBV certificate contains a subcertificate for each
type error checked in each method, each subcertificate is very small. Since
the vast majority of methods, in typical applications, use a few types only,
the multipass+LBV certificate may be smaller than the LBV certificate in
some cases.

To check claim 2, we have instrumented the bytecode verifier implemented
in BCEL 5.2 [Bernardeschi et al. 2003] to obtain: 1) the total number Nμ of
registers and stack elements stored in the fixpoint of each method μ, taking
into account the nonuniform size of each context at each branch target of the
same method in the LBV certificate; 2) the total size in bytes Sμ of the fixpoint
of each method μ, taking into account the nonuniform size (either 1 or 3 bytes)
of each context element identified in point 1). An estimate of the size of the LBV
certificate of a given package is obtained by summing Sμ over all methods μ
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in the package. For multipass+LBV, we have to distinguish between serial and
parallel decomposition. Let CPar,μ and CSer,μ be the size of the subcertificate
for method μ using parallel and serial decomposition, respectively. Then, CPar,μ
and CSer,μ can be estimated as follows:

CPar,μ = Nμ

∑
σ∈E ′

μ

( fPar(σ )) and CSer,μ = Nμ

∣∣E
′′
μ

∣∣ .
Note that CSer,μ does not contain the interphase result propagation needed by
aaload and object initialization, since these can be easily calculated during the
on board lightweight verification. Finally, an estimate of the size of the certifi-
cate for multipass+LBV for a given package is obtained by summing the size
of the subcertificates for each method in the package (CPar,μ if multipass uses
only parallel decomposition, and CSer,μ if multipass uses serial decomposition).

Figure 24 shows the size of the certificates for LBV and multipass+LBV when
using parallel and serial decompositions. We have used the same benchmarks
of Section 6.1, grouped by certificate size. For small applets, multipass+LBV
leads to a certificate that is about half the size of the LBV certificate. For larger
applets, the size reduction is smaller, and in some cases the multipass+LBV
certificate is bigger than the LBV certificate. This happens, for example, in
Demo3D, where our decomposition is penalized by the presence of methods that
create a large number of objects. Figure 25 shows the size of the certificate for
larger packages, confirming the trend observed in small and medium applets.

7. RELATED WORK

Bytecode verification is a well-studied technique—see Leroy [2003] for an ex-
tensive survey on the topic. As regards the Java Card platform, many investi-
gations has been carried out to formalize the semantics of the virtual machine
and its relation with bytecode verification.

Barthe et al. [2005] were able to formally derive from a defensive virtual
machine (a virtual machine that performs type checks at runtime) both an of-
fensive virtual machine (a virtual machine that does not perform type checks)
and a bytecode verifier. Both the offensive machine and the bytecode verifier
are seen as abstract interpretations of the defensive machine (in the former
they discard types, in the latter they discard values). On the contrary, our for-
malization of the bytecode verification is not aimed at proving the correctness
of the verification, but is the starting point for the decomposition. In fact, we
abstract the verifier and not the virtual machine. Moreover, Barthe et al. de-
fine a specification and verification tool (Jakarta) that can be used to model a
generic low-level language and its defensive VM, and they used it for proving
the correctness of the Java Card Platform. The major benefits of this kind of
analysis are its generality (e.g., assigning different meanings to types differ-
ent properties can be checked) and the exploitation of the proof automation
capabilities of the Coq proof assistant. A similar kind of refinement were also
proposed by Requet, Lanet and others [Lanet and Requet 2000; Requet 2003;
Casset et al. 2002] but without the full generality of Barthe et al. [2005]. They
use the B method and generate executable code by translating B specifications
into C programs.
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Fig. 24. The size of the proof carrying code certificate using Lightweight Bytecode Verification,
and Parallel and Serial decompositions.
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Fig. 25. The space occupancy of the certificate for some medium/large applications/libraries. The
Methods column reports the number of methods.

For an in-depth specification of the Java platform, the reader can refer to
the recent work by Klein and Nipkow [2006]. They provide a machine-checked
(using Isabelle/HOL) formalization and verification of the entire Java language
architecture (language, type system, compiler, virtual machine). This unified
model also includes the bytecode verification and the proof of its correctness.

Many approaches have been presented to reduce the memory requirements
of the verification with the aim of developing an on-card verifier.

Leroy [2002] proposes to reduce memory requirements with an off-card code
transformation, also known as code normalization. The transformed code com-
plies with the following constraints: every register contains the same type for
all method instructions and the stack is empty at the merge points. The verifi-
cation of a normalized code is not expensive: only one global state is required
since the type of registers and stack items never change. Since a single context
is used, the memory requirements of this verification are very similar to the
memory requirements of LBV (probably slightly worse, since some new regis-
ters may be added by code transformation). Thus, it is probably both smaller and
faster than multipass, and probably faster than multipass+LBV, even account-
ing for the increase in code size due to normalization. However, normalization
requires a nonstandard toolchain, while multipass is compatible with standard
verification.

Naccache et al. [2003] propose a different method to reduce the size of con-
texts. This size is normally equal for all contexts of a given method, and is
computed using the maximum values for the stack height and for the number
of local variables used throughout the method (these values are provided by
the Java compiler). They propose to preprocess each method, before verifica-
tion, to compute a different context size for each basic block. The size of the
context depends on the stack height at the merge points. Moreover, they unify
local variables according to definitions and uses in each basic blocks. Since the
stack is generally empty at the merge points and each basic block uses only a
subset of the local variables, this optimization results in a significant reduction
in memory requirements. The reductions are significant but comparable with
ours (the dictionary size is from 6% to 50% smaller than in standard verifica-
tion). This technique could be combined with multipass verification to reduce
the space required by each subanalysis.
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Deville and Grimaud [2002] propose using the persistent memory for storing
the data structures needed for the verification process. Their strategy holds all
data structures in RAM as long as possible, and swaps them in persistent mem-
ory when RAM space is missing. A special type of encoding is proposed since
persistent memory cells have a limited number of writing cycles. Both multi-
pass and multipass+LBV have the advantage that most writes to persistent
memory can be avoided.

Another work by Hyppönen et al. [2003] relies on a distrusted and not
memory constrained terminal to store the dictionary. Dictionary entries are
loaded/stored on demand from/to the terminal that is used as a remote repos-
itory. Each context is saved out in the terminal together with a message au-
thentication code (MAC) computed on the card. Whenever the verifier on the
card needs to read a context, it retrieves it from the terminal and checks for its
integrity by verifying the MAC. In this way, only one context at time (plus some
other minor data structures) is saved in the RAM of the card. We think that
multipass+LBV should be a simpler and more effective way to exploit continued
communication with the terminal during verification, since there would be no
need for a MAC.

We have proposed in a previous paper [Bernardeschi et al. 2006a] a bytecode
verifier that reduces the size of the dictionary. This verifier uses a dataflow
algorithm that exploits the control flow dependencies to partition the method
in control regions, and analyzes the regions one-by-one [Bernardeschi et al.
2006b]. Each region is analyzed by applying the standard verification algorithm
and the size of the dictionary is reduced since not all entries need to be kept in
the memory at the same time. This algorithm can reduce memory requirements
from 27% to 58% compared to the standard verifier. Note that this algorithm
reduces the maximum number of contexts that must be stored in the dictionary,
and it can be combined with a strategy to reduce the size of each context. In
particular, each pass of multipass could be performed using this algorithm.
However, since both algorithms trade time for space, the combined algorithm
would probably be too slow.

The problem of bytecode verification of interface types has been addressed
by several authors [Goldberg 1998; Knoblock and Rehof 2001]. Recall that, in
the presence of interface types, the set T of types ordered by the “assignable
to” relation is generally no longer a lattice. The problem is solved by switching
to ℘(T), which is always a complete lattice. Each context element (register or
stack element) may now contain a set of types, the least upper bound becomes
set union and type constraints hold if they hold for all elements in the set.
Dedekind-MacNeille completion [Davey and Priestley 2002] of T may be used
to find a sufficient set of sets of types before verification starts. The advantage
is that these sets of types may be given a name and used as simple types, so
that the implementation of the verification does not need to deal with sets of
types. In our decomposition there is the potential for a novel way to deal with
interfaces. Namely, interface types may be used in a multipass verification just
like all other types. The fact is that the closure operator ϕτ is defined only in
terms of �, so its domain does not need to be a lattice. However, its codomain
is B τ which always is the two elements lattice {τ, 	}, with τ � τ = τ and
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τ � 	 = 	 � τ = 	 � 	 = 	. So, even if τ is an interface type, we can use lattice
B τ in a verification pass that checks for absence of type errors on τ only. The
intuition is that the least upper bound of two types in domain B τ only has to
answer the simple question: “are both types assignable to interface τ?”, instead
of: “to which interfaces are both types assignable?” We think that the possible
presence of arrays of interface types does not cause problems, and that lattice
A k

τ can be used even when τ is an interface type, but we have not explored all
the details yet.

An attractive goal of abstract interpretation theory is the systematic design
of abstract domains [Cortesi et al. 1997; Cousot and Cousot 1979]. The idea is to
define operators that combine or refine abstract domains, in order to obtain new
domains with a desired property, such as greater precision or expressiveness.
Relative and absolute complete shells [Bernardeschi et al. 2006a] are examples
of refinement operators: they enhance an abstract domain, adding the mini-
mal set of elements taken from the concrete domain, in order to achieve com-
pleteness wrt a given semantic function. Other examples include reduced prod-
uct, disjunctive completion [Cousot and Cousot 1979], and Heyting completion
[Giacobazzi and Scozzari 1998]. Parallel and Serial decomposition are related
to this set of ideas, but they go in the opposite direction of simplifying existing
abstractions. In this paper, simplification was motivated by the need to per-
form the analysis on a memory constrained device, but there are clearly other
scenarios where a very complex analysis could benefit from being decomposed
into a set of simpler analyses. Examples of domain operations that decompose
or simplify abstract domains are complementation [Cortesi et al. 1997] and
least disjunctive basis [Giacobazzi and Ranzato 1998]. Parallel decomposition
is not a new domain operator, but it may be regarded as a guideline on how to
combine the use of relative and absolute complete shells [Bernardeschi et al.
2006a] with reduced product [Cousot and Cousot 1979]. This has worked well in
the settings of bytecode verification, and its practical applicability outside this
domain should be explored. Serial decomposition, that is, using information
obtained in an analysis to simplify a second analysis, seems more attractive.
However, its present formulation is very specific to the kind of analysis used
in bytecode verification, as formalized by our definition of next in Section 4.1.2.
Thus, a generalization is required. Finally, there is a potential relation between
the concept of residual function (definition 5.1) and the concept of complement
of an abstract domain [Cousot and Cousot 1979], and this relation should be
fully explored.

8. CONCLUSIONS

In this article we have presented a set of strategies for the decomposition of stan-
dard bytecode verification into simpler and more space efficient subanalyses.
For each strategy, we have shown its equivalence to standard verification: the
same set of errors is found in all cases. Each subanalysis is an abstract interpre-
tation of standard verification, where only a subset of types is remembered and
all other types are mapped to the “unknown” type. Thus, each analysis requires
less space than standard verification, since each stack or register element in
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the analysis requires fewer bits to encode its contents. In particular, analyses
that remember a single type require a single bit for each element in order for
them, to distinguish between the remembered type and the unknown type.

The first strategy we proposed is parallel decomposition. This strategy starts
from the set of errors that may be generated by a given method. This set can be
obtained by simply inspecting the method. Then, the set of errors is decomposed
into a family of subsets. For each subset, abstract interpretation theory is used
to constructively build the smallest domain of types that must be remembered
to prove precisely the absence of all errors in the subset. The shape of the
domains depends on the bytecode instructions used in the method. Finally,
each subanalysis is run in turn, and the method is considered correct if it passes
all analyses. We applied this strategy assuming a decomposition of the set of
errors into singleton sets; that is, each analysis focuses on a single error. We
have shown that, under this assumption, the domains that must be used for
each subanalysis have simple shapes that only depend on some parameters,
and these parameters can be determined by simply inspecting the method.

Our second strategy is serial decomposition. This can be used to further
decompose the subanalyses of parallel decomposition when these analyses have
to remember more than one type. The idea is to find those types T , inside
the domain, that bytecode instructions may transform into other types Q in
the same domain. The existence of this relation among types is what causes
the domain to contain more than one type. We break this relation, by first
performing an analysis that remembers types in T , and noting where new
instances of types in Q appear. This information is then used for an analysis
that only remembers types in Q and maps all types in T to the unknown type.
We have shown that the right combination of parallel and serial decomposition
produces a decomposition where each subanalysis remembers a single type only.
This is obtained at the cost of storing some inter-analysis information.

Finally, we have shown some statistics taken from a large set of applications.
These statistics highlight the viability of our approach to bytecode verification,
as far as memory requirements are concerned. Serial decomposition generally
only needs 4% of the memory required by standard verification, never exceeding
9% even for very large applications. Parallel decomposition generally uses 10–
20% of the memory required by standard verification, never exceeding 40%.
Both parallel and serial decomposition can be applied to lightweight bytecode
verification (LBV) as well. In this case, they are often able to reduce the size of
the certificate. In particular, the size of the certificate in serial decomposition
ranges from 26% to 70% of the certificate in LBV.
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