
The Resource Pooling Principle

Damon Wischik
University College London

d.wischik@cs.ucl.ac.uk

Mark Handley
University College London

m.handley@cs.ucl.ac.uk

Marcelo Bagnulo Braun
UC3M, Madrid

marcelo@it.uc3m.es

ABSTRACT
Since the ARPAnet, network designers have built localized
mechanisms for statistical multiplexing, load balancing, and
failure resilience, often without understanding the broader
implications. These mechanisms are all types of resource
pooling, which means making a collection of resources behave
like a single pooled resource. We believe that the natural evo-
lution of the Internet is that it should achieve resource pool-
ing by harnessing the responsiveness of multipath-capable
end systems. We argue that this approach will solve the
problems and limitations of the current piecemeal approaches.

Categories and Subject Descriptors: C.2.1 [Computer com-
munication networks]: Network architecture and design

General Terms: Design

Keywords: resource pooling, traffic engineering, load balancing,

statistical multiplexing, multipath

1 INTRODUCTION
There is a silent revolution that is reshaping the Internet.
It began with the original design of statistical multiplex-
ing through packet switching. As demands on the Internet
grew, network operators began to use traffic engineering to
balance load, and sites began to be multihomed for improved
resilience against failures. The revolution is that now end
systems are involved in managing wide-area traffic patterns,
for example peer-to-peer applications, or load balancing by
Google and Akamai across globally-distributed server farms.

These mechanisms are all examples of resource pooling.
The general concept is that the network’s resources should
behave as though they make up a single pooled resource;
the aims are to increase reliability, flexibility and efficiency.
Figure 1 illustrates full pooling of link capacity and partial
pooling of reliability in the face of link failure. In Section 2.1
we list attempts to date at resource pooling in the Internet.

Different parties have devised mechanisms for partial re-
source pooling, and implemented their mechanisms indepen-
dently. This has caused stress to other parts of the net-
work. Sometimes the different mechanisms fight against
each other: for example, network operators can no longer
perform traffic engineering within their networks as though
the traffic were fixed, because end-system reactions mean
that the matrix can change on the timescale of a few RTTs.
In Section 2.2 we list some of the problems with the way
that resource pooling is done today.

This paper is a call to arms for a new way of thinking
about routing and congestion control. We believe that the
natural next step in the evolution of the Internet is to har-
ness the responsiveness of end systems to achieve resource

pooling. If end systems could spread their load across mul-
tiple paths in the right way, with the right reaction to the
right congestion signals from the network, then traffic would
quickly move away from congested or failed links in favor of
uncongested links. In Section 3.1 we explain the end-system
multipath architecture, and in Section 3.2 we explain how
it would achieve resource pooling—robustness against fail-
ure, load balancing, and flexibility in the face of bursts of
traffic—while avoiding the problems and limitations of cur-
rent piecemeal approaches. Wireless mobile devices in par-
ticular can benefit from pooling the capacity of their various
radio channels (GPRS, WiFi, bluetooth, etc.) in environ-
ments where one channel on its own is too intermittent.

Many questions still need answering before we can fully
benefit from resource pooling. In Section 4 we attempt to
outline a research agenda, and metrics by which we might
judge the success of our proposed architectural changes.
Some parts of the solution are well understood: in the last
few years researchers have developed models of how multipath-
capable end-systems might respond to congestion signals,
and what the potential benefits might be. But to go from
these theoretical models to actual changes in operating sys-
tem stacks and ISP routing systems will require much work.

We conclude in Section 5 by extrapolating from our study
of transport-layer resource pooling a general architectural
principle, the resource pooling principle: “Resource pooling
is such a powerful tool that designers at every part of the
network will attempt to build their own load-shifting mech-
anisms. A network architecture is effective overall, only if
these mechanisms do not conflict with each other.”

2 CURRENT PRACTICE
The main benefits of resource pooling are, in order,
(1) increased robustness against component failures;

6 Mb/s

10 Mb/s

10 Mb/s

10 Mb/s

6

6
4

8
2

10

Srca

Srcb

Srcc

Dsta

Dstb

Dstc

(a)

Srca

Srcb

Srcc

Dsta

Dstb

Dstc

36 Mb/s
12

12

12

(b)

Figure 1. Pooling capacity: the entire 36 Mb/s capacity in (a) can
be shared fairly and each flow can achieve more than it could over a
single path, as though there were load balancing over the four links
in (b). Partial pooling of reliability: each flow in (a) is more robust
against failure of one of the four bottleneck links than if it only had
access to a single path, but not quite as robust as in (b).

(a) (b)

Figure 2. Pooling capacity (a) between “circuits” on a single link,
and (b) across links. In both cases pooling improves the ability
to cope with bursts or unexpected traffic patterns; the latter case
achieves robustness to link failure.

(2) better ability to handle localized surges in traffic;
(3) maximized utilization.
In this section we list the mechanisms that end users and
network operators have already devised for obtaining these
benefits. We also list some of the problems which have
arisen because of the piecemeal way in which these mech-
anisms were developed: BGP scaling, bad interactions be-
tween network and user mechanisms, inadequate robustness,
and missed opportunities.

2.1 Goals and mechanisms
Statistical multiplexing through packet switching is
the most fundamental concept in the Internet architecture.
Computer communication is inherently bursty; ideally we
would be able to transfer any size chunk of data in a sin-
gle burst. Packet switching allows a finite capacity link to
be used at maximum efficiency, and it achieves this through
resource pooling in two ways. Figure 2a illustrates the first
type of resource pooling: whereas circuit switching would
prevent a burst of traffic on one circuit from using spare ca-
pacity on other circuits, packet switching allows the entire
link capacity to be used whenever there is demand. Buffers
are the second type of resource pooling: they allow the ca-
pacity at one time period to be pooled with capacity at the
next. Regular TCP congestion control also allows this type
of pooling, spreading transfers out over time.

Robustness through dynamic alternative routing. In
the telephone network, operators including BT and AT&T
use dynamic alternative routing: if a link fails or is over-
loaded, calls are automatically routed along an alternative
set of links. In effect the capacities of different paths are
pooled, and so the network as a whole has greater resilience
to link failure and to unexpected surges in traffic: see [6] for
a striking example of resilience in a multiparented network
much like BT’s network today.

Resource pooling via multipath routing is the only way
the phone network can achieve high reliability, greater than
the reliability of the individual switches and links. Internet
routing is already more dynamic than telephone routing, and
provides resilient service despite poorly coordinated growth.
However, the demand for a robust Internet has been steadily
growing as it has become an essential part in business, and
also due to the rise in interactive applications such as VoIP
and gaming. The slow convergence of conventional Internet
routing isn’t really up to this challenge, and the robustness
that might come from resource pooling provided by load-
dependent routing has proved elusive and remains the holy
grail of routing systems.

Robustness and load balancing through multihom-
ing. A site may have links to two or more network providers;
as long as one of them remains up then the site still has

connectivity. In other words the reliability of the links to
individual network providers is pooled. BGP can be used
for this: a non-aggregatable prefix is announced to the world
via each provider, drawing traffic to the site via both paths.

The site may achieve more fine-grained capacity pooling,
rather than coarse-grained reliability pooling, by routing
some nodes via one link and some nodes via the other. BGP
can also be used for this: extra more-specific prefixes are ad-
vertised to a subset of the nodes.

Reliability and capacity pooling can also be achieved at
the transport level, for example by SCTP. If the end-systems
are multihomed, with different addresses from each network
provider, then SCTP will choose which address to use at
each end and it can switch over in the case of failure or poor
throughput.

Load balancing through traffic engineering. Network
operators engineer traffic to balance load within their net-
works. For example, they might have several different MPLS
labels corresponding to different possible paths from a given
ingress point to an egress point, and they could label flows
so as to balance traffic in the network.

Figure 3 shows the potential of multi-path load balancing:
the network is able to handle a larger range of traffic matri-
ces. In Figure 3, it is as if there is a single link of capacity
200 Mb/s, and any traffic matrix is admissible if the total
arrival rate is less than 200 Mb/s. That is, the network
achieves resource pooling. The constraint “total traffic ≤
200 Mb/s” is called a virtual resource constraint since it is a
constraint that does not correspond directly to any physical
resource. Virtual resources of this sort were introduced by
[13, 17].

Resource pooling results in a more flexible network, more
resilient to localized surges in traffic, and capable of func-
tioning well even when the actual traffic matrix differs sub-
stantially from that envisaged by the network designers. A
secondary benefit is that operators can get higher utilization
out of their infrastructure.

Interdomain traffic engineering. ISPs also use BGP to
shift traffic flowing between networks. In part this achieves
resilience against failure, by using resource pooling of the
same sort as described for multihoming. In part it is a crude
mechanism for coping with surges in traffic, by using man-
ually tuned resource pooling of the same sort as described
for internal traffic engineering.

Content distribution networks. Akamai, Google and oth-
ers use huge numbers of redundant servers distributed in
multiple data centers worldwide. Using DNS load-balancing
and hardware load balancing at each data center, they pool
the CPU cycles, bandwidth and reliability of these servers.
If a hot spot develops, traffic can be moved to less overloaded
servers or network links. If a server dies, it is just dropped
from the pool. Such CDNs can move large amounts of traffic
from one part of the Internet to another, independently of
any traffic engineering performed by upstream ISPs.

Peer-to-peer content dissemination, as in BitTorrent, pools
the instantaneous upload capacity of many network nodes.
It also pools capacity over time, in a similar way to buffers
pooling link capacity over time. Furthermore, BitTorrent
selects peers in part according to the throughput achieved;
this moves flows away from congestion hotspots, performing

Srcb Dsta

Dstb

100Mb/s

100Mb/s

100Mb/s

100Mb/s

Srca
Fl

ow
 a

(M
b/

s)

Flow b
(Mb/s)

Possible
traffic flows

100

100

Fl
ow

 a

Flow b
(Mb/s)

Possible
traffic flows

100

100

Fl
ow

 a

Flow b
(Mb/s)

Possible
traffic flows

100

100

(a) No multi-path
flows

(b) Only flow a is
multi-path.

(c) Both flows are
multi-path

Figure 3. Resource Pooling increases the set of traffic matrices that
can be served.

a type of load-balancing which, as we have discussed, is a
form of resource pooling. BitTorrent’s rarest first algorithm
also pools for reliability at the chunk level, preferentially
copying chunks of data that are less common so as to pool
the unreliable storage of the nodes in the session.

2.2 Problems with current mechanisms
Scalability of Interdomain Routing. The global BGP
routing table contains about 300,000 entries and is updated
up to a million times a day[10], with a growth rate that is
worrying ISPs and router vendors[20]. About half the en-
tries are for so-called more-specific prefixes[19]; these are
routes for which there is also a less specific aggregate route
that should in principle be sufficient to reach the same des-
tination. About 44% are associated with multihoming[19],
injecting a more specific network prefix via each of their
providers. About 40% of all the more specific routes can be
associated with traffic engineering techniques used to mod-
ify the normal BGP routing behavior[19]. A key reason why
ISPs do this to move a subset of traffic from an overloaded
path towards one with available capacity.

These more specific routes tend to be more volatile than
average because they expose edge-link failures directly to
the whole world, increasing BGP churn.

Slowness of failure recovery. The most serious limitation
of current resource pooling techniques is that they are not
very good at recovering from network failure. Demanding
applications ideally want no interruption at all, but realisti-
cally might be willing to accept an RTT or so of disruption.
Is it possible adapt techniques from the telephone network
to increase the resilience of the Internet? We will argue in
Section 3 that transport-layer resource pooling will make
this possible.

The current network does respond to failures, but slowly.
BGP responds by re-routing traffic although convergence
times may be measured in minutes [16]. A single ISP can
tweak OSPF to give faster reconvergence [5], and MPLS
and link-layer path restoration can provide still faster con-
vergence, but these are not end-to-end mechanisms so they
cannot address the full range of end-to-end failure modes.
Other end-to-end mechanisms for fault tolerance have been

A

Dst Dst

C

B
A

C

B
ISP1 ISP2

X Y Z

Figure 4. Traffic engineering works better when end systems and
network operators cooperate. If there is a surge in traffic on route
A, and if the other flows B, and C use multiple paths, then they could
(with the right feedback from the network) re-balance themselves so
that they do not use the congested link at ISP1. Even though traffic
moves to link Y at ISP1, ISP1 could not on its own achieve this by
local measures.

proposed such as the REAP protocol [3] or HIP[21]. How-
ever, in all these cases only one path is used at a time and
because they are network layer protocols it is challenging to
identify failures in a transport layer agnostic way, resulting
in response times that are measured in seconds [3].

Failure is not the only cause of path change. Current mo-
bility mechanisms [11, 21] perform handovers by abruptly
changing from one attachment point to another, resulting in
a sudden burst of traffic on a new path. While techniques
like bi-casting[18] have been proposed, they seem overkill for
regular traffic, since the data rate doubles while bi-casting.
We will argue that transport-layer resource pooling can nat-
urally deal with path change in a congestion-friendly way.

Bad interactions between users and network. Peer-
to-peer applications such as BitTorrent do load-balancing
based on their own selfish criteria. Often the result is pos-
itive: BitTorrent preferentially retrieves data along uncon-
gested paths. If the Internet used congestion pricing, Bit-
Torrent would come close to optimizing for cost. However,
with the current charging models for peering, there can be
a substantial mismatch between minimal congestion paths
and minimal cost paths [2]. If the ISPs and the end-systems
have different metrics for ‘congestion’, it can be shown that
the cost of anarchy (i.e. the degradation in performance due
to conflicting load-shifting) can be arbitrarily high [23, 1].

If the load-shifting mechanisms of end systems and of ISPs
could be aligned, then the Internet as a whole would be
better at traffic engineering. Figure 4 shows a scenario where
multipath-capable end systems can (with the right feedback)
achieve a better traffic engineering outcome than the ISPs
can by themselves.

3 AN END-SYSTEM MULTIPATH ARCHI-
TECTURE

We now describe how responsive end-systems might be har-
nessed to achieve network-wide resource pooling, without
giving rise to the problems listed in Section 2.

3.1 The proposal
We propose a multipath-capable TCP which works as fol-
lows. Assume that either the sender or the receiver or both

8 Mb/s

10 Mb/s1

9

Srca

Srcb

Dsta

Dstb

8

(a)

6

Srcb

Srca

Dstb

Dsta
12 Mb/s

3

3

(b)

Figure 5. Fair rate allocations. These allocations would not be
achieved by running TCP independently on each subflow.

is multihomed, and that it has been assigned several IP ad-
dresses. In the initial handshake, the sender and the receiver
exchange all their IP addresses. Then the multipath TCP
sets up multiple subflows, from some or all of the sender’s
IP addresses to some or all of the receiver’s IP addresses.
These subflows will each use window-based congestion con-
trol, though the congestion windows will be coordinated as
described below. Reliable delivery will be implemented over
the set of subflows, so that if a packet is dropped on one sub-
flow it may be resent on another; this improves reaction time
to timeouts. Congestion on a path can be indicated by ECN
marks. Multipath TCP is incrementally deployable—it is a
drop-in replacement for TCP—but there are still practical
issues and other limitations which we discuss in Section 4.

The congestion windows of the subflows should be cou-
pled, for example as described by [12, 7]. They suggest that
the window sizes should increase as per standard TCP Reno,
and that when a subflow receives a drop or an ECN mark it
should cut its window size, but that the cut in window size
should be proportional not to its current window but rather
to the aggregate rate of the sender. This has the outcome
of allocating rates fairly to end users, as illustrated in fig-
ures 1 and 5. Also, when there is a failure on one path, the
traffic on that path should not be immediately transferred
to other paths, since that is likely to result in network-wide
instability; instead, the window on the other paths should
gradually ramp over multiple round trip times.

Adding multipath support to TCP is so obvious that it has
been re-invented many times [9, 8, 22, 4], and multihoming
is built into SCTP, though no protocol that simultaneously
uses multiple paths has ever been standardized let alone
widely deployed. Why is there not more multipath at the
transport layer? Perhaps because it has not been under-
stood that multipath lets end systems solve network-wide
resource pooling problems, and because the issues with cur-
rent mechanisms are only now becoming pressing enough to
fix.

3.2 The benefits
Better response to failure and other path change.
When multiple paths are used simultaneously, the failure of
a path can be regarded as an extreme case of congestion.
Multipath TCP will react by diverting the traffic through
paths that are still working and have available capacity. The
response time can be on the order of a round-trip-time, with
retransmissions routed through alternative working paths.
Moreover, where resilience is critical, redundant information
can be used across the multiple paths so that even if packets
in flight are lost due to path failure, enough information is
delivered to the destination via the remaining paths.

Multipath TCP provides smooth handovers in make-before-
break mobility scenarios which will be commonplace when
multiple radios are used. Both old and new paths can be

Dst

Src

Dst

Src

(a) balancing across
 dissimilar speed links

(b) balancing across
 dissimilar cost links

Add
congestion

marking

$$$

Figure 6. Resource pooling can load balance between links used for
multihoming without the need for more specific routing prefixes.

used simultaneously and the traffic distribution adapts to
the available rate for each path, making a smooth handover
without suddenly dumping traffic onto a new path and caus-
ing congestion.

The improved response to path changes is important to
end users, since they will obtain better resiliency, but it
is also a motivation for network operators. Path change
events would behave in a more congestion-friendly manner,
requiring less spare capacity to handle bursts.

Fast simple traffic engineering. Multipath TCP allows
the network operator to ECN-mark traffic on congested or
expensive links, causing it to shift automatically to other
paths (Figure 6). This achieves traffic engineering on timescales
of RTTs, using only local information, and without load-
ing BGP with more-specific routes. Network operations will
be simplified, since instead of manually tweaking OSPF or
BGP, much of the matching of load to spare capacity would
be automatic.

Multipath TCP helps with the problem shown in Figure
4, since the multipath flows will automatically move away
from congestion hotspots. This is better traffic engineering
than can be accomplished by an ISP on its own. It is an
interesting open question what new sorts of traffic manage-
ment tools might emerge in a world where most flows are
congestion-sensitive multipath.

Multihoming without stressing BGP. The use of mul-
tiple aggregatable addresses to achieving multipath forward-
ing will naturally give the benefits of multihoming without
imposing costs on BGP. The same is true of HIP, Shim6
and SCTP—but multipath TCP is more resilient than these
approaches because it uses multiple paths simultaneously,
and it better for traffic engineering because it is sensitive to
congestion.

Mobile hosts with multiple radios are an extreme case
of multi-homing, and multipath TCP is an ideal solution.
As access links come and go, active connections gain and
lose addresses as they are learned via DHCP. Traffic is split
between these addresses, balanced naturally according to
congestion, or indirectly according to link cost using ECN to
migrate traffic away from high-cost paths. The one addition
that is needed is a home agent, à la Mobile IP, to bootstrap
connections. Unlike Mobile IP though, the home agent can
remain in the connection’s address set, but only be called
upon in transient moments when the other addresses all fail,
typically because both ends move simultaneously.

4 RESEARCH AGENDA
How can ISPs do traffic engineering? Network opera-
tors still need the ability to control traffic on their networks—
how can they avoid bad interactions with multipath conges-
tion control at the end systems? We have suggested that
ECN marks will allow the network to influence the end-
system control loop. The network might also do traffic en-
gineering at a slower timescale, e.g. by per-flow routing. It
seems reasonable to expect that this will not interfere with
the end systems.

We will need new tools for traffic engineering that antic-
ipate how end systems will shift their load. The notion of
a bottleneck link has to be replaced by a bottleneck ‘gen-
eralized cut’, i.e. a set of links across which end systems
do load balancing and which collectively form a bottleneck
[17, 13]. These generalized cuts may span several different
networks, which makes traffic engineering much more com-
plicated. Figure 4 shows the limitations of traffic engineering
via local measures.

What are the design issues with multipath TCP? A
key question is whether to use a sequence space per sub-
flow or one sequence space across all subflows. The former,
while requiring extra sequence numbers in each packet, is
more in line with the existing TCP protocol; as TCP syn
and fin flags occupy sequence space, a per subflow sequence
space is needed for them to be cleanly acked. Acks are also
simpler, as the cumulative ack can serve its role effectively1

without being critically dependent on selective acknowledg-
ments. Also for pragmatic reasons, the more each subflow
looks like a standalone flow to middleboxes, the lower the
deployment barriers.

Application-limited connections also present a challenge,
as these cannot use their full congestion window. Such con-
nections can get worse throughput than a single-path TCP if
they open too many subflows to maintain a good ack clock.
They also present a stability challenge because when a sub-
flow fails they will often have spare window available on the
remaining subflows (bulk-transfer connections will not); so
cwnd validation is needed to prevent abrupt rate increases.

The TCP receive window can also interact badly with
multipath connections. If two subflows share the receive
window, and the slow subflow has one packet in its con-
gestion window while the other has the remaining packets,
then the loss of the packet on the slow subflow will cause
the faster subflow to stall because the receive window fills
up. This situation calls for a more aggressive movement of
traffic away from congested paths than the theory suggests,
which in turn could cause instability problems.

There is an issue of when to start additional subflows.
TCP’s ack clock really needs four packets in flight to be
able to fast retransmit, so there is little point in starting
subflows for very short transfers—unless resilience is critical
in which case multiple paths might be used to send multiple
redundant copies.

What traffic mixes support resource pooling? Very
short flows cannot respond to congestion and so cannot help
with resource pooling. Do long-lived flows make up enough
traffic that, when they move out of the way of short flows,
resource pooling is maintained? Indeed, might there be
enough traffic today from peer-to-peer applications for re-

1To see how hard it is to work without a cumulative ack, see [15]

source pooling, if their congestion control and peer selection
were done correctly?

Is TCP the right place to support resource pooling?
The point of implementing multipath in TCP is that this is
a single point of change, with direct access to the conges-
tion control loop where we may implement a well-understood
load-balancing mechanism. Is this the right layer, and what
are the alternatives?

There may be cases where resource pooling has to be done
lower in the stack. For example, if most of the traffic on a
link is short flows (mice, no elephants), and each flow is
from a different end system, then no end system is present
for long enough to learn about the state of the network. In
this case only the network has enough information to do
load balancing.

On the other hand, applications like BitTorrent and http
have an additional degree of flexibility: they can choose from
multiple servers. How might we leverage this flexibility, and
how should it be coupled with congestion control, in such a
way that these applications can best contribute to network-
wide resource pooling?

TCP is unsuitable for applications such as VoIP that need
precise control over timing. Although multiple paths might
improve the robustness of these UDP applications, it also
forces them to increase their jitter buffer so that the overall
latency is that of the slowest subflow. This may be worse
than using just one subflow. The main constraint is that
these flows must not continuously switch all their traffic to
the lowest latency path—or they risk congesting it, raising
its latency, then moving away again in a perpetual oscilla-
tion. In the end there is no one-size-fits-all multipath so-
lution. No lower layer can satisfy all applications, and no
higher layer is sufficiently generic, which pushes us towards
transport-layer resource pooling.

What topologies support resource pooling? Resource
pooling requires flows to have access to several routes, and
we described a simple mechanism for route choice based on
multiple addresses for multihomed end systems. This raises
two questions: is this amount of path diversity enough to
obtain resource pooling? and what sort of network support
might give better options, such as to flows between single-
homed end systems?

Some theory suggests it may suffice to give a small amount
of choice, e.g. two paths per flow, to achieve resource pooling
through load balancing[14]. However this theory requires
that the choices be random; if they are non-random then
many more choices may be needed. In the Internet, the
available paths for multipath routing will be conditioned by
the network topology. Are they so non-random that the
benefits of resource pooling will very be limited?

If multiple addresses do not give good enough path diver-
sity, what are the alternatives? For example end-systems
could set a DiffServ codepoint, and routers could use this to
select one of several routing trees. How then should the rout-
ing system choose routes—for example, is it more important
to offer short routes or to offer disjoint routes? Where is it
more important to give diversity, at the edge or in the core?

How can we quantify the benefits? The questions we
have asked about topology and traffic mix need some way
to measure the effectiveness of resource pooling. What are
good metrics? One possibility is to measure how well the

network can cope with traffic surges. For example, we could
define the surge factor s(x) to be the amount by which the
traffic matrix has to be scaled down in order to accomodate
a surge of x Mb/s on some specific source-destination pair.
The better the network is at resource pooling, the more
easily it can accomodate a surge, and the smaller s(x).

What is the impact on BGP? Multipath TCP will mean
that there is automatic traffic engineering by the end sys-
tems, so network operators will have less need to use BGP
more-specific prefixes, and this should relieve the strain on
routing tables, both in size and in churn rate. There needs
to be further quantitative study of whether these claimed
benefits will actually materialize.

What are the economic consequences? Consider a mul-
tihomed site using multipath TCP: its operator can see in
detail how congested the paths are through each ISP, and
may choose to terminate the contract with the most con-
gested. This should foster competition.

ISPs may offer different levels of service (different RTT,
different level of congestion), and multipath clients could
move their traffic to whichever ISP suits their application
needs. In this way, clients have a simple mechanism for
revealing their quality-of-service preferences, which might
foster a differentiated market.

Might the benefits of competition and service differenti-
ation be felt throughout the Internet, not just at the first-
hop ISP? Multipath-capable hosts will use paths based on
end-to-end performance, which hints that there might be
network-wide economic consequences.

5 CONCLUSION
Aspects of resource pooling are and always have been funda-
mental part of the Internet. But an unprincipled approach
and a failure to recognize the generality of the concept have
resulted in a myriad of piecemeal solutions that don’t work
together. We have argued that by harnessing the respon-
siveness of end systems in the most generic way possible—
by coupling congestion control with multipath routing—the
Internet will have a simple, flexible and powerful mechanism
for resource pooling.

This proposal is not the last word in resource pooling.
There are likely to be cases where better results can be ob-
tained by involving the application layer, and cases which
call for load-shifting functionality to be built into the net-
work. We believe it is time for a new architectural principle,
extrapolated from what we have seen of resource pooling in
the Internet, to guide future development. We call it the
resource pooling principle:

Definition. Resource pooling means making a collection of
networked resources behave as though they make up a single
pooled resource. The general method of resource pooling is
to build mechanisms for shifting load between various parts
of the network

Observation 1. Resource pooling is often the only practical
way to achieve resilience at acceptable cost.

Observation 2. Resource pooling is also a cost-effective
way to achieve flexibility and high utilization.

Consequence. At every place in a network where resources
are distributed, we should assume that parties will find ways
to achieve robustness, flexibility and high utilization by pool-
ing those resources.

Principle. A network architecture is effective overall, only
if the resource pooling mechanisms used by its components
are both effective and not in conflict with each other.

Corollary. Network architects should consider how their
designs create new resources which might be pooled, or cre-
ate new ways to pool existing resources. They should ensure
that there are ways to achieve resource pooling which do not
cause problems in other systems in the network.

Acknowledgements
We are grateful for helpful discussions with Iljitsch van Bei-
jnum, Bob Briscoe, Costas Courcoubetis, Philip Eardley,
Lars Eggert, Robert Hancock, Costin Raiciu, and others in
the EU-funded Trilogy project; also with Mike Harrison,
Frank Kelly, and Devavrat Shah.

References
[1] D. Acemoglu, R. Johari, and A. Ozdaglar. Partially optimal rout-

ing. IEEE Journal of selected areas in communications, 2007.
[2] V. Aggarwal, A. Feldmann, and C. Scheideler. Can ISPs and

P2P users cooperate for improved performance? CCR, 2007.
[3] A. de la Oliva, M. Bagnulo, A. Garcia-Martinez, and I. Soto. Per-

formance analysis of the REAchability Protocol for IPv6 Multi-
homing. In Proc. NEW2AN, 2007.

[4] Y. Dong, D. Wang, N. Pissinou, and J. Wang. Multi-path load
balancing in transport layer. In Proc. 3rd EuroNGI Conference
on Next Generation Internet Networks, 2007.

[5] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure. Achieving
sub-second IGP convergence in large IP networks. CCR, 2005.

[6] R. Gibbens, F. Kelly, and S. Turner. Dynamic routing in multi-
parented networks. IEEE/ACM Trans. Networking, 1993.

[7] H. Han, S. Shakkottai, C.V. Hollot, R. Srikant, and D. Towsley.
Overlay TCP for multi-path routing and congestion control.
IEEE/ACM Trans. Networking, 2006.

[8] H.-Y. Hsieh and R. Sivakumar. pTCP: An end-to-end transport
layer protocol for striped connections. In Proc. ICNP, 2002.

[9] C. Huitema. Multi-homed TCP. Internet draft, IETF, 1995.
[10] G. Huston. http://bgp.potaroo.net.
[11] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6.

RFC 3775, 2004.
[12] F. Kelly and T. Voice. Stability of end-to-end algorithms for joint

routing and rate control. CCR, 35(2), April 2005.
[13] F. P. Kelly. Loss networks. Annals Appl. Prob., 1991.
[14] P. Key, L. Massoulié, and D. Towsley. Path selection and multi-

path congestion control. In Proc. IEEE Infocom, May 2007.
[15] Eddie Kohler, Mark Handley, and Sally Floyd. Designing DCCP:

Congestion control without reliability. Proc. SIGCOMM, 2006.
[16] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed In-

ternet routing convergence. ACM Trans. Networking, 2001.
[17] C. N. Laws. Resource pooling in queueing networks with dynamic

routing. Adv. Appl. Prob., 1992.
[18] K. El Malki and H. Soliman. Simultaneous Bindings for Mobile

IPv6 Fast Handovers. Internet draft, IETF, 2005.
[19] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang. IPv4

address allocation and the BGP routing table evolution. CCR,
35(1), 2005.

[20] D. Meyer, L. Zhang, and K. Fall. Report from the IAB Workshop
on Routing and Addressing. RFC 4984, 2007.

[21] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP)
architecture. RFC 4423, 2006.

[22] K. Rojviboonchai and H. Aida. An evaluation of multi-path
transmission control protocol (M/TCP) with robust acknowl-
edgement schemes. IEICE Trans. Communications, 2004.

[23] T. Roughgarden and É. Tardos. How bad is selfish routing?
Journal of the ACM, 2002.

