Using Model Checkers in an Introductory Course
on Operating Systems

Roelof Hamberg
Embedded Systems Institute, Eindhoven, the Netherlands
Roelof .Hamberg@esi.nl

Frits Vaandrager*
Institute for Computing and Information Sciences
Radboud University Nijmegen, Nijmegen, the Netherlands

F.Vaandrager@cs.ru.nl

31st December 2007

Abstract

During the last three years, we have been experimenting with the
use of the UPPAAL model checker in an introductory course on operat-
ing systems for first-year Computer Science students at the Radboud
University Nijmegen. The course uses model checkers as a tool to ex-
plain, visualize and solve concurrency problems. Our experience is that
students enjoy to play with model checkers because it makes concur-
rency issues tangible. Even though it is hard to measure objectively,
we think that model checkers really help students to obtain a deeper
insight into concurrency. In this article, we report on our experiences in
the classroom, explain how mutual exclusion algorithms, semaphores
and monitors can conveniently be modeled in UPPAAL, and present
some results on properties of small, concurrent patterns.

1 Introduction

Each year, thousands of Computer Science students are exposed to introduc-
tory courses on operating systems and study one of the numerous textbooks
in this area, for instance Tanenbaum & Woodhull [22], Stallings [20], Nutt
[17], or Silberschatz & Galvin [19]. All these textbooks contain one or more
chapters on principles of concurrency, with a discussion of fundamental con-
cepts such as mutual exclusion algorithms, semaphores, monitors, message
passing, deadlock and starvation.

*Supported by NWO/EW project 612.000.103 Fault-tolerant Real-time Algorithms An-
alyzed Incrementally (FRAAI).

For beginning students concurrency is a difficult subject. To begin with,
it is hard to visualize dynamic concurrent behavior in a static book. As a
reader one often needs four hands, like the Hindu god Vishnu, to simulta-
neously point at the different control locations of a concurrent program, as
well as at the explanatory text. Usually, no correctness proofs are given in
textbooks on operating systems. Authors do not want to bother their read-
ers, i.e., the students, with tedious formal proofs, since this would distract
attention from the key issues they want to get across. But contrary to their
intuitive intention, this does not make life easy for for students. Students
know concurrency is tricky, that deadlocks, race conditions and starvation
scenarios are hard to avoid, and that program testing can be a very effective
way to show the presence of bugs, but is hopelessly inadequate for show-
ing their absence [7]. But how then should they convince themselves of the
correctness of concurrent algorithms and programs?

Also for instructors, grading assignments on concurrency poses major
challenges. Students often come with “creative” solutions to concurrency
problems in which, for instance, numerous semaphores are used in intricate
ways. How to determine whether such solutions are correct? Many in-
structors will admit that frequently they give a student the maximal score,
simply because they have not been able to spot any mistake. But this does
not mean these solutions are correct!

Many experts agree that concurrency is the next major revolution in how
we write software [21]. Applications will increasingly need to be concurrent
if they want to fully exploit CPU throughput gains that have now started
becoming available and will continue to materialize over the next several
years. For example, Intel is talking about someday producing 100-core chips;
a single-threaded application can exploit at most 1/100 of such a chip’s
potential throughput. This implies that concurrency should be a major
topic in any course on operating systems. Race conditions, deadlock and
starvation are not just things studied in a distant past by operating system
pioneers such as Dijkstra: our students need a thorough understanding of
these issues in order to be able to build the applications of tomorrow.

Model checking is emerging as a practical engineering tool for automated
debugging of complex reactive systems such as embedded controllers and
network protocols [4, 11, 2]. In model checking, required or hypothesized
properties of the system are expressed as (temporal) logic formulas, and
efficient symbolic algorithms are used to traverse the model defined by the
system and check if the specified property holds or not. Extremely large
state-spaces can often be traversed in minutes. We think that after 20 years
of research on model checking this technology has become sufficiently mature
and it is time to change the way in which we teach principles of concurrency:

1. Using the input language of model checkers it is straightforward to
express concurrency algorithms in terms of networks of communicating

state machines. Algorithms are usually explained using pseudo code
and/or text. However, for understanding algorithms it greatly helps to
see how pseudo code and text correspond to precise automaton models
and assertions about these models. By specifying state transitions, we
make explicit which operations are atomic and which operations are
not, a key issue in concurrent programming.

2. Using the (graphical) simulators provided by some modern model
checkers it becomes easy to visualize the dynamics of concurrent al-
gorithms, in particular traces of the evolving system in which mutual
exclusion is violated, starvation occurs, etcetera.

3. Students may convince themselves of the correctness of algorithms
without having to spend time on tedious, manual correctness proofs,
which are of independent interest but belong in a different course: here
the verification is done fully automatically by the model checker.

During the last three years, we have been experimenting with the use
of the UPPAAL model checker in an introductory course on operating sys-
tems for first-year Computer Science students at the Radboud University
Nijmegen. We decided not to tell our students about the wonderful theory
and algorithms behind model checking, but to focus on how a model checker
can be used to explain, visualize and solve concurrency problems. We told
the students to view a model checker just like a pocket calculator: as a tool
that does the math for you.

UPPAAL [2, 1] is an integrated tool environment for specification, vali-
dation and verification of systems modeled as networks of timed automata.
It is available for free for non-profit applications at www.uppaal.com. The
language for the new version UPPAAL 4.0 features a subset of the C pro-
gramming language, a graphical user interface for specifying networks of
extended finite state machines (EFSMs), and syntax for specifying timing
constraints. We selected the tool because of its nice graphical user interface,
which makes it very easy to use. In fact, after less than one hour of training
students are able to make simple assignments.

Our experience is that students very much enjoy to play with model
checkers because it makes concurrency issues tangible. Even though it is
hard to measure objectively, we think that model checkers really help stu-
dents to obtain a deeper insight into concurrency. Last year, for instance,
students participating in our course discovered several deep mistakes in a
published textbook [8], simply by modeling and analyzing proposed solu-
tions from the book using UPPAAL.

In this article, we report on our experiences in the classroom, and explain
how a variety of concurrency related concepts can be conveniently modeled
in UPPAAL. Section 2 discusses models of some basic mutual exclusion
algorithms, Section 3 is devoted to models of semaphores and concurrency

problems that use semaphore, and Section 4 presents models involving mon-
itors. Finally, in Section 5, we present some conclusions and discuss related
work. All the models discussed in this article are available at the URL

http://www.cs.ru.nl/ita/publications/papers/fvaan/MCinEdu.

2 Mutual Exclusion

Software solutions for the mutual exclusion problem are rarely used in prac-
tice, since at the hardware level mutual exclusion can be realized using test-
and-set or equivalent instructions. Nevertheless, most textbooks present
various concurrent programming solutions for mutual exclusion that have
been proposed in the literature, since this provides an excellent way to in-
troduce students to some fundamental issues in concurrency. In our course,
we have been using UPPAAL to visualize and analyze the behavior of a num-
ber of mutual exclusion algorithms. As an illustration we discuss here two
models of Peterson’s algorithm.

In its original formulation, Peterson’s algorithm [18] is stated for two
processes P(0) and P(1) that work in parallel on a single resource. In
pseudo code, the algorithm for process P(pid) reads as follows:

while(true)
{
flaglpid] = true
turn = 1-pid
while(flag[1l-pid] && turn == 1-pid);
// do nothing
// critical section

// end of critical section
flaglpid] = false
}

The algorithm uses three variables, flag[0], flag[1] and turn. A flag
value of 1 indicates that the process wants to enter the critical section. The
variable turn holds the pid of the process whose turn it is.

Figure 1 shows a UPPAAL model of process P(pid). As one can see, the
translation between pseudo code and UPPAAL is straightforward. Basically,
there is a location in the automaton for each line of code. However, a funda-
mental aspect of the algorithm that is explicit in the UPPAAL model but left
implicit in the pseudo code, is that evaluation of the condition flag[1-pid]
&& turn == 1-pid is not atomic. It may happen, for instance, that first
process P(0) reads variable flag[1], subsequently process P(1) takes a
number of steps, and only after that process P(0) reads variable turn. The

try0

flag[pid]=true

remainder try1
flag[pid]=false
exit turn=1-pid
flag[1-pid]==false H;
cs [try2
turn==pid flag[1-pid]==true
try3

turn==1-pid

Figure 1: UPPAAL model of Peterson’s algorithm.

model therefore contains two locations to capture the evaluation of the con-
dition: in location try2 process P(pid) reads variable flag[1-pid] and in
location try3 it reads variable turn.

Figure 2 shows a screen dump of a simulation of Peterson’s algorithm
in UrPAAL. Red dots indicate the current control location of each pro-
cess. During simulation a user may manually select possible transitions, or
perform a random simulation. A useful feature of UPPAAL is that coun-
terexamples that have been found by the verifier can be replayed within the
simulator. Using UPPAAL, it is trivial to verify that Peterson’s algorithm
satisfies mutual exclusion indeed, that is, for all reachable states (A[] in
temporal logic notation) it holds that P(0) and P(1) can not be in their
critical section at the same time:

A[]l] mnot(P(0).cs and P(1).cs)

UPPAAL also immediately finds a counterexample to the claim made in
Wikipedia about the algorithm! that “If PO is in its critical section, then
flag[0] is 1 and either flag[1] is false or turn is 0”. If we ask UPPAAL
to check the corresponding property

A[] P(0).cs imply (flag[0]==1 && (flag[1]==0 || turn==0))

!See http://en.wikipedia.org/wiki/Peterson’s_algorithm, version 27-11-2007.

B C:/Documents and Settings, fvaan/My Documents,/UPPAAL /Peterson_toets.xml - UPPAAL 1=l x|
File Edi Yiew Tooks Options Help

o | @ .
ba® e a|k@-~s
Edior Simulator | verfier |
Drag out [{ pregou | =
- P(0) P(1)
Enabled Transitions ;:ag[o] =
lagl1] =1 o 0
um =0 taopine ta e
=) remancer @—AO————=0) wemander @—AO—————=O)
tago-faise tag(1j=false
ot @ rn=1-0 i urn=11
Hext Resat
fod1-OF =fs= Tag1-1E=tse
Simulation Trace = 2 = 2
P(L) ;l
(trel, tryd)
P(L)
ey 1, try1)
P(0)
ez, try1) turn==0 fad1 -0 =tnie urn==1
Pi1)

itry2, try2)
PI0)

turn==10 turn==1-1

(try3, try2) -
(o)

Trace File:

Frev | iext | Replay |

open | save |tndon |

| Start random simulstion.

1 1 H I I 1 ﬂ
Slow Fast P{0) P1)
= T =
distart) | [F] & (<] @ @ @ | upraaL |£| Ci/Documents and Se... W untitled - Paint . =l 135
UF conderdan

Figure 2: Screen dump of UPPAAL simulation of Peterson’s algorithm.

it produces the obvious counterexample — which can be replayed in the
simulator — in which first P(0) enters the critical section and then P(1)
performs its first assignment.

An important property of Peterson’s algorithm is bounded waiting: a
process will not wait longer than approximately one turn for entrance to the
critical section. In order to state and prove this property in UPPAAL, we
add timing constraints to the model: an upper bound 1 on the execution
time of instructions, and an upper bound ¢ on the critical section time.
Figure 3 shows the enriched model. The idea is that each process has a local
clock x, which is reset before entering a location. The invariant x <= 1 on
location try0 ensures that the time spent in this location is at most 1. This
models the upper bound 1 for performing the instruction flag[pid]=true.
In a similar way we have added time bounds to the rest of the model. For
arbitrary integer values of the parameters 1 and c, UPPAAL can establish
that the time from when a particular process enters try0 until it enters cs is
at most c+10*1. This is done by introducing a local clock y for each process,

which is reset whenever the process enters location try0. UPPAAL can then
check that:

A[] (PCO).try0o || P(O).tryl || P(0).try2 || P(O).try3)
imply P(0).y <= c+10%1

=0, flag[pid]=true,
=0 x=0

remainder try1

x<=I

flag[pid]=false

exit

turn=1-pid,
x<=l x=0

x=0

turn==pid
x=0

try3
x<=l turn==1-pid
x=0

flag[1-pid]==true
x=0

Figure 3: UPPAAL model of Peterson’s algorithm with timing.

This property says that a process stays at most c+10%*1 time units in the
trying region. Since a process can only leave the trying region by entering
the critical section, this implies that a process must enter the critical section
after at most c+10*1 time units. If we change the bound to c+10*1-1 then
the property no longer holds, and UPPAAL produces a counterexample. This
result is consistent with Theorem 10.14 from Lynch [15], which establishes
an upper bound of ¢+ O(l). Our result is stronger in the sense that we give a
precise upper bound on the number of instructions. The result in Lynch [15]
is stronger in the sense that it holds for all values of ¢ and 1, whereas we
have only checked a couple of instances.

UPPAAL is not able to prove general liveness properties for the untimed
model of Figure 1, such as the temporal logic formula P(0) .try0 ~» P(0) .cs
(whenever process P(0) enters the trying region, it will eventually enter the
critical section). Such properties can easily be checked using other model
checkers such as SPIN [11] and SMV [4, 3]. These tools however miss the
graphical user interface of UPPAAL and are not so easy to use for people
without any background in formal methods. It would be useful (and not
too difficult) to establish a link between UpPAAL and SPIN or SMV that
would allow one to model check temporal logic formulas for untimed UPPAAL
models.

One should not expect first-year students to come up independently with
UpPPAAL models such as those in Figures 1 and 3. However, these models

are very helpful to explain the operation of the algorithm through the Up-
PAAL simulator. Students find it easy to understand the models and to
modify them in order to answer various questions about the algorithm such
as “Is Peterson’s algorithm still correct if we change the evaluation order
of the conditions flag[1-pid] and turn == 1-pid?” Also, once students
understand the UPPAAL model of one mutual exclusion algorithm, they are
able to also model other mutual exclusion algorithms. For instance, in less
than half an hour most students manage to construct a model of Hyman’s
algorithm [12] and to discover using UPPAAL why this algorithm is flawed.

3 Semaphores

Semaphores [5] constitute a classic method for restricting access to shared
resources. They are widely used in practice and are the primitive syn-
chronization mechanism in many operating systems. Solutions that use
semaphophores are portable and usually efficient. Even though they have
been criticized for being too unstructured and difficult to use, all major
textbooks on operating systems discuss semaphores and their use in solv-
ing classic problems of synchronization. In this section, we explain how we
modeled semaphores in UPPAAL, and how the model checker can be used to
analyze solutions to synchronization problems.

In UPPAAL, transitions between states may be labeled by output actions
or input actions. A transition with an output action a! from one automaton
may synchronize (occur simultaneously) with a transition with a matching
input action a? from a different automaton. A semaphore s is modeled as
an automaton that interacts with its environment via three types of synchro-
nization actions: semWait [s] [p]?, semSignal[s] [p]? and semGo[s] [p]!,
where p is a process identifier. Figure 4 gives a schematic representation.
A semaphore maintains an integer variable count to record the number
of shared resources that is still available, and a list queue with names of
processes that are waiting. Whenever a process p wants to access a re-
source protected by s, it performs a synchronization action semWait [s] [p] !
that synchronizes with a matching action semWait[s] [p]? of s. If count
is positive, then s will immediately react with a synchronization action
semGo [s] [p]!, and count is decremented. Upon performing the match-
ing action semGo [s] [p]?, process p may access the resource. If count is
less than or equal to 0, then process identifier p is stored in queue and
count is decremented. A process p releases a resource protected by s via a
synchronization semSignal[s] [p]!. After a matching semSignal[s] [p]?
transition, the semaphore increments count. If count was negative before
this transition then, in addition, the first process identifier q is removed
from queue and activated via an action semGo[s][q]!. We assume that
processes are activated in FIFO order.

semWait [s] [p]?
|:| count

semGo [s] [g]!

queue

semSignal[s] [p]?

queue_size

Figure 4: Schematic view of semaphore model.

Figure 5 displays our UPPAAL model of a semaphore. Students do not
need to understand the details of the code; they just use the template as
a black box when solving synchronization problems. The semaphore tem-
plate has three parameters: (1) id, the unique identifier of the semaphore,
(2) init_val, the initial value of the semaphore, and (3) queue_size, the
maximal number of processes in the waiting queue. Since UPPAAL does not
support dynamically growing data structures, we need to fix an upper bound
on the size of the queue. In our model, the queue is implemented as an array
of queue_size. If, due to a semWait, a new element needs to be added to
a queue that is full, the automaton jumps to a special overflow location.
UPPAAL needs to verify that overflow can not be reached. Since currently
in UPPAAL it is not possible to initialize a parametrized array, we need a
special transition to do this.?2 By making the initial location “committed”
we ensure that the initialization takes place before any other activity in the
system. In several transitions we use a select field p : PID. This indicates
that we have instances of these transitions for each p in the set PID, that is,
for each process identifier.

Note that in our modeling approach the usual semWait(s) operation
from the textbooks translates into two consecutive transitions labeled with
synchronization actions semWait [s] [p]! and semGo[s] [p]?, respectively.
Each semSignal(s) operation by p is encoded by a transition with synchro-
nization action semSignal[s] [p]!.

A UppPAAL model for the binary semaphore is obtained as a small and
obvious variation of the general semaphore model.

2This imperfection of UPPAAL actually has a positive consequence: due to the extra
transition the automaton has a striking resemblance with a bee!

p:PID
count<=0 && not fullQueue()

semWait[id][p]?
count--,
enQueue(p)
overflow initialize()
:PID
p:PID P
count>0
count<=0 && fullQueue(o
semWait[id][p]? ziumn\i_/fmpd][p] _
q=p

p:PID {/\
count>=0 semGol[id][q]!

semSignal[id][p]?
count++

p:PID

count<0
semSignal[id][p]?
count++,
g=headQueue(),
deQueue()

Figure 5: UPPAAL model of a semaphore.

3.1 Producer/Consumer Problem

Now we have models of semaphores, we can start playing with them! Fig-
ure 6 shows a model of the incorrect solution to the infinite-buffer pro-
ducer/consumer problem using binary semaphores, as discussed by Stallings
[20] on pages 221-224. The model is obtained in a straightforward manner

semWait[s][consumer]! semGo[s][consumer]?
VARY
- O

produce() M semWait[s][producer]!
S U @

semGo[delay][consumer]? take() semSignal[s][producer]!

semGo[s][producer]?
semWait{delay]jconsumer]! semSignal[delay][producer]!

n--

nl=0 n==0 |

consume() msemsigna\[s][consumer]!é
N

! N4+ ~ append() é

Figure 6: UPPAAL models of consumer and producer for the incorrect solu-
tion to the infinite-buffer producer/consumer problem.

from the code presented in [20][Fig. 5.9]. As Stallings [20] points out, the
problem with this solution is that variable n may become negative, that is,
the consumer may consume an item from the buffer that does not exist.
By checking the query E<> n<0 with the verifier (”there exists a path to a
state in which n<0”), UPPAAL produces a counterexample almost instanta-
neously. Essentially (modulo permutation of independent transitions), this
is the same counterexample as the 21 step example presented by Stallings

10

in Table 5.3. The ability of UPPAAL to replay counterexamples in the simu-
lator greatly helps in understanding what goes wrong. Note that the model
checker is not able to explore the full (infinite) state space of this model.
We also modeled the solution to the bounded-buffer producer/consumer
problem with semaphores presented in [20][Figure 5.13]. This model is shown
in Figure 7. Stallings [20] claims correctness of this solution, but does not

semWait[n][consumer]! semGol[n][consumer]? produce() semWait[e][producer]!
O O
U -0 Q O -0

consume() semWait[s][consumer]! semSignal[n][producer]! semGole][producer]?

O

semSignal[e][consumer]! semGo[s][consumer]? semSignal[s][producer]! semWait[s][producer]!

O

cs

semSignal[s][consumer]! L take() cs\j append() L semGo[s][producer]? Cj
N N\

Figure 7: Models of consumer and producer for the correct solution to the
bounded-buffer case.

prove it. Even for large values of sizeofbuffer up to 10,000, UPPAAL can
prove mutual exclusion and absence of deadlock automatically within a few
seconds. After introducing an auxiliary variable buffer that is incremented
by function produce() and decremented by function consume (), UPPAAL
can prove that always buffer>=0 and buffer<=sizeofbuffer, i.e., the con-
sumer never consumes an item that does not exist, and there is no buffer
overflow.

The above solution to the bounded-buffer producer/consumer problem
is also presented by Tanenbaum and Woodhull [22]. The authors observe
that when the order of the wait operations in the Producer code is reversed
there is a deadlock. This observation can easily be verified using UPPAAL;
the model for the producer is shown in Figure 8.

produce() semWait[s][producer]!
O
O Y {)

semGols][producer]?

O

semSignal[s][producer]! semWait[e][producer]!

semSignal[n][producer]!

append() ~ semGole][producer]? é
(S

cs

Figure 8: The UPPAAL model of the producer for the faulty solution to the
bounded-buffer case as noted by Tanenbaum and Woodhull in [22].

11

3.2 Jurassic Park

UPPAAL is an excellent tool for checking correctness of solutions to concur-
rency problems. As an illustration, consider assignment 5.11 from [20]:

The following problem was once used on an exam:

Jurassic Park consists of a dinosaur museum and a park for
safari riding. There are m passengers and n single-passenger
cars. Passengers wander around the museum for a while,
then line up to take a ride in a safari car. When a car is
available, it loads the one passenger it can hold and rides
around the park for a random amount of time. If the n cars
are all out riding passengers around, then a passenger who
wants to ride waits; if a car is ready to load but there are
no waiting passengers, then the car waits. Use semaphores
to synchronize the m passenger processes and the n car
processes.

The following skeleton code was found on a scrap of paper on the floor
of the exam room. Grade it for correctness. Ignore syntax and missing
variable declarations. Remember that P and V correspond to semWait
and semSignal.

resource Jurassic_Park()
sem car_avail:=0, car_taken:=0, car_filled:=0,
passenger_released:=0
process passenger(i:=1 to num_passengers)
do true -> nap(int(1000*wander_time)))
P(car_avail); V(car_taken); P(car_filled)
P(passenger_released)
od
end passenger
process car(j:=1 to num_cars)
do true -> V(car_avail); P(car_taken); V(car_filled)
nap(int(1000*ride_time)))
V(passenger_released)
od
end car
end Jurassic_Park

Within 15 minutes we translated the above code into UPPAAL (see Figure 9).
With the help of UPPAAL it is easy to see that the solution is flawed. For a
model with two passengers and two cars, for instance, we established that it
may occur that both cars are in the park but one of the passengers is not in
his car. In fact, and this is of course the horror scenario, a passenger may
be released from the car while he is still in the park.

12

semWan[carﬁavai\][pid]‘J_\ semGolcar_avail][pid]?

D) =) @ semSignal[car ava\\][p\d]‘f\semWail[car taken][pid]!
outside_car O U U
idle
semSignal[car_taken][pid]!
emSigr ger_r id]
semGol[passenger_released][pid]? CS
semGolcar_taken][pid]?
semWait[car_filled][pid]!
. within_car
Within_car2 = _semGolcar_filled][pid]?) in_park
A /xsemsigna\[car Ii\\ed][pid]!é
semWait[passenger_released][pid]! o

Figure 9: Models of passenger and car in Jurassic Park example.

3.3 Dining Philosophers

The first somewhat more involved example of a synchronization problem
that is given in nearly all textbooks, is the problem of the dining philoso-
phers. Dijkstra proposed this problem first [6] as an examination question
about a synchronization problem and it surely has become a classic. Five
philosophers think and eat in alternation, but in order to eat they need two
forks, each of which is shared with a neighboring philosopher at a round
table.

Without any precautions, deadlock arises by the sequence of events in
which all philosophers pick up their left fork first. After that, they have to
walit infinitely long for the other fork: deadlock! Figure 10 shows a UPPAAL
model of the naive solution to the dining philosophers problem. The model
checker finds the deadlock immediately.

semWait[pid][pid]! semGo[pid][pid]?

think ® @
semSignal[pid][pid]! semWait[(pid+1)%5][pid]!
eat
(=
N
semSignal[(pid+1)%5][pid]! semGo[(pid+1)%5][pid]?

Figure 10: Model of naive dining philosopher.

To overcome deadlock, one common approach is to assume the presence
of a doorman who only allows four philosophers at a time into the dining
room. A model along these lines is shown in Figure 11. In order to prove that
each philosopher who wants to eat eventually can do so, we impose an upper
bound U on the time allowed for eating, using a local clock variable x for each
philosopher. We assume that the time needed for the semaphore operations

13

V0 semGofroom[pid]? \}r{‘ semWait[pid]pid]! \}%2
|9)
& O

semWait[room][pid]! semGo[pid][pid]?
x:=0

think @

semSignal[room][pid]! trySCkb

semWait[(pid+1)%5][pid]!

semSignal[pid][pid]! eat

semSignal[(pid+1)%5][pid]! semGo[(pid+1)%5][pid]?
x:=0

Figure 11: Model of a dining philosopher in a solution with a doorman.

can be ignored®. To exclude Zeno cycles?, we also impose a lowerbound on
the time needed to eat. With these assumptions, absence of deadlock and
the leadsto property Philosopher0.try0 ~» PhilosopherO.eat are easily
shown to hold. In fact we can establish an upper bound of 5%U on the
waiting time for a philosopher: the property

A[] Philosopher0O.try4 imply PhilosopherO.x <= B

holds for B=5*U but not for B=5*U-1. Since clock x is reset upon entering
location tryO0, this means that a philosopher may have to wait in try0-4 for
at most 5*U time units before being allowed to enter location eat. UPPAAL
proves the upper bound 5*U almost instantaneously, and only needs about 2
seconds for the 62 step counterexample for 5*¥U-1. Proving the upper bound
by hand is hard and way too difficult for the large majority of Computer
Science students.

Adding clock variables and timing constraints to the model requires some
effort, and advocates of temporal logic may argue that it is much simpler
to establish liveness properties with a tool that supports general temporal
logic model checking. However, if you are a philosopher knowing that you
will be allowed to eat “eventually” is only of theoretical interest! Knowledge
of the time bound 5*U is useful in practice.

With the above model as a starting point, students may explore fur-
ther properties. Does it make any difference if we add nondeterminism to

3A symbol U in a location indicates that the location is “urgent” and no time may pass
if the automaton is in this location.

“Infinite sequences of transitions in which time does not advance beyond a certain
point.

14

the model and philosophers may pick up forks in any order? What is the
maximal number of philosophers that can eat at any point in time? What
happens if we change the number of philosophers? What happens if we no
longer ignore the time needed to pick up forks? Etc. Etc.

3.4 The Room Party Problem

A particularly difficult synchronization problem is the “room party prob-
lem” has been defined by Allen B. Downey in his “Little Book of Semaphores”
(cf. [8, 9]). The situational sketch is as follows:

A dean of students should keep order in the students’ house. In
order to do this, he can enter a room with too many students (in
order to break up a too large party) or he can enter an empty
room to conduct a search. Otherwise, the dean may not enter a
room. If the dean is in a room, no additional students may enter,
but students may leave. In that case, the dean has to stay until
all students have left. There is only one dean, and no limitation
on the number of students in one room. The challenge is to
construct code for dean and students such that these constraints

are satisfied.

The first solution of Downey, published in [8], is captured in the following
Table 1. It employs a mutex to protect the variables students and dean,
which denote the number of students in a room and the state of the dean,
respectively. The other two semaphores clear and 1ieIn are used as rendez-
vouses between a student and the dean.

dean code:

mutex.wait ()

dean = ’waiting’
mutex.signal()
lieIn.wait() # and get mutex
students must be 0 or >= 50
if students >= 50:
dean = ’in room’
breakup ()
mutex.signal()
clear.wait() # and get mutex
else: # students = 0
search()
dean = ’not here’
mutex.signal()

if students > 0 and students < 50:

student code:

mutex.wait()
students += 1
if students == 50 and dean == ’waiting’:
lieIn.signal() # and pass mutex
else:
mutex.signal()

party ()
mutex.wait ()
students -= 1
if students == 0 and dean == ’waiting’:
lieIn.signal() # and pass mutex
elif students == 0 and dean == ’in room’:

clear.signal() # and pass mutex
else:
mutex.signal()

Table 1: The first solution of Downey to the room party problem.

15

It turns out that this solution does not prevent students from entering
the room when the dean is there to break up a party. The models for the
above descriptions are given in Figure 12. Analysis reveals a trace of some
20 steps that shows how the dean has to release the mutex after breaking
up the party without being able to prevent students to enter the room.

DONE

dean := not_here
semSignal[mutex][pid]!
students == 0

QUASISEARCH

semGolclear][pid]?
. DISPERSE

semWait[clear][pid]!
semWait[mutex][pid]!

h dean :=in_room
semGo[mutex][pid]? semSignal[mutex][pid]!
BREAKUP

students > 0 and students < limit students >= limit

dean := waiting
semSignal[mutex][pid]!

semGollieln][pid’
students >= limit

semWait[lieln][pid]
LINGER

semGollieln][pid]?
students == 0

semWait[mutex][pid]!

semGo[mutex][pid]?

students == limit-1 and dean == waiting

++students
semSignallieln][pid]!

students != limit-1 or dean != waiting
++students
semSignal[mutex][pid]!

semWait[mutex][pid]!

semGo[mutex][pid]?

students == 1 and dean == in_room
--students
semSignal[clear][pid]!

students == 1 and dean == waiting
--students
semSignal[lieln][pid]!

students != 1 or d¢an == not_here

semSignal[mutex][pid]!

DONE

Figure 12: UrPPAAL model of Downey’s room party problem, version 1, as
made by Marc Schoolderman.

This problem was actually found by student Marc Schoolderman dur-
ing his assignment work as a part of his course on operating systems. He
also proposed an alternative solution and showed this obeyed the required
properties with the aid of UPPAAL. A discussion with the author however
resulted in yet another proposal from Downey’s side, published in [9]. A
turnstile turn is added to the code in the Table 2, specifically designed to
keep students from entering while the dean is in the room.

But, alas, also this model does not satisfy the required property men-
tioned above. A trace (of 64 steps in this case) shows that one student may
have received and released the turnstile to enter, but still is waiting for the

16

dean code:

mutex.wait ()

if students > 0 and students < 50:
dean = ’waiting’
mutex.signal ()
lieIn.wait() # and get mutex

students must be 0 or >= 50

if students >= 50:
dean = ’in room’
breakup ()
turn.wait() # lock turnstile
mutex.signal()
clear.wait() # and get mutex
turn.signal() # unlock turnstile

else: # students =0
search()
dean = ’not here’

mutex.signal()

student code:

mutex.wait ()

if dean == ’in room’:
mutex.signal()
turn.wait ()
turn.signal()
mutex.wait ()

students += 1

if students == 50 &&% dean == ’waiting’:
lieIn.signal() # and pass mutex

else:
mutex.signal()

party O
mutex.wait()
students -= 1
if students == 0 && dean == ’waiting’:
lieIn.signal() # and pass mutex
elif students == 0 && dean == ’in room’:

clear.signal()
else:
mutex.signal()

and pass mutex

Table 2: The second solution of Downey to the room party problem.

mutex, which he gets from the dean while the latter is still in the room.
Such counterexamples are hard to find just by looking at the code. The
UpPPAAL model with which this analysis was done, is shown in Figure 13.
Note that the structure of the code of Downey is very well visible in the

UPPAAL model.

Students participating in our course discovered several other mistakes
in [8], simply by modeling and analyzing proposed solutions from the book
using UppPAAL. The author uses semaphores in a very structured manner,
using solutions for basis synchronization patterns, and we do not think that
these problems could easily have been avoided using different synchroniza-

tion primitives.

Our conclusion is that the intrinsic complexity of these

synchronization problems requires the use of formal methods tools such as
model checkers to ensure correctness of solutions.

4 Monitors

The monitor was introduced in the 70s by Hoare [10] as an alternative
programming-language construct that provides equivalent functionality to
that of semaphores and that is easier to control. A number of programming
languages, such as concurrent Pascal and Java, have implemented monitors.
The basic version of Hoare was refined by Lampson and Redell [14] in the

80s.

A monitor is a software module that consists of a number of proce-

17

semWait[mutex][0]!

?
students > 0 and students < limit semGo[mutex]{O)?
semSignal[mutex][0]!
dean := waiting
semWait[lieIn][0]!

LINGER
semGollieln][0]?

students >= limi
dean :=in_the
BREAKUP

semWait[turn][0]!
semGo[turn][0]?

©) searcH

semSignal[mutex][0]!

(O oisperse

semWait[clear][0]!
semGolclear][0]?

QUASISEARCH

semSignal[mutex][0]!
dean := not_here

semSignal[turn][0]!

students+="0 or dean == nQt_here
semSignal[mutex][pid]*

semWait[mutex][pid]!
semGo[mutex][pid]?

students == 0 and dean == in_the_room
semSignal[clear][pid]!

dean == in_the_room
semSignal[mutex][pid]!

students™=z 0 and dean == waiting
semSignal[lieln][pid]!

semWait[turn][pid]!
semGolturn][pid]?

dean !=in_the_room
++students

semSignal[turn][pid]!

ENTERING PARTY,

©) OHO) Leavine

semWait[mutex][pid]!
semGo[mutex][pid]?
students--

semWait[mutex][pid]!
semGo[mutex][pid]?
++students

students != limit or dean != waiting students == limit and dean == waiting
semSignal[mutex][pid]! semSignal[lieln][pid]!

Figure 13: UpPPAAL model of Downey’s room party problem, version 2.

dures, some initialization and local data. Processes can enter the monitor
by invoking one of the procedures, while only one process may be executing
in the monitor at any time. Other processes that have invoked the monitor
are blocked until the monitor becomes available. Each procedure has the

following structure:

return_structure procedure(invoke_variables)

{

if condition(this_procedure) then wait(my_condition);
execute procedure;

update conditional variables;

notify appropriate conditions;

}

Lampson and Redell refined this model by replacing the if statement
by a while statement and the notify by a broadcast. This renders the

18

monitor much more robust against missing events and makes the procedures
much more independent of each other, because they don’t have to know
which conditions to trigger precisely. It comes at the cost of more iterations,
but their number is manageable (cf. [14]).

We have modeled the monitor as shown in Figure 14. The conditions
on the procedures and their updates appear in the UPPAAL template as the
two functions CondTrue and condUpdate, which are both model-dependent.
There are two possible transitions from the central ”standby” state, one
being the reception of monitor invocations, which puts the calling process
at the end of the queue to be handled, the other being the handling of
the processes themselves, which is enabled by CondEval(). If this guard
yields true, the transition is made urgently, because urg! denotes an urgent
broadcast channel (to which no-one listens). The first process in the queue
that is enabled, is taken of the queue, is executed, and its corresponding
conditional variables are updated through condUpdate. The last notification
statement of the Lampson and Redell monitor is taken into account by the
CondEval () evaluation each time the central state is entered.

p:int[0,N-1], m:int[0,M-1]
fullQueue()
monitorCall[id][p][m]?

initialize()

p:int[0,N-1], m:int[0,M-1]
monitorCall[id][p][m]?
enQueue(p,m)

CondTrue() S
urg!
f=firstCondTrue(),

g=pqueueff],
u=mqueuelf],
deQueue(f)

monitorReturn[id][q][u]!

é condUpdate(q,u)
C

Figure 14: Model of a monitor.

4.1 Dining Philosophers Revisited

Several textbooks present a solution to the classical dining philosophers
problem with a monitor. Stallings does this in [20], but also Nutt in a
modern perspective on Operating Systems [17] and Silberschatz and Galvin
in Operating System Concepts [19]. In the last two books, the presented
solution involves a test procedure that is not side-effect free, an objectionable
way of programming by itself, cf. Figure 9.11 at page 230 of [17]. Moreover,

19

both mention that the solution is deadlock free, but not starvation free, and
leave finding the solution to the latter problem as an exercise to the reader.

monitorReturn[table][phil][putDownForks]?

THINK STUFFED
x>=1
monitorCall[table][phil|[pickUpForks]! monitorCall[table][phil][putDownForks]!
x <=10
x=0
HUNGRY EATING

monitorReturn[table][phil][pickUpForks]?

Figure 15: Template of a philosopher for the UPPAAL model of Nutt’s solu-
tion with a monitor to the dining philosopher problem.

meta int eaters = 0;
const int thinking = 0, eating = 1;
int status|[N];

bool test(int p) {
return ((status[(p+N-1)YN] != eating) && (status[(p+N+1))N] != eating));
}

bool condEval(int p, int t) {
if (t==pickUpForks) { return test(p); 2}
if (t==putDownForks) { return true; }
}

void condUpdate(int p, int t) {
if (t==pickUpForks) { status[p] = eating; eaters++; }
if (t==putDownForks) { eaters--; status[p] = thinking; }

Table 3: Model dependent code in UPPAAL model of dining philosopher.

In Figure 15 the philosopher part of the model is shown. Table 3 shows
the model dependent code in the monitor template. As one can see, this
is close to Nutt’s solution, but the condition test has been made side-effect
free, while the notifications are automatic by the return to the central state
in the monitor template. The query

Philosopher (0) . THINK-->Philosopher (0) .EATING

indicates a trace to the starvation problem immediately.

20

A possible solution to the starvation problem involves the introduction of
a doorman, as explained for instance by Downey [8] in terms of semaphores.
The model is easily extended as shown in Figure 16 and the extension of the
code in Table 4. The liveness property (absence of philosopher starvation)
is readily checked with UPPAAL.

monitorReturn[table][phil][putDownForks]?
HUNGRY THINK STUFFED
©-

monitorCall[table][phil][doorman]!

x>=1
monitorRetun[table][phil]jdoorman]? monitorCall[table][phil][putDownForks]!

monitorCall[table][phil][pickUpForks]! ¥ <= 10

U VAR
~ x=0
EATING
monitorReturn[table][phil][pickUpForks]?

Figure 16: Template of a philosopher with the introduction of a doorman
in the solution.

bool condEval(int p, int t) {

if (t==pickUpForks) { return (test(p)); }

if (t==putDownForks) { return true; }

if (t==doorman) { return (2*eaters < PHIL); }
}

void condUpdate(int p, int t) {
if (t==pickUpForks) { status[p] = eating; }
if (t==putDownForks) { eaters--; status[p] = thinking; }
if (t==doorman) { eaters++; }

}

Table 4: Model dependent code in UPPAAL model for dining philosopher
with doorman.

5 Conclusions and Related Work

Lamport [13] asks: “Programs are not released without being tested; why
should algorithms be published without being model checked?” Similarly,
we conclude “Why should algorithms be explained without the use of a
model checker?” As discussed in this article, key advantages of using model
checkers are: (a) unambiguous definition of algorithms and their properties,
(b) visualization of concurrent behavior, and (c) fully automatic proof of

21

correctness properties. Model checking technology has become easy to use
and sufficiently powerful to handle nontrivial instances of all the concurrent
algorithms that are typically discussed in introductory courses on operating
systems or concurrent programming. The behavior of these algorithms is
tricky, and authors, instructors and students should simply not trust solu-
tions that have not been model checked. However, we emphasize that key
elements for successful use of a model checker with first-year students are
(a) the availability of a powerful graphical user interface for editing and sim-
ulation, and (b) a smooth and short learning curve. Here UPPAAL clearly
stands out.

Mutual exclusion algorithms are popular benchmark examples for model
checkers, see for instance [3], and the analysis results of this article are
not new, except for the time bound for Peterson’s algorithm. Our results
on model checking semaphores and monitors are new, to the best of our
knowledge. In this article we have not described UPPAAL models of the
use of message passing as a synchronization primitive; adding this would be
routine.

Closely related to our work is the book of Magee and Kramer [16]. This
book provides a nice approach to concurrent programming using state mod-
els and Java. State models are described in a textual, process algebraic lan-
guage called FSP and can be visualized and analyzed using an LTL model
checker called LTSA. The consistent combination of state models and Java
makes their approach ideal for a course on concurrent programming. Via the
use of Java applets, the authors offer appealing visualizations of concurrent
behavior, in addition to the visualization of state machines offered by LTSA.
The FSP language, however, is much less expressive than the UPPAAL lan-
guage, and for instance does not support shared variables. This makes it
less straightforward to handle mutual exclusion algorithms, like we did in
Section 2. Also, the EFSM graphical notation of UPPAAL even allows one
to visualize the behavior of complex industrial sized models, whereas only
relatively small models can be visualized using LTSA. Magee and Kramer
[16] present a model of semaphores which, in our opinion, is overly abstract:
a wait operation is modeled by a single transition (rather than with a pair of
a semWait and semGo transition) and information about the order in which
processes have been blocked is not preserved. Typically, liveness and real-
time properties of concurrent algorithms crucially depend on the order in
which processes that are blocked on a semaphore are activated again. Im-
plementations usually adopt a FIFO order. This means that in the approach
of Magee and Kramer [16] it is, for instance, not possible to prove liveness
or real-time properties for the solution of the dining philosophers with a
doorman, like the 5*%U bound we derived in Section 3.3.

As a spin-off, using model checkers in an introductory course also pro-
vides a great opportunity to increase the impact of formal methods research.
More students will learn about and appreciate model checking technology.

22

Once students have seen how useful these tools are, they will much faster
decide to use them later on when facing similar problems. The more theo-
retically inclined students become motivated to study the algorithms behind
model checkers.

Acknowledgments We like to thank our students for their enthousiasm
and help with constructing models, in particular Justus Freijzer, Martijn
Hendriks, Bart Kerkhoff, Bart Meulenbroeks, Marc Schoolderman and Koen
Vermeer.

References

1]

G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Pettersson,
W. Yi, and M. Hendriks. Uppaal 4.0. In Third International Confer-
ence on the Quantitative Evaluation of SysTems (QEST 2006), 11-14
September 2006, Riverside, CA, USA, pages 125-126. IEEE Computer
Society, 2006.

G. Behrmann, A. David, and K.G. Larsen. A tutorial on Uppaal. In
M. Bernardo and F. Corradini, editors, Formal Methods for the De-
sign of Real-Time Systems, International School on Formal Methods for
the Design of Computer, Communication and Software Systems, SFM-
RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lectures,
volume 3185 of Lecture Notes in Computer Science, pages 200-236.
Springer, 2004.

N. Bogunovic and E. Pek. Verification of mutual exclusion algorithms
with SMV system. In EUROCON 2003. Computer as a Tool. The IEEE
Region 8. Vol 2, pages 21-25. IEEE Computer Society, 2003.

E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
Cambridge, Massachusetts, 1999.

E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages. Academic Press, New York, 1968.

E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1:115-138, 1971.

E. W. Dijkstra. The humble programmer. Commun. ACM, 15(10):859—
866, 1972. Turing Award lecture.

A.B. Downey. The Little Book of Semaphores. Green Tea Press, second
edition, 2005.

A.B. Downey. The Little Book of Semaphores. Green Tea Press, 2.1.2
edition, 2007.

23

[10]

[11]

[12]

[13]

C.A.R. Hoare. Monitors: An operating system structuring concept.
Communications of the ACM, 17(10):549-557, 1974.

G.J. Holzmann. The SPIN Model Checker: Primer and Reference Man-
ual. Addison Wesley, 2004.

H. Hyman. Comments on a problem in concurrent programming con-
trol. Commun. ACM, 9(1):45, 1966.

L. Lamport. Checking a multithreaded algorithm with *cal. In Shlomi
Dolev, editor, Distributed Computing, 20th International Symposium,
DISC 2006, Stockholm, Sweden, September 18-20, 2006, Proceedings,
volume 4167 of Lecture Notes in Computer Science, pages 151-163.
Springer, 2006.

B. W. Lampson and D. D. Redell. Experience with processes and mon-
itors in mesa. In Proceedings of the 7th ACM Symposium on Operating
Systems Principles (SOSP), pages 4344, 1979.

N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
Inc., San Fransisco, California, 1996.

J. Magee and J. Kramer. Concurrency: State Models and Java Pro-
grams. John Wiley and Sons Ltd, Chichester, England, 2006.

G. Nutt. Operating Systems: A Modern Perspective. Addison Wesley
Longman, Inc., second edition, 2000.

G.L. Peterson. Myths about the mutual exclusion problem. Inf. Process.
Lett., 12(3):115-116, 1981.

A. Silberschatz and P. Galvin. Operating System Concepts. Addison
Wesley Longman, Inc., fifth edition, 1997.

W. Stallings. Operating Systems: Internals and Design Principles.
Prentice-Hall International, Inc., fifth edition, 2005.

H. Sutter. The free lunch is over — a fundamental turn toward con-
currency in software. Dr. Dobb’s Journal, 30(3), 2005. Available at
http://www.gotw.ca/publications/concurrency-ddj.htm.

A.S. Tanenbaum and A.S. Woodhull. Operating Systems: Design and
Implementation. Prentice-Hall International, Inc., second edition, 1997.

24

