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ABSTRACT

Software fails and fixing it is expensive. Reseainhfailure
prediction has been highly successful at modeliofwsire
failures. Few models, however, consider the keyeaf failures
in software: people. Understanding the structuredeveloper
collaboration could explain a lot about the reliigpiof the final
product. We examine this collaboration structurethwthe
developer network derived from code churn inforomatthat can
predict failures at the file level. We conductedcase study
involving a mature Nortel networking product of ovthree
million lines of code. Failure prediction modelsreveleveloped
using test and post-release failure data from teleases, then
validated against a subsequent release. One mauaidtization
revealed 58% of the failures in 20% of the filesnpared with the
optimal prioritization that would have found 61% 20% of the
files, indicating that a significant correlationigts between file-
based developer network metrics and failures.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics — process metrics,
product metrics.

General Terms
Reliability, Human Factors, Verification

Keywords
Social network analysis, negative binomial regmssilogistic
regression, failure prediction, developer network

1. INTRODUCTION

Software fails and fixing it is expensive. If tastecan find
software failures early in the software developmdatycle, the
estimated cost of fixing the software dramaticalgcreases [10].
Research in failure prediction has provided manget®to assess
the failure-proneness of files, and have been hightcessful at
predicting software failures [3, 8, 11, 21, 22, 23, 28].

Few models, however, consider the key cause ofir&sl in
software: people. People develop software and pedpbt
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software. For large software systems, many peogésl io work
together to develop software. This collaboratios hastructure —
a structure governed by elements of human sodiatdotion and
software development processes. Understandingttbetige of

developer collaboration could tell us a lot abdw teliability of

the final product.

We examine this collaboration structure using atvene
development artifact common to most large projectste churn
information taken from revision control repositarig€Code churn
information has provided valuable metrics for fegluprediction
[21]. For example, a file with many recent changgsds to be
more failure-prone than an unchanged file.

But what if that file was updated by a developeowias worked
with a lot of other developers? Maybe a “well-kndvdeveloper
is less failure-prone. Code churn information ckso &ell us how
these developers collaborated: we know who worked/oat and
when. From there, we can form a social network efelbpers
(also known as a developer network) who have cotkted on
the same files during the same period of time. &ddietwork
Analysis (SNA) quantifies our notion of “well-knowdevelopers
with a class of metrics known as “centrality” mesi

The advantage of this developer network is thgbrdvides a
useful abstraction of the code churn informationithitareful
interpretation, one can use a developer networkdaiglopment
to identify potential risks and to guide verificati and validation
(V&V) activities such as code inspections.

Our research goal is to examine human factors in failure
prediction by applying social network analysis to code churn

information. Failure prediction models have been successful for

other areas (such as static analysis [16]), so ehwirical
techniques of model selection and validation hdideen used
with static code metrics [20]. We introduce filesed metrics
based on SNA as additional predictors of softwailarfes.

A case study was conducted of a large Nortel neiwgrproduct
consisting of over 11,000 files and three milliamek of code to
build and evaluate the predictive power of netwanletrics.
System test and post-release failure data fromdNsrsource
repositories and defect tracking system were usedii study.

The rest of this paper is organized as follows: tiSac 2

summarizes the background of Social Network Analyand
related work in failure prediction and developetwwzks. Section
3 introduces our developer networks, their assediatetrics, and
the analysis in failure prediction. Sections 4 &hslbmmarize our
case study of the Nortel product. Sections 6 asdrimarize our
work and outlines future work, respectively.



2. BACKGROUND AND RELATED WORK
In this section, we introduce the network metrias will use in
our failure prediction model. We also present nekwanalysis
and summarize fault/failure prediction models memhilar to
ours in terms of using developer information orteérms of
statistical analysis.

2.1 Definition of Network Metrics

In this paper, we use several terms from netwoddyais [1, 6,
26] and define their meaning with respect to dgvetanetworks
in Section 3.1. In network analysis, vertices @raph are called
nodes, and edges are callembnnections. A sequence of non-
repeating, adjacent nodes ipah, and a shortest path between
two nodes is called geodesic path. Informally, a geodesic path
is the “social distance” from one node to anottiére longest
geodesic path of a network is called the netwodiesneter.

2.1.1 Connectivity

Metrics that measure a node’s direct connectionsther nodes
are connectivity metrics. The primary connectivity metric in our
study is thedegree of a node Degree is the number of
connections incident on a node. The degree of & imod random
network is modeled by the Poisson distribution [@hich is
useful for determining if a node is a hub. A nodeansidered a
hub if its degree is above a given threshold calcdldtem the
inverse Poisson cumulative distribution function digp-value less
than 0.01 A node is considered to fatisconnected if it has no
edges.

2.1.2 Centrality

Centrality metrics quantify how closely nodes are indirectly
connected to other nodes in the network. Centradiyn be
measured by two metrics: closeness and betweenridms.
closeness of nodeV is defined as the average distance frénto
any other node in the network that can be reachechV .
Formally, the closeness.Df nodeV in graph G is defined as
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where d; (V,t) is the distance (number of edges) from natle

@

to nodet and|V (G, V)| is the number of nodes in the graph
reachable fronV .

Thebetweenness of nodeV is defined as the number of geodesic

paths that includeV divided by the total number of geodesic
paths in the network. Formally, betweennessoBnodeV in
graph G is defined as

z o4(v)
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where g (v) is the number of geodesic paths fr@nto t going

B, (V) = @

throughV, and g is the total number of geodesic paths fr@m
tot.

! Note that not all networks’ degrees follow a Poissmeaning
some networks have more than 1% of their nodegbribs.

2.2 FailurePrediction

The closest research relating to ours is the fangtiction model
based on developer information proposed by Weyekex. [25]
These researchers examined various releases cfeitaustrial
software system to predict which files are mosgliikto contain
the largest number of faults. Inspection guidante automated
testing efforts are among the applications intenidedheir fault
prediction model. Their model is based on the riegdiinomial
distribution and their model's variables, based @eveloper
information, attempt to capture information abdwt amount and
the type of developers who have worked on any gifitn
Validation for their model included a comparisorthwa working
model based on static code metrics and churn irgtom.
Weyuker et al. reported finding 84.9% of the faurt20% of the
files with the developer information, where withdhe developer
information, 83.9% of the faults were found. Theocamt of
failures found using the optimal prioritization wagt mentioned.
Our models use some similar developer counts inbazation
with network metrics to predict failures.

Zimmerman and Nagappan [27] applied network anslysi
dependency graphs for predicting failures in filBy. applying
metrics of centrality and network motifs to the edited
dependency graphs of source code, the researchensl fthat
central components were more failure-prone. Funtioee,
network metrics proved to identify 60% of the @dtl, failure-
prone binaries, which was better than object-oeérdomplexity
metrics that only identified 30%. In addition toings centrality
metrics of closeness and betweenness, Zimmermahlagappan
used similar statistical regression techniquegHeir analysis that
we used.

Mockus and Weiss [18] used metrics based on degelop
information for failure prediction to assess risk a large
industrial software system. Developer metrics idelth counts of
distinct developers and a quantitative measurerogdieveloper
experience in terms of recent changes of the cumeoject,
experience in the subsystem, and in the producttiv&hey used
step-wise variable selection to construct a logistgression
model for estimating post-release failures. Our ef®do not
quantify developer experience, however, a discussiaf
experience can be found in Section 4.4.3.

Hudepohl et al. [16] used developer informationcambination
with various other metrics to create a risk assessntool at
Nortel called EMERALD. The developer information sva

measurement of experience similar to the variahlesd by
Mockus and Weiss. EMERALD'’s developer variableswéeer,

incorporated developer experience in terms of Naréeeer, as
opposed to specific projects. For example, onéhefexperience
measurements was the count of the number of demelopho
were within their first ten code updates while wingkat Nortel as
a way to identify inexperienced developers. EMERAd DBther

variables included complexity metrics, customergaesaetrics,
churn information, and past failure counts fromhbtisting and
post-release phases. Hudepohl et al. reportecbtieaithalf of the
field failure patches were correctly identified ‘asd” (highest

risk) in 20% of the files.

Arisholm and Briand [3] identified developer exmerte and skill
level as fundamental factors affecting fault-proggs in an
object-oriented system. Since they had no data kills sand
experience of developers, they did not considereldper
information in their model. Nonetheless, they usedtepwise



logistic regression model and a cross-validatioasgfication
analysis to validate their results. Most of theiafales in their
model could be classified in the categories of dbfgiented
metrics and code churn information. Their resuttsnf cross-
validation analysis showed less than 20% falsetipesiand false
negatives, with an estimated verification efforvisgs of 29%.
We used developer information in our model, howewet based
on skill but on the structure of developer conrewi within the
developer network.

Arisholm et. al [4] examined several data mininght@ques used
for fault prediction and validated their work on large
telecommunications product. The authors also d&steshniques
of data collection, model selection, and modeldatibn. Some of
the discussed data mining techniques include logiegression,
neural networks, and decision trees. We appliedilaim
techniques in the area of model selection and atidid.

Nagappan and Ball [21] used metrics based on chdemdata to
predict defect density in Windows Server 2003. Tlhgpothesis
was on comparing the predictive power of relatiegles churn
metrics to absolute code churn metrics. A relategle churn
metric, as defined by Nagappan and Ball, is ontishaormalized
by parameters such as lines of code, files cowgtts, Multiple
linear regression, Principle Component Analysisj atep-wise
variable selection were all used to make predistiabout defect
density. Data splitting was used to validate thedmtive power
of the chosen model and to show that relative abden metrics
are more powerful than absolute code churn metfilcmg with
the use of code churn metrics, similar statistieahniques to ours
were used, such as multiple linear regressionsiimgiegression,
and step-wise variable selection.

2.3 Network Analysis

The idea of constructing a developer network basedsource
repository information is not new [14, 15, 23]. Hower, the
studies in SNA in software engineering have beeectéd toward
studying communication and learning, not to dauf&lprediction,
as in our case.

Gonzales-Barahona and Lopez-Fernandez [14] prapesédea of
creating developer networks from source reposioaie a method
of characterizing projects. Their main focus wasrganize Open
Source projects into various categories based ownetnoof
collaboration. The developer networks that GonzBleshona
and Lopez-Fernandez propose are constructed miksimanner
as ours, except that the edges of the graph aghteei based on
number of files the pair has collaborated on. Treaiof weight in
their network introduces variations on the centyaland
connectivity metrics, such as a “clustering coéfit”. In
addition to a developer network, they used a modefsvork —
where two modules were connected if they were cdradi
together. We decided on using a non-weighted dpeeloetwork
for simplicity in our study, however we will pursumore
sophisticated network analysis such as those pexbteby
Gonzales-Barahona and Lopez-Fernandez in our futark (see
Section 7).

Huang and Liu [15] used SNA based on source repisst to

examine the learning process in Open Source pgojekheir

primary analysis involved using Legitimate Periger
Participants, a network-based theory proposed byeland

Wenger [17]. Huang and Liu concluded that develspeould be

divided into core and non-core groups, which lopsefected a
“project’s vitality and popularity” [15].

One significant difference between our study areostudies of
developer networks is that ours is based on a @tapy product.
Intuitively, collaboration in an Open Source projed! be much
different than that of a closed-source product. Egample,
companies have much more control over the orgaaizaf their
developers. Network Metrics based on proprietagdpcts are
possibly more related to the development processl Uy the
company than to the nature of human collaboration.

3. SNA-BASED FAILURE PREDICTION

In this section, we present our approach for thecten and
validation of SNA-based failure prediction model§Ve utilize
this approach with data from a Nortel product, asctibed in
Section 4. The product of our model is a priortima (ordering)
of files so that developers and testers can gué#ication and
validation activities such as code inspections.

3.1 Developer Network Metrics

A developer network is an estimation of the struetof

collaboration in a software development project. \d&fine a
social network based on developer connections wighsoftware
development project. In our developer network, wavelopers
are connected if they have both made a changeléasitone file
in common during the same release. The result ignalirected,
simple graph where each node represents a devedmpeedges
are based on whether or not they have worked orsahee file
during the same release.

SNA provides quantitative measures of the struabdige network.
The goal of performing network analysis using depels as
nodes is to quantitatively determine where a deeldies in the
overall structure of the network. Informally, weeatrying to
quantify how “well-known” a developer is in the dert of the
project. A “well-known” developer, for instance, ght have
manydirect connections, that is, a developer is directly emed
to many other developers. Metrics that measureldpees’ direct
connections to others areonnectivity metrics, which are
described in subsection 2.1.1 (i.e. degree, huth d&stonnected).
Alternatively, a “well-known” developer may als@mrfinstance,
be connected to other developers who are connedotadany
other developers, and so on. That is, a developsr e “well-
known” by how closely connected he or she is ibglirect
connections (by geodesic paths greater than onejridd that
measure how developers are indirectly connectéldetoest of the
network arecentrality metrics, which are described in subsection
2.1.2 (closeness and betweenness).

Each metric captures a different aspect of a deeels place in
the network. A developerdegree is equal to the number of other
developers he or she worked on source files witthuh is a
developer with a high degree. disconnected developer is the
sole modifier of the files he or she updated inetease. A
developer with highbetweenness is generally more central to the
network, as a central developer would lie on maedgsic paths
than a non-central developer. A developer with Idaseness
means that their average social distance is lowlyiimg he or she
is well-known.

Other researchers [14, 26] who have defined deeelop
connections similarly have referred to these nétaomls
“collaboration networks.” Although developer netk®r do
provide evidence of possible collaboration betweewelopers,
we are hesitant to use such a term for our reseuatftthout
emphasizing that we are estimating collaborati@nchiurn-based



metrics. The asynchronous and often remote natfi@odking

through a repository may imply that not all colladtion is being
captured by our developer network. Actual socidtienships,
geography, and communication are not explicit fectm our
network, only the system'’s historical records. Tadevelopers
working on the same file around the same time, lewe
indicates that a possible collaboration is takitag@. We propose,
therefore, that our developer network isestimate of developer
collaboration.

One must note that network metrics take into accthenstructure
of the network as opposed to making absolute measemts
regarding developers. For example, when incorpugadieveloper
information into a failure prediction model, one ynlbok to
measurements of a developer’s experience or meotsexample,
a developer may work with twenty other developarsrie project
and be considered a hub, but may work in anothejegir with
twenty other developers and not be considered a e
developer's metrics may change based on distatabmohtive
changes in the network. Network metrics take intooant the
structure of the group, not the individual in ig@a.

While developer networks are interesting abstrastion code
churn information, we must also emphasize thatgelaumber of
qualitative generalizations of developer networks dbe made.
For example, consider the interpretation of hubetlpers. The
mere presence of hub developers in a network coufly a

workload imbalance, eliciting a possible reassigntmaf tasks.
Alternatively, one could view hub developers as enorucial to
the project, considering them “domain experts”.tlBobdnclusions
are sensible, but offer differing interpretatiods a result, one
must rely on empirical analysis and careful intetation to
determine the meaning of these metrics for effectprocess
improvement. Though the goal of this paper is tovsithat

developer networks can be used for failure preafictithe

evidence that network metrics are viable for falyrediction
indicates the need for further investigation of eleper networks
as a useful abstraction for process improvemertiriéf analysis
of the developer networks from our case study carfoind in

Section 5.

3.2 lllustrating the Developer Network

Metrics

All of the network metrics described in the pri@cgon will be
referred to as developer-based network metricgesine metrics
are calculated for each developer (as opposeddevalopment
artifact). To apply these metrics to failure préidic, however, we
also need “file-based” metrics, or metrics calcedabn a per-file
basis. Each file-based metric should reflect thevakk metrics of
developers who updated the file throughout thésfilestory. To
calculate a file’s network metrics, we examine la'di update
history in the source code repository, list all thie distinct
developers who updated the file, and calculated $hen,

maximum, and average of each developer metric theffile’s

history. For example, Max of Betweenness on fileisFthe

maximum of all developer Betweenness values fordtheslopers
who updated F. Values are calculated per-developet,per-
update, so if a developer updated a file twice,dnisier metrics
would only be used once.

To better understand how developer- and file-basetivork
metrics are calculated, consider the following epkenSuppose
we are initially given the churn information in Tahkl. In our
example, we have developers Alison, Bob, Chad, Bed. We

have three files, X, Y, and Z. Our system has teleases, P and
Q. Note that files need not be executable, andsekeneed not be
consecutive. For instance, the top line of chuforination table
can be read as “Alison updated file X during re¢e@s.

Table 1: Churn information for the network metrics
derivation example

Developer File Release
Alison File X P
Bob File X P
Bob File Y P
Chad File Y P
Alison FileY Q
Bob File Z Q
Chad File Z Q
Deb File Z Q

First, we build a developer network from churn mmfation (see
Figure 1). Our definition of a connection betweem developers
is that both worked on at least one file in comnthning the
same release. For instance, Alison and Bob workedile X

during release P, so they are connected. Note Alison and
Chad arenot connected, even though they both worked on file Y,
as the updates were during different releases. rEsailting
developer network is shown in Figure 1.

File X, Release P

Figure 1: Resulting developer network from the example

The second step is to calculate degree and cépntraétrics for
each developer. Table 2 details the measures ofxample. The
degree of Chad is exactly 2, for instance. Closefas Chad is
(1+1+2)/3=4/3 because the shortest distance to @mbDeb are
each 1, and the shortest distance to Alison is 2.

To calculate Betweenness, we must first list oubfathe shortest
paths. Since this particular network is connectesl know there
must be 6 geodesic paths: Alison-Bob, Alison-Bola@Alison-

Bob-Deb, Bob-Chad, Bob-Deb, and Chad-Deb. Betwesnhmne
calculated by counting how many shortest paths dicp&ar

developer is included in. Bob, for example, is oou of the 6
shortest paths in the network, giving Bob a Betwess of 5/6.
The other three developers are only on the shonteshs
beginning with themselves, so they all have a Betwess of 3/6.



One may observe that a developer who has made mzastes
over time (which has been used to estimate a dpeg

Table4: Candidate file-based metrics

“experience” [16, 19]) is not necessarily related His or her Metric Description i
centrality. Alison, for example, made two changeswio distinct Code Churn _The number of lines of code that were
files over two releases, yet was not considereceasral as Deb, either added or changed over the histor
who only made one update to one file in one release of this file
Table 2: Developer-based metrics calculated from Figure 1 Updates The number of updates to the reposito
that included this file
Developer Degree Closeness Betweenness -
Alison 1 53~ 167 3/6 Developers The number of _dls_tlnct de\_/elopers who
have updated this file over its history
Bob 3 1 5/6 -
(Sum/Average/Max)| The (sum/average/maximum) of each
Chad 2 4/3<1.33 3/6 of Degree developer’s degree over a file’s history
Deb 2 4/3=1.33 3/6 (Sum/Average/Max)| The (sum/average/maximum) of each

Once the developer-based metrics have been calduldte last
step is to calculate network metrics on a perfiésis. Using the
churn information from Table 1, we determine thensmax, and
average of the developer metrics for each develyber updated
the file. File-based network metrics are detailed Tiable 3,
showing only the summation for each metric. Faregle, file Y
was updated by Bob, Chad, and Alison over its entiistory,
making its “Sum of Degree” metric 3+2+1=6 (each aleper’s

degree can be found in Table 2).

Table 3: File-based network metricsfrom churn infor mation
in Table 1 and developer-based metricsin Table 2

File Sum of Sum of Sum of
Degree Closeness Betweenness
File X 4 8/3~ 2.67 8/6~1.33
File Y 6 4 11/6~1.83
File Z 7 11/3< 3.67 11/6~1.83

The resulting file-based network metrics are thedadate metrics

we used to correlate with failures in the system.

3.3 Independent and Dependent Variables

As described in Section 3.1, we calculated oveh did&'s history
the sum, average, and maximum of each developedhbestwork
metric as candidate independent variables for oodeh Other
relevant metrics, such as number of updates and chdrn, are
also added to our list of candidate metrics. Thewmsgrics are
added to our candidate list as a control for siaitgti if a simpler
metric (e.g. code churn) can be an adequate mtui, there is
no reason to use a more complex metric (e.g. Max
Betweenness). Furthermore, if our final model idelsi metrics
from both categories without being over-fit, we camclude that
the network analysis metrics provide additional elod) power
that code churn metrics could not provide.

Transformations of all metrics such as log, squaret, and
inverse were considered for each metric to avoahsiSince the

candidate

regressions are generalized

linear rEgres a

transformation of a metric can result in linearada®lotting a
single metric at a time can provide insight intoe timost

appropriate transformations.

The candidate metrics with descriptions are ligteBable 4.

of Closeness

developer’s Closeness over a file’s histq

(Sum/Average/Max)
of Betweenness

The (sum/average/maximum) of each
developer’'s Betweenness over a file’s
history

Number of Hub
Developers

The number of distinct hub developers

who update this file

We had two dependent variables in our study: thebar of

system test failures for a file, and the numberpo$t-release
failures for a file. The number of system test gubt-release

failures per file was calculated from code churfioimation
joined with trouble reports. One update to a fl@ssociated with
at most one trouble report, and a trouble report tevolve
multiple files. To determine the number of failuragyiven file
had, we defined a failure as a trouble report tasatilted in a fix.

The number of failures for a given file, therefoi®equal to the

number of trouble reports that involved that fileouble reports

that did not result in a fix were not consideredcsi they were

ry

never traced to specific files. Each trouble repaas labeled as
either from testing or post-release.

3.4 Modd Selection and Validation

To discover a correlation between candidate me#ius system

failures, we need to select a predictive model. éalection is
the process of finding the best combination of atalés and a
regression which can explain the variance in otia diee. model
our data). The model selection process for reggasgEquires two

types of data sets: a training set and a valida&tnThe training

set is used in the training stage to determinevibiglhts of the
variables in the model and to calculate goodned#-sfatistics.
Goodness-of-fit statistics are measures of how thellmodel fits

of the training set. The validation set is held outha&f analysis until

the final model has been selected.

We define two training sets and therefore develep models: a
system test model and a post-release model. Wethr#tining set
in place, we choose regressions for model selectiarr three

candidate regressions are all generalized
previously used [12] for predicting failure coundta: negative
regression,

binomial

linegressions

Poisson regression, and thgistlo

regression. The negative binomial and Poisson segnes
estimate the number of failures for a given filg,vthich we rank
for our prioritization. The logistic regression grets the
probability that a file had at least one failuredaur ranking was
based on that estimated probability.

The process of statistic regression analysis afiordt metrics can
be enumerated in four steps: initial model selectimal model



selection, model validation, and further analys$isr the latter
three steps, we evaluate our model with two evalnatriteria:
Spearman rank correlation coefficient, and a comparof the
predicted prioritization versus the optimal. Simeeare providing
a file-based prioritization (ordering) to guide V&V activities, we
must use statistics to evaluate prioritizationse Bpearman rank
correlation coefficient is used to estimate theeation between
the rank of our predicted values and the rank of @bserved
values. One important note is that the square efctbrrelation
coefficient is equal to the percentage of variagxglained by the
model (e.g. a prediction with a correlation coeéfic of 0.6
explains 36% of the variance in the data).

In addition to the Spearman rank coefficient, weoaéxamine
how our prioritization fared in comparison with aptimal
prioritization. The optimal prioritization is fourtoly sorting all of
the files by their observed failure counts. Examinthe optimal
prioritization is important in this kind of analgsbecause one
must make a comparison with how good the ordermgcchave
been, which can vary greatly from product to praduc

Each of the four steps is now discussed:

Step One: Initial model selection. Model selection is done by
systematically forming models of the training setithw
combinations of the candidate variables, including
transformations, and the candidate regressions.b@mtions in
which the variables are known to be strongly asdediwith each
other are not considered (e.g. different transfoiona of the
same metric). The fitting of each model produceshbta-weight
(weighted contribution) of each variable to the mloGoodness-
of-fit statistics of each model are evaluated astthining error
(i.e. lack of fit), and models with the poorestiniag error are
discarded. Model fitting and goodness-of-fit stits were
calculated in SAS v9.1 usingroc gennod. Training error
measures included maximum likelihood significanestd on the
each of the partial regression coefficients evaldiat the p<0.05
level, and the overall log-likelihood of the model.

Possible reasons for poor training error include fwv or non-
explanatory variables, also known as the modelgemder-fit as
it does not explain enough of the variance in tlening set.
Models can also result in poor training error beseauof
multicollinearity; that is, having variables thatreastrongly
associated with each other. The output of Stepi©aa initial set
of candidate models that have low training error.

Step Two: Final model selection. Models with low training
error are considered for the final model. A lowirtnag error does
not always imply an accurate model: a model coutérhorize”
the training examples and not be good for predictimown as an
over-fit model. In the second phase of model silectmodels
with low training error are cross-validated to ewe their
predictive power. Cross-validation, also callechtioin estimation
or hold-out validation [7], is an estimation teduré used to
provide accurate prediction values based on thairiga set. In
particular, cross-validation is good for catchingefit models. In
cross-validation, the original training set is randy partitioned
into a training partition and a validation partitid=or regression,
training means the beta-weights of the model aleutzed based
on the training partition. Predictions are madetlo& validation
partitiorf using the model developed from the training partit

2 Not to be confused with the validation set mergibin the next
step, validation partitions are still part of thaining set.

In ten-fold cross-validation, the data set is ranfjosplit into ten
portions. Training and validation is done ten timesth each
portion being the validation set exactly once amel other nine
partitions compose the training set. Since theisseplit into ten
samples, the union of all samples is the origieal s

We calculate the Spearman rank correlation coefficbetween
the predicted and observed values for each of éhepartitions
separately. The output of this step is the avemy® standard
deviation of the ten correlation coefficients foach of the
models. The two models with the highest averageetaiion
coefficient and the lowest standard deviation bexaur final
models to be validated.

Step Three: Model validation. When our best system test model
and post-release model are each selected fromT3tepthey are
evaluated against the validation set (which has lhefe out of the
whole process until the final validation). As dissad before, our
two evaluation criteria are (a) Spearman rank ¢aticen
coefficient between the estimated values and tiservkd values,
and (b) examining the difference between our ptedic
prioritization and an optimal prioritization.

Step Four: Further Analysis. Once a model has shown to be
adequately predictive, the last step is to evallmae it well it
might work in practice. First, we compare the maded “classic”
source-lines-of-code (SLOC) model. We choose th@Gimodel
as a baseline of comparison as it has been usesl faflure
prediction metric in the past [25]. Second, to duatee if network
metrics provide extra predictive power, we comptre model
with a model containing only code churn metrics antinetwork
metrics, and vice versa. Third, to assess netwoekics as an
early indicator, we evaluate the model as if it werefiay
through the development phase. Fourth, we investigassible
latent factors influencing the model. We investighta possible
latent factor involving the imbalance of develogaperience by
attempting to incorporate a known metric for depelo
experience/effort into our model. Lastly, we analyour
developer network by itself for possible interptietas for process
improvement.

3.5 Threatsto Validity

The goal of our model is to show that network nestrcan
adequately prioritize files based on estimatedifed. A statistical
issue with creating failure prediction models i thnderlying
problem of latent factors. Since correlation doest mmply
causation, there may be latent factors that inftedmoth network
metrics and cause system failures. One possibibty latent
factors may be the design of the actual system.ekkample, if a
central, hub developer works on files that manyepithevelopers
work on, perhaps he or she works on an integrager lof the
system, whereas a non-hub developer may work velgti
independently because he or she is working on, dayijce
drivers. This possible factor is certainly worth iawvestigation;
however, our data had little information on the igesof the
system.

Another limitation of our approach is that everle fmust have
churn history. Without a churn history, a file hes list of
updating developers and no network metrics can dbeulated.
One way to mitigate this problem is to rely solely code churn
metrics and to count the new files as “fully chutrieThis
limitation highlights the need to integrate netwarletrics into
full models which incorporate many metrics, nottjirem code
churn information.



Finally, this study was conducted on a single mtojéth a single
data set. The developer network formed from thggat's code
churn data may be specific to the process and oeeed involved
in the project. Further case studies are neededetermine if
these results can be generalized.

4. NORTEL CASE STUDY

Sections 4.1 through 4.3 describe our data cotlectinodels and
validation. Section 4.4 addresses factors relatedeployment of
our model.

4.1 Study Context and Data Collection

We built and validated our prediction model withtaddrom an
industrial product at Nortel Networks, a telecomimations
company. Telecommunications systems must havereigbility
because failures can cause major disruptions &g life and
workings of society. As a result, Nortel faces iste pressure for
their verification and validation efforts to be affective and
efficient as possible.

Data was collected from three annual releaseslafge, maturé
networking product consisting of over 11,000 filaad 3.17
million lines of code. About 2,500 files were chadnduring our
training releases, meaning that only 2,500 of th@@0 files had
network metrics associated with them. As discusse&ection
3.5, only the 2,500 files could be examined in tkisidy.
Fortunately, most of the failures occurred in fitaat had been
churned. System failure data and code churn infoomdor the
first two releases were used as a training setttamdhird release
was held out as a validatibset. For the rest of this paper, we will
refer to the training set releases asaRd R..; and the validation
set as R.o.

Our data set included churn information, syster fegfire data,
and post-release failure data by file. The chufforination is a
table taken from the configuration management @=orhich
contains a row for each update made to the coddijléhthat was
updated, the date of the update, the developer mhde the
update, lines of code added/changed/deleted, andptional
trouble report code for the update. One update téleais
associated with at most one trouble report, antbabte report
can involve multiple files. To determine the numbéfailures a
given file had, we defined a failure as a trouleleart that resulted
in a fix. The number of failures for a given fitherefore, is equal
to the number of trouble reports that involved tfilgt Trouble
reports that did not result in a fix were not cdesed since they
were never traced to specific files. Each troubfwort was labeled
as either from testing or post-release. Only updtiesource code
were included in our study, not documentation dreotnon-
executable files.

4.2 StepsOneand Two: Model Selection

The resulting models from Steps One and Two ini&e&.4 and
their performance in cross-validation are as fooBpearman
correlation coefficients were calculated by the S¥&1 proc
corr routine, which averages ranks in the case of.a tie

3 The actual release numbery,Rhas been removed to protect
proprietary information.

4 Technically, we perform a pseudo-validation setase
validation requires random sampling.

4.2.1 System Testing Model

The resulting regression from the model selectimtess for the
system testing failure model was a negative binbneigression.
The five variables consisting of the metrics andeirth
transformations are located in Table 5. The acheth-weights
are not included to protect proprietary informati@egree was
positively correlated with failures and Closenesss wegatively
correlated, indicating that the files updated byt developers
were less failure-prone.

By cross-validating the system testing model, therage of the
ten Spearman rank correlation coefficients for fiystem test
model was 0.778 with a standard deviation of O®xpuaring the
coefficient means that 60.5% of the variance in glstem test
data was explained by our model. The strong cdioeldetween
predicted and observed values for the system tedehindicates
that the model is good for prediction.

Table5: Variables of thetest failure model

Metric Transformation
Code Churn Log

Updates None
Developers Square root

Sum of Degree

Square root

Sum of Closeness

None

Figure 2 shows the cumulative number of test fasufound if
files were prioritized using the union of the pitdd values from
cross-validation compared with the optimal orderifgr the first
20% of the files, our model was very close to optimve found
82% of the failures in 20% of the files, where 84¢s optimal.
The random ranking series in this figure and follmywrepresents
the theoretical, unweighted average of all possittéings.

Cumulative Percentage of Test Failures

Found in Cross-Validation
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Figure 2: Cumulative percentage of test failuresfound based
on the prioritizations of the cross-validation predictions

4.2.2 Post-Release Model

The resulting regression from the model selectimtess for the
post-release model was a logistic regression basedthe
estimated probability of a file having any failureShe four
variables consisting of the metrics and their ti@msations are



located in Table 6. The actual beta-weights areimdtided to
protect proprietary information. As in the systeasting failure
model, however, Degree was positively correlateth vailures
and Closeness was negatively correlated, indicagagn that the
files updated by central developers were lessriiprone.

Table 6: Variablesto metricsin the post-release failure model

Metric Transformation
Updates None
Developers Square root

Sum of Degree Square root

Sum of Closeness None

By cross-validating the post-release model, theame of the ten
correlation coefficients for the post-release moslas 0.163 with
a standard deviation of 0.07. Squaring the coefficmeans that
only 2.6% of the variance in the data was explaimgdur model.
The significance test for each of the correlatioefficients was
significant at p<0.001, thus the effect is weal, dignificant.

We suspect the weak correlation is due to the dstse data not
being independently and identically distributed, amderlying

assumption of our regressions. A lack of independemay be
due to separate customers who use the system ulifflenent

operational profiles. Another possibility for theeak correlation
is over-fitting. We believe over-fitting to be nas likely since
post-release failure models with fewer variabled dot yield

better results.

Figure 3 shows the cumulative number of post-rele@adiures
found if files were prioritized using the union tfe predicted
values from cross-validation compared with the roptiordering
and a random ordering.

Cumulative Percentage of Post-Release Failures
Found in Cross Validation

Optimal
[0 Model for Post Release Failures
0O Random Ranking

0% - T T T T T T T T T

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
%of Files

Figure 3: Cumulative percentage of post-release failures
found based on the prioritizations of the cross-validation
predictions and the optimal prioritization

The post-release model found 81% of the failure20fo of the
files, where optimal is 100%. The cross-validati@sults from
the post-release failure model were not quite @secto optimal as
the system testing model, however, the prioritarativas still
greater than a random prioritization, implying tlwafr model is
still better than no model at all.

4.3 Step Three: Model Validation

In this section, we discuss the empirical validatad our models
in the context of our case study. We used nexaselevalidation
as our final validation.

When system test failure data for the next releddéortel’'s large
networking product became available, we were ahl@ate our
system test model trained fromyRnd R.; against the latest
release, R.,. Since the product had been deployed for onlya fe
months, the data for post-release failures wasawailable for
analysis. Therefore, we considered cross-validaéisrour final
evaluator of our post-release model. Table 7 gwetadata on the
dataset from releasgqB.

Table 7: Metadata on release Ry, validation dataset

Number of files deleted betweeq Rand Ry, 835

Number of pre-existing files churned in R 2,035

We compared our predictions taken from building @det with
Ry and R.; data to the observed failure counts qf.R The
failure counts for files that were new ingR were not handled;
the model cannot make a prediction for files thdt bt exist at
the time of the prediction. The Spearman rank ¢atice
coefficient for our test model in next-release dation was 0.741
(p<0.01). Figure 4 shows the cumulative percenwigéilures
found based on our prioritization. The “Model foest Failures”
area is our prioritization, and the darker regisnttie optimal
prioritization. Our model found revealed 58% of tlaflures in
20% of the files compared with the optimal priaétion that
would have found 61% in 20% of the files. By conipgrthe
optimal region in Figure 4 with the optimal regiam Figure 2
(Rn+2's optimal region is more flat), one can see that failures
were distributed over more files inyB. Nevertheless, our model
was still considerably close to optimal.

Cumulative Percentage of Failures Found
in Next-Release Validation
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Figure 4: Cumulative percentage of test failuresfound on pre-
existing filesin Ry.o.

To illustrate the value of using our model, theeratf actual
discovery of failures by the Nortel system tesiida charted in
Figure 5, that is, the cumulative percentage dtifas found per
week of testing. The added “Baseline” series denctiee
cumulative percentage of failures found if theitesidepartment
had found the exact same number of failures eaclkekwe
(equivalent of a random ranking). The “Optimal”issris if the



testing department had their highest failure-figdiveeks first. Of
particular note is that the time period in whiche tiesting
department struggled to find failures was in thistfeight weeks
of testing (or, in the first 18% of the total tegfitime). One
explanation for this behavior is that, with the nelease of the
system, testers initially do not know where to tstasting. The
ordering in Figure 4, however, shows that the gfesh period of
time, the time when the model is near or at theinmgt
prioritization, is in the first 30% of files testedDur model
performs best at finding many failures early, whtte testers
need guidance the most.

Cumulative Rate of Percentage Failures
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Figure 5: Cumulative per centage of obser ved failuresfound
over timeduring Ry.»

4.4 Step Four: Further Analyses
Further analysis into the practicality of networletnits in failure
prediction models follow.

4.4.1 Comparison with Smilar Models

The previous validations show that our metricsqrentd well for
failure prediction when used in the system test ehdbat we
chose. Our model includes metrics directly from eochurn
information in combination with the metrics from BN(see
Section 4.2.1). To show what kind of contributionr metwork
metrics are making to the model, we performed ensfold cross
validation analysis on three additional modelsparse-lines-of-
code (SLOC) model, a code churn only model, ancetmvark
metrics only model.

We performed the same model selection process sgiled in
Section 3.4 with the SLOC metric as our only caatidvariable,
considering transformations as well. Our final SLO@del
included a log-transformation of the SLOC metricaimegative
binomial regression.

The “Code Churn Only” model includes the same \@eis from
our final testing model (see Section 4.2.1), onlitheut the
network metrics: (i.e. Code Churn, Number of Updatéumber
of Developers). Similarly, the “Network Metrics @hlmodel
includes only the network metrics (i.e. Sum of @losss, Sum of
Degree). Negative binomial regression was useddin models
as it was the same regression used in the find@hgesiodel.

The average and standard deviations of the Speamaak
correlation coefficients are detailed in Table &rrelation
coefficients were significant (p<0.01). The higharstard
deviation for the Code Churn Only model indicatbattsome
partitions did not perform as well in cross-validat Based on
Fisher's z-transformation the correlation coefiitiefor the

System Test Model, was significantly higher tham @ode Churn
Only model in each of the five folds (p<0.05).

Table 8: Spear man correlation coefficients from cross-
validation of thetraining set

Average Standard Deviation
SLOC Mode 0.400 0.03
Code Churn Only 0.706 0.10
Network Metrics Only 0.514 0.05
System Test M odel 0.778 0.03

Our results indicate that all four models are \eafolr producing a
file prioritization based on predicted failures;wever, our full
model including network metrics performed the béstat the
model performed better when adding the network iogetr
indicates that our metrics are explaining additioraiance that
code churn alone could not explain.

4.4.2 Network Metrics as an Early Indicator

Our case study's training set is from two full péssof
development, so when our results indicate thatradel is an
accurate indicator of failures, our model wouldthes applied at
the end of the development phase when all code nchur
information is available. In our collaboration wittortel for this
case study, having our model’s predictions avadldi#tween the
development phase and the testing phase was sadigfdor their
purposes. However, many testers design their tiestspmuch
earlier than the start of system test, so havingnoadel predict
failures earlier is more desirable.

Since churn data is available during the develogméase, one
could use our model at any time in the developnprase. We
ultimately envision our model being used as a fafhprocess
improvement, where developers would adjust theicess based
on our model’s analysis of the current churn daitaempirically
show that our model can be used early in the dpwatmt phase,
we performed our analysis of ten-fold cross-valmatdescribed
in Section 3.4) using data from only the first half the
development time during release.R The churn records were
less than half the number of the final churn resoahd the
developer network had about a quarter of its eddsing only the
data from the first half of development, our mogetformed an
average Spearman rank of 0.693 with standard dewiaf 0.02,
with all correlation coefficients significant (p€d). Comparing
these results with the result from our previoud\ais (Spearman
r=0.778), we conclude that having all of the datailable is
ideal; however, our model had a significant rankaugrelation
performed using only half of the data, so our mambelld provide
valuable information early in the development phasd would
be a good indicator for testers to use as theyddheir tests.

4.4.3 Developer Effort and Experience

Since correlation does not imply causation, one tnakways
consider possible latent factors which could inficee both the
network metrics and cause system failures. For pl@amwe
mentioned the design of the system being a poskitdat factor
in Section 3.

Another of the possible latent factors influencthg accuracy of
our model is the notion of a developer's experieacd effort in
the project. One might think that if a developengly worked on
the project more, he or she would generally be moerdral to the



network. We sought to quantify a developer’'s expwe and
determine if it could be a latent factor in our rabd

Historically, researchers have quantified expegeand/or effort
in their models and have found their metrics tcsigmificant [16,
19]. One of the more common ways to quantify eff@d] is to
add up the number of lines of code that a develbpsrentered
into the system for all previous updates. We widll cthis
developer-based metric “Developer Churn.” Eackidimetric is
the sum of all Developer Churn over each develop&r will call
the file-based metric of Developer Churn “EfforEffort will be
highest for files updated by many developers wheehmade
many updates in the past.

When incorporating the Effort metric into our madede found
that our model was over-fit, that is, too complaxedo being
highly associated with the other variables. Furtiee, we found
that using Effort alone resulted in a Spearman @orkelation of
0.26 (p<0.01) on the training set, which is a weakrelation.
Hence, we reject the Effort model for our Networlkthics.

There are other ways to measure developer experiand/or
effort using churn data, and there is the posgibthat such a
metric would not result in an over-fit model. Alingh one may be
able to construct a different metric regarding eigree, we find
that metrics based on SNA provide a stronger fotionlafor

process improvement, as they lend themselves t@ moanced
interpretations.

5. Discussion of the Network

Modeling collaboration with easily obtainable codghurn
information also provides opportunity for processpiovement
during the development phase. Before we can usengtivork for
process improvement, however, we need to investighe
meaning behind its structure. We applied a few odstiof Social
Network Analysis to perform such an investigation.

In our case study, we analyzed the developer n&twdrthe
training set in search for empirically-sound intetptions of the
network. A summary of the network’s metrics canfoend in
Table 9.

Table 9: Overall developer network metrics from the case
study training set

Number of developers 161
Average degree (hub threshold) 19.78 (B0)
Number of hubs 37 (23%)
Number of disconnected 11 (6.8%0)
Network diameter 9
Average Closeness 2.77
Average Betweenness 0.93

Our developer network had a high rate of hub dewm
Twenty-three percent (23%) of the developers aresidered to
be “hub” developers, that is, 23% of the developersked with
more than thirty other developers over the coufdao releases.
Considering that the hub threshold is calculatedetiaon the
Poisson distribution of a random network with agiae of 1%,
we can safely claim that this network’s degreeritistion does
not follow a Poisson, and is not a random netwdmkfact, the
degree distribution follows a power law. The staddast [1] we
performed was a linear regression on the log-lagjesof the

degree distribution, and we obtained an r-squaféd8i (that is,
81% of the variance was explained by the linearagsjon).

Networks with a degree distribution of a power lane also
known as “Scale-free” or “Small world” networks. &herm
“scale-free” comes from the notion that, as mordesoare added
to the network, the diameter of the network does ctmange
because as the number of nodes increases, petiphatas
become hubs [1]. Scale-free networks are foundutjirout Social
Network Analysis studies, particularly in collabtioa networks.
Examples of scale-free collaboration networks ideluemail
networks in open source software projects, movi®rac and
authors of scientific publications [5, 9, 13].

In every scale-free network, the hub plays a vitéd. While hubs
provide a small diameter, removing hubs can resaolta

disconnected network. This lack of robustness cbala valuable
indicator during development, perhaps for re-asegm of tasks
or for code inspections. Network Analysis providssveral

metrics that quantify robustness [1]. A lack of uethess would
indicate that the network would become disconnesteould a
developer leave. Furthermore, the precise reldtipnbetween
hubs and the collective knowledge of the projectrislear. Based
on this study, hubs appear to resemble the “gapekbpresented
by Allen [2]. We were not able to interview the Isuib our case
study to gauge their overall knowledge of the nekwo

Based on this study, however, we cannot providefmitive set
of process improvement guidelines as the networly mat be
complete. In this study, thanly form of collaboration captured by
the network is from code churn data, so some conwation may
be missed. To provide a basis for process improagna@e needs
to analyze the network in both the context of falyprediction
and in social network analysis.

6. SUMMARY

We developed and validated a failure prediction ehdzhsed on
SNA of developers in a large software system. Usthg

validation method of next-release validation, werfd that our
model performed significantly well in prioritizinfiles based on
predicted failures. We have shown that developéwaris are

useful for failure prediction early in the develogmb phase and
provide a useful abstraction of the code churn.dasathermore,
the correlation between network metrics and fafluirgroduces
many possibilities for the use of SNA in softwaediability. The

ability to create metrics based on the structureaofroup of
developers could prove to be a powerful additionunent failure
prediction models as the developer network can plewide a
basis for process and organizational improvemenirthEr

investigation into how developer networks vary amqmojects,

processes, and domains would provide more insigtut these
intriguing metrics.

7. FUTURE WORK

Developer networks provide a promising foundation $everal
novel metrics to be introduced into failure preidictmodels. In
future work, we hope to explore a more sophistitatealysis of a
project’s developer network and how developer imiation can
be applied to products at the file level for faduprediction to
improve our model. Examining connection weightirghemes,
network robustness, clustering, and the evolutibrdeveloper
networks over time are among the many possiblesaceaxplore.

The applications of developer networks go beyonduria
prediction; developer networks have implicationsnany areas of



software engineering. An investigation into how sdly

associated a developer network is to true collalwrais

warranted. Comparisons of developer networks frafferént

projects, processes, and domains should be made. i have a
firm understanding of the developer network, we bagin to

make proactive steps toward organizational impre@mather
than reacting to the current state for V&V guidance
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