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ABSTRACT 
Software fails and fixing it is expensive. Research in failure 
prediction has been highly successful at modeling software 
failures. Few models, however, consider the key cause of failures 
in software: people. Understanding the structure of developer 
collaboration could explain a lot about the reliability of the final 
product. We examine this collaboration structure with the 
developer network derived from code churn information that can 
predict failures at the file level. We conducted a case study 
involving a mature Nortel networking product of over three 
million lines of code. Failure prediction models were developed 
using test and post-release failure data from two releases, then 
validated against a subsequent release. One model’s prioritization 
revealed 58% of the failures in 20% of the files compared with the 
optimal prioritization that would have found 61% in 20% of the 
files, indicating that a significant correlation exists between file-
based developer network metrics and failures.  

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – process metrics, 
product metrics.  

General Terms 
Reliability, Human Factors, Verification 

Keywords 
Social network analysis, negative binomial regression, logistic 
regression, failure prediction, developer network 

1. INTRODUCTION 
Software fails and fixing it is expensive. If testers can find 
software failures early in the software development lifecycle, the 
estimated cost of fixing the software dramatically decreases [10]. 
Research in failure prediction has provided many models to assess 
the failure-proneness of files, and have been highly successful at 
predicting software failures [3, 8, 11, 21, 22, 24, 25, 28].  

Few models, however, consider the key cause of failures in 
software: people. People develop software and people test 

software. For large software systems, many people need to work 
together to develop software. This collaboration has a structure – 
a structure governed by elements of human social interaction and 
software development processes. Understanding the structure of 
developer collaboration could tell us a lot about the reliability of 
the final product. 

We examine this collaboration structure using a software 
development artifact common to most large projects: code churn 
information taken from revision control repositories. Code churn 
information has provided valuable metrics for failure prediction 
[21]. For example, a file with many recent changes tends to be 
more failure-prone than an unchanged file. 

But what if that file was updated by a developer who has worked 
with a lot of other developers? Maybe a “well-known” developer 
is less failure-prone. Code churn information can also tell us how 
these developers collaborated: we know who worked on what and 
when. From there, we can form a social network of developers 
(also known as a developer network) who have collaborated on 
the same files during the same period of time. Social Network 
Analysis (SNA) quantifies our notion of “well-known” developers 
with a class of metrics known as “centrality” metrics.  

The advantage of this developer network is that it provides a 
useful abstraction of the code churn information. With careful 
interpretation, one can use a developer network mid-development 
to identify potential risks and to guide verification and validation 
(V&V) activities such as code inspections.  

Our research goal is to examine human factors in failure 
prediction by applying social network analysis to code churn 
information. Failure prediction models have been successful for 
other areas (such as static analysis [16]), so the empirical 
techniques of model selection and validation have all been used 
with static code metrics [20]. We introduce file-based metrics 
based on SNA as additional predictors of software failures. 

A case study was conducted of a large Nortel networking product 
consisting of over 11,000 files and three million lines of code to 
build and evaluate the predictive power of network metrics. 
System test and post-release failure data from Nortel’s source 
repositories and defect tracking system were used in our study.  

The rest of this paper is organized as follows: Section 2 
summarizes the background of Social Network Analysis and  
related work in failure prediction and developer networks. Section 
3 introduces our developer networks, their associated metrics, and 
the analysis in failure prediction. Sections 4 and 5 summarize our 
case study of the Nortel product. Sections 6 and 7 summarize our 
work and outlines future work, respectively. 
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2. BACKGROUND AND RELATED WORK 
In this section, we introduce the network metrics we will use in 
our failure prediction model. We also present network analysis 
and summarize fault/failure prediction models most similar to 
ours in terms of using developer information or in terms of 
statistical analysis.  

2.1 Definition of Network Metrics 
In this paper, we use several terms from network analysis [1, 6, 
26] and define their meaning with respect to developer networks 
in Section 3.1. In network analysis, vertices of a graph are called 
nodes, and edges are called connections. A sequence of non-
repeating, adjacent nodes is a path, and a shortest path between 
two nodes is called a geodesic path. Informally, a geodesic path 
is the “social distance” from one node to another. The longest 
geodesic path of a network is called the network’s diameter. 

2.1.1 Connectivity 
Metrics that measure a node’s direct connections to other nodes 
are connectivity metrics. The primary connectivity metric in our 
study is the degree of a node. Degree is the number of 
connections incident on a node. The degree of a node in a random 
network is modeled by the Poisson distribution [6], which is 
useful for determining if a node is a hub. A node is considered a 
hub if its degree is above a given threshold calculated from the 
inverse Poisson cumulative distribution function for a p-value less 
than 0.011. A node is considered to be disconnected if it has no 
edges.  

2.1.2 Centrality 
Centrality metrics quantify how closely nodes are indirectly 
connected to other nodes in the network. Centrality can be 
measured by two metrics: closeness and betweenness. The 
closeness of node v  is defined as the average distance from v  to 
any other node in the network that can be reached from v . 
Formally, the closeness Dc of node v  in graph G is defined as  
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The betweenness of node v  is defined as the number of geodesic 
paths that include v  divided by the total number of geodesic 
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where )(vstσ is the number of geodesic paths from s  to t  going 

through v , and 
stσ is the total number of geodesic paths from s  

to t .  
 

                                                                 
1 Note that not all networks’ degrees follow a Poisson, meaning 

some networks have more than 1% of their nodes being hubs. 

2.2 Failure Prediction  
The closest research relating to ours is the fault prediction model 
based on developer information proposed by Weyuker et al. [25] 
These researchers examined various releases of a large industrial 
software system to predict which files are most likely to contain 
the largest number of faults. Inspection guidance and automated 
testing efforts are among the applications intended for their fault 
prediction model. Their model is based on the negative binomial 
distribution and their model’s variables, based on developer 
information, attempt to capture information about the amount and 
the type of developers who have worked on any given file. 
Validation for their model included a comparison with a working 
model based on static code metrics and churn information. 
Weyuker et al. reported finding 84.9% of the faults in 20% of the 
files with the developer information, where without the developer 
information, 83.9% of the faults were found. The amount of 
failures found using the optimal prioritization was not mentioned. 
Our models use some similar developer counts in combination 
with network metrics to predict failures.  

Zimmerman and Nagappan [27] applied network analysis to 
dependency graphs for predicting failures in files. By applying 
metrics of centrality and network motifs to the directed 
dependency graphs of source code, the researchers found that 
central components were more failure-prone. Furthermore, 
network metrics proved to identify 60% of the critical, failure-
prone binaries, which was better than object-oriented complexity 
metrics that only identified 30%. In addition to using centrality 
metrics of closeness and betweenness, Zimmerman and Nagappan 
used similar statistical regression techniques for their analysis that 
we used. 

Mockus and Weiss [18] used metrics based on developer 
information for failure prediction to assess risk in a large 
industrial software system. Developer metrics included counts of 
distinct developers and a quantitative measurement of developer 
experience in terms of recent changes of the current project, 
experience in the subsystem, and in the product overall. They used 
step-wise variable selection to construct a logistic regression 
model for estimating post-release failures. Our models do not 
quantify developer experience, however, a discussion of 
experience can be found in Section 4.4.3. 

Hudepohl et al. [16] used developer information in combination 
with various other metrics to create a risk assessment tool at 
Nortel called EMERALD. The developer information was a 
measurement of experience similar to the variables used by 
Mockus and Weiss. EMERALD’s developer variables, however, 
incorporated developer experience in terms of Nortel career, as 
opposed to specific projects. For example, one of the experience 
measurements was the count of the number of developers who 
were within their first ten code updates while working at Nortel as 
a way to identify inexperienced developers. EMERALD’s other 
variables included complexity metrics, customer usage metrics, 
churn information, and past failure counts from both testing and 
post-release phases. Hudepohl et al. reported that over half of the 
field failure patches were correctly identified as “red” (highest 
risk) in 20% of the files.  

Arisholm and Briand [3] identified developer experience and skill 
level as fundamental factors affecting fault-proneness in an 
object-oriented system. Since they had no data on skills and 
experience of developers, they did not consider developer 
information in their model. Nonetheless, they used a stepwise 



logistic regression model and a cross-validation classification 
analysis to validate their results. Most of the variables in their 
model could be classified in the categories of object-oriented 
metrics and code churn information. Their results from cross-
validation analysis showed less than 20% false positives and false 
negatives, with an estimated verification effort savings of 29%. 
We used developer information in our model, however, not based 
on skill but on the structure of developer connections within the 
developer network. 

Arisholm et. al [4] examined several data mining techniques used 
for fault prediction and validated their work on a large 
telecommunications product. The authors also discuss techniques 
of data collection, model selection, and model validation. Some of 
the discussed data mining techniques include logistic regression, 
neural networks, and decision trees. We applied similar 
techniques in the area of model selection and validation. 

Nagappan and Ball [21] used metrics based on code churn data to 
predict defect density in Windows Server 2003. Their hypothesis 
was on comparing the predictive power of relative code churn 
metrics to absolute code churn metrics. A relative code churn 
metric, as defined by Nagappan and Ball, is one that is normalized 
by parameters such as lines of code, files counts, etc. Multiple 
linear regression, Principle Component Analysis, and step-wise 
variable selection were all used to make predictions about defect 
density. Data splitting was used to validate the predictive power 
of the chosen model and to show that relative code churn metrics 
are more powerful than absolute code churn metrics. Along with 
the use of code churn metrics, similar statistical techniques to ours 
were used, such as multiple linear regression, logistic regression, 
and step-wise variable selection. 

2.3 Network Analysis 
The idea of constructing a developer network based on source 
repository information is not new [14, 15, 23]. However, the 
studies in SNA in software engineering have been directed toward 
studying communication and learning, not to do failure prediction, 
as in our case. 

Gonzales-Barahona and Lopez-Fernandez [14] propose the idea of 
creating developer networks from source repositories as a method 
of characterizing projects. Their main focus was to organize Open 
Source projects into various categories based on models of 
collaboration. The developer networks that Gonzales-Barahona 
and Lopez-Fernandez propose are constructed in a similar manner 
as ours, except that the edges of the graph are weighted based on 
number of files the pair has collaborated on. The idea of weight in 
their network introduces variations on the centrality and 
connectivity metrics, such as a “clustering coefficient”. In 
addition to a developer network, they used a module network – 
where two modules were connected if they were committed 
together. We decided on using a non-weighted developer network 
for simplicity in our study, however we will pursue more 
sophisticated network analysis such as those presented by 
Gonzales-Barahona and Lopez-Fernandez in our future work (see 
Section 7). 

Huang and Liu [15] used SNA based on source repositories to 
examine the learning process in Open Source projects. Their 
primary analysis involved using Legitimate Peripheral 
Participants, a network-based theory proposed by Lave and 
Wenger [17]. Huang and Liu concluded that developers  could be 
divided into core and non-core groups, which loosely affected a  
“project’s  vitality and popularity” [15].   

One significant difference between our study and other studies of 
developer networks is that ours is based on a proprietary product. 
Intuitively, collaboration in an Open Source project will be much 
different than that of a closed-source product. For example, 
companies have much more control over the organization of their 
developers. Network Metrics based on proprietary products are 
possibly more related to the development process used by the 
company than to the nature of human collaboration. 

3. SNA-BASED FAILURE PREDICTION   
In this section, we present our approach for the selection and 
validation of SNA-based failure prediction models.  We utilize 
this approach with data from a Nortel product, as described in 
Section 4. The product of our model is a prioritization (ordering) 
of files so that developers and testers can guide verification and 
validation activities such as code inspections. 

3.1 Developer Network Metrics 
A developer network is an estimation of the structure of 
collaboration in a software development project. We define a 
social network based on developer connections within a software 
development project. In our developer network, two developers 
are connected if they have both made a change to at least one file 
in common during the same release. The result is an undirected, 
simple graph where each node represents a developer and edges 
are based on whether or not they have worked on the same file 
during the same release.  

SNA provides quantitative measures of the structure of a network. 
The goal of performing network analysis using developers as 
nodes is to quantitatively determine where a developer lies in the 
overall structure of the network. Informally, we are trying to 
quantify how “well-known” a developer is in the context of the 
project. A “well-known” developer, for instance, might have 
many direct connections, that is, a developer is directly connected 
to many other developers. Metrics that measure developers’ direct 
connections to others are connectivity metrics, which are 
described in subsection 2.1.1 (i.e. degree, hub, and disconnected). 
Alternatively, a “well-known” developer may also, for instance, 
be connected to other developers who are connected to many 
other developers, and so on. That is, a developer may be “well-
known” by how closely connected he or she is by indirect 
connections (by geodesic paths greater than one). Metrics that 
measure how developers are indirectly connected to the rest of the 
network are centrality metrics, which are described in subsection 
2.1.2 (closeness and betweenness).  

Each metric captures a different aspect of a developer’s place in 
the network. A developer’s degree is equal to the number of other 
developers he or she worked on source files with. A hub is a 
developer with a high degree. A disconnected developer is the 
sole modifier of the files he or she updated in a release. A 
developer with high betweenness is generally more central to the 
network, as a central developer would lie on more geodesic paths 
than a non-central developer. A developer with low closeness 
means that their average social distance is low, implying he or she 
is well-known. 

Other researchers [14, 26] who have defined developer 
connections similarly have referred to these networks as 
“collaboration networks.” Although developer networks do 
provide evidence of possible collaboration between developers, 
we are hesitant to use such a term for our research without 
emphasizing that we are estimating collaboration via churn-based 



metrics. The asynchronous and often remote nature of working 
through a repository may imply that not all collaboration is being 
captured by our developer network. Actual social relationships, 
geography, and communication are not explicit factors in our 
network, only the system’s historical records. Two developers 
working on the same file around the same time, however, 
indicates that a possible collaboration is taking place. We propose, 
therefore, that our developer network is an estimate of developer 
collaboration. 

One must note that network metrics take into account the structure 
of the network as opposed to making absolute measurements 
regarding developers. For example, when incorporating developer 
information into a failure prediction model, one may look to 
measurements of a developer’s experience or merits. For example, 
a developer may work with twenty other developers in one project 
and be considered a hub, but may work in another project with 
twenty other developers and not be considered a hub. One 
developer’s metrics may change based on distant collaborative 
changes in the network. Network metrics take into account the 
structure of the group, not the individual in isolation.  

While developer networks are interesting abstractions on code 
churn information, we must also emphasize that a large number of 
qualitative generalizations of developer networks can be made. 
For example, consider the interpretation of hub developers. The 
mere presence of hub developers in a network could imply a 
workload imbalance, eliciting a possible reassignment of tasks. 
Alternatively, one could view hub developers as more crucial to 
the project, considering them “domain experts”. Both conclusions 
are sensible, but offer differing interpretations. As a result, one 
must rely on empirical analysis and careful interpretation to 
determine the meaning of these metrics for effective process 
improvement. Though the goal of this paper is to show that 
developer networks can be used for failure prediction, the 
evidence that network metrics are viable for failure prediction 
indicates the need for further investigation of developer networks 
as a useful abstraction for process improvement. A brief analysis 
of the developer networks from our case study can be found in 
Section 5. 

3.2 Illustrating the Developer Network 
Metrics 
All of the network metrics described in the prior section will be 
referred to as developer-based network metrics, since the metrics 
are calculated for each developer (as opposed to a development 
artifact). To apply these metrics to failure prediction, however, we 
also need “file-based” metrics, or metrics calculated on a per-file 
basis. Each file-based metric should reflect the network metrics of 
developers who updated the file throughout the file’s history. To 
calculate a file’s network metrics, we examine a file’s update 
history in the source code repository, list all of the distinct 
developers who updated the file, and calculated the sum, 
maximum, and average of each developer metric over the file’s 
history. For example, Max of Betweenness on file F is the 
maximum of all developer Betweenness values for the developers 
who updated F. Values are calculated per-developer, not per-
update, so if a developer updated a file twice, his or her metrics 
would only be used once.   

To better understand how developer- and file-based network 
metrics are calculated, consider the following example. Suppose 
we are initially given the churn information in Table 1.  In our 
example, we have developers Alison, Bob, Chad, and Deb. We 

have three files, X, Y, and Z. Our system has two releases, P and 
Q. Note that files need not be executable, and releases need not be 
consecutive. For instance, the top line of churn information table 
can be read as “Alison updated file X during release P”. 

 

Table 1: Churn information for the network metrics 
derivation example 

Developer File Release 

Alison File X P 

Bob File X P 

Bob File Y P 

Chad File Y P 

Alison File Y Q 

Bob File Z Q 

Chad File Z Q 

Deb File Z Q 

 

First, we build a developer network from churn information (see 
Figure 1). Our definition of a connection between two developers 
is that both worked on at least one file in common during the 
same release. For instance, Alison and Bob worked on file X 
during release P, so they are connected. Note that Alison and 
Chad are not connected, even though they both worked on file Y, 
as the updates were during different releases. The resulting 
developer network is shown in Figure 1. 

 
Figure 1: Resulting developer network from the example 

 
The second step is to calculate degree and centrality metrics for 
each developer. Table 2 details the measures of our example. The 
degree of Chad is exactly 2, for instance. Closeness for Chad is 
(1+1+2)/3=4/3 because the shortest distance to Bob and Deb are 
each 1, and the shortest distance to Alison is 2.  

To calculate Betweenness, we must first list out all of the shortest 
paths. Since this particular network is connected, we know there 
must be 6 geodesic paths: Alison-Bob, Alison-Bob-Chad, Alison-
Bob-Deb, Bob-Chad, Bob-Deb, and Chad-Deb. Betweenness is 
calculated by counting how many shortest paths a particular 
developer is included in. Bob, for example, is on 5 out of the 6 
shortest paths in the network, giving Bob a Betweenness of 5/6. 
The other three developers are only on the shortest paths 
beginning with themselves, so they all have a Betweenness of 3/6. 



One may observe that a developer who has made many updates 
over time (which has been used to estimate a developer’s 
“experience” [16, 19]) is not necessarily related to his or her 
centrality. Alison, for example, made two changes to two distinct 
files over two releases, yet was not considered as central as Deb, 
who only made one update to one file in one release. 

Table 2: Developer-based metrics calculated from Figure 1 

Developer Degree Closeness Betweenness 

Alison 1 5/3 ≈ 1.67 3/6 

Bob 3 1 5/6 

Chad 2 4/3 ≈ 1.33 3/6 

Deb 2 4/3 ≈ 1.33 3/6 

 

Once the developer-based metrics have been calculated, the last 
step is to calculate network metrics on a per-file basis. Using the 
churn information from Table 1, we determine the sum, max, and 
average of the developer metrics for each developer who updated 
the file. File-based network metrics are detailed in Table 3, 
showing only the summation for each metric.  For example, file Y 
was updated by Bob, Chad, and Alison over its entire history, 
making its “Sum of Degree” metric 3+2+1=6 (each developer’s 
degree can be found in Table 2). 

Table 3: File-based network metrics from churn information 
in Table 1 and developer-based metrics in Table 2 

File Sum of 
Degree 

Sum of 
Closeness 

Sum of 
Betweenness 

File X 4 8/3 ≈ 2.67 8/6 ≈ 1.33 

File Y 6 4 11/6 ≈ 1.83 

File Z 7 11/3 ≈ 3.67 11/6 ≈ 1.83 
 

The resulting file-based network metrics are the candidate metrics 
we used to correlate with failures in the system.  

3.3 Independent and Dependent Variables 
As described in Section 3.1, we calculated over each file’s history 
the sum, average, and maximum of each developer-based network 
metric as candidate independent variables for our model. Other 
relevant metrics, such as number of updates and code churn, are 
also added to our list of candidate metrics. These metrics are 
added to our candidate list as a control for simplicity: if a simpler 
metric (e.g. code churn) can be an adequate model, then there is 
no reason to use a more complex metric (e.g. Max of 
Betweenness). Furthermore, if our final model includes metrics 
from both categories without being over-fit, we can conclude that 
the network analysis metrics provide additional modeling power 
that code churn metrics could not provide.  

Transformations of all metrics such as log, square root, and 
inverse were considered for each metric to avoid skew. Since the 
candidate regressions are generalized linear regressions, a 
transformation of a metric can result in linear data. Plotting a 
single metric at a time can provide insight into the most 
appropriate transformations. 

The candidate metrics with descriptions are listed in Table 4.  

Table 4: Candidate file-based metrics 

Metric Description 

Code Churn The number of lines of code that were 
either added or changed over the history 
of this file 

Updates The number of updates to the repository 
that included this file 

Developers The number of distinct developers who 
have updated this file over its history 

(Sum/Average/Max) 
of Degree 

The (sum/average/maximum) of each 
developer’s degree over a file’s history 

(Sum/Average/Max) 
of Closeness 

The (sum/average/maximum) of each 
developer’s Closeness over a file’s history 

(Sum/Average/Max) 
of Betweenness 

The (sum/average/maximum) of each 
developer’s Betweenness over a file’s 
history 

Number of Hub 
Developers 

The number of distinct hub developers 
who update this file 

 
We had two dependent variables in our study: the number of 
system test failures for a file, and the number of post-release 
failures for a file. The number of system test and post-release 
failures per file was calculated from code churn information 
joined with trouble reports. One update to a file is associated with 
at most one trouble report, and a trouble report can involve 
multiple files. To determine the number of failures a given file 
had, we defined a failure as a trouble report that resulted in a fix. 
The number of failures for a given file, therefore, is equal to the 
number of trouble reports that involved that file. Trouble reports 
that did not result in a fix were not considered since they were 
never traced to specific files. Each trouble report was labeled as 
either from testing or post-release.  

3.4 Model Selection and Validation 
To discover a correlation between candidate metrics and system 
failures, we need to select a predictive model. Model selection is 
the process of finding the best combination of variables and a 
regression which can explain the variance in our data (i.e. model 
our data). The model selection process for regression requires two 
types of data sets: a training set and a validation set. The training 
set is used in the training stage to determine the weights of the 
variables in the model and to calculate goodness-of-fit statistics. 
Goodness-of-fit statistics are measures of how well the model fits 
the training set. The validation set is held out of the analysis until 
the final model has been selected. 

We define two training sets and therefore develop two models: a 
system test model and a post-release model. With the training set 
in place, we choose regressions for model selection. Our three 
candidate regressions are all generalized linear regressions 
previously used [12] for predicting failure count data: negative 
binomial regression, Poisson regression, and the logistic 
regression. The negative binomial and Poisson regressions 
estimate the number of failures for a given file, by which we rank 
for our prioritization. The logistic regression predicts the 
probability that a file had at least one failure, and our ranking was 
based on that estimated probability. 

The process of statistic regression analysis of network metrics can 
be enumerated in four steps: initial model selection, final model 



selection, model validation, and further analysis. For the latter 
three steps, we evaluate our model with two evaluation criteria: 
Spearman rank correlation coefficient, and a comparison of the 
predicted prioritization versus the optimal. Since we are providing 
a file-based prioritization (ordering) to guide V&V activities, we 
must use statistics to evaluate prioritizations. The Spearman rank 
correlation coefficient is used to estimate the correlation between 
the rank of our predicted values and the rank of our observed 
values. One important note is that the square of the correlation 
coefficient is equal to the percentage of variance explained by the 
model (e.g. a prediction with a correlation coefficient of 0.6 
explains 36% of the variance in the data). 

In addition to the Spearman rank coefficient, we also examine 
how our prioritization fared in comparison with an optimal 
prioritization. The optimal prioritization is found by sorting all of 
the files by their observed failure counts. Examining the optimal 
prioritization is important in this kind of analysis because one 
must make a comparison with how good the ordering could have 
been, which can vary greatly from product to product. 

Each of the four steps is now discussed: 

Step One: Initial model selection.  Model selection is done by 
systematically forming models of the training set with 
combinations of the candidate variables, including 
transformations, and the candidate regressions. Combinations in 
which the variables are known to be strongly associated with each 
other are not considered (e.g. different transformations of the 
same metric). The fitting of each model produces the beta-weight 
(weighted contribution) of each variable to the model. Goodness-
of-fit statistics of each model are evaluated as the training error 
(i.e. lack of fit), and models with the poorest training error are 
discarded. Model fitting and goodness-of-fit statistics were 
calculated in SAS v9.1 using proc genmod. Training error 
measures included maximum likelihood significance tests on the 
each of the partial regression coefficients evaluated at the p<0.05 
level, and the overall log-likelihood of the model. 

Possible reasons for poor training error include too few or non-
explanatory variables, also known as the model being under-fit as 
it does not explain enough of the variance in the training set. 
Models can also result in poor training error because of 
multicollinearity; that is, having variables that are strongly 
associated with each other. The output of Step One is an initial set 
of candidate models that have low training error. 

Step Two: Final model selection.  Models with low training 
error are considered for the final model. A low training error does 
not always imply an accurate model: a model could “memorize” 
the training examples and not be good for prediction, known as an 
over-fit model. In the second phase of model selection, models 
with low training error are cross-validated to evaluate their 
predictive power. Cross-validation, also called rotation estimation 
or hold-out validation [7], is an estimation technique used to 
provide accurate prediction values based on the training set. In 
particular, cross-validation is good for catching over-fit models. In 
cross-validation, the original training set is randomly partitioned 
into a training partition and a validation partition. For regression, 
training means the beta-weights of the model are calculated based 
on the training partition. Predictions are made on the validation 
partition2 using the model developed from the training partition. 
                                                                 
2 Not to be confused with the validation set mentioned in the next 

step, validation partitions are still part of the training set. 

In ten-fold cross-validation, the data set is randomly split into ten 
portions. Training and validation is done ten times, with each 
portion being the validation set exactly once and the other nine 
partitions compose the training set. Since the set is split into ten 
samples, the union of all samples is the original set.  

We calculate the Spearman rank correlation coefficient between 
the predicted and observed values for each of the ten partitions 
separately. The output of this step is the average and standard 
deviation of the ten correlation coefficients for each of the 
models. The two models with the highest average correlation 
coefficient and the lowest standard deviation become our final 
models to be validated. 

Step Three: Model validation.  When our best system test model 
and post-release model are each selected from Step Two, they are 
evaluated against the validation set (which has been left out of the 
whole process until the final validation). As discussed before, our 
two evaluation criteria are (a) Spearman rank correlation 
coefficient between the estimated values and the observed values, 
and (b) examining the difference between our predicted 
prioritization and an optimal prioritization. 

Step Four: Further Analysis.  Once a model has shown to be 
adequately predictive, the last step is to evaluate how it well it 
might work in practice. First, we compare the model to a “classic” 
source-lines-of-code (SLOC) model. We choose the SLOC model 
as a baseline of comparison as it has been used as a failure 
prediction metric in the past [25]. Second, to determine if network 
metrics provide extra predictive power, we compare the model 
with a model containing only code churn metrics and not network 
metrics, and vice versa. Third, to assess network metrics as an 
early indicator, we evaluate the model as if it were halfway 
through the development phase. Fourth, we investigate possible 
latent factors influencing the model. We investigated a possible 
latent factor involving the imbalance of developer experience by 
attempting to incorporate a known metric for developer 
experience/effort into our model. Lastly, we analyze our 
developer network by itself for possible interpretations for process 
improvement.   

3.5 Threats to Validity  
The goal of our model is to show that network metrics can 
adequately prioritize files based on estimated failures. A statistical 
issue with creating failure prediction models is the underlying 
problem of latent factors. Since correlation does not imply 
causation, there may be latent factors that influence both network 
metrics and cause system failures. One possibility for latent 
factors may be the design of the actual system. For example, if a 
central, hub developer works on files that many other developers 
work on, perhaps he or she works on an integrated layer of the 
system, whereas a non-hub developer may work relatively 
independently because he or she is working on, say, device 
drivers. This possible factor is certainly worth an investigation; 
however, our data had little information on the design of the 
system. 

Another limitation of our approach is that every file must have 
churn history. Without a churn history, a file has no list of 
updating developers and no network metrics can be calculated. 
One way to mitigate this problem is to rely solely on code churn 
metrics and to count the new files as “fully churned.” This 
limitation highlights the need to integrate network metrics into 
full models which incorporate many metrics, not just from code 
churn information. 



Finally, this study was conducted on a single project with a single 
data set. The developer network formed from this project’s code 
churn data may be specific to the process and developers involved 
in the project. Further case studies are needed to determine if 
these results can be generalized. 

4. NORTEL CASE STUDY 
Sections 4.1 through 4.3 describe our data collection, models and 
validation. Section 4.4 addresses factors related to deployment of 
our model. 

4.1 Study Context and Data Collection 
We built and validated our prediction model with data from an 
industrial product at Nortel Networks, a telecommunications 
company. Telecommunications systems must have high reliability 
because failures can cause major disruptions in the daily life and 
workings of society. As a result, Nortel faces intense pressure for 
their verification and validation efforts to be as effective and 
efficient as possible.   

Data was collected from three annual releases of a large, mature3 
networking product consisting of over 11,000 files and 3.17 
million lines of code. About 2,500 files were churned during our 
training releases, meaning that only 2,500 of the 11,000 files had 
network metrics associated with them. As discussed in Section 
3.5, only the 2,500 files could be examined in this study. 
Fortunately, most of the failures occurred in files that had been 
churned. System failure data and code churn information for the 
first two releases were used as a training set and the third release 
was held out as a validation4 set. For the rest of this paper, we will 
refer to the training set releases as RN and RN+1 and the validation 
set as RN+2.  

Our data set included churn information, system test failure data, 
and post-release failure data by file. The churn information is a 
table taken from the configuration management records which 
contains a row for each update made to the code, the file that was 
updated, the date of the update, the developer who made the 
update, lines of code added/changed/deleted, and an optional 
trouble report code for the update. One update to a file is 
associated with at most one trouble report, and a trouble report 
can involve multiple files. To determine the number of failures a 
given file had, we defined a failure as a trouble report that resulted 
in a fix. The number of failures for a given file, therefore, is equal 
to the number of trouble reports that involved that file. Trouble 
reports that did not result in a fix were not considered since they 
were never traced to specific files. Each trouble report was labeled 
as either from testing or post-release. Only updates to source code 
were included in our study, not documentation or other non-
executable files. 

4.2 Steps One and Two:  Model Selection 
The resulting models from Steps One and Two in Section 3.4 and 
their performance in cross-validation are as follows. Spearman 
correlation coefficients were calculated by the SAS v9.1 proc 
corr routine, which averages ranks in the case of a tie. 

                                                                 
3 The actual release number, RN, has been removed to protect 

proprietary information. 
4  Technically, we perform a pseudo-validation set because 

validation requires random sampling.  

4.2.1 System Testing Model 
The resulting regression from the model selection process for the 
system testing failure model was a negative binomial regression. 
The five variables consisting of the metrics and their 
transformations are located in Table 5. The actual beta-weights 
are not included to protect proprietary information. Degree was 
positively correlated with failures and Closeness was negatively 
correlated, indicating that the files updated by central developers 
were less failure-prone.  

By cross-validating the system testing model, the average of the 
ten Spearman rank correlation coefficients for the system test 
model was 0.778 with a standard deviation of 0.03. Squaring the 
coefficient means that 60.5% of the variance in the system test 
data was explained by our model. The strong correlation between 
predicted and observed values for the system test model indicates 
that the model is good for prediction. 

Table 5: Variables of the test failure model 

Metric Transformation 

Code Churn Log 

Updates None 

Developers Square root 

Sum of Degree Square root 

Sum of Closeness None 

 
Figure 2 shows the cumulative number of test failures found if 
files were prioritized using the union of the predicted values from 
cross-validation compared with the optimal ordering. For the first 
20% of the files, our model was very close to optimal: we found 
82% of the failures in 20% of the files, where 84% was optimal. 
The random ranking series in this figure and following represents 
the theoretical, unweighted average of all possible rankings. 
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Figure 2: Cumulative percentage of test failures found based 
on the prioritizations of the cross-validation predictions 

 

4.2.2 Post-Release Model 
The resulting regression from the model selection process for the 
post-release model was a logistic regression based on the 
estimated probability of a file having any failures. The four 
variables consisting of the metrics and their transformations are 



located in Table 6. The actual beta-weights are not included to 
protect proprietary information. As in the system testing failure 
model, however, Degree was positively correlated with failures 
and Closeness was negatively correlated, indicating again that the 
files updated by central developers were less failure-prone. 

Table 6: Variables to metrics in the post-release failure model 

Metric Transformation 

Updates None 

Developers Square root 

Sum of Degree Square root 

Sum of Closeness None 

 

By cross-validating the post-release model, the average of the ten 
correlation coefficients for the post-release model was 0.163 with 
a standard deviation of 0.07. Squaring the coefficient means that 
only 2.6% of the variance in the data was explained by our model. 
The significance test for each of the correlation coefficients was 
significant at p<0.001, thus the effect is weak, but significant. 

We suspect the weak correlation is due to the post-release data not 
being independently and identically distributed, an underlying 
assumption of our regressions. A lack of independence may be 
due to separate customers who use the system under different 
operational profiles. Another possibility for the weak correlation 
is over-fitting. We believe over-fitting to be not as likely since 
post-release failure models with fewer variables did not yield 
better results.  

Figure 3 shows the cumulative number of post-release failures 
found if files were prioritized using the union of the predicted 
values from cross-validation compared with the optimal ordering 
and a random ordering. 
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Figure 3: Cumulative percentage of post-release failures 
found based on the prioritizations of the cross-validation 
predictions and the optimal prioritization 

The post-release model found 81% of the failures in 20% of the 
files, where optimal is 100%. The cross-validation results from 
the post-release failure model were not quite as close to optimal as 
the system testing model, however, the prioritization was still 
greater than a random prioritization, implying that our model is 
still better than no model at all. 
 

4.3 Step Three:  Model Validation 
In this section, we discuss the empirical validation of our models 
in the context of our case study. We used next-release validation 
as our final validation.  

When system test failure data for the next release of Nortel’s large 
networking product became available, we were able validate our 
system test model trained from RN and RN+1 against the latest 
release, RN+2. Since the product had been deployed for only a few 
months, the data for post-release failures was not available for 
analysis. Therefore, we considered cross-validation as our final 
evaluator of our post-release model. Table 7 gives metadata on the 
dataset from release RN+2.  

 

Table 7: Metadata on release RN+2 validation dataset 

Number of files deleted between RN+1 and RN+2 835 

Number of pre-existing files churned in RN+2 2,035 
 

We compared our predictions taken from building a model with 
RN and RN+1 data to the observed failure counts of RN+2. The 
failure counts for files that were new in RN+2 were not handled; 
the model cannot make a prediction for files that did not exist at 
the time of the prediction. The Spearman rank correlation 
coefficient for our test model in next-release validation was 0.741 
(p<0.01). Figure 4 shows the cumulative percentage of failures 
found based on our prioritization. The “Model for Test Failures” 
area is our prioritization, and the darker region is the optimal 
prioritization. Our model found revealed 58% of the failures in 
20% of the files compared with the optimal prioritization that 
would have found 61% in 20% of the files. By comparing the 
optimal region in Figure 4 with the optimal region in Figure 2 
(RN+2’s optimal region is more flat), one can see that the failures 
were distributed over more files in RN+2. Nevertheless, our model 
was still considerably close to optimal. 
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Figure 4: Cumulative percentage of test failures found on pre-
existing files in RN+2. 

To illustrate the value of using our model, the rate of actual 
discovery of failures by the Nortel system test team is charted in 
Figure 5, that is, the cumulative percentage of failures found per 
week of testing. The added “Baseline” series denotes the 
cumulative percentage of failures found if the testing department 
had found the exact same number of failures each week 
(equivalent of a random ranking). The “Optimal” series is if the 



testing department had their highest failure-finding weeks first. Of 
particular note is that the time period in which the testing 
department struggled to find failures was in the first eight weeks 
of testing (or, in the first 18% of the total testing time). One 
explanation for this behavior is that, with the new release of the 
system, testers initially do not know where to start testing. The 
ordering in Figure 4, however, shows that the strongest period of 
time, the time when the model is near or at the optimal 
prioritization, is in the first 30% of files tested. Our model 
performs best at finding many failures early, where the testers 
need guidance the most. 
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Figure 5: Cumulative percentage of observed failures found 
over time during RN+2 

4.4 Step Four: Further Analyses 
Further analysis into the practicality of network metrics in failure 
prediction models follow. 

4.4.1 Comparison with Similar Models 
The previous validations show that our metrics performed well for 
failure prediction when used in the system test model that we 
chose. Our model includes metrics directly from code churn 
information in combination with the metrics from SNA (see 
Section 4.2.1). To show what kind of contribution our network 
metrics are making to the model, we performed our ten-fold cross 
validation analysis on three additional models: a source-lines-of-
code (SLOC) model, a code churn only model, and a network 
metrics only model.  

We performed the same model selection process as described in 
Section 3.4 with the SLOC metric as our only candidate variable, 
considering transformations as well. Our final SLOC model 
included a log-transformation of the SLOC metric in a negative 
binomial regression. 

The “Code Churn Only” model includes the same variables from 
our final testing model (see Section 4.2.1), only without the 
network metrics: (i.e. Code Churn, Number of Updates, Number 
of Developers). Similarly, the “Network Metrics Only” model 
includes only the network metrics (i.e. Sum of Closeness, Sum of 
Degree). Negative binomial regression was used for both models 
as it was the same regression used in the final testing model. 

The average and standard deviations of the Spearman rank 
correlation coefficients are detailed in Table 8; correlation 
coefficients were significant (p<0.01). The high standard 
deviation for the Code Churn Only model indicates that some 
partitions did not perform as well in cross-validation. Based on 
Fisher’s z-transformation the correlation coefficient for the 

System Test Model, was significantly higher than the Code Churn 
Only model in each of the five folds (p<0.05). 

Table 8: Spearman correlation coefficients from cross-
validation of the training set 

 Average Standard Deviation 

SLOC Model 0.400 0.03 

Code Churn Only  0.706 0.10 

Network Metrics Only 0.514 0.05 

System Test Model 0.778 0.03 

Our results indicate that all four models are viable for producing a 
file prioritization based on predicted failures; however, our full 
model including network metrics performed the best. That the 
model performed better when adding the network metrics 
indicates that our metrics are explaining additional variance that 
code churn alone could not explain. 

4.4.2 Network Metrics as an Early Indicator 
Our case study’s training set is from two full phases of 
development, so when our results indicate that our model is an 
accurate indicator of failures, our model would best be applied at 
the end of the development phase when all code churn 
information is available. In our collaboration with Nortel for this 
case study, having our model’s predictions available between the 
development phase and the testing phase was satisfactory for their 
purposes. However, many testers design their test plans much 
earlier than the start of system test, so having our model predict 
failures earlier is more desirable. 

Since churn data is available during the development phase, one 
could use our model at any time in the development phase. We 
ultimately envision our model being used as a form of process 
improvement, where developers would adjust their process based 
on our model’s analysis of the current churn data. To empirically 
show that our model can be used early in the development phase, 
we performed our analysis of ten-fold cross-validation (described 
in Section 3.4) using data from only the first half of the 
development time during release Rn+1. The churn records were 
less than half the number of the final churn records and the 
developer network had about a quarter of its edges. Using only the 
data from the first half of development, our model performed an 
average Spearman rank of 0.693 with standard deviation of 0.02, 
with all correlation coefficients significant (p<0.01). Comparing 
these results with the result from our previous analysis (Spearman 
r=0.778), we conclude that having all of the data available is 
ideal; however, our model had a significant ranking correlation 
performed using only half of the data, so our model could provide 
valuable information early in the development phase and would 
be a good indicator for testers to use as they design their tests.  

4.4.3 Developer Effort and Experience 
Since correlation does not imply causation, one must always 
consider possible latent factors which could influence both the 
network metrics and cause system failures. For example, we 
mentioned the design of the system being a possible latent factor 
in Section 3.  

Another of the possible latent factors influencing the accuracy of 
our model is the notion of a developer’s experience and effort in 
the project. One might think that if a developer simply worked on 
the project more, he or she would generally be more central to the 



network. We sought to quantify a developer’s experience and 
determine if it could be a latent factor in our model. 

Historically, researchers have quantified experience and/or effort 
in their models and have found their metrics to be significant [16, 
19]. One of the more common ways to quantify effort [16] is to 
add up the number of lines of code that a developer has entered 
into the system for all previous updates. We will call this 
developer-based metric “Developer Churn.”  Each file’s metric is 
the sum of all Developer Churn over each developer. We will call 
the file-based metric of Developer Churn “Effort.” Effort will be 
highest for files updated by many developers who have made 
many updates in the past. 

When incorporating the Effort metric into our model, we found 
that our model was over-fit, that is, too complex due to being 
highly associated with the other variables. Furthermore, we found 
that using Effort alone resulted in a Spearman rank correlation of 
0.26 (p<0.01) on the training set, which is a weak correlation. 
Hence, we reject the Effort model for our Network Metrics. 

There are other ways to measure developer experience and/or 
effort using churn data, and there is the possibility that such a 
metric would not result in an over-fit model. Although one may be 
able to construct a different metric regarding experience, we find 
that metrics based on SNA provide a stronger foundation for 
process improvement, as they lend themselves to more nuanced 
interpretations. 

5. Discussion of the Network 
Modeling collaboration with easily obtainable code churn 
information also provides opportunity for process improvement 
during the development phase. Before we can use this network for 
process improvement, however, we need to investigate the 
meaning behind its structure. We applied a few methods of Social 
Network Analysis to perform such an investigation.  

In our case study, we analyzed the developer network of the 
training set in search for empirically-sound interpretations of the 
network. A summary of the network’s metrics can be found in 
Table 9. 

Table 9: Overall developer network metrics from the case 
study training set 

Number of developers  161 

Average degree (hub threshold) 19.78 (30) 

Number of hubs 37 (23%) 

Number of disconnected 11 (6.8%) 

Network diameter 9 

Average Closeness 2.77 

Average Betweenness 0.93 

 
Our developer network had a high rate of hub developers. 
Twenty-three percent (23%) of the developers are considered to 
be “hub” developers, that is, 23% of the developers worked with 
more than thirty other developers over the course of two releases. 
Considering that the hub threshold is calculated based on the 
Poisson distribution of a random network with a p-value of 1%, 
we can safely claim that this network’s degree distribution does 
not follow a Poisson, and is not a random network. In fact, the 
degree distribution follows a power law. The standard test [1] we 
performed was a linear regression on the log-log scale of the 

degree distribution, and we obtained an r-squared of 0.81 (that is, 
81% of the variance was explained by the linear regression).  

Networks with a degree distribution of a power law are also 
known as “Scale-free” or “Small world” networks. The term 
“scale-free” comes from the notion that, as more nodes are added 
to the network, the diameter of the network does not change 
because as the number of nodes increases, peripheral nodes 
become hubs [1]. Scale-free networks are found throughout Social 
Network Analysis studies, particularly in collaboration networks. 
Examples of scale-free collaboration networks include email 
networks in open source software projects, movie actors, and 
authors of scientific publications [5, 9, 13]. 

In every scale-free network, the hub plays a vital role. While hubs 
provide a small diameter, removing hubs can result in a 
disconnected network. This lack of robustness could be a valuable 
indicator during development, perhaps for re-assignment of tasks 
or for code inspections. Network Analysis provides several 
metrics that quantify robustness [1]. A lack of robustness would 
indicate that the network would become disconnected should a 
developer leave. Furthermore, the precise relationship between 
hubs and the collective knowledge of the project is unclear. Based 
on this study, hubs appear to resemble the “gatekeeper” presented 
by Allen [2]. We were not able to interview the hubs in our case 
study to gauge their overall knowledge of the network. 

Based on this study, however, we cannot provide a definitive set 
of process improvement guidelines as the network may not be 
complete. In this study, the only form of collaboration captured by 
the network is from code churn data, so some communication may 
be missed. To provide a basis for process improvement, one needs 
to analyze the network in both the context of failure prediction 
and in social network analysis. 

6. SUMMARY 
We developed and validated a failure prediction model based on 
SNA of developers in a large software system. Using the 
validation method of next-release validation, we found that our 
model performed significantly well in prioritizing files based on 
predicted failures. We have shown that developer networks are 
useful for failure prediction early in the development phase and 
provide a useful abstraction of the code churn data. Furthermore, 
the correlation between network metrics and failures introduces 
many possibilities for the use of SNA in software reliability. The 
ability to create metrics based on the structure of a group of 
developers could prove to be a powerful addition to current failure 
prediction models as the developer network can also provide a 
basis for process and organizational improvement. Further 
investigation into how developer networks vary among projects, 
processes, and domains would provide more insight into these 
intriguing metrics. 

7. FUTURE WORK 
Developer networks provide a promising foundation for several 
novel metrics to be introduced into failure prediction models. In 
future work, we hope to explore a more sophisticated analysis of a 
project’s developer network and how developer information can 
be applied to products at the file level for failure prediction to 
improve our model. Examining connection weighting schemes, 
network robustness, clustering, and the evolution of developer 
networks over time are among the many possible areas to explore.  

The applications of developer networks go beyond failure 
prediction; developer networks have implications to many areas of 



software engineering. An investigation into how closely 
associated a developer network is to true collaboration is 
warranted. Comparisons of developer networks from different 
projects, processes, and domains should be made. Once we have a 
firm understanding of the developer network, we can begin to 
make proactive steps toward organizational improvement rather 
than reacting to the current state for V&V guidance. 
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