
Predicting Failures with Developer Networks and Social
Network Analysis

Andrew Meneely1, Laurie Williams1, Will Snipes2, Jason Osborne3
1Department of Computer Science, North Carolina State University, Raleigh, NC, USA

{apmeneel, lawilli3}@ncsu.edu
2Nortel Networks, Research Triangle Park, NC, USA. wbsnipes@nortel.com

 3Department of Statistics, North Carolina State University, Raleigh, NC, USA
jaosborn@ncsu.edu

ABSTRACT
Software fails and fixing it is expensive. Research in failure
prediction has been highly successful at modeling software
failures. Few models, however, consider the key cause of failures
in software: people. Understanding the structure of developer
collaboration could explain a lot about the reliability of the final
product. We examine this collaboration structure with the
developer network derived from code churn information that can
predict failures at the file level. We conducted a case study
involving a mature Nortel networking product of over three
million lines of code. Failure prediction models were developed
using test and post-release failure data from two releases, then
validated against a subsequent release. One model’s prioritization
revealed 58% of the failures in 20% of the files compared with the
optimal prioritization that would have found 61% in 20% of the
files, indicating that a significant correlation exists between file-
based developer network metrics and failures.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – process metrics,
product metrics.

General Terms
Reliability, Human Factors, Verification

Keywords
Social network analysis, negative binomial regression, logistic
regression, failure prediction, developer network

1. INTRODUCTION
Software fails and fixing it is expensive. If testers can find
software failures early in the software development lifecycle, the
estimated cost of fixing the software dramatically decreases [10].
Research in failure prediction has provided many models to assess
the failure-proneness of files, and have been highly successful at
predicting software failures [3, 8, 11, 21, 22, 24, 25, 28].

Few models, however, consider the key cause of failures in
software: people. People develop software and people test

software. For large software systems, many people need to work
together to develop software. This collaboration has a structure –
a structure governed by elements of human social interaction and
software development processes. Understanding the structure of
developer collaboration could tell us a lot about the reliability of
the final product.

We examine this collaboration structure using a software
development artifact common to most large projects: code churn
information taken from revision control repositories. Code churn
information has provided valuable metrics for failure prediction
[21]. For example, a file with many recent changes tends to be
more failure-prone than an unchanged file.

But what if that file was updated by a developer who has worked
with a lot of other developers? Maybe a “well-known” developer
is less failure-prone. Code churn information can also tell us how
these developers collaborated: we know who worked on what and
when. From there, we can form a social network of developers
(also known as a developer network) who have collaborated on
the same files during the same period of time. Social Network
Analysis (SNA) quantifies our notion of “well-known” developers
with a class of metrics known as “centrality” metrics.

The advantage of this developer network is that it provides a
useful abstraction of the code churn information. With careful
interpretation, one can use a developer network mid-development
to identify potential risks and to guide verification and validation
(V&V) activities such as code inspections.

Our research goal is to examine human factors in failure
prediction by applying social network analysis to code churn
information. Failure prediction models have been successful for
other areas (such as static analysis [16]), so the empirical
techniques of model selection and validation have all been used
with static code metrics [20]. We introduce file-based metrics
based on SNA as additional predictors of software failures.

A case study was conducted of a large Nortel networking product
consisting of over 11,000 files and three million lines of code to
build and evaluate the predictive power of network metrics.
System test and post-release failure data from Nortel’s source
repositories and defect tracking system were used in our study.

The rest of this paper is organized as follows: Section 2
summarizes the background of Social Network Analysis and
related work in failure prediction and developer networks. Section
3 introduces our developer networks, their associated metrics, and
the analysis in failure prediction. Sections 4 and 5 summarize our
case study of the Nortel product. Sections 6 and 7 summarize our
work and outlines future work, respectively.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9--15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-559593-995-1 ...$5.00.

2. BACKGROUND AND RELATED WORK
In this section, we introduce the network metrics we will use in
our failure prediction model. We also present network analysis
and summarize fault/failure prediction models most similar to
ours in terms of using developer information or in terms of
statistical analysis.

2.1 Definition of Network Metrics
In this paper, we use several terms from network analysis [1, 6,
26] and define their meaning with respect to developer networks
in Section 3.1. In network analysis, vertices of a graph are called
nodes, and edges are called connections. A sequence of non-
repeating, adjacent nodes is a path, and a shortest path between
two nodes is called a geodesic path. Informally, a geodesic path
is the “social distance” from one node to another. The longest
geodesic path of a network is called the network’s diameter.

2.1.1 Connectivity
Metrics that measure a node’s direct connections to other nodes
are connectivity metrics. The primary connectivity metric in our
study is the degree of a node. Degree is the number of
connections incident on a node. The degree of a node in a random
network is modeled by the Poisson distribution [6], which is
useful for determining if a node is a hub. A node is considered a
hub if its degree is above a given threshold calculated from the
inverse Poisson cumulative distribution function for a p-value less
than 0.011. A node is considered to be disconnected if it has no
edges.

2.1.2 Centrality
Centrality metrics quantify how closely nodes are indirectly
connected to other nodes in the network. Centrality can be
measured by two metrics: closeness and betweenness. The
closeness of node v is defined as the average distance from v to
any other node in the network that can be reached from v .
Formally, the closeness Dc of node v in graph G is defined as

),()
|),(|

1
()(tvd

vGV
vD

Gt
Gc ∑

∈

= (1)

where),(tvdG is the distance (number of edges) from node v

to node t and |),(| vGV is the number of nodes in the graph

reachable from v .

The betweenness of node v is defined as the number of geodesic
paths that include v divided by the total number of geodesic
paths in the network. Formally, betweenness Bc of node v in
graph G is defined as

∑
≠≠∈

=
vtsGvts st

st
c

v
vB

,,,

)(
)(

σ
σ

 (2)

where)(vstσ is the number of geodesic paths from s to t going

through v , and
stσ is the total number of geodesic paths from s

to t .

1 Note that not all networks’ degrees follow a Poisson, meaning

some networks have more than 1% of their nodes being hubs.

2.2 Failure Prediction
The closest research relating to ours is the fault prediction model
based on developer information proposed by Weyuker et al. [25]
These researchers examined various releases of a large industrial
software system to predict which files are most likely to contain
the largest number of faults. Inspection guidance and automated
testing efforts are among the applications intended for their fault
prediction model. Their model is based on the negative binomial
distribution and their model’s variables, based on developer
information, attempt to capture information about the amount and
the type of developers who have worked on any given file.
Validation for their model included a comparison with a working
model based on static code metrics and churn information.
Weyuker et al. reported finding 84.9% of the faults in 20% of the
files with the developer information, where without the developer
information, 83.9% of the faults were found. The amount of
failures found using the optimal prioritization was not mentioned.
Our models use some similar developer counts in combination
with network metrics to predict failures.

Zimmerman and Nagappan [27] applied network analysis to
dependency graphs for predicting failures in files. By applying
metrics of centrality and network motifs to the directed
dependency graphs of source code, the researchers found that
central components were more failure-prone. Furthermore,
network metrics proved to identify 60% of the critical, failure-
prone binaries, which was better than object-oriented complexity
metrics that only identified 30%. In addition to using centrality
metrics of closeness and betweenness, Zimmerman and Nagappan
used similar statistical regression techniques for their analysis that
we used.

Mockus and Weiss [18] used metrics based on developer
information for failure prediction to assess risk in a large
industrial software system. Developer metrics included counts of
distinct developers and a quantitative measurement of developer
experience in terms of recent changes of the current project,
experience in the subsystem, and in the product overall. They used
step-wise variable selection to construct a logistic regression
model for estimating post-release failures. Our models do not
quantify developer experience, however, a discussion of
experience can be found in Section 4.4.3.

Hudepohl et al. [16] used developer information in combination
with various other metrics to create a risk assessment tool at
Nortel called EMERALD. The developer information was a
measurement of experience similar to the variables used by
Mockus and Weiss. EMERALD’s developer variables, however,
incorporated developer experience in terms of Nortel career, as
opposed to specific projects. For example, one of the experience
measurements was the count of the number of developers who
were within their first ten code updates while working at Nortel as
a way to identify inexperienced developers. EMERALD’s other
variables included complexity metrics, customer usage metrics,
churn information, and past failure counts from both testing and
post-release phases. Hudepohl et al. reported that over half of the
field failure patches were correctly identified as “red” (highest
risk) in 20% of the files.

Arisholm and Briand [3] identified developer experience and skill
level as fundamental factors affecting fault-proneness in an
object-oriented system. Since they had no data on skills and
experience of developers, they did not consider developer
information in their model. Nonetheless, they used a stepwise

logistic regression model and a cross-validation classification
analysis to validate their results. Most of the variables in their
model could be classified in the categories of object-oriented
metrics and code churn information. Their results from cross-
validation analysis showed less than 20% false positives and false
negatives, with an estimated verification effort savings of 29%.
We used developer information in our model, however, not based
on skill but on the structure of developer connections within the
developer network.

Arisholm et. al [4] examined several data mining techniques used
for fault prediction and validated their work on a large
telecommunications product. The authors also discuss techniques
of data collection, model selection, and model validation. Some of
the discussed data mining techniques include logistic regression,
neural networks, and decision trees. We applied similar
techniques in the area of model selection and validation.

Nagappan and Ball [21] used metrics based on code churn data to
predict defect density in Windows Server 2003. Their hypothesis
was on comparing the predictive power of relative code churn
metrics to absolute code churn metrics. A relative code churn
metric, as defined by Nagappan and Ball, is one that is normalized
by parameters such as lines of code, files counts, etc. Multiple
linear regression, Principle Component Analysis, and step-wise
variable selection were all used to make predictions about defect
density. Data splitting was used to validate the predictive power
of the chosen model and to show that relative code churn metrics
are more powerful than absolute code churn metrics. Along with
the use of code churn metrics, similar statistical techniques to ours
were used, such as multiple linear regression, logistic regression,
and step-wise variable selection.

2.3 Network Analysis
The idea of constructing a developer network based on source
repository information is not new [14, 15, 23]. However, the
studies in SNA in software engineering have been directed toward
studying communication and learning, not to do failure prediction,
as in our case.

Gonzales-Barahona and Lopez-Fernandez [14] propose the idea of
creating developer networks from source repositories as a method
of characterizing projects. Their main focus was to organize Open
Source projects into various categories based on models of
collaboration. The developer networks that Gonzales-Barahona
and Lopez-Fernandez propose are constructed in a similar manner
as ours, except that the edges of the graph are weighted based on
number of files the pair has collaborated on. The idea of weight in
their network introduces variations on the centrality and
connectivity metrics, such as a “clustering coefficient”. In
addition to a developer network, they used a module network –
where two modules were connected if they were committed
together. We decided on using a non-weighted developer network
for simplicity in our study, however we will pursue more
sophisticated network analysis such as those presented by
Gonzales-Barahona and Lopez-Fernandez in our future work (see
Section 7).

Huang and Liu [15] used SNA based on source repositories to
examine the learning process in Open Source projects. Their
primary analysis involved using Legitimate Peripheral
Participants, a network-based theory proposed by Lave and
Wenger [17]. Huang and Liu concluded that developers could be
divided into core and non-core groups, which loosely affected a
“project’s vitality and popularity” [15].

One significant difference between our study and other studies of
developer networks is that ours is based on a proprietary product.
Intuitively, collaboration in an Open Source project will be much
different than that of a closed-source product. For example,
companies have much more control over the organization of their
developers. Network Metrics based on proprietary products are
possibly more related to the development process used by the
company than to the nature of human collaboration.

3. SNA-BASED FAILURE PREDICTION
In this section, we present our approach for the selection and
validation of SNA-based failure prediction models. We utilize
this approach with data from a Nortel product, as described in
Section 4. The product of our model is a prioritization (ordering)
of files so that developers and testers can guide verification and
validation activities such as code inspections.

3.1 Developer Network Metrics
A developer network is an estimation of the structure of
collaboration in a software development project. We define a
social network based on developer connections within a software
development project. In our developer network, two developers
are connected if they have both made a change to at least one file
in common during the same release. The result is an undirected,
simple graph where each node represents a developer and edges
are based on whether or not they have worked on the same file
during the same release.

SNA provides quantitative measures of the structure of a network.
The goal of performing network analysis using developers as
nodes is to quantitatively determine where a developer lies in the
overall structure of the network. Informally, we are trying to
quantify how “well-known” a developer is in the context of the
project. A “well-known” developer, for instance, might have
many direct connections, that is, a developer is directly connected
to many other developers. Metrics that measure developers’ direct
connections to others are connectivity metrics, which are
described in subsection 2.1.1 (i.e. degree, hub, and disconnected).
Alternatively, a “well-known” developer may also, for instance,
be connected to other developers who are connected to many
other developers, and so on. That is, a developer may be “well-
known” by how closely connected he or she is by indirect
connections (by geodesic paths greater than one). Metrics that
measure how developers are indirectly connected to the rest of the
network are centrality metrics, which are described in subsection
2.1.2 (closeness and betweenness).

Each metric captures a different aspect of a developer’s place in
the network. A developer’s degree is equal to the number of other
developers he or she worked on source files with. A hub is a
developer with a high degree. A disconnected developer is the
sole modifier of the files he or she updated in a release. A
developer with high betweenness is generally more central to the
network, as a central developer would lie on more geodesic paths
than a non-central developer. A developer with low closeness
means that their average social distance is low, implying he or she
is well-known.

Other researchers [14, 26] who have defined developer
connections similarly have referred to these networks as
“collaboration networks.” Although developer networks do
provide evidence of possible collaboration between developers,
we are hesitant to use such a term for our research without
emphasizing that we are estimating collaboration via churn-based

metrics. The asynchronous and often remote nature of working
through a repository may imply that not all collaboration is being
captured by our developer network. Actual social relationships,
geography, and communication are not explicit factors in our
network, only the system’s historical records. Two developers
working on the same file around the same time, however,
indicates that a possible collaboration is taking place. We propose,
therefore, that our developer network is an estimate of developer
collaboration.

One must note that network metrics take into account the structure
of the network as opposed to making absolute measurements
regarding developers. For example, when incorporating developer
information into a failure prediction model, one may look to
measurements of a developer’s experience or merits. For example,
a developer may work with twenty other developers in one project
and be considered a hub, but may work in another project with
twenty other developers and not be considered a hub. One
developer’s metrics may change based on distant collaborative
changes in the network. Network metrics take into account the
structure of the group, not the individual in isolation.

While developer networks are interesting abstractions on code
churn information, we must also emphasize that a large number of
qualitative generalizations of developer networks can be made.
For example, consider the interpretation of hub developers. The
mere presence of hub developers in a network could imply a
workload imbalance, eliciting a possible reassignment of tasks.
Alternatively, one could view hub developers as more crucial to
the project, considering them “domain experts”. Both conclusions
are sensible, but offer differing interpretations. As a result, one
must rely on empirical analysis and careful interpretation to
determine the meaning of these metrics for effective process
improvement. Though the goal of this paper is to show that
developer networks can be used for failure prediction, the
evidence that network metrics are viable for failure prediction
indicates the need for further investigation of developer networks
as a useful abstraction for process improvement. A brief analysis
of the developer networks from our case study can be found in
Section 5.

3.2 Illustrating the Developer Network
Metrics
All of the network metrics described in the prior section will be
referred to as developer-based network metrics, since the metrics
are calculated for each developer (as opposed to a development
artifact). To apply these metrics to failure prediction, however, we
also need “file-based” metrics, or metrics calculated on a per-file
basis. Each file-based metric should reflect the network metrics of
developers who updated the file throughout the file’s history. To
calculate a file’s network metrics, we examine a file’s update
history in the source code repository, list all of the distinct
developers who updated the file, and calculated the sum,
maximum, and average of each developer metric over the file’s
history. For example, Max of Betweenness on file F is the
maximum of all developer Betweenness values for the developers
who updated F. Values are calculated per-developer, not per-
update, so if a developer updated a file twice, his or her metrics
would only be used once.

To better understand how developer- and file-based network
metrics are calculated, consider the following example. Suppose
we are initially given the churn information in Table 1. In our
example, we have developers Alison, Bob, Chad, and Deb. We

have three files, X, Y, and Z. Our system has two releases, P and
Q. Note that files need not be executable, and releases need not be
consecutive. For instance, the top line of churn information table
can be read as “Alison updated file X during release P”.

Table 1: Churn information for the network metrics
derivation example

Developer File Release

Alison File X P

Bob File X P

Bob File Y P

Chad File Y P

Alison File Y Q

Bob File Z Q

Chad File Z Q

Deb File Z Q

First, we build a developer network from churn information (see
Figure 1). Our definition of a connection between two developers
is that both worked on at least one file in common during the
same release. For instance, Alison and Bob worked on file X
during release P, so they are connected. Note that Alison and
Chad are not connected, even though they both worked on file Y,
as the updates were during different releases. The resulting
developer network is shown in Figure 1.

Figure 1: Resulting developer network from the example

The second step is to calculate degree and centrality metrics for
each developer. Table 2 details the measures of our example. The
degree of Chad is exactly 2, for instance. Closeness for Chad is
(1+1+2)/3=4/3 because the shortest distance to Bob and Deb are
each 1, and the shortest distance to Alison is 2.

To calculate Betweenness, we must first list out all of the shortest
paths. Since this particular network is connected, we know there
must be 6 geodesic paths: Alison-Bob, Alison-Bob-Chad, Alison-
Bob-Deb, Bob-Chad, Bob-Deb, and Chad-Deb. Betweenness is
calculated by counting how many shortest paths a particular
developer is included in. Bob, for example, is on 5 out of the 6
shortest paths in the network, giving Bob a Betweenness of 5/6.
The other three developers are only on the shortest paths
beginning with themselves, so they all have a Betweenness of 3/6.

One may observe that a developer who has made many updates
over time (which has been used to estimate a developer’s
“experience” [16, 19]) is not necessarily related to his or her
centrality. Alison, for example, made two changes to two distinct
files over two releases, yet was not considered as central as Deb,
who only made one update to one file in one release.

Table 2: Developer-based metrics calculated from Figure 1

Developer Degree Closeness Betweenness

Alison 1 5/3 ≈ 1.67 3/6

Bob 3 1 5/6

Chad 2 4/3 ≈ 1.33 3/6

Deb 2 4/3 ≈ 1.33 3/6

Once the developer-based metrics have been calculated, the last
step is to calculate network metrics on a per-file basis. Using the
churn information from Table 1, we determine the sum, max, and
average of the developer metrics for each developer who updated
the file. File-based network metrics are detailed in Table 3,
showing only the summation for each metric. For example, file Y
was updated by Bob, Chad, and Alison over its entire history,
making its “Sum of Degree” metric 3+2+1=6 (each developer’s
degree can be found in Table 2).

Table 3: File-based network metrics from churn information
in Table 1 and developer-based metrics in Table 2

File Sum of
Degree

Sum of
Closeness

Sum of
Betweenness

File X 4 8/3 ≈ 2.67 8/6 ≈ 1.33

File Y 6 4 11/6 ≈ 1.83

File Z 7 11/3 ≈ 3.67 11/6 ≈ 1.83

The resulting file-based network metrics are the candidate metrics
we used to correlate with failures in the system.

3.3 Independent and Dependent Variables
As described in Section 3.1, we calculated over each file’s history
the sum, average, and maximum of each developer-based network
metric as candidate independent variables for our model. Other
relevant metrics, such as number of updates and code churn, are
also added to our list of candidate metrics. These metrics are
added to our candidate list as a control for simplicity: if a simpler
metric (e.g. code churn) can be an adequate model, then there is
no reason to use a more complex metric (e.g. Max of
Betweenness). Furthermore, if our final model includes metrics
from both categories without being over-fit, we can conclude that
the network analysis metrics provide additional modeling power
that code churn metrics could not provide.

Transformations of all metrics such as log, square root, and
inverse were considered for each metric to avoid skew. Since the
candidate regressions are generalized linear regressions, a
transformation of a metric can result in linear data. Plotting a
single metric at a time can provide insight into the most
appropriate transformations.

The candidate metrics with descriptions are listed in Table 4.

Table 4: Candidate file-based metrics

Metric Description

Code Churn The number of lines of code that were
either added or changed over the history
of this file

Updates The number of updates to the repository
that included this file

Developers The number of distinct developers who
have updated this file over its history

(Sum/Average/Max)
of Degree

The (sum/average/maximum) of each
developer’s degree over a file’s history

(Sum/Average/Max)
of Closeness

The (sum/average/maximum) of each
developer’s Closeness over a file’s history

(Sum/Average/Max)
of Betweenness

The (sum/average/maximum) of each
developer’s Betweenness over a file’s
history

Number of Hub
Developers

The number of distinct hub developers
who update this file

We had two dependent variables in our study: the number of
system test failures for a file, and the number of post-release
failures for a file. The number of system test and post-release
failures per file was calculated from code churn information
joined with trouble reports. One update to a file is associated with
at most one trouble report, and a trouble report can involve
multiple files. To determine the number of failures a given file
had, we defined a failure as a trouble report that resulted in a fix.
The number of failures for a given file, therefore, is equal to the
number of trouble reports that involved that file. Trouble reports
that did not result in a fix were not considered since they were
never traced to specific files. Each trouble report was labeled as
either from testing or post-release.

3.4 Model Selection and Validation
To discover a correlation between candidate metrics and system
failures, we need to select a predictive model. Model selection is
the process of finding the best combination of variables and a
regression which can explain the variance in our data (i.e. model
our data). The model selection process for regression requires two
types of data sets: a training set and a validation set. The training
set is used in the training stage to determine the weights of the
variables in the model and to calculate goodness-of-fit statistics.
Goodness-of-fit statistics are measures of how well the model fits
the training set. The validation set is held out of the analysis until
the final model has been selected.

We define two training sets and therefore develop two models: a
system test model and a post-release model. With the training set
in place, we choose regressions for model selection. Our three
candidate regressions are all generalized linear regressions
previously used [12] for predicting failure count data: negative
binomial regression, Poisson regression, and the logistic
regression. The negative binomial and Poisson regressions
estimate the number of failures for a given file, by which we rank
for our prioritization. The logistic regression predicts the
probability that a file had at least one failure, and our ranking was
based on that estimated probability.

The process of statistic regression analysis of network metrics can
be enumerated in four steps: initial model selection, final model

selection, model validation, and further analysis. For the latter
three steps, we evaluate our model with two evaluation criteria:
Spearman rank correlation coefficient, and a comparison of the
predicted prioritization versus the optimal. Since we are providing
a file-based prioritization (ordering) to guide V&V activities, we
must use statistics to evaluate prioritizations. The Spearman rank
correlation coefficient is used to estimate the correlation between
the rank of our predicted values and the rank of our observed
values. One important note is that the square of the correlation
coefficient is equal to the percentage of variance explained by the
model (e.g. a prediction with a correlation coefficient of 0.6
explains 36% of the variance in the data).

In addition to the Spearman rank coefficient, we also examine
how our prioritization fared in comparison with an optimal
prioritization. The optimal prioritization is found by sorting all of
the files by their observed failure counts. Examining the optimal
prioritization is important in this kind of analysis because one
must make a comparison with how good the ordering could have
been, which can vary greatly from product to product.

Each of the four steps is now discussed:

Step One: Initial model selection. Model selection is done by
systematically forming models of the training set with
combinations of the candidate variables, including
transformations, and the candidate regressions. Combinations in
which the variables are known to be strongly associated with each
other are not considered (e.g. different transformations of the
same metric). The fitting of each model produces the beta-weight
(weighted contribution) of each variable to the model. Goodness-
of-fit statistics of each model are evaluated as the training error
(i.e. lack of fit), and models with the poorest training error are
discarded. Model fitting and goodness-of-fit statistics were
calculated in SAS v9.1 using proc genmod. Training error
measures included maximum likelihood significance tests on the
each of the partial regression coefficients evaluated at the p<0.05
level, and the overall log-likelihood of the model.

Possible reasons for poor training error include too few or non-
explanatory variables, also known as the model being under-fit as
it does not explain enough of the variance in the training set.
Models can also result in poor training error because of
multicollinearity; that is, having variables that are strongly
associated with each other. The output of Step One is an initial set
of candidate models that have low training error.

Step Two: Final model selection. Models with low training
error are considered for the final model. A low training error does
not always imply an accurate model: a model could “memorize”
the training examples and not be good for prediction, known as an
over-fit model. In the second phase of model selection, models
with low training error are cross-validated to evaluate their
predictive power. Cross-validation, also called rotation estimation
or hold-out validation [7], is an estimation technique used to
provide accurate prediction values based on the training set. In
particular, cross-validation is good for catching over-fit models. In
cross-validation, the original training set is randomly partitioned
into a training partition and a validation partition. For regression,
training means the beta-weights of the model are calculated based
on the training partition. Predictions are made on the validation
partition2 using the model developed from the training partition.

2 Not to be confused with the validation set mentioned in the next

step, validation partitions are still part of the training set.

In ten-fold cross-validation, the data set is randomly split into ten
portions. Training and validation is done ten times, with each
portion being the validation set exactly once and the other nine
partitions compose the training set. Since the set is split into ten
samples, the union of all samples is the original set.

We calculate the Spearman rank correlation coefficient between
the predicted and observed values for each of the ten partitions
separately. The output of this step is the average and standard
deviation of the ten correlation coefficients for each of the
models. The two models with the highest average correlation
coefficient and the lowest standard deviation become our final
models to be validated.

Step Three: Model validation. When our best system test model
and post-release model are each selected from Step Two, they are
evaluated against the validation set (which has been left out of the
whole process until the final validation). As discussed before, our
two evaluation criteria are (a) Spearman rank correlation
coefficient between the estimated values and the observed values,
and (b) examining the difference between our predicted
prioritization and an optimal prioritization.

Step Four: Further Analysis. Once a model has shown to be
adequately predictive, the last step is to evaluate how it well it
might work in practice. First, we compare the model to a “classic”
source-lines-of-code (SLOC) model. We choose the SLOC model
as a baseline of comparison as it has been used as a failure
prediction metric in the past [25]. Second, to determine if network
metrics provide extra predictive power, we compare the model
with a model containing only code churn metrics and not network
metrics, and vice versa. Third, to assess network metrics as an
early indicator, we evaluate the model as if it were halfway
through the development phase. Fourth, we investigate possible
latent factors influencing the model. We investigated a possible
latent factor involving the imbalance of developer experience by
attempting to incorporate a known metric for developer
experience/effort into our model. Lastly, we analyze our
developer network by itself for possible interpretations for process
improvement.

3.5 Threats to Validity
The goal of our model is to show that network metrics can
adequately prioritize files based on estimated failures. A statistical
issue with creating failure prediction models is the underlying
problem of latent factors. Since correlation does not imply
causation, there may be latent factors that influence both network
metrics and cause system failures. One possibility for latent
factors may be the design of the actual system. For example, if a
central, hub developer works on files that many other developers
work on, perhaps he or she works on an integrated layer of the
system, whereas a non-hub developer may work relatively
independently because he or she is working on, say, device
drivers. This possible factor is certainly worth an investigation;
however, our data had little information on the design of the
system.

Another limitation of our approach is that every file must have
churn history. Without a churn history, a file has no list of
updating developers and no network metrics can be calculated.
One way to mitigate this problem is to rely solely on code churn
metrics and to count the new files as “fully churned.” This
limitation highlights the need to integrate network metrics into
full models which incorporate many metrics, not just from code
churn information.

Finally, this study was conducted on a single project with a single
data set. The developer network formed from this project’s code
churn data may be specific to the process and developers involved
in the project. Further case studies are needed to determine if
these results can be generalized.

4. NORTEL CASE STUDY
Sections 4.1 through 4.3 describe our data collection, models and
validation. Section 4.4 addresses factors related to deployment of
our model.

4.1 Study Context and Data Collection
We built and validated our prediction model with data from an
industrial product at Nortel Networks, a telecommunications
company. Telecommunications systems must have high reliability
because failures can cause major disruptions in the daily life and
workings of society. As a result, Nortel faces intense pressure for
their verification and validation efforts to be as effective and
efficient as possible.

Data was collected from three annual releases of a large, mature3
networking product consisting of over 11,000 files and 3.17
million lines of code. About 2,500 files were churned during our
training releases, meaning that only 2,500 of the 11,000 files had
network metrics associated with them. As discussed in Section
3.5, only the 2,500 files could be examined in this study.
Fortunately, most of the failures occurred in files that had been
churned. System failure data and code churn information for the
first two releases were used as a training set and the third release
was held out as a validation4 set. For the rest of this paper, we will
refer to the training set releases as RN and RN+1 and the validation
set as RN+2.

Our data set included churn information, system test failure data,
and post-release failure data by file. The churn information is a
table taken from the configuration management records which
contains a row for each update made to the code, the file that was
updated, the date of the update, the developer who made the
update, lines of code added/changed/deleted, and an optional
trouble report code for the update. One update to a file is
associated with at most one trouble report, and a trouble report
can involve multiple files. To determine the number of failures a
given file had, we defined a failure as a trouble report that resulted
in a fix. The number of failures for a given file, therefore, is equal
to the number of trouble reports that involved that file. Trouble
reports that did not result in a fix were not considered since they
were never traced to specific files. Each trouble report was labeled
as either from testing or post-release. Only updates to source code
were included in our study, not documentation or other non-
executable files.

4.2 Steps One and Two: Model Selection
The resulting models from Steps One and Two in Section 3.4 and
their performance in cross-validation are as follows. Spearman
correlation coefficients were calculated by the SAS v9.1 proc
corr routine, which averages ranks in the case of a tie.

3 The actual release number, RN, has been removed to protect

proprietary information.
4 Technically, we perform a pseudo-validation set because

validation requires random sampling.

4.2.1 System Testing Model
The resulting regression from the model selection process for the
system testing failure model was a negative binomial regression.
The five variables consisting of the metrics and their
transformations are located in Table 5. The actual beta-weights
are not included to protect proprietary information. Degree was
positively correlated with failures and Closeness was negatively
correlated, indicating that the files updated by central developers
were less failure-prone.

By cross-validating the system testing model, the average of the
ten Spearman rank correlation coefficients for the system test
model was 0.778 with a standard deviation of 0.03. Squaring the
coefficient means that 60.5% of the variance in the system test
data was explained by our model. The strong correlation between
predicted and observed values for the system test model indicates
that the model is good for prediction.

Table 5: Variables of the test failure model

Metric Transformation

Code Churn Log

Updates None

Developers Square root

Sum of Degree Square root

Sum of Closeness None

Figure 2 shows the cumulative number of test failures found if
files were prioritized using the union of the predicted values from
cross-validation compared with the optimal ordering. For the first
20% of the files, our model was very close to optimal: we found
82% of the failures in 20% of the files, where 84% was optimal.
The random ranking series in this figure and following represents
the theoretical, unweighted average of all possible rankings.

Cumulative Percentage of Test Failures
Found in Cross-Validation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

% of Total Files

%
 o

f
F

ai
lu

re
s

F
o

u
n

d

Optimal

Model for Test Failures

Random Ranking

Figure 2: Cumulative percentage of test failures found based
on the prioritizations of the cross-validation predictions

4.2.2 Post-Release Model
The resulting regression from the model selection process for the
post-release model was a logistic regression based on the
estimated probability of a file having any failures. The four
variables consisting of the metrics and their transformations are

located in Table 6. The actual beta-weights are not included to
protect proprietary information. As in the system testing failure
model, however, Degree was positively correlated with failures
and Closeness was negatively correlated, indicating again that the
files updated by central developers were less failure-prone.

Table 6: Variables to metrics in the post-release failure model

Metric Transformation

Updates None

Developers Square root

Sum of Degree Square root

Sum of Closeness None

By cross-validating the post-release model, the average of the ten
correlation coefficients for the post-release model was 0.163 with
a standard deviation of 0.07. Squaring the coefficient means that
only 2.6% of the variance in the data was explained by our model.
The significance test for each of the correlation coefficients was
significant at p<0.001, thus the effect is weak, but significant.

We suspect the weak correlation is due to the post-release data not
being independently and identically distributed, an underlying
assumption of our regressions. A lack of independence may be
due to separate customers who use the system under different
operational profiles. Another possibility for the weak correlation
is over-fitting. We believe over-fitting to be not as likely since
post-release failure models with fewer variables did not yield
better results.

Figure 3 shows the cumulative number of post-release failures
found if files were prioritized using the union of the predicted
values from cross-validation compared with the optimal ordering
and a random ordering.

Cumulative Percentage of Post-Release Failures
Found in Cross Validation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
% of Files

%
 o

f
F

ai
lu

re
s

F
o

u
n

d

Optimal

Model for Post Release Failures
Random Ranking

Figure 3: Cumulative percentage of post-release failures
found based on the prioritizations of the cross-validation
predictions and the optimal prioritization

The post-release model found 81% of the failures in 20% of the
files, where optimal is 100%. The cross-validation results from
the post-release failure model were not quite as close to optimal as
the system testing model, however, the prioritization was still
greater than a random prioritization, implying that our model is
still better than no model at all.

4.3 Step Three: Model Validation
In this section, we discuss the empirical validation of our models
in the context of our case study. We used next-release validation
as our final validation.

When system test failure data for the next release of Nortel’s large
networking product became available, we were able validate our
system test model trained from RN and RN+1 against the latest
release, RN+2. Since the product had been deployed for only a few
months, the data for post-release failures was not available for
analysis. Therefore, we considered cross-validation as our final
evaluator of our post-release model. Table 7 gives metadata on the
dataset from release RN+2.

Table 7: Metadata on release RN+2 validation dataset

Number of files deleted between RN+1 and RN+2 835

Number of pre-existing files churned in RN+2 2,035

We compared our predictions taken from building a model with
RN and RN+1 data to the observed failure counts of RN+2. The
failure counts for files that were new in RN+2 were not handled;
the model cannot make a prediction for files that did not exist at
the time of the prediction. The Spearman rank correlation
coefficient for our test model in next-release validation was 0.741
(p<0.01). Figure 4 shows the cumulative percentage of failures
found based on our prioritization. The “Model for Test Failures”
area is our prioritization, and the darker region is the optimal
prioritization. Our model found revealed 58% of the failures in
20% of the files compared with the optimal prioritization that
would have found 61% in 20% of the files. By comparing the
optimal region in Figure 4 with the optimal region in Figure 2
(RN+2’s optimal region is more flat), one can see that the failures
were distributed over more files in RN+2. Nevertheless, our model
was still considerably close to optimal.

Cumulative Percentage of Failures Found
in Next-Release Validation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

% of Files

%
 o

f
Fa

ilu
re

s
F

ou
n

d

Optimal
Model for Test Failures
Random Ranking

Figure 4: Cumulative percentage of test failures found on pre-
existing files in RN+2.

To illustrate the value of using our model, the rate of actual
discovery of failures by the Nortel system test team is charted in
Figure 5, that is, the cumulative percentage of failures found per
week of testing. The added “Baseline” series denotes the
cumulative percentage of failures found if the testing department
had found the exact same number of failures each week
(equivalent of a random ranking). The “Optimal” series is if the

testing department had their highest failure-finding weeks first. Of
particular note is that the time period in which the testing
department struggled to find failures was in the first eight weeks
of testing (or, in the first 18% of the total testing time). One
explanation for this behavior is that, with the new release of the
system, testers initially do not know where to start testing. The
ordering in Figure 4, however, shows that the strongest period of
time, the time when the model is near or at the optimal
prioritization, is in the first 30% of files tested. Our model
performs best at finding many failures early, where the testers
need guidance the most.

Cumulative Rate of Percentage Failures
Found in Release RN+2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

Week Number

%
 o

f F
ai

lu
re

s
F

o
u

n
d

Optimal
Failures Found
Baseline

Figure 5: Cumulative percentage of observed failures found
over time during RN+2

4.4 Step Four: Further Analyses
Further analysis into the practicality of network metrics in failure
prediction models follow.

4.4.1 Comparison with Similar Models
The previous validations show that our metrics performed well for
failure prediction when used in the system test model that we
chose. Our model includes metrics directly from code churn
information in combination with the metrics from SNA (see
Section 4.2.1). To show what kind of contribution our network
metrics are making to the model, we performed our ten-fold cross
validation analysis on three additional models: a source-lines-of-
code (SLOC) model, a code churn only model, and a network
metrics only model.

We performed the same model selection process as described in
Section 3.4 with the SLOC metric as our only candidate variable,
considering transformations as well. Our final SLOC model
included a log-transformation of the SLOC metric in a negative
binomial regression.

The “Code Churn Only” model includes the same variables from
our final testing model (see Section 4.2.1), only without the
network metrics: (i.e. Code Churn, Number of Updates, Number
of Developers). Similarly, the “Network Metrics Only” model
includes only the network metrics (i.e. Sum of Closeness, Sum of
Degree). Negative binomial regression was used for both models
as it was the same regression used in the final testing model.

The average and standard deviations of the Spearman rank
correlation coefficients are detailed in Table 8; correlation
coefficients were significant (p<0.01). The high standard
deviation for the Code Churn Only model indicates that some
partitions did not perform as well in cross-validation. Based on
Fisher’s z-transformation the correlation coefficient for the

System Test Model, was significantly higher than the Code Churn
Only model in each of the five folds (p<0.05).

Table 8: Spearman correlation coefficients from cross-
validation of the training set

 Average Standard Deviation

SLOC Model 0.400 0.03

Code Churn Only 0.706 0.10

Network Metrics Only 0.514 0.05

System Test Model 0.778 0.03

Our results indicate that all four models are viable for producing a
file prioritization based on predicted failures; however, our full
model including network metrics performed the best. That the
model performed better when adding the network metrics
indicates that our metrics are explaining additional variance that
code churn alone could not explain.

4.4.2 Network Metrics as an Early Indicator
Our case study’s training set is from two full phases of
development, so when our results indicate that our model is an
accurate indicator of failures, our model would best be applied at
the end of the development phase when all code churn
information is available. In our collaboration with Nortel for this
case study, having our model’s predictions available between the
development phase and the testing phase was satisfactory for their
purposes. However, many testers design their test plans much
earlier than the start of system test, so having our model predict
failures earlier is more desirable.

Since churn data is available during the development phase, one
could use our model at any time in the development phase. We
ultimately envision our model being used as a form of process
improvement, where developers would adjust their process based
on our model’s analysis of the current churn data. To empirically
show that our model can be used early in the development phase,
we performed our analysis of ten-fold cross-validation (described
in Section 3.4) using data from only the first half of the
development time during release Rn+1. The churn records were
less than half the number of the final churn records and the
developer network had about a quarter of its edges. Using only the
data from the first half of development, our model performed an
average Spearman rank of 0.693 with standard deviation of 0.02,
with all correlation coefficients significant (p<0.01). Comparing
these results with the result from our previous analysis (Spearman
r=0.778), we conclude that having all of the data available is
ideal; however, our model had a significant ranking correlation
performed using only half of the data, so our model could provide
valuable information early in the development phase and would
be a good indicator for testers to use as they design their tests.

4.4.3 Developer Effort and Experience
Since correlation does not imply causation, one must always
consider possible latent factors which could influence both the
network metrics and cause system failures. For example, we
mentioned the design of the system being a possible latent factor
in Section 3.

Another of the possible latent factors influencing the accuracy of
our model is the notion of a developer’s experience and effort in
the project. One might think that if a developer simply worked on
the project more, he or she would generally be more central to the

network. We sought to quantify a developer’s experience and
determine if it could be a latent factor in our model.

Historically, researchers have quantified experience and/or effort
in their models and have found their metrics to be significant [16,
19]. One of the more common ways to quantify effort [16] is to
add up the number of lines of code that a developer has entered
into the system for all previous updates. We will call this
developer-based metric “Developer Churn.” Each file’s metric is
the sum of all Developer Churn over each developer. We will call
the file-based metric of Developer Churn “Effort.” Effort will be
highest for files updated by many developers who have made
many updates in the past.

When incorporating the Effort metric into our model, we found
that our model was over-fit, that is, too complex due to being
highly associated with the other variables. Furthermore, we found
that using Effort alone resulted in a Spearman rank correlation of
0.26 (p<0.01) on the training set, which is a weak correlation.
Hence, we reject the Effort model for our Network Metrics.

There are other ways to measure developer experience and/or
effort using churn data, and there is the possibility that such a
metric would not result in an over-fit model. Although one may be
able to construct a different metric regarding experience, we find
that metrics based on SNA provide a stronger foundation for
process improvement, as they lend themselves to more nuanced
interpretations.

5. Discussion of the Network
Modeling collaboration with easily obtainable code churn
information also provides opportunity for process improvement
during the development phase. Before we can use this network for
process improvement, however, we need to investigate the
meaning behind its structure. We applied a few methods of Social
Network Analysis to perform such an investigation.

In our case study, we analyzed the developer network of the
training set in search for empirically-sound interpretations of the
network. A summary of the network’s metrics can be found in
Table 9.

Table 9: Overall developer network metrics from the case
study training set

Number of developers 161

Average degree (hub threshold) 19.78 (30)

Number of hubs 37 (23%)

Number of disconnected 11 (6.8%)

Network diameter 9

Average Closeness 2.77

Average Betweenness 0.93

Our developer network had a high rate of hub developers.
Twenty-three percent (23%) of the developers are considered to
be “hub” developers, that is, 23% of the developers worked with
more than thirty other developers over the course of two releases.
Considering that the hub threshold is calculated based on the
Poisson distribution of a random network with a p-value of 1%,
we can safely claim that this network’s degree distribution does
not follow a Poisson, and is not a random network. In fact, the
degree distribution follows a power law. The standard test [1] we
performed was a linear regression on the log-log scale of the

degree distribution, and we obtained an r-squared of 0.81 (that is,
81% of the variance was explained by the linear regression).

Networks with a degree distribution of a power law are also
known as “Scale-free” or “Small world” networks. The term
“scale-free” comes from the notion that, as more nodes are added
to the network, the diameter of the network does not change
because as the number of nodes increases, peripheral nodes
become hubs [1]. Scale-free networks are found throughout Social
Network Analysis studies, particularly in collaboration networks.
Examples of scale-free collaboration networks include email
networks in open source software projects, movie actors, and
authors of scientific publications [5, 9, 13].

In every scale-free network, the hub plays a vital role. While hubs
provide a small diameter, removing hubs can result in a
disconnected network. This lack of robustness could be a valuable
indicator during development, perhaps for re-assignment of tasks
or for code inspections. Network Analysis provides several
metrics that quantify robustness [1]. A lack of robustness would
indicate that the network would become disconnected should a
developer leave. Furthermore, the precise relationship between
hubs and the collective knowledge of the project is unclear. Based
on this study, hubs appear to resemble the “gatekeeper” presented
by Allen [2]. We were not able to interview the hubs in our case
study to gauge their overall knowledge of the network.

Based on this study, however, we cannot provide a definitive set
of process improvement guidelines as the network may not be
complete. In this study, the only form of collaboration captured by
the network is from code churn data, so some communication may
be missed. To provide a basis for process improvement, one needs
to analyze the network in both the context of failure prediction
and in social network analysis.

6. SUMMARY
We developed and validated a failure prediction model based on
SNA of developers in a large software system. Using the
validation method of next-release validation, we found that our
model performed significantly well in prioritizing files based on
predicted failures. We have shown that developer networks are
useful for failure prediction early in the development phase and
provide a useful abstraction of the code churn data. Furthermore,
the correlation between network metrics and failures introduces
many possibilities for the use of SNA in software reliability. The
ability to create metrics based on the structure of a group of
developers could prove to be a powerful addition to current failure
prediction models as the developer network can also provide a
basis for process and organizational improvement. Further
investigation into how developer networks vary among projects,
processes, and domains would provide more insight into these
intriguing metrics.

7. FUTURE WORK
Developer networks provide a promising foundation for several
novel metrics to be introduced into failure prediction models. In
future work, we hope to explore a more sophisticated analysis of a
project’s developer network and how developer information can
be applied to products at the file level for failure prediction to
improve our model. Examining connection weighting schemes,
network robustness, clustering, and the evolution of developer
networks over time are among the many possible areas to explore.

The applications of developer networks go beyond failure
prediction; developer networks have implications to many areas of

software engineering. An investigation into how closely
associated a developer network is to true collaboration is
warranted. Comparisons of developer networks from different
projects, processes, and domains should be made. Once we have a
firm understanding of the developer network, we can begin to
make proactive steps toward organizational improvement rather
than reacting to the current state for V&V guidance.

8. ACKNOWLEDGMENTS
This research is supported by a research grant from Nortel
Networks. We would like to thank the members of the Software
Engineering Realsearch group at North Carolina State University
along with Thomas Zimmerman for his feedback.

9. REFERENCES
[1] Network Analysis: Methodological Foundations. Berlin:

Springer, 2005.
[2] Allen, T. J., Managing the Flow of Technology: MIT Press,

1977.
[3] Arisholm, E. and Briand, L. C., "Predicting Fault-prone

Components in a Java Legacy System," in 2006
ACM/IEEE International Symposium on Empirical
Software Engineering, 2006, pp. 8-17.

[4] Arisholm, E., Briand, L. C., and Fuglerud, M., "Data
Mining Techniques for Building Fault-proneness Models in
Telecom Java Software," in 18th IEEE International
Symposium on Software Reliability Engineering, 2007.

[5] Barabasi, A.-L. and Albert, R., "Emergence of scaling in
random networks," Science, vol. 286, no.5439, pp. 509-
512, 1999.

[6] Barabasi, A.-L. and Oltvai, Z. N., "Network Biology:
Understanding the Cell's Functional Organization," Nature
Reviews Genetics, vol. 5, no.2, pp. 101-113, 2004.

[7] Bengio, Y. and Grandvalet, Y., "No Unbiased Estimator of
the Variance of K-Fold Cross-Validation," J. Mach. Learn.
Res., vol. 5,pp. 1089-1105, 2004.

[8] Bernstein, A., Ekanayake, J., and Pinzger, M., "Improving
Defect Prediction using Temporal Features and Non Linear
Models," in Ninth International Workshop on Principles of
Software Evolution: in conjunction with the 6th ESEC/FSE
joint meeting, 2007, pp. 11-18.

[9] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and
Swaminathan, A., "Mining email social networks in
Postgres," in 2006 international workshop on Mining
software repositories, 2006, pp. 185-186.

[10] Boehm, B. W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

[11] Denaro, G. and Pezz, M., "An Empirical Evaluation of
Fault-Proneness Models," in 24th International Conference
on Software Engineering, 2002, pp. 241-251.

[12] Gao, K. and Khoshgoftaar, T. M., "A Comprehensive
Empirical Study of Count Models for Software Fault
Prediction," Reliability, IEEE Transactions on, vol. 56,
no.2, pp. 223-236, June, 2007.

[13] Girvan, M. and Newman, M. E. J., "Community Structure
in Social and Biological Networks," The Proceedings of
the National Academy of Sciences, vol. 99, no.12, pp.
7821-7826, 2001.

[14] Gonzales-Barahona, J. M., Lopez-Fernandez, L., and
Robles, G., "Applying Social Network Analysis to the
Information in CVS Repositories," in 2005 International
Workshop on Mining Software Repositories, 2004.

[15] Huang, S.-K. and Liu, K.-m., "Mining Version Histories to
Verify the Learning Process of Legitimate Peripheral
Participants," in 2005 International Workshop on Mining
Software Repositories, 2005, pp. 1-5.

[16] Hudepohl, J. P., Aud, S. J., Khoshgoftaar, T. M., Allen, E.
B., and Mayrand, J., "Emerald: Software Metrics and
Models on the Desktop," Software, IEEE, vol. 13, no.5, pp.
56-60, 1996.

[17] Lave, J. and Wenger, E., Situated Learning: Legitimate
Peripheral Participation. Cambridge: Cambridge University
Press, 1991.

[18] Mockus, A. and Weiss, D. M., "Predicting Risk of
Software Changes," Bell Labs Technical Journal, vol. 5,pp.
169-180, 2002.

[19] Mockus, A., Weiss, D. M., and Zhang, P., "Understanding
and Predicting Effort in Software Projects," in 25th
International Conference on Software Engineering, 2003,
pp. 274-284.

[20] Nagappan, N. and Ball, T., "Static Analysis Tools as Early
Indicators of Pre-Release Defect Density," in 27th
International Conference on Software Engineering, 2005,
pp. 580-586.

[21] Nagappan, N. and Ball, T., "Use of Relative Code Churn
Measures to Predict System Defect Density," in 27th
International Conference on Software Engineering, 2005.

[22] Nagappan, N., Ball, T., and Zeller, A., "Mining Metrics to
Predict Component Failures," in Proceeding of the 28th
International Conference on Software Engineering, 2006,
pp. 452-461.

[23] Ohira, M., Ohsugi, N., Ohoka, T., and Matsumoto, K.-i.,
"Accelerating Cross-project Knowledge Collaboration
using Collaborative Filtering and Social Networks," in
2005 International Workshop on Mining Software
Repositories, 2005, pp. 1-5.

[24] Ostrand, T. J., Weyuker, E. J., and Bell, R. M., "Locating
Where Faults Will Be," in 2005 conference on Diversity in
computing, 2005, pp. 48-50.

[25] Weyuker, E. J., Ostrand, T. J., and Bell, R. M., "Using
Developer Information as a Factor for Fault Prediction," in
Third International Workshop on Predictor Models in
Software Engineering, 2007, pp. 8-8.

[26] Yu, L. and Ramaswamy, S., "Mining CVS Repositories to
Understand Open-Source Project Developer Roles," in
Fourth International Workshop on Mining Software
Repositories, 2007, p. 4.

[27] Zimmermann, T. and Nagappan, N., "Predicting Defects
using Network Analysis on Dependency Graphs," in 29th
International Conference on Software Engineering, 2007.

[28] Zimmermann, T., Premraj, R., and Zeller, A., "Predicting
Defects for Eclipse," in Third International Workshop on
Predictor Models in Software Engineering, 2007, p. 9.

