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ABSTRACT
We present an end-to-end active probing methodology that
creates frequency-domain signals in IP network paths. The
signals are generated by periodic packet trains that cause
short-lived queueing delay spikes. Different probers can be
multiplexed in the frequency-domain on the same path. Fur-
ther, a signal that is introduced by a “prober” in one path
can cause a crosstalk effect, inducing a signal of the same
frequency into another path (the “sampler”) as long as the
two paths share one or more bottleneck queues. Applica-
tions of the proposed methodology include the detection of
shared store-and-forward devices among two or more paths,
the creation of covert channels, and the modulation of voice
or video periodic packet streams in less noisy frequencies.
In this paper we focus on the first application. Our goal
is to detect shared bottleneck(s) between a “sampler” and
one or more “prober” paths. We present a spectral prob-
ing methodology as well as the corresponding signal pro-
cessing/detection process. The accuracy of the method has
been evaluated with controlled and repeatable simulation
experiments, and it has also been tested on some Internet
paths.
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General Terms
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1. INTRODUCTION
In analog communication systems, signals and channels,

spectral (Fourier) analysis, multiplexing, frequency modula-
tion, and channel interference (or crosstalk) are fundamen-
tal concepts. Even though these concepts are also very im-
portant in the physical-layer of packet networks, they have
been traditionally viewed as foreign to the network, trans-
port and application layers of the protocol stack. This pa-
per proposes a manifestation of the previous concepts in
IP-based packet networks. Specifically, we introduce a Spec-
tral Probing (SP) framework that combines techniques for
frequency-based signal generation in packet networks, fre-
quency multiplexing of diverse signal sources, (intentional)
crosstalk between network paths, and frequency modulation.
Before we present applications of the SP framework, we start
by introducing its key underlying ideas.

First, let us consider a network path from host A to host
B as a channel P(A,B), assuming for now that this path is
unique and constant for the time-window of interest. The
obvious information-carrying signal is what is contained in
the data packets sent on this path. The signal we are in-
terested in, however, is more subtle: it is the end-to-end
queueing delay variations on P(A,B). Specifically, suppose
that we sample the one-way delay variation in P(A,B) using
periodic or Poisson measurements. In the absence of any
signal-carrying traffic from A to B, these measurements can
be viewed as noise. It is caused by cross traffic at the queues
along the path P(A,B). The measured queueing delay vari-
ations can be analyzed in the frequency-domain using stan-
dard Fourier analysis techniques to characterize the spectral
properties of the corresponding timeseries. This has been
done before, as discussed in the related work section (§ 7).

A new idea, however, is that we can generate information
bearing signals on P(A,B) by sending specially crafted traffic
that generates desired patterns in the end-to-end delay time-
series. As in analog communication systems, a frequency-
based signal is more robust to additive noise than an amplitude-
based signal [5]. So, the basic idea is that we can cause
periodic queueing delay increases in P(A,B) by sending pe-
riodically, every Tp = 1/fp seconds, a packet train with suf-
ficiently high rate and size. As explained in detail in the
next section, if the transmission rate of the packet train is
higher than the available capacity in P(A,B), and the fre-
quency fp is below a certain threshold, then the end-to-end
delay timeseries will acquire a periodic component, a signal
in other words, at frequency fp.

A second idea is that we can multiplex signals of different
frequencies in the same bottleneck queue, if that queue can
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Figure 1: The sampler attempts to detect whether
it shares a bottleneck queue with each of the two
probing paths.

be modeled as a linear time-invariant channel. Each sig-
nal can be generated by a different source at A, or it may
be that the same source generates multiple frequencies to
synthesize a more complex signal. What is important here
is that even though these individual signals can overlap in
the time domain, they should not overlap in the frequency
domain. Further, as in all bandwidth-limited communica-
tion channels, there is a limit on how many signals we can
multiplex on the same queue.

A third idea is related to interference, or crosstalk be-
tween different network paths. In analog communications,
crosstalk refers to the (most often, undesirable) leakage of
signal power from one channel to a neighboring channel
through capacitive/inductive coupling. In the context of
IP network paths, coupling can take place when two paths
P(A,B) and P(C,D) have a shared bottleneck.1 In that case,
queueing due to traffic bursts sent by A in P(A,B) can affect
the end-to-end delays in P(C,D). In the SP framework, we
exploit this coupling to convey frequency-modulated infor-
mation from one network path to another.

We have thought of several applications of the SP frame-
work and we anticipate that follow-up research will invent
even more. In this paper we focus on detecting sharing ap-
plication, illustrated next. We briefly touch upon two more
applications, frequency covert channels and continuous me-
dia modulation, in Section 8.

The SP framework can be used to detect shared store-and-
forward devices (links, routers, middleboxes, etc) between
two network paths, at layer-2 or above, as long as one of the
paths (the “probing” path) can induce queueing delays at a
packet queue that it shares with the other path (the “sam-
pling” path). Even though the “detection of shared conges-
tion” problem has received significant attention in the past
[10, 15, 16, 17, 24], the proposed approach is significantly
different because it does not require that the shared link(s) is
congested. Instead, the proposed method can detect sharing
even when the shared link(s) is lightly utilized as long as the
sender at the probing path can cause short-term queueing
at the shared link(s).

The proposed method can be generalized, using frequency
multiplexing, to detect whether each of N probing paths has
a shared bottleneck, in the previous sense, with the sampling
path. Figure 1 illustrates this application in the case of one
sampler and two probers.2 The probing path of P1 has two

1This term is defined more precisely in the next section.
2We use the terms “prober” and“probing path” interchange-
ably. Similarly for “sampler” and “sampling path”.

shared bottlenecks with the sampler. The second bottleneck
is also shared by the probing path of P2.

In general, the actual topology of a network is rarely
known even to network operators, especially when an end-to-
end path crosses several administrative domains and when
it includes devices at different layers of the protocol stack.
It is often important, for network troubleshooting, failure-
risk analysis, QoS provisioning, overlay routing, etc, to know
whether two or more network paths share any infrastructure.
Note that traceroute is not sufficient to detect sharing be-
tween two paths for several reasons: it only detects layer-3
devices, it is often disabled behind firewalls and NATs, and it
can fail to detect that two IP segments may be going through
the same router, sharing the same queue.3 The proposed
method in this paper cannot detect any type of sharing. For
instance, we obviously cannot detect sharing at the physical
layer. We detect sharing only when one path (the prober)
can cause queueing (as in short-lived delay increases; not
long-term congestion) in a packet queue of a network device
that is shared by another path (the sampler). Note that
the proposed technique does not require or assume that the
shared queue is congested. This is an important difference
with the previous work in shared congestion detection, dis-
cussed in Section 7, which aims to detect whether two or
more paths (or TCP flows) share the same congested queue.
Also, the proposed technique does not belong in the band-
width estimation literature, because the latter focuses on the
measurement of capacity or available bandwidth in a single
path.

In Section 2, we describe the SP model and give basic
constraints on the parameters of this probing method. In
Section 3, we describe the signal processing algorithm that
the sampler conducts to detect whether it has a shared bot-
tleneck with one or more probers. In Section 4, we rely on
simulations to evaluate the accuracy of the proposed shared
bottleneck detection method, and to examine the impact of
certain key parameters. In Section 5, we demonstrate that
the method works “in the wild” with experimental results
from several Internet paths, Related work is discussed in
Section 7. We conclude in Section 8.

2. SPECTRAL PROBING
This section describes the basic model behind the SP

framework. We first explain under which conditions a net-
work queue can be viewed as a linear time-invariant channel.
Next, we present basic constraints on the probing frequency,
probing intensity, and selection of simultaneous probing fre-
quencies. We are then ready to describe more precisely the
shared bottleneck detection problem that this paper focuses
on. Finally, we describe the end-to-end sampling process
and give a constraint on the minimum sampling frequency.

2.1 Linearity approximation
The frequency multiplexing of different signals on the same

channel requires that the channel can be modeled as linear
(i.e., a linear combination of two or more input signals pro-
duces an output that is the corresponding linear combina-
tion of the individual outputs) and time-invariant (i.e., the
input/output relation does not vary with time).

A packet queue, however, is not a linear system. To
see why, consider a single FIFO queue with service rate C

3We show one such case in section 5.



bits/sec and buffer size B bits (denoted as {C,B}). The
queue size (or backlog) q(tk) at time tk can be determined
by the following discrete-time equation for given initial con-
ditions,

q(tk+1) = min{max{q(tk) + a(tk) − CΔtk, 0}, B} (1)

where a(tk) is the amount of arriving traffic at tk, and Δtk =
tk+1 − tk. Obviously, the output variable q(tk+1) is not a
linear function of the input a(tk).

For a different selection of the output variable, however,
and under certain conditions and approximations, a packet
queue can be modeled as a linear system. Specifically, con-
sider the following function,

qδ(tk) = {q(tk+1) − q(tk)}+ (2)

where {x}+ = x if x > 0, and zero otherwise. We refer to
qδ(tk) as the backlog increase function. In the following, we
will assume that the arriving traffic is such that the buffer
size B rarely causes losses. Note that qδ(tk) is positive only
when the amount of arrivals at tk exceeds what can be ser-
viced in Δtk,

qδ(tk) = {a(tk) − CΔtk}+ (3)

If we assume that the time interval Δtk is very small and
that the arrivals are bursty (packets arrive instantaneously),
we have that a(tk) is either zero, or it is a(tk) � CΔtk.
So, if one or more packets arrive at tk the backlog increase
function becomes approximately equal to the arrived traffic,
otherwise it is zero,

qδ(tk) = {a(tk)}+ (4)

So, the backlog increase function for the sum of two or more
signals a1(tk) + a2(tk) + . . . is the sum of the correspond-
ing backlog increase functions qδ,1(tk) + qδ,2(tk) + . . . . The
queue can be further modeled as time-invariant, as long as
its capacity remains constant.

There are three practical implications from the previous
analysis. First, the output variable that we should be moni-
toring is the backlog increase function, not the backlog func-
tion. Second, the probing signals should be as bursty as
possible, i.e., the probing traffic should arrive at the bot-
tleneck queue with the highest possible rate. In the SP
framework, we create a backlog increase signal by sending
a sequence of L back-to-back packets (a “packet train”). If
the rate with which the packet train arrives at the {C,B}
queue is Rin, we can guarantee a backlog increase as long as
Rin > C; the higher Rin/C, the better we approximate the
previous linearity condition. So, it is important in practice
that the probers have high-capacity network interfaces and
they are connected to the Internet through high-capacity
paths. Third, our signal transmitters should react to packet
losses by decreasing their train length, so that the frequency
of buffer overflows remains very low.

Figure 2 illustrates the functions q(tk) and qδ(tk), simu-
lating a single queue (C=50Mbps) with random cross traffic
(ON-OFF with exponential burst/idle durations) and four
packet trains (L=30 packets, 1500 bytes each) at times 1000,
2000, 3000 and 4000. Note that the backlog function is noisy
and it is hard to distinguish the probing signal from the cross
traffic spikes. The backlog increase function, on the other
hand, acts as a nonlinear filter, setting to zero the decreas-
ing parts of the timeseries and reducing the magnitude of
any gradual backlog increases.
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Figure 2: Example of a backlog function with the
corresponding backlog increase function.

2.2 Probing frequency
Here we give constraints on the maximum and minimum

probing frequency. Suppose that we want to create a pe-
riodic backlog increase signal of frequency fp at a queue
{C,B}. As previously mentioned, we can periodically send,
every Tp = 1/fp seconds, a packet train that consists of L
packets. Say that each packet has a size of sp bits, and so
the total size of the packet train is S = spL.

A first condition is that, even if there is no other traffic
at that queue, it will take Δp = S/C to transmit a packet
train. In the presence of cross traffic, Δp can be larger that
S/C. So, the probing frequency should be much lower than
1/Δp, or otherwise successive packet trains will overflow the
queue,

fp � C

S
(5)

In other words, we can think of a packet queue as a band-
limited channel with a cutoff frequency that is at most C/S.

Another reason to impose an upper bound on the probing
frequency is to limit the average traffic rate of the probing
signal, which is fp S. Suppose that Rmax(� C) is the max-
imum average probing rate that we are allowed to generate.
Then, the probing frequency should be upper bounded as
follows,

fp <
Rmax

S
(6)

It is important that the probing frequency is also not too
low for two reasons. First, the spectral density of Internet
traffic increases as 1/f as the frequency f tends to zero [9].
Thus, we should expect significant cross traffic noise in low
probing frequencies. In practice, we have observed in many
Internet paths that spectral noise increases significantly be-
low the frequency of 1Hz. Figure 3 shows the spectrum of a
timeseries of one-way delay variations at an Internet path.
Note how the spectrum increases in lower frequencies, espe-
cially below approximately 1Hz.

Second, suppose that the duration of our signal is Δe. For
practical reasons, related to measurement latency or varia-
tions in the underlying network conditions, we would like
Δe to be as short as possible. For a given Δe, the number
of signal iterations (number of packet trains) for a probing
frequency fp is fpΔe. Thus, if fp is too low, we will not
have enough signal iterations to accurately detect the signal
in a noisy spectrum. In practice, we often set Δe=60sec
and require at least 50-60 signal iterations. Thus, a probing
frequency of around 1Hz seems to be a good lower bound in
practice.
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Figure 3: The spectrum of the one-way de-
lay variations at an Internet path from pro-
cyon.cc.gatech.edu to www.dpls.lib.or.us.

2.3 Probing intensity
The transmitted signal power is determined by the size of

the packet trains. There are three factors we need to con-
sider here. First, the signal should be stronger than the noise
intensity so that the receiver can detect the signal. Suppose
that a packet train {S,Rin} arrives at the queue {C,B} with
rate Rin > C. The minimum (i.e., in the absence of any
cross traffic) backlog increase that the train will induce in
the queue is S(1 − C/Rin). So, the packet train will create

a queueing delay increase that is at least d̂p = αS/C, where
α = 1−C/Rin. Suppose that the cross traffic induces queue-

ing delays that are typically less than d̂n (we define d̂n more
formally in section 4). The Signal-to-Noise Ratio (SNR) is

defined as d̂p/d̂n. We require that the SNR should be larger
than a threshold γ ≈ 1; in other words, we require that the
minimum signal-induced delays should be at least as high
as the larger delays induced by cross traffic. Then, a lower
bound for the train size is

S >
C d̂n

α
(7)

A second consideration is that the packet trains should
not be causing packet losses. In our prototype, the probers
decrease L when there are packet losses at the receiver (de-
tected using sequence numbers).

A third constraint is that the signal d̂p should not be much
higher than the queueing delays induced by cross traffic. In
other words, the SNR should not be much higher than γ.
This is important both for not being intrusive to cross traffic,
but also for “stealth operation” when the SP framework is
used to create covert channels of communication.

2.4 Multiple probing frequencies
Suppose that we want to multiplex several probing signals

on the same queue. The basic idea is that each prober i will

be sending trains at a frequency f
(i)
p , creating periodic de-

lay increases of that frequency on the queue. As long as the
queue can be modeled as a linear channel, the multiplex-
ing of distinct frequencies will be a reversible process. Here,
we examine the constraints for the selection of simultaneous
probing frequencies. First, as previously discussed, there is
a lower bound (about 1Hz) and an upper bound (Rmax/S)
for any probing frequency. Further, any two probing fre-

quencies should differ by at least a guard band g so that the
receiver can accurately distinguish them. The magnitude of
the guard band depends on the exact detection process, and
it is discussed in more detail in the next section.

The signal detection process that we propose in the next

section does not only rely on the fundamental frequency f
(i)
p

of each probing signal, but it also leverages the first H har-
monics of that signal.4 So, an additional requirement is that
the H+1 frequencies of each probing signal (the fundamental
frequency and the first H harmonics) should differ by at least
one guard band g from the H+1 corresponding frequencies
of any other probing signal. Formally, we require that

|mf (i)
p − n f (j)

p | ≥ g (8)

for any probing frequencies i �= j and all m, n = 1, . . . H +1.
The appropriate value of g depends on the exact detection
process used. In our implementation, a value of g around
0.1-0.2Hz is sufficiently large.

We determine numerically the maximum number of prob-
ing frequencies that can be multiplexed on a queue based
on the previous constraint. For instance, for a minimum
probing frequency of 1Hz, a maximum probing frequency of
4.76Hz, g=0.167Hz and H=4, we can multiplex five simul-
taneous probers.

2.5 The shared bottleneck detection problem
Now that we have described the main ideas behind spec-

tral probing, we can define more precisely the shared bottle-
neck detection problem. Suppose that the“sampling”path is
Ps and the“probing”paths are Pp(1), . . . Pp(N) with N ≥ 1.
Each probing path may share one or more queues with Ps.
Note that two or more probing paths may be identical. Also,
it may be that one or more probing paths overlap with the
sampling path.

We say that a probing path Pp(i) has a shared bottle-
neck (queue) with the sampling path if Ps and Pp(i) share
a packet queue and the packet trains transmitted by Pp(i)
can cause a backlog increase in that queue. As previously
discussed, if the packet trains transmitted by Pp(i) reach a
shared queue {C,B} with rate Rin > C, then that queue is
a shared bottleneck. If there is cross traffic in the shared
queue, then it is possible that that queue will be a shared
bottleneck even if Rin < C, as long as Rin is higher than
the queue’s available capacity.

In the shared bottleneck detection problem, the sampler
aims to infer, relying exclusively on end-to-end information,
whether each of the N probing paths has a shared bottle-
neck with Ps. Note that it is possible that there is sharing
between a prober and the sampler, but that joint queue(s)
is not a shared bottleneck. It is also possible that a probing
path has more than one shared bottleneck with the sampling
path. Also, the shared bottleneck is not necessarily the link
with the minimum available bandwidth in that path.

2.6 Sampling process
The sampler cannot measure the instantaneous backlog at

each queue of its path. It can measure however the end-to-
end delay variations in its path. From those delay variations
it aims to detect the presence of periodic increases at specific
frequencies, and thus to infer which of the N probing paths
have a shared bottleneck with Ps.
4Recall that the harmonics of a periodic signal of frequency
f appear at the integer multiples of that frequency.



Specifically, suppose that the sampler sends a periodic
packet stream through Ps. Let fs be the frequency with
which the sampler sends packets, and ss be the size of those
packets.5 Say that d(j) is the time difference between the
receiver and sender timestamps for the j’th sampling packet.
Note that clock synchronization between the sampling sender
and receiver is not required; the measurements d(j) will in-
clude the clock offset between the two hosts. It is important,
however, to compensate for any clock skew (variable clock
offset) (as described in [19] for instance). If we only have ac-
cess at the sender of the sampling path, then we can rely on
Round-Trip Time (RTT) measurements using a utility such
as ping. In that case, however, the reverse channel may af-
fect the accuracy of the method if it introduces significant
delay variability.

The receiver of the sampling packets analyzes the follow-
ing delay increase function,

dδ(j) = {d(j) − d(j − 1)}+ (9)

Note how the previous function resembles the backlog in-
crease function qδ(k) at a single queue. With the delay in-
crease function {dδ(j)} the sampler aims to detect signifi-
cant backlog increases at any queue along its path. Instead
of searching for a signal at the end-to-end delay variations,
which include both positive and negative differences, we aim
to only detect increases of the measured delays. Delay de-
creases, on the other hand, are set to zero so that they do not
contribute any power in the received spectrum. If we were
analyzing, instead, the delay variations {d(j) − d(j − 1)},
there would be significantly higher spectral noise due to all
the negative delay differences.

2.7 Sampling frequency
According to the Nyquist sampling theorem, one would

expect that fs should be higher than twice the largest prob-
ing frequency fp. In practice, however, we are working
with time-limited signals (recall the earlier discussion about
the signal duration Δe), while the Nyquist rate assumes
infinitely-long signals. Instead, we require that the sam-
pling period is much lower than the transmission latency of
a packet train {S,Rin} at the bottleneck queue {C,B} so
that the sampling packets can detect the increased queueing
delays due to every probing train. The transmission latency
of a packet train at {C,B} is at least Δp. So, we require
that the sampling frequency is much higher, say at least five
times, than 1/Δp,

fs >
5

Δp
= 5

C

S
(10)

Note that the factor five is empirically chosen, based on our
Internet experiments and simulations. A higher sampling
frequency makes the detection process more accurate but
also more intrusive. The packet size of the sampling process
can be as small as possible to minimize intrusiveness, and it
is typically set to 40B (UDP).

2.8 Putting it all together
To visually illustrate the significance of the previous pa-

rameters, Figure 4 shows the spectrum of four delay increase
timeseries (from a simple simulation of a single queue with

5In all our simulations and experiments we set sp=1500B
using UDP packets.

exponential ON-OFF random traffic). In Figure 4-a we have
chosen a probing frequency, train length and sampling fre-
quency based on the previous constrains: fp=1Hz, L=30,
and fs=1KHz. Notice the clearly visible spectral spikes at
the fundamental frequency 1Hz as well as at its first four
harmonics. The next three plots show what happens when
one of these important parameters is not sufficiently large.
The spectral spikes are not visible, and it would also be hard
to detect them with any signal processing algorithm.

3. DETECTION METHODOLOGY
In this section, we describe the signal processing algorithm

that the sampler follows to detect whether it has a shared
bottleneck with one or more probers. The sampler knows

the set of N ≥ 1 probers and the frequency f
(i)
p that prober

i uses. The goal, then, is to detect which of these N frequen-
cies are present in the sampled signal. The detection scheme
should exhibit both high sensitivity (low false negative prob-
ability) and high specificity (low false positive probability)
for each prober.

3.1 Outline
1) The entire experiment is checked in terms of traffic sta-
tionarity, path uniqueness and path constancy.
2) The measured timeseries at the sampler is “conditioned”
to deal with lost samples and outliers. Then, we calculate
the delay increase timeseries dδ(j).
3) We estimate the spectrum of the delay increase time-
series using the Fast-Fourier Transform (FFT) algorithm.
The spectrum is then appropriately filtered to reduce the
effects of spectral leakage.
4) We infer whether the fundamental frequency, as well as
the first H harmonics, of each prober are present in the esti-
mated spectrum. To do so with a given false-positive prob-
ability, we also estimate the spectrum of the cross traffic in
the sampler path in the absence of any probing activity.
5) We combine the H+1 frequency detection outcomes for
each prober to infer whether that prober is present. If it is
present, we also estimate the false positive probability.

3.2 Measured timeseries and basic checks
The proposed method involves two timeseries: preprobing

and probing. Both timeseries have the same duration and
sampler frequency (and thus the same number of points).
The difference is that the former is collected while all probers
are idle, while the latter is collected while all probers are
active. In the shared bottleneck detection application the
probers can communicate with the sampler to coordinate
the start of the probing phase. In our simulations and In-
ternet experiments, we set the duration of both timeseries to
Δe=60sec. The probing timeseries is collected shortly after
the preprobing phase has been completed.

Each prober, as well as the sampler, use the Paris-traceroute
utility to examine whether their end-to-end path is unique
and stays constant during the measurements [1]. If the un-
derlying routing is not stable, or if it exhibits multipath char-
acteristics even for packets with the same address/protocol/port
IP header fields, the shared bottleneck detection problem
is not well-defined. We further check whether the received
timeseries at the sampler shows clear non-stationarity symp-
toms, such as major level-shifts. In those cases we abort the
measurements. Our Internet experiments have shown that
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Figure 4: The effect of various key parameters on the probing spectrum.

most paths satisfy the previous constraints, but there are
few paths in which these constraints are often violated.

3.3 Timeseries conditioning and outliers
Because of packet losses, the two timeseries may be miss-

ing some samples. The sampler can detect those if the pack-
ets carry sequence numbers. Frequently lost samples can
affect the spectrum of the received timeseries. In practice,
the loss rate in our simulations and Internet experiments
is much lower than 1%, and so the effect of lost samples
is insignificant. We replace lost samples with the previous
successfully received sample.

An important conditioning step is to detect, and somehow
remove, outliers from both preprobing and probing time-
series. Outliers can be caused by measurement errors (e.g.,
large delays introduced by the operating system at the send-
ing or receiving hosts) and/or by sudden and major forward-
ing delays (not necessarily due to queueing) in forwarding
network elements. Outliers can significantly distort the spec-
trum of the received timeseries, hiding any periodicities that
may exist due to probing. For instance, see how the pres-
ence of 3-4 outliers in Figure 5 greatly affects the spectrum
of the delay timeseries.

Note that we do not detect outliers based on standard sta-
tistical techniques (see [23]). The reason is that those ap-
proaches can easily misclassify as outliers the periodic prob-
ing delay spikes, especially if the latter are larger than the
delays induced by cross traffic. Instead, we develop an out-
lier detection method that considers the expected number
of probing delay spikes.

We start by detecting outliers in the probing timeseries.
Suppose initially that a single prober of frequency fp is
present in the probing delay timeseries. During Δe that
prober will generate fpΔe packet trains, each of them caus-
ing a delay increase. The basic idea of the method is to
estimate an outlier threshold χ so that any delay spike (i.e.,
a continuous sequence of samples) that exceeds χ is consid-
ered an outlier, subject to the constraint that the number of
detected outliers should be much less than fpΔe. In other
words, χ is chosen so that it is higher than the magnitude
of most probing delay spikes. If χ was lower than the mag-
nitude of the probing delay spikes, the number of detected
outliers would be more than fpΔe and we would misclassify
all spikes of our probing signal as outliers. In practice, we
determine χ iteratively, starting from the largest delay mea-
surement and reducing χ in each iteration until the number
of detected outliers is more than h fpΔe, where 0 < h < 1.
Note that the previous method does not assume that the
given prober actually has a shared bottleneck with the sam-
pler; the important point is that, in case there is such shar-

ing and the corresponding signal is present in the probing
timeseries, we do not misclassify all probing delay spikes as
outliers. Second, when multiple probers are active we need
to consider the lowest probing frequency because that gives
the minimum number of delay spikes we are allowed to de-
tect.

We have found empirically, through several Internet ex-
periments, than an appropriate value for h is around 40%.
Such a high value of h means that, in the absence of out-
liers, we may detect a significant fraction of probing spikes
as outliers; this is acceptable because, as discussed in the
next paragraph, we truncate the amplitude of any detected
outliers instead of completely removing them.

After we classify a delay spike as an outlier, we need to
modify it somehow so that it does not affect the estimated
spectrum. Because it is likely, however, that a fraction of
the detected outliers are probing spikes, we do not want
to completely remove the corresponding samples from the
timeseries. Instead, we “truncate” the spike by replacing
each sample of that outlier with the previous sample that
is less than the threshold χ. Then, when we construct the
delay increase function dδ(j), all the successive samples that
are equal to χ give zero difference. So, only the first value
of the spike, which is at most χ, will remain in the delay
increase timeseries.

After we have detected the threshold χ from the probing
timeseries, we apply the same outlier detection and trunca-
tion process on the preprobing timeseries. Finally, we cal-
culate the delay increase function for both timeseries based
on Equation 9.

3.4 Spectrum estimation and leakage reduc-
tion

Next, we estimate the amplitude Dδ(f) of the Discrete
Fourier Transform (DFT) of the delay increase timeseries.
The basic idea is that if the probing timeseries includes a
periodic component due to prober i, we will see a signif-

icant spectral amplitude at frequency f
(i)
p relative to the

surrounding frequencies.
To calculate Dδ(f) we rely on the FFT algorithm, as im-

plemented in Matlab. Recall that if a timeseries consists
of M measurements collected with a sampling frequency fs,
then the FFT of the timeseries also consists of M frequency
points covering the range from 0 Hz (DC component) to fs

with constant spacing fs/M . The spectrum is symmetric
around fs/2, and so we only focus on the range [0, fs/2).

A well-known issue in the analysis of time-limited signals
is spectral leakage. Because of this effect, even a sinusoid
with frequency fp (say an integer multiple of fs/M) can
have some power in frequencies other than fp. A standard
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Figure 5: The significance of outlier removal in spectral analysis. The delay timeseries resulted from ping
measurements on the Internet path procyon.cc.gatech.edu to mail-gw.izm.fraunhofer.de.

approach to reduce the effects of spectral leakage is to multi-
ply the timeseries with a Hamming window before comput-
ing the FFT coefficients [3]. The Hamming window smooths
the timeseries at its two boundaries, reducing the leakage of
spectral power to adjacent frequencies. This is important in
the proposed method, where the objective is to detect the
presence of a periodic signal of a given frequency comparing
the power of that frequency with the power of surrounding
frequencies6. Figure 6 shows the effects of leakage reduction
when we apply a Hamming window with the same duration
as the timeseries.

To avoid leakage from high-frequency content that we are
not interested in, we also perform low-pass filtering on the re-
ceived timeseries. The cutoff frequency of the filter is 0.5Hz
higher than the H-th harmonic of the maximum probing fre-
quency. The filter that we use is a windowed linear-phase
FIR filter of order 200. We also remove the DC compo-
nent of the spectrum, by subtracting the average from the
timeseries.
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Figure 6: Effect of leakage reduction on the
spectrum of a probing timeseries from the
Internet path procyon.cc.gatech.edu to mail-
gw.izm.fraunhofer.de.

6It should be mentioned that there are more sophisticated
methods to estimate the spectrum of a timeseries [20]. Those
methods are typically classified as non-parametric (e.g.,
Welch or multitaper) or parametric (e.g., Yule-Walker or
Burg). We found that the DFT-based method is simpler
and faster, while other methods are sometimes sensitive to
the selection of their parameters.

3.5 Signal detection at a single frequency
The next step is to examine the estimated spectrum Dδ(f)

and infer whether a significant periodic signal exists at the

fundamental frequency f
(i)
p or at the first H harmonics (h +

1)f
(i)
p (h = 1, . . . H), for any prober i.

Let us first consider a single frequency fp, assuming it is
the fundamental frequency of a certain prober. To examine
whether a periodic signal exists at that frequency with a
controlled false positive probability, we need to estimate the
a priori distribution of Dδ(f) around fp. We do so using
the preprobing timeseries. In that timeseries we know that
none of the probers is active, and so any power around fp

will be due to cross traffic noise.
Specifically, let D̃δ(f) be the spectrum of the preprobing

delay increase timeseries. A naive idea would be to detect
the signal if Dδ(fp) is much larger than D̃δ(fp). To make this
inference with a given false positive probability, however, we
need to consider D̃δ(fp) as a random variable in an ensemble
of preprobing spectra. Let Ω(fp) be that random variable.
Our aim is to estimate a percentile of Ω(fp) such that the
false positive probability is, for instance, at most 20%,

Prob[Ω(fp) > ω.2] = 0.2 (11)

where ω.2 is the 20% upper percentile. Then, we can infer
that a probing signal exists at fp, with a 20% false pos-
itive probability, when the probing spectral power at fp is
higher than ω.2. Later in this section we show how to further
reduce the false positive probability by considering several
harmonics.

To estimate the percentile ω.2, we consider a frequency
band of width 1Hz centered around fp in the preprobing
spectrum. We then estimate the empirical CDF of D̃δ(f)
in that frequency band, and use that as an estimate of the
CDF of Ω(fp). The threshold ω.2 is then calculated as the
20-th upper percentile of that empirical CDF.

To have a more accurate estimate of the signal power
S(fp) at fp we consider a narrow frequency band of width
0.033Hz centered around fp, instead of considering a single
frequency point at fp. The reason is that there may be a
mismatch between the exact probing frequency at the send-
ing host and fp. Further, due to operating system jitter, it is
possible that the prober does not transmit its packet trains
at a constant frequency fp. In practice, we observed that a
frequency band of 0.033Hz is sufficient to capture the total
power of the probing signal.



Finally, we calculate the SNR at frequency fp as

SNR(fp) =
S(fp)

ω.2
(12)

If SNR(fp) > 1, we infer that a signal exists in that fre-
quency with false positive probability 20%. The next step is
to combine the inference outcome for the fundamental fre-
quency fp with the inference for the first H harmonics of
that frequency.

3.6 Signal detection at multiple frequencies
It is possible that a probing signal is hidden in noise at

its fundamental frequency fp. Fortunately we can also rely
on the harmonics of that frequency, which appear at the
integer multiples of fp. Specifically, we consider the first
H harmonics of fp. In general, the signal power decreases
quickly in higher harmonics and after a certain harmonic the
signal power is practically zero. We examine the effect of H
on the accuracy of the method in the next section.

Given a certain H, we apply the previous frequency de-
tection method at the fundamental frequency as well as at
the first H harmonics. If H is even, the total number of
detection outcomes is H+1 and there is no possibility for
ties. Finally, a signal is detected if the majority of the H+1
detection outcomes were positive.

Even though the false positive probability for a single fre-
quency is high (20%), the global false positive probability is
much lower. Suppose that in reality there is no sharing and
so there is no probing signal. Then, if we treat each of
the H+1 detection outcomes as independent Bernoulli trials
with detection probability 20%, a false positive will occur if
we get at least H/2+1 individual false positives. For H={4,
6, 8} the global false positive probability is {0.027, 0.017,
0.01}, respectively.

4. EVALUATION
In this section we rely on simulations to evaluate the ac-

curacy of the proposed shared bottleneck detection method,
and to examine the impact of certain key parameters such
as the train length L and the number of harmonics H. Sim-
ulations allow us to evaluate the method in a controllable
and repeatable manner, which would not be possible with
Internet experiments. The simulation setup is described in
the Appendix. Unless if specified otherwise, the sampling
frequency is 1KHz and the minimum probing frequency is
1Hz. To measure the False-Negative (FN) and False-Positive
(FP) detection rates, we run each simulation 96-110 times.
This gives us a margin of error that is less than 10% with
95% confidence.

4.1 Static train length
We first examine the FN rate in the case of a single prober

that has a shared bottleneck with the sampler, when we use
probing trains of length L. Figure 7 shows the FN rate for
three values of L. As expected, as the utilization increases
the delay variations induced by cross-traffic increase. So,
for a fixed probing train length, the higher the utilization
is, the lower the SNR becomes. When the SNR is much less
than one, the detection method fails to identify the probing
“spikes” in the noisy spectrum and we see frequent false neg-
atives. With L=35 packets, this happens when the utiliza-
tion becomes larger than 40-50%. As we increase L, we ef-
fectively increase the signal power, and thus the SNR. With
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Figure 7: FN rate as utilization increases (static
train length).

L=50, the FN rate is below 10% up to a utilization of 80%.
With L=100, the FN rate is consistently zero in the entire
utilization range.

On the other hand, as we increase the probing train length
we also increase the intrusiveness of the tool, in terms of
larger delay spikes and higher average probing rate. The
previous observations raise the following question: is it pos-
sible to automatically adjust L so that the method is both
accurate and non-intrusive? We examine this question in
the next paragraph.

4.2 Adaptive train length
The basic idea in this variation of the method is to select

a packet train length that is large enough to cause queueing
delays of about the same magnitude as the 95-th percentile
of the queueing delays induced by cross-traffic. In doing so,
we expect that the method will be both accurate (because
the probing delays will be higher than almost all cross-traffic
delays) and non-intrusive (because we do not cause queueing
delays that are larger than the larger delay spikes caused by
cross-traffic).

To do so, we measure the distribution of delay variations
(end-to-end measured delay minus the base-level minimum
delay in the path) during the preprobing phase. Then, we
use the 95-th percentile dn,.95 of that distribution to esti-
mate the desired train length L, as L = dn,.95C, where C is
a rough estimate of the capacity in the shared bottleneck. A
lower bound estimate of C is the minimum of the end-to-end
capacity of the sampler and prober paths. These capacities
can be measured using one of the existing packet-pair meth-
ods, such as bprobe, pathrate or capbrobe. We expect that
in practice the user (who may be a network manager) will
often know the capacity of the potential shared bottleneck
between the sampler and a prober (e.g., the access link of
the user’s campus network).

To not end up with values of L that are too low (when the
cross-traffic delay variations are very small) or too high (in
heavily loaded or low-capacity paths), we bound L so that it
is not less than 35 packets and not higher than 100 packets.7

In summary, the adaptive train length variation is described

7These minimum and maximum train lengths were chosen
empirically, based on our simulations and Internet experi-
ments.
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Figure 9: Effect of the number of harmonics H.

by the following equation

L = max{35, min{100, dn,.95C}} (13)

Figure 8 shows the FN rate as well as the FP rate (“no
sharing” curve) when we use the previous adaptive train
length variation. Here, we assume that the user knows the
actual capacity of the shared bottleneck. Note that both
false detection rates are persistently below 10%.

4.3 Number of harmonics
We next examine the effect of the number of harmonics

H in the signal detection process. Recall that the method
detects a signal when the majority of the H+1 frequencies
(H harmonics and the fundamental frequency) show the ex-
istence of a signal in the corresponding spectral band. In
the following experiment, we have a single prober that ei-
ther shares a bottleneck with the sampler (to measure FN
rate) or that does not share a bottleneck (to measure FP
rate). In the former, we set the train length L to a low value
(35 packets) so that there is a clear dependency of the FN
rate to the number of harmonics.

Figure 9 shows the FN rate when there is sharing, and
the FP rate when there is no sharing. Note that the FP
rate drops as the number of harmonics increases. This is
expected because as H increases it becomes less likely that
the majority of the H+1 frequencies will randomly, due to
cross-traffic noise, happen to have a spectral spike at the
corresponding spectral band.

1Gbps

50Mbps

Capacities:

Sink
Prober

Sampler

Prober

Sampler

Prober

LateShared

AllShared

Sinks

Sinks

Prober

Sampler

EarlyShared

Sink

Figure 10: Topological variations with multiple bot-
tlenecks.

The FN rate, on the other hand, initially decreases, until
H becomes 6, and then it starts increasing again. The rea-
son for the initial decrease is that as we use more frequen-
cies, it becomes less likely that our signal will be masked by
noise at the majority of those frequencies. As H increases,
however, the signal power (as well as the noise power) de-
crease. After a certain point there is practically “no signal
left” in those higher harmonics, and the resulting detection
outcomes become random, causing a slow increase of the
FN rate. Through many simulation experiments with vari-
ous train lengths, we observed that the optimal value of H
actually varies between 4 to 8.

4.4 Multiple shared bottlenecks
So far we assumed that the sampler and prober share a

single bottleneck. Here we consider several variations of
our base topology (see Appendix) to examine what happens
when the paths share multiple bottlenecks (“All-Sharing”),
or when the shared bottleneck appears before (“Early-Sharing”)
or after (“Late-Sharing”) other non-shared bottlenecks. The
three topological variations are shown in Figure 10. Each
of the three bottlenecks (shared on not shared) are equally
loaded with cross-traffic and of the same capacity (50Mbps).
In these simulations we use the adaptive train length formula
and H=4. The results are shown in Figure 11. Note that the
false detection rates are consistently below 10%, independent
of the location of the shared bottleneck or of the number of
shared bottlenecks. It should be mentioned that the FP rate
can be further decreased by decreasing the FP threshold for
each harmonic (now set to 20%); that may increase the FN
rate, however. The FN rate can be further decreased by
increasing the train length, making the tool more intrusive
though.

4.5 Multiplexing probing frequencies
In this last subsection, we examine the accuracy of the

method when a number of probers are active at the same
time. Some of them share the same (single) bottleneck with
the sampler, while the rest do not share a bottleneck with
the sampler. We measure the FN rate for the former and
the FP rate for the latter. Again, we use the adaptive train
length formula.

In the first experiment, there are N=11 probers, each of
them using H=4 harmonics. Six probers share the sam-
pler’s bottleneck, and five do not. Table 1 shows the false
detection rates. Note that despite the high multiplexing de-
gree and the large number of allocated frequencies (6 times
(4+1)=30 frequencies in the probing spectrum), the method
is remarkably accurate in terms of both false positives and
negatives.
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in the three topological variations of Figure 10.

In the second experiment, we have N=8 probers, each of
them using only H=2 harmonics. Four probers share the
sampler’s bottleneck and four do not. Table 2 shows the
false detection rates. Note that the false detection rates
are higher, because we are using a very small number of
harmonics. On the other hand, the fact that we use a wider
guard band (166.7mHz vs 85.5mHz) does not amortize the
negative effect of the low H value. In general, it is more
important to have enough harmonics than to further isolate
a small number of harmonics with a larger guard band.

Sharing No sharing

Funder-Freq FN rate
1.0Hz 0%
2.7Hz 0%
3.43Hz 0%
3.7Hz 0%
4.1Hz 0.9%
4.7Hz 0%

Fundam-Freq FP rate
2.18Hz 1.82%
3.1Hz 3.64%
3.55Hz 0%
3.85Hz 0%
4.55Hz 0%

Table 1: 11 probers, 4 harmonics, 85.5mHz guard
band.

Sharing No sharing

Fund-Freq FN rate
1.0Hz 1%
3.4Hz 0%
3.78Hz 0%
4.4Hz 1.03%

Fund-Freq FP rate
3.18Hz 1%
3.6Hz 10.1%
4.18Hz 0%
4.6Hz 1.01%

Table 2: 8 probers, 2 harmonics, 166.7mHz guard
band.

5. INTERNET EXPERIMENTS
In this section we present some representative results from

Internet experiments. A major issue with such experiments
is that we cannot always know the ground truth, and so the
objective of this section is not to conduct a large-scale mea-
surement study. Nevertheless, in some cases we are certain
that there is sharing because we see a clearly visible prob-
ing signal in the sampler measurements. In other cases we
are confident that there is no sharing because, according to
traceroute at least, the two paths go through different ISPs
and reach different destinations.
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Figure 12: Traceroute does not detect sharing but
the second half of the timeseries shows clear probing
signal: GT to ODC paths.

Instead of relying on one-way delay measurements, which
would require access at both ends of a path, the following
experiments use a ping-like utility that we wrote for Linux.
The tool, called SharedBneck, can run as prober or sampler,
sending ICMP ECHO packets in both cases. Because it mea-
sures RTTs, it is subject to noise at the reverse-path. The
source code for SharedBneck will be made publicly avail-
able. Note that the tool does not require any special timers
or other non-standard operating system features. The ker-
nel timestamps are collected using the SIOCGSTAMP ioctl
call on Linux and they have a resolution of 1 microsecond.
The transmission of periodic packet trains is scheduled us-
ing the select timeout, while the clock interrupt period of
all hosts we experimented with is 1ms (allowing a sampling
frequency of 1KHz).

Unless stated otherwise, the following experiments use the
adaptive train length variation with a sampling frequency
of 1KHz and a probing frequency of 1Hz. The capacity of
the shared bottleneck is estimated as the minimum of the
sampler/prober end-to-end capacities. The prober/sampler
sources are located at Georgia Tech’s Atlanta campus. We
use procyon.cc.gatech.edu for the sampler. Unless other-
wise stated, we use foofoo.rnoc.gatech.edu for the prober,
located in a different L2 network from the sampler. The des-
tinations are in various countries and the end-to-end paths
cross multiple commercial and academic networks such as
Abilene, GEANT2, Qwest and Cogent.

Detection of sharing when traceroute fails: In this
pair of paths P1 from GT to Oracle’s data center in Texas
(ODC) (destinations: sampler bigip-wbw-adc.oracle.com;
prober bigip40-roi-v1.oracle.com), the prober/sampler
traceroute outputs do not show sharing. Actually the tracer-
outes do not complete, probably because of a firewall or
NAT at the destination network, which is the same for both
the prober and the sampler. The output of traceroute shows
the sampler AS path going through Qwest and Level3, while
the prober AS path traverses Cogent and Global Exchange.
Figure 12 shows the delay (RTT) increase function for both
the preprobing (up to sequence-number 6000) and probing
phases. Notice the periodic spikes of the probing signal (de-
lay increase of about 10-15msec) at the right half of the
plot. This means that there is certainly sharing between the
two paths. Indeed, SharedBneck detects it with high SNR
values.
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Figure 13: A low probing rate may fail to detect
sharing: GT to Insead paths.
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Figure 14: A low sampling frequency may fail to
detect sharing: GT to UCY paths.

Effect of probing rate: This experiment illustrates the
importance of a sufficiently high probing rate. In this pair
of paths P2 from GT to Insead’s campus in France (desti-
nations: prober knowledge.insead.edu; sampler faculty.

insead.edu), we do not see a signal when the prober sends
trains at a rate of 10Mbps, and SharedBneck reports “no
sharing”. When we increase the transmission rate at the
prober to 100Mbps, there is a clear signal and SharedBneck
reports “sharing” with high SNR values. The AS paths tra-
versed Qwest and ALTER.NET ASes. Figure 13 shows the
delay increase function timeseries for both the preprobing
(first half of the plots) and probing phases with both prob-
ing rates.

Effect of sampling frequency: This experiment illus-
trates the importance of a sufficiently high sampling fre-
quency. In this pair of paths P3 from GT to University of
Cyprus’s (UCY) CS department (destinations: prober www2n.
cs.ucy.ac.cy; sampler pac2.cs.ucy.ac.cy), we do not see
a very clear signal when the sampling frequency is 100Hz,
and SharedBneck often gives false positives. When we in-
crease fs to 1KHz there is a clear signal at the second half
of the timeseries (probing phase) and SharedBneck reports
“sharing” with high SNR values. The sampler and prober
paths traverse the high-capacity Abilene and GEANT2 back-
bones before reaching UCY. Figure 14 shows the two delay
increase functions.
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Figure 15: SNRs across harmonics and experiments
for GT to ODC paths.

SNR variability across harmonics and experiments:
We now present results from four cases of sharing (the pre-
vious path pairs P1, P2, P3 and one more path P4 in the
fraunhofer.de network8), as well as a case of no-sharing
Pns. In the latter, we sample without probing on the noisy
pair of paths P1 (from GT to ODC), to make sure that there is
no probing signal. We repeated each experiment 10 times,
at different times on the same weekday, on multi-processor
and single-processor sampler environments, for a total of 50
experiments. The important parameter values for all ex-
periments were: L=35 packets, fp=1Hz, fs=1KHz, H=6
harmonics.

Out of the 50 experiments, we detected only two false de-
tections; one false negative on P3 and one false positive.
Figure 15 shows the seven (1+H) SNRs for each experiment
in two of the path-pairs, P1 and Pns. In P1 there is sharing,
and this is why most SNR values are much larger than one.
Note however the significant variability of the SNR values
across experiments, and also across harmonics in the same
experiment.

Experiment with multiple probers: Here, we perform
a three-prober experiment. In addition to the aforemen-
tioned sampler and prober (labeled A), we choose the other
two probers as vega.cc.gt.atl.ga.us (B) and sirius.cc.

gatech.edu (C). The sinks are chosen in the fraunhofer.de
network (including paths P4). The key parameter values are:
L=35, fs=100Hz, g= 133.3mHz, H=4, while the maximum
allowed probing rate is Rmax =1Mbps. The fundamental fre-
quencies of the three probers are 1Hz, 1.72Hz, and 1.87Hz.
We refer to the three probers as A, B, and C, respectively.
The experiment consists of seven phases, each lasting Δe=60
seconds. In each phase a different combination of probers is
active (see Figure 16). For instance, in the first phase only
A is active.

We did not observe any false negatives or false positives
for any prober during the experiment.

Figure 16 shows the resulting five (1+H) SNRs for each
prober (in the order A, B, C), in each phase of the experi-
ment. Notice that when a prober is active, its SNR values
are mostly (but not always) larger than one. The plot also
shows the large variability of SNRs across different harmon-
ics.

8destinations: prober pps.izm.fraunhofer.de; sampler
www.izm.fraunhofer.de
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Figure 16: Three-prober experiment with seven
combinations of active probers: GT to fraunhofer.de
paths.

6. DISCUSSION
The previous two sections have examined the accuracy of

the SharedBneck method, focusing on the significance of the
sampling and probing frequencies and of the probing train
length. In this section, we further discuss various other fac-
tors and conditions that can affect the accuracy of SharedB-
neck.

First, the definition of a shared bottleneck in Section 2.5
requires that the prober is able to cause queueing in the link
that it shares with the sampler. If there is a shared link,
but the prober path is such that the probing trains arrive at
the shared queue with a rate that is less than that queue’s
available capacity, SharedBneck will not be able to detect
sharing. The practical implication is that probers should be
sending their trains at the maximum possible rate and that
the hosts that serve as probers should have high-capacity
interfaces.

It is also important that the measured paths do not change
in terms of the underlying routing and traffic conditions. In
our simulations and experiments, we found that simple tests
for traffic stationarity, such as major level-shifts, were suffi-
cient, and did not require more elaborate tests for stationar-
ity in the strong or weak mathematical sense. It is important
however that, if there is a shared bottleneck, that link should
remain in that state during the measurements despite any
available capacity fluctuations in the probing and sampling
paths. For this reason, we require “operational constancy”,
as this notion was described by Zhang et al. in [25], and we
examine for violations of this property by detecting level-
shifts in the measured timeseries.

The assumption of lossless operation, stated in Section
2.1, is necessary for that model but it is not that important
in practice. We have observed that SharedBneck is accurate
even when there is noticeable loss rate (say 1%).

The adaptive train length method needs a capacity esti-
mate for the potential shared bottleneck. A lower estimate
for that capacity can be obtained with capacity measure-
ments in the sampler and prober paths. In some cases, the
SharedBneck user may know the capacity of the potential
shared bottleneck when the measured paths are in the net-
work that he/she manages.

Even though we pay attention to the intrusiveness issue,
by limiting the probing train length, the method may still be

viewed as intrusive. We have not explored whether SharedB-
neck can cause any performance degradation to other flows,
either TCP or jitter-sensitive VoIP flows. We doubt that
this would be the case, given the relatively small probing
frequency (typically once per second) and the short dura-
tion of the probing delay spikes.

The preprobing phase may show that there is significant
power in the same probing frequencies that SharedBneck
uses. This may happen, for instance, if two different users
run SharedBneck at the same time. One option is to abort
the measurements after the preprobing phase. Another ap-
proach is to add some randomization in the probing frequen-
cies, so that different users rarely overlap in the frequency
domain. A third approach is to choose the probing frequen-
cies so that they do not overlap with the observed frequencies
in the preprobing spectrum.

Finally, as any other measurement tool that is more than
an idealized model, SharedBneck involves several parame-
ters, such as the SNR threshold γ, the guardband g, the
duration of the measurements Δe, the outlier-detection pa-
rameter h, the low-pass filtering parameters, the minimum
and maximum probing train length bounds (35 and 100),
the sampling packet size, the false-positive probability for
a single harmonic (20%), or the accuracy of the capacity
estimate C. In this paper, we have investigated the effect
of the probing and sampling frequencies (fp and fs), of the
probing train length L and of the number of harmonics H .
Due to space constraints we cannot present results with dif-
ferent values for the rest of the parameters. An extensive
robustness study for the accuracy of SharedBneck in this
multi-dimensional parameter space would be difficult. We
cannot claim that the parameter values we give in this pa-
per are “optimal” in any sense. They have been working
well, however, in all our experiments and simulations, and
for this reason we expect that the user would not have to
fine-tune the SharedBneck parameters before running the
tool in practice.

7. RELATED WORK
We discuss related work in two contexts:

Spectral analysis of Internet traffic: He et al. an-
alyzed the spectral characteristics imposed by bottleneck
links on aggregate traffic [11, 12]. Specifically, they applied
frequency-domain analysis on the interarrivals of a packet
trace. The basic idea is that a bottleneck link imposes dis-
tinct signatures on the underlying traffic; their method de-
tects those signatures at a downstream monitoring point, at-
tempting to estimate the capacity of upstream bottlenecks.
Research at BBN also used spectral analysis techniques to
extract timing information, such as TCP connection RTTs
or topological information from aggregated traffic traces [8].
This work uses the SP framework’s notion of crosstalk to
detect mobility in a wireless network. Note that the previ-
ous approaches are based on offline analysis of passive mea-
surements, while our method is based on active probing in
the frequency domain. A 2003 patent from Partridge and
Cousins [21] proposed covert channels in packet networks
using hidden frequencies in the packet interarrivals.

Broido et al. used spectral techniques to detect period-
icities in the timeseries of DNS updates for private (RFC-
1918) addresses received by an authoritative nameserver [4].
Signal processing methods have also been used for efficient
detection of traffic anomalies such as flash crowds, denial-



of-service attacks and network outages [2]. In [14], Hussain
et al. used spectral analysis to detect and classify denial-of-
service attacks as single and multi-source attacks. Related
work in this problem includes [7] and [13].

San-qi Li and his group have worked extensively on the
spectral analysis of queueing processes (see [18] and ref-
erences therein). An important result of their analytical
work is that, in any queueing system, there is a break fre-
quency, under which the low-frequency traffic stays intact
as it crosses the queueing system. The characteristics of
this low-frequency traffic can have a significant impact on
downstream queues. In some sense, our work is related to
this result given that the probing signals we create can go
through a sequence of queues as long as their frequency is
sufficiently low (see Equation 5).
Tomography and the shared congestion problem: Net-
work tomography aims to infer internal link characteris-
tics using end-to-end measurements. Scalar tomography at-
tempts to infer metrics, such as the loss probability or the
delay of a network link. Boolean tomography aims to infer a
binary state (“good” versus “bad”) for each network link. A
recent work focused on the identifiability problem in scalar
tomography [6], and it used a Fourier domain technique to
infer link delays. Rabbat et al. proposed a multiple source
tomography scheme that can be used to detect sharing (at
any store-and-forward device) among two paths [22]. Their
technique is based on the timing characteristics which which
packet-pairs arrive at the two destinations. That method
is based on time-domain analysis, while ours is based on
frequency-domain analysis.

The problem of identifying shared congestion among two
or more paths has received significant attention in the last
decade [10, 15, 16, 17, 24]. The basic idea in most related
techniques is to examine the cross-correlation of end-to-end
delays, losses or interarrival measurements between paths to
infer whether those paths share the same bottleneck. Our
approach is significantly different because the shared link
does not need to be congested in order to detect path shar-
ing. The only constraint is that the prober should be able to
cause queueing at the shared queue when it sends probing
trains.

8. CONCLUSIONS - FUTURE WORK
The contributions of this paper are twofold. First, we

introduced the Spectral Probing framework in which fun-
damental frequency-domain concepts from signal processing
and analog communications are applied in active measure-
ments and network tomography. The concepts we explored
here relate to frequency modulation of binary information,
frequency multiplexing and crosstalk. In future work, we
will investigate more advanced spectral methods for signal
transmission, modulation, and detection in the presence of
noise, such as channel coding and spread-spectrum tech-
niques, all in the context of queueing delay variations in
IP paths.

Second, we proposed and evaluated one application of the
SP framework, namely the detection of shared bottlenecks
between two or more paths. This is an important appli-
cation in practice as it can reveal the presence of shared
store-and-forward devices (switches, routers, middleboxes)
between end-to-end paths. The proposed method can detect
sharing even if the shared device is not congested, as long
as the prober(s) can cause short-term queueing at the cor-

responding shared buffers. Our Internet experiments have
shown that the method is effective in discovering shared bot-
tlenecks between paths, even when those links are invisible
to traceroute.

In future work, we will apply the SP framework in more
problems and applications. Next, we briefly describe two ap-
plications we are currently working on. First, we can use SP
to create covert channels between hosts that are not allowed
to exchange any data traffic or that are under surveillance.
Consider paths P(A,B) and P(C,D) and suppose that they
have one or more shared bottleneck queues. A can generate
delay signals of different frequencies, which can be detected
at the delay measurements from C to D. Notice that A does
not send any traffic to C or D. D detects A’s signal simply
from the spectral characteristics of the delay variations in
path P(C,D). We have verified with Internet experiments
that this application is feasible in practice.

Another application is based on the notion of frequency
modulation in analog communications. Recall that this type
of modulation translates the spectrum of a base signal in
the frequency domain, so that the modulated signal is more
robustly transmitted (and multiplexed) on a given channel.
Similarly, the base signal in our context can be any peri-
odic packet stream, such as a voice or video stream. Such
applications typically generate one packet every few tens of
milliseconds. That frequency, however, may not be ideal
for a given IP path. Queueing delay variations (jitter), be-
cause of other traffic between A and B or because of delay
crosstalk from other paths, can be detrimental to the per-
formance of a voice or video stream. One possibility is to
modify the video transmission rate (at the source itself or
at an application gateway at the edge of the source net-
work) to a frequency in which path P(A,B) experiences less
jitter (spectral noise). Frequency increase can be achieved
by segmenting video packets into smaller packets, while a
frequency decrease can be achieved by aggregating multiple
consecutive video packets.

Appendix: Simulation Setup
The NS2 simulation topology is shown in Figure 17. Unless
if stated otherwise, there is a single shared bottleneck with
50Mbps capacity. The topology includes N prober paths, a
sampler path and several cross-traffic paths that are aggre-
gated in the shared bottleneck. Unless if stated otherwise,
the N prober paths have a shared bottleneck with the sam-
pler.

The capacity of all links that feed into the shared bottle-
neck is 500Mbps. The access capacity of the probers and
the sampler is 1Gbps. The access capacity of the servers
is chosen uniformly as either 100Mbps or 1Gbps. The ac-
cess capacity of the users (clients) is also chosen uniformly
as 1, 10 or 100Mbps. The buffer size of the shared bottle-
neck is set to the bandwidth-delay product of that link (250
packets).

The cross-traffic in the forward path is generated by U=100
users. Each user goes through a cycle of “download” and
“think” phases. In the download phase, the user receives
a file through a TCP connection from a randomly selected
server. We use TCP NewReno with the SACK option en-
abled. The receive window is set to a large value so that the
flows are only limited by the congestion window. The file
size distribution is Pareto with mean 80KB and shape pa-
rameter 1.5, creating LRD traffic. The duration of the think
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Figure 17: Simulation topology.

phase is exponentially distributed. Its duration is controlled
to achieve a desired utilization at the shared bottleneck. The
RTTs of the TCP connections vary between 30ms to 110ms,
due to the heterogeneity in the propagation delays of the
server access links.

We also generate some cross-traffic in the reverse path
(same direction with the client ACKs) using a packet-level
Pareto renewal process. The average rate of that Pareto
source is 20Mbps.
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