Edge-centric Modulo Scheduling for Coarse-Grained
Reconfigurable Architectures

Hyunchul Park, Kevin Fan, and
Scott Mahlke
Advanced Computer Architecture Laboratory,
University of Michigan
Ann Arbor, MI, USA
{parkhc, fank, mahlke}@umich.edu

ABSTRACT

Coarse-grained reconfigurable architectures (CGRAS)eptean
appealing hardware platform by providing the potential liayh
computation throughput, scalability, low cost, and eneffigiency.
CGRAs consist of an array of function units and register filiésn
organized as a two dimensional grid. The most difficult crade
in deploying CGRAs is compiler scheduling technology tteat ef-
ficiently map software implementations of compute inteaébops
onto the array. Traditional schedulers focus on the plactrog
operations in time and space. With CGRAs, the challengeauis|
ment is compounded by the need to explicitly route operaraia f
producers to consumers. To systematically attack thislenobwe
take an edge-centric approach to modulo scheduling thatsésc
on the routing problem as its primary objective. With edgetdc
modulo scheduling (EMS), placement is a by-product of theing
process, and the schedule is developed by routing each edge i
dataflow graph. Routing cost metrics provide the scheduitr av
global perspective to guide selection. Experiments on & wadi-
ety of compute-intensive loops from the multimedia domdiave
that EMS improves throughput by 25% over traditional itiseat
modulo scheduling, and achieves 98% of the throughput ofi-sim
lated annealing techniques at a fraction of the compildiioe.

Categories and Subject Descriptors

D.3.4 [Processory [Code Generation and Compilers]; CSdecial-
Purpose and Application-Based Systenjs [Real-time and Em-
bedded Systems]

General Terms
Algorithms, Experimentation, Performance

Keywords

Coarse-grained Reconfigurable Architecture, OperandiRpuRro-
grammable Accelerator, Software Pipelining

1. INTRODUCTION

The embedded computing systems that power today’s portable
devices demand high performance and energy efficiency. i-Trad

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PACT’08,0ctober 25-29, 2008, Toronto, Ontario, Canada.

Copyright 2008 ACM 978-1-60558-282-5/08/10 ...$5.00.

Taewook Oh, Heeseok Kim, and
Hong-seok Kim
Samsung Advanced Institute of Technology
Kiheung, Republic of Korea
{taewook.oh, heeseok.kim,

hong-seok.kim}@samsung.com

tionally, application specific hardware in the form of ASI@as
been used on the compute-intensive kernels to meet thesendem
However, increasing convergence of different functidiesi such
as voice/data communication, high definition video, andéaligho-
tography on a single device, combined with high non-reogrri
costs involved in designing ASICs, have pushed designersrts
programmable solutions. Coarse-grained reconfiguraloleitac-
tures (CGRAs) are becoming attractive alternatives bectsy
offer large raw computation capabilities with low cost/eyeim-
plementations. Example CGRA systems that target wireigsals
processing and multimedia are ADRES [15], MorphoSys [184 a
Silicon Hive [19]. Tiled architectures, such as Raw, areselp
related to CGRAs [22].

CGRAs generally consist of an array of a large number of func-
tion units (FUs) interconnected by a mesh style network.ifteg
files are distributed throughout the CGRA to hold temporaiyes
and are accessible only by a small subset of FUs. The FUs ean ex
ecute common word-level operations, including additiarptsac-
tion, and multiplication. In contrast to FPGAs, CGRAs stioei
gate-level reconfigurability to increase hardware efficjenAs a
result, they have short reconfiguration times, low delayattar-
istics, and low power consumption.

An effective compiler is essential for exploiting the abande of
computing resources available on a CGRA. However, spanse co
nectivity and distributed register files present difficiiatienges to
the scheduling phase of a compiler. Traditional scheduletsjust
assign an FU and time slot to each operation are insufficient b
cause they do not take routing into consideration. Scalaraoyl
values must be explicitly routed between producing and wmirsy
operations. Further, dedicated routing resources arerowided.
Rather, an FU can serve either as a compute resource or as a rou
ing resource at a given time. A compiler scheduler must manag
the computation and flow of operands across the array tote#gc
map applications onto CGRAs.

To efficiently make use of the CGRA resources, modulo schedul
ing (or other software pipelining variations) of loops isngeally
used [20]. This provides the opportunity to exploit bothdeo
level and instruction-level parallelism to efficiently nealtse of the
CGRA resources. To deal with the complex topology and rgutin
challenges, the DRESC (Dynamically Reconfigurable Embe:dde
System Compiler) proposes a modulo scheduling algoritheeda
on simulated annealing [14]. It begins with a random plaggme
of operations on the FUs, which may not be a valid modulo sched
ule. Operations are then moved between FUs until a validdsdae
is achieved. The strength of simulated annealing is itdtatit
deal with both sparse connectivity and complex resourcgaiget
are common in a CGRA. DRESC consistently achieves the lgadin

From Neighbors or

‘ Central Register File ! "
Central Register File

Register
File

To Neighbors

Figure 1: Example CGRA design.

performance results over other methods on a variety of CGRAs
However, the random movement of operations in the simulated
nealing technique can result in a long convergence timeofps
with modest numbers of operations. Also, the algorithm ihad

in the sense that no information about the structure of tbp'$o
dataflow graph is utilized in making scheduling decisions.

For this work, our goal is to develop a more systematic apgroa
where compilation time is a first-class constraint. Wealligichose
to adapt iterative modulo scheduling to CGRAs because it -
duces efficient results and offers short compilation timeséeor
large loops [20]. The central changes were adapting thedsitdre
to understand the decentralized resources of a CGRA as well a
performing routing of operands between producing and coisy
operations. While this approach was successful at creatimgct
schedules, loop throughput was reduced by 10-50% in cosgoari
to the simulated annealing method. An analysis of the rasult
loops showed thatode-centric modulo scheduliiga poor match
for CGRAs. Traditional schedulers are node-centric in thatfo-
cus is assigning operations (nodes) to FUs. The straighafaor
adaptation of this approach is operation assignment feitbwy
operand routing to determine if the assignment is feasiblew-
ever, even with large numbers of free FUs, the scheduleitatgy
fails due to the inability to route an operand. Further, taaking
is ineffective due to the complex interrelations betweemesaler
decisions.

The key insight from this experience was that a CGRA schedule
must consider routing efficiency as the primary objectivele&t-
ing intelligent paths from producing to consuming FUs thanadt
block other operand paths is essential to achieving hidireugh-
put schedules. Further, operation assignment can be viesed
by-product of a successful route, thus no successive platestep
is required. In essence, by getting an operand between timtspo
the necessary operations can be performed along the wasetar f
We refer to this technique alge-centric modulo schedulingr
EMS. This paper presents the design, implementation, asdayv
tion of the EMS algorithm.

2. BACKGROUND AND MOTIVATION

2.1 Architecture Overview

A CGRA consists of an array of compute nodes, each of which
executes word-level operations, communicating througlmeer-
connection network. In general, CGRA designs can be destrib
by four characteristics: size, node functionality, netkvoonfigu-
ration, and register file sharing. Tlsizerefers to the number of
nodes; commonly this can vary from 4 nodes arranged in a row up
to 64 nodes arranged in arx8 grid. Thefunctionalityof each node
can vary from a single FU (e.g. adder or subtracter), to an AbU

a full-blown processor. In addition, the functionality aides may
be homogeneous or heterogeneous. For example, only a siibset
nodes may access data memory.

There are a large number of potentr@twork configurations
such as connections between each node and its four (or eaght d
onal) nearest neighbors, buses connecting each node tsil{lyos
to a subset of) other nodes in the same row or column, higécaich
connection schemes, and so on. Finally, the degreegidter file
sharingranges from small, individual register files at each node, to
multiple register files each shared by a small number of nades
single central register file accessible by some or all nodes.

Figure 1 shows an example CGRA design that contains 16 nodes
arranged in a 44 mesh; each node can communicate with its four
nearest neighbors. In addition, column buses connect emidhto
a central register file. Each node consists of an FU that chire
puts from neighbors or the central register file and write $ogle
output register; a small, dedicated register file; and a gardiion
memory to supply control signals to the MUXes, FU, and regist
file. Certain operations, such as loads and stores, can entxb
ecuted on a subset of FUs (shaded). Note that a node can either
perform a computation or route data each cycle, but not kash,
routing is accomplished by passing data through the FU (a IOV
operation).

2.2 Modulo Scheduling Challenges

Modulo scheduling is a software pipelining technique that e
poses parallelism by overlapping successive iteratioadadp [20].
The goal is to find a valid schedule such that the interval betw
successive iterations (initiation interval, or Il) is mimized. The
ll-cycle code region that achieves this maximal overlapaled
the kernel. When the number of iterations is large, the perfo
mance of the loop is determined by the Il to a first order; thus,
it is more important to minimize the Il than to minimize schisl
length. Initially, the scheduler chooses the target Il taH®max-
imum of the resource-constrained lower bound (ResMll) dred t
recurrence-constrained lower bound (RecMll). If a validduio
schedule cannot be found, the target Il is incremented amebisid-
ing is attempted again.

Scheduling for CGRAs is quite different from scheduling for
general VLIW architectures due to the different hardwararab-
teristics. Factors that complicate CGRA scheduling inelud

Explicit routing. In a VLIW architecture, routing from pro-
ducer to consumer is implicitly guaranteed by storing imiediate
values in a multi-ported, centralized register file. Howewe a
CGRA, interconnect is much more sparse and values must be ex-
plicitly routed using FUs, local register files, and meshramtions.

Intelligent routing. FUs are used for both computation and
routing; thus, scheduling can easily fail if poor routingites are
made. Furthermore, the scheduler must not only generatéda va
schedule, but also minimize the routing resources usedsotbre
FUs are available for computation.

Heterogeneous nodesAll nodes can perform addition and logi-
cal operations, but “expensive” operations such as midtploads,
and stores may only be supported by a subset of nodes. In such a
architecture, it is important to avoid scheduling inexpemnspera-
tions on expensive nodes, because this limits the schepiléri-
bility of the expensive operations.

Modulo constraint. Resources are used in a periodic fashion,
since the loop kernel repeats every Il cycles. Thus, unfikeciclic
scheduling, it is not possible to guarantee routability kieeding
the schedule, and scheduling can easily fail due to the qusiy
scheduled operations.

FU 0jFU 1{FU 2{FU 3|FU 4{FU 5iFU 6}FU 7|FU 8{FU 9{FU10iFU11|FU12{FU13[FU14FU1
MEM | MEM MEM {| MEM
0 2 X X X X X X
1|6 126¢ 8 X §ox iox M x i ox
2 X 7 X X X X X X
3| 29 3 0 X X X X X X X
T X X X X X X X
5 X X X X X X X X X
6 1.4 x X 5 1 2r] x X X
o [z x i xi xi18] x {sri13 x_1 10 X
Ells X X 12 1 18r 17 X 15
Tollex fox ix 12ci 4.} Or X 1 ox 120
10 X ix 16 X ox |x 9 22
11 X X X X X X X 15r X 14
12 X X X X X 19 | X
. 13| x X X X X X X X X
e ersten 73 M A I I N KT :
. \‘ 15| x X X X 21 X X X X X
RN 16 X 20l x| x X X X
\‘ 2-:4 ’ “2':"/ 17 X X X X X X X 23 X
A2 18 X X X X X X X X
& & @ & | AR R T ;

(a) (b) (c)

Figure 2: Example to illustrate the challenges of CGRA schedling: (a) the dataflow graph for the fsed application, (b) the reservation
table for a partial schedule on a 4x4 array, (c) possible roungs from 23's producers. In (a) and (b), dark grey shading imicates
memory operations and light grey shading is used to highlighthe current operation being scheduled (node 23) and its immediate
predecessors. Bold numbers indicate computation operatits, other numbers followed by ‘r' (e.g. ‘8r") indicate routi ng slots for
corresponding computation operations. ‘reg’ nodes indicte live-in values stored in the central RF.

To illustrate the complexities of CGRA modulo scheduling-F 3. CORE CONCEPTS
ure 2(a) shows the dataflow graph (DFG) for the dominant loop prior to describing the EMS algorithm, we describe sevefal o

from one of our benchmark applicatiorissed, an image halfton- the important concepts along with their rationale. Theseepts

ing algorithm. Memory operations are shaded dark grey. The are described in isolation (and hence will appear discaeagcbut
DFG is being scheduled onto a<4 CGRA, similar to the one tney are tied together in Section 4.

shown in Figure 1, with lI=4. The partial schedule is shown in

Figure 2(b). schedule is shown. Bold numbers are computatio .
operations; other numbers followed by ‘r' (e.g. ‘8r") areutimg 31 Integrated Placement and Routlng

operations for the corresponding computation operatiand; Xs CGRA scheduling can be broken down into two tasks: placement
represent slots that are occupied due to the modulo comisthiag’ of operations into computation slots (FU and time) and rautf
nodes indicate live-in values that are stored in the cefRFalAll operands. Previous techniques ([14], [18]) address thedsth
operations above operation 23 (light grey) in the DFG hawnbe ing problem in a node-centric manner, meaning that the sdeed
scheduled at this point. places operations first and then does the routing. When an ope

There are several points to observe. First, only FUs 1, 2n®, a ation is scheduled, it is placed in a slot where it can exeaurtd
10 support memory operations, thus all of the memory opmiati ~ operands from other producers or consumers are then rautd t
must be scheduled on those FUs. Next, observe how values arescheduled slot. However, scheduling failures usually odeming
routed to operation 23, which is considered for executiofdri0 the routing phase because of the limited connectivity betwe-
at time 17, and has two producers: 21 and 22. Figure 2(c) showssources. In this work, we propose an edge-centric approaeiew
the possible routes of the operands from two producers. ©se p the scheduler primarily focuses on routing, and placemeaotirs
sible way to route the operand from 21 to 23 is through FU 9. The during the routing process.
operand is first routed diagonally from FU 4 to FU 9 via a shared ~ Node-centric Approach. Node-centric approaches place opera-
register fie, then it is routed to the neighboring FU 10 viarttesh tions in a way that minimizes a heuristic routing cost. Thetirm
connection. However, taking this option leaves only two ragm cost consists of various metrics that determine the quafiptace-
slots for the unscheduled memory operations (27 and 28)rethe ment (e.g., the number of resources used for routing) [18je T
fore, the operand of 21 is routed through FU 5 rather tharutiiio scheduler visits candidate slots one by one until it findslatiso.
FU 9. Similarly, the operand of 22 is routed directly from F&Jtb The operation is placed in each candidate slot, and edgd®to t
FU 10 rather than through FU 11. The value is stored in a rajati ~ placed producers and consumers are routed. Figure 3(b}drmw
register file for 6 cycles and is read out by 23 at time 17. Tkd-ch an optimal placement is found with this approach. A DFG conta

lenge here is how to guarantee the availability of storagkeneg- ing two producers P1 and P2 and a shared consumer C is mapped
ister file. The available storage must be carefully consideiuring onto the hypothetical £5 CGRA in Figure 3(a). For illustration
scheduling as simply pushing register allocation to aftbesluling purposes, we assume no register file in this architecturanB P2

can result in costly spilling and may require complete reseiting are already placed and the scheduler places the consumevi€- by

of the loop. It can be seen that routing is complex, and varied iting all the empty slots as shown in Figure 3. The slots witted
sources including FUs, registers, register file ports, amhection circles are failed attempts where the scheduler could ndereal-

links must be modeled by the compiler to properly orchesttia¢ ues from P1 or P2 due to resource conflicts. After visitingsého
flow of values from producers to consumers. Further, thisimgu slots, the scheduler successfully places C on FU 4 at timéots (s
adds latency to the schedule: operation 23 has an earbestiste will be referred as (FU #, time) hereafter).

of 11, but is actually scheduled at time 17. One can observe two inefficiencies with this approach. [First

the scheduler makes unnecessary visits to empty slots (0,3),

[FUOHFU1HFU2HFU3HFU4J
(a)

FU1

FUO FU2|FU3

MEM

FU4 FUO [FU1 FU3

MEM

time time FU 4

0 @,

e)

e
& c 1
e
oic

=
<0
o

I

(b)

l:l : free slot l:l : occupied slot O : routing slot
time | FUO |FU1 |FU2|FU3 |FU4 time [FUO|FU1|FU2|FU3|FU4
MEM MEM
0 @ 0 ®
1 o | 1 1] 10
2 ’ Eo) 2 [1 1] 1
3 3 3|1 |1
4 e 4 1] 1|

(d) ()

Figure 3: High level comparison of scheduling approaches:a)
1x5 CGRA, (b) compile time example of node-centric, (c) com-
pile time example of edge-centric, (d) performance examplef
node-centric, (e) performance example of edge-centric. @bed
boxes in the reservation tables indicate slots occupied byttter
operations.

and (0,4). This is because the scheduler places operatidimsuy
routing information. The second inefficiency is that there ee-
dundant routings made when the scheduler visits (2,1)),(@23),
(2,4), and (3,4). For example, when the scheduler visits(8ld),
it already knows that there is a path-R{2,1)—(2,2)—(2,3) since
it was discovered when slot (2,3) was visited. These obtens
show that placement without routing information can leadeo
dundant routing calls, which increases compilation timee ©an
argue that a different visiting order can solve this prob(gisiting
slots in the same FU first). Even though this can work for this p
ticular case, there is no general order that works for altt®es in
the node-centric approach.

A node-centric approach can also lead to a poor solutionuseca
it does not consider routing information when placing arnrapen.
Figure 3(d) shows a different example where P is alreadyeplac
and the edge from P to C is about to be routed. Here, we assum
that C can be placed in only two slots, (4,2) and (2,4). Naaéglhot
(3,1) is the only remaining memory access slot, thus it iscatito
avoid using this slot for routing if possible. Since the nagatric
approach visits slot (4,2) before slot (2,4), it will simmlgoose the
path to slot (4,2) in Figure 3(d), using the memory slot fautro
ing. If any memory operation still needs to be scheduled,llthe
must be increased. Here, we are assuming that the nodéccgmtr
proach visits slots in an increasing order of time. Althoagtiffer-
ent visiting order can give priority to slot (2,4) over sldt{Z), that
particular order cannot be applied to general cases wittooting
information. In general, the node-centric approach needset-
form an exhaustive search of all the available slots to heatfuk
problem.

Edge-centric Approach.In an edge-centric approach, the place-
ment of an operation is integrated into the routing functaomd the

e

placement decision is deferred until routing informatismliscov-
ered. When scheduling an operation, the scheduler doedaua p
the operation up front. Instead, it picks an edge from theape
tion’s previously-placed producers or consumers andsstartting
the edge. The router will search for an empty slot that cacugre
the target operation, rather than routing towards a plapedation.
Once a compatible slot is found, the target operation isgglatthe
slot and the scheduler continues routing edges to othetpews or
consumers.

Figure 3(c) shows the same example of Figure 3(b), but the con
sumer is scheduled using an edge-centric approach. Thdidehe
begins with the edge from P1 to C, instead of scheduling epera
tion C directly. When an empty slot is encountered, the scleed
temporarily places the target operation and checks if thexrether
edges connected to the consumers; if so, it recursively sotlitese
edges. For example, when the router visits slot (2,1) infei@(c),
it temporarily places C there and recursively calls theepéunc-
tion to route the edge from P2 to C. When it fails to route thgeed
from P2 to C, routing resumes from slot (2,1), not from P1, and
solution is eventually found at slot (3,4). So, slots (2(2)2), (2,3),
(2,4), and (3,4) are all visited in one routing call. Comphie 11
routing calls made for the edge from P1 to C in Figure 3(b)yonl
one routing call is required to find the same solution in thgeed
centric approach. The number of routing calls for the edgenfr
P2 to C is same for both approaches (5 calls), as the routayjis o
called for that edge if the edge from P1 to C is routed sucabgsf

The second benefit of an edge-centric approach lies in treeasp
of solution quality. In the example in Figure 3(d), it is desie
not to use slot (3,1) for routing. The edge-centric appraaakids
using the memory slot (3,1) for routing by assigning a higtwst
to the slot as shown in Figure 3(e). Here, a cost of 10 wasasig
to slot (3,1) and all the other slots were assigned a cost ©hén,
the edge-centric approach will automatically find a path dvaids
slot (3,1) by prioritizing the route path by cost. So, it sessfully
finds a path to slot (2,4) using the left path in Figure 3(d).

An edge-centric approach can perform faster and achievetex be
result than a node-centric approach. However, it has a gnead
ture in that it optimizes for a single edge at a time, and thetiem
can easily fall into local minima. There is no search mechrani
in the scheduler at the operation level and every decisiotenta
each step is final. We address this problem by employindiigéeit
routing cost metrics explained in the next section.

3.2 Routing Cost Metrics

The routing function is the basic building block of the edge-
centric scheduler, and every scheduling task, includiaggrhent,
occurs in the routing function. The final schedule is formgd b
calling the routing function for each edge in the DFG.

It is important to achieve a good mapping for each individual
edge. The routing function needs to have a global persgeofiv
the entire mapping since individual decisions affect théimy of
other edges. The order in which the router visits each sdimedu
slot is determined by muting costassociated with each slot. Thus,
it is crucial to develop a good routing cost function.

There are two main objectives when routing a single edge:

e Minimize the number of routing resources used, to leave more
slots available for routing other edges.

e Proactively avoid routing failure: avoid using resourdestt
will block future routes, and reserve computation slots for
expensive operations.

[J:roosot [oocupid it © rutng st operations. For operations already placed in the scheglspace,

i | RO U1 || U2 | RIS R el i | R0 (01| R RS e the scheduler determines how many routing options therdoare
Qe N @ e 0 routing values to either producers or consumers.
& e BCIER) PES For the placed operation P2 in Figure 4(c), probabilitiesaar-
> 2 | o | 2 | 10 notated in each reachable slot depending on the number tifigou
3 3 |10 033 options. Empty slots in FU 4 are also annotated with a prdibabi
4 4 |10 of 0.33 calculated by dividing the number of memory ops lgft b
‘1:; 5 5 [0505 the number of available slots. These probabilities arewsteal for
‘ I ES 6 05 | 05 when the routing cost is calculated for each slot, and theerouill
7] @ 7@ @ visit slots in the order of routing cost.
(@) (b) (c)
3.3 Stage Re-assignment
Figure 4: Routing cost example: (a) dataflow graph, (b) possi In modulo scheduling, better throughput (smaller 11) iseoft
ble mappings, and (c) probabilistic cost. achieved by scheduling some operations up front. A good pleam

is operations on recurrence cycles. Since each iteratiexeisuted
L . every |l cycles, all operations in the recurrence cycle rhasiched-
3.2.1 Minimizing the Number of Routing Resources uled within Il cycles. For this reason, most modulo scheuyli

Using the fewest routing resources is simple when consigexi algorithms process operations on recurrence cycles piottter
single edge. Each routing resource is assigned a statidelgrmined ~ operations.
fixed cost, and the router will find a path that minimizes thelto When placing an operation in a recurrence cycle early in the
cost. scheduling process, it is likely that there are no produoeison-
Typically, an operation is connected to multiple producans sumers placed already. In a conventional modulo schedier,

consumers, so the router must consider the usage of rowing r Scheduler ut.ilizes ASAP/ALAP (as soon/late as possibiegs cal-
sources when the other edges are routed as well. To addisss th culated statically by looking at the longest paths betwegera
issue, anaffinity costwas proposed in previous work [18]. The tions. In CGRA scheduling, the ASAP/ALAP time is not an accu-

affinity value for a pair of operations reflects their proxyrin the rate measure of the actual time slot because routing camtake
DFG. In the edge-centric scheduler, each slot is assignafiaity tiple cycles. If an operation is scheduled too early, theedaler
cost depending on how close it is to any already-placed tipasa will fail to place its predecessors. If an operation is scled too
that have high affinity with the target operation. This giegsref- late, there can be a waste of routing resources or increasgister
erence for placing an operation near its producers and 0TS pressure.
hence reducing the number of routing resources used. Accurate ASAP/ALAP times are not easily obtained in CGRA
scheduling because they depend on routing latency whiclotis n
3.2.2 Proactively Avoiding Routing Failure known a priori. Thus, we take an alternative approach: place

Figure 4 gives an example of when naive routing of an edge can OPerations can be lowered or hoisted along the time axis by re
lead to routing failures of other edges. The DFG on the left is @ssigning the stage. Since only stage count is changedsberce
mapped onto the example CGRA in Figure 3(a). The six opera- Occupancy status does not change. When an operation's istage
tions at the top are being placed and the three at the bottem ha Cchanged, operations connected to it in the scheduling spade
not been placed yet. The operation ST at the bottom is a storerouting between them must be moved as well. Since all the con-
operation; assume that only FU 4 can execute memory opesatio nected components are moved together, the stage reassigsrae
When routing the edge from P1 to C1, there are three possatisp ~ local transformation and does not affect other operations.
(RO, R1, and R2) as shown in Figure 4(b). All three paths use th ~ An example of stage re-assignment is shown in Figure 5(a). Op
same number of routing resources. However, there is a peefer ~ €rations B and C form arecurrence cycle and are initiallgdofed
choice when routing of other edges is considered. Firspétie on in stage 1 (times 2 and 3). Later, when operation A is beingdch
the left (RO) should not be selected because it would bloelotily ~ uled, the router is called for the edge from A to B. Since resesi
path between P2 and C2, causing a subsequent routing faibane ~ are repeatedly used every Il cycles, FU 3's slot at time 63s al
P2 to C2. The path in the middle (R1) is preferred to the path on 0ccupied by operation B. Operations A and B are not connected
the right (R2) because occupying slot (4,3) leaves only treanm DY any placed edge, so B can be re-assigned to time 6 (in sjage 3
ory slots of FU4 for the ST operation. So, the scheduler veilth ~ Since operation C is connected to B by a placed edge, it is also
fewer options when scheduling the ST, leading to a great@nagh re-assigned to time 7.
of routing failure in the future. . .

From the previous example, we can see that the schedules need 3.4 Edge Categorlzatlon

to know the resources that are likely to be used by other eddbe Modulo scheduling for the CGRA is a problem of allocating a
future. To account for this, the scheduler associates ampaccy fixed number of routing resources to the edges in the DFG. It is
probability with each scheduling slot. The probabilities aalcu- important to observe that not all edges are the same in tefms o
lated for two different types of operations: expensive afiens how important they are to the overall schedule. In EMS, edges
and placed operations. in DFGs are categorized as described below, and differertinig

Expensive operations are defined as ones that only a subset ofapproaches are applied for each edge type.
FUs can execute, such as memory and multiply operations. For Recurrence edges.lt is crucial to schedule the edges in a re-

each scheduling slot that can execute expensive operattasrob- currence cycle ahead of other operations, especially wieh is
ability is calculated by dividing the number of unscheduked close to the length of the recurrence. These edges are thed-sc
pensive operations by the number of remaining slots that@re uled with highest priority.

patible. When non-expensive operations are scheduledother Simple edges and high-fanout edgesimple edges are defined

prefers to avoid using slots that are capable of supportipgresive as the outgoing edge of an operation that has only one comsume

time [FUO|FU1|FU2|FU3|FU4 @

0 <D
stage 0

1 ——L) @

2

Q] > | DD

3

¢ l Q stage 2 :

5

6 ‘0
stage 3

7 @

(a) (b)
Figure 5: (a) Stage re-assignment example (Il = 2) that re-
assigns the recurrence cycle B-C from time 2-3 to time 6-7 &t
operation A is scheduled; (b) Example dataflow graph to illus
trate non-critical edges.

When there are multiple consumers, the outgoing edges Heel ca
high-fanout edges. With the limited number of routing reses,
edges routed earlier are likely to use less routing ressuittan
edges routed later, since there is more flexibility whersséoé not
yet occupied. Therefore, the scheduler needs to intelligercide
which edges are routed first.

The edge-centric scheduler gives priority to simple edges o
high-fanout edges for the following reason. When a simplgeed
is routed later and thus is not optimized very well, it wikdly
end up using more resources than required. Since there ithao o
consumer for the producer of the simple edge, those addltien
sources are just being wasted. However, additional resstrca
high-fanout edge can actually be helpful when routing edges

Figure 6: An example dataflow graph from H.264.

placed producers or consumers. After finding a legal scleefdul
the given I, the collapsed nodes are expanded first and esnfig
rations are generated for each component. If schedulitgy faie
scheduler increases Il and repeats scheduling.

4.1 Prepass Steps

Generating the Reduced Dataflow Graph

First, the DFG is converted into a reduced form where certain
nodes are collapsed into edges. An operation is collapgilie
is inexpensive (can execute on any FU in the array), and Hgs on
one producer and one consumer. When such a node is found, the
scheduler removes it and draws an edge directly from itsymed
to its consumer. The new edge is annotated with the number of
nodes that were collapsed. This simplifies the DFG, and dzos
the router to treat a path of nodes as a single edge durintgout
potentially leading to a better schedule for that path.

In the DFG in Figure 6, collapsible nodes are shown in white.
When these nodes are collapsed into edges, a reduced DFGXRDF

the same producer to other consumers, since there are more reis generated as shown in Figure 7. In all, 17 out of 65 nodes wer

source slots that contain the producer’s value.

An analysis on simulated annealing’s result also showsrtisl.
Frequently, an operation that has multiple consumers etéatfar
apart from its consumers on the time axis, while operati@rs ¢
nected with simple edges are located close to each othes.obhi
servation motivates our priority calculation method usfagout
clustering, described in the next section.

Non-critical edges. When there are multiple disjoint paths be-
tween a pair of nodes in the DFG, dependencies are genemted b
tween edges in different paths. An example is shown in Fig(bg
Assume the recurrence cycle at the bottom (operations BiIdb8n
was scheduled first. When node 0 is scheduled, the schedasr s
that its consumer node 6 is already scheduled. However,dpe e
from 0 to 6 should not be routed yet because it is not on thiearit
path from 0 to 6. The scheduler should wait until all of the exig
in the critical path are routed before routing the-:6 edge. There-
fore, a dependency is generated from the@®edge to the critical
path between 0 and 6. Similarly, dependencies are geneiated
edges on paths between nodes 1 and 4. In this case, edgeés 1

collapsed, resulting in a smaller scheduling problem. Relddops
in the media applications evaluated in Section 5, 18% of sedge
collapsed on average.

Priority Calculation using Fanout Clustering

The scheduling priority of operations in the RDFG are caltad
in such a way that simple edges get higher priority than féglout
edges, as described in Section 3.4. First, the DFG is chostey
ignoring high-fanout edges. Each group of nodes connecyed b
simple edges forms a cluster as shown in Figure 7. The safredul
processes clusters such that each cluster is scheduledraasall
of its producers are placed. Within a cluster, producer atpars
are also scheduled before consumers. Basically, nodessitedyv
in a post-order traversal starting from the bottom.

For the target loop in Figure 7, the operations in recurrayee
cles are scheduled up front. Then, the scheduling order @f ea
cluster is determined. The scheduler will start with C8, alhis
one of the clusters at the bottom. A post-order traversagyan
order of CO, C3, C1, C4, C2, C7 and C8. The final order for clus-
ters are CO, C3, C1, C4, C2, C7, C8, C5, C9, C6, C10, and C11.

and 7—4 depend on the critical path between nodes 1 and 4. When Within a cluster, operations are scheduled the same way.

an edge has a dependency on a pair of nodes, the routing of the4

edge is deferred until the edges on the critical path aredsdée.

4. IMPLEMENTATION

This section describes the implementation of EMS. The ayste
flow is shown in Figure 8. First, the DFG of the target loop ia-co
verted into a reduced form by collapsing some nodes. Theceztlu
DFG is then clustered by ignoring high-fanout edges andaper
tions are prioritized based on the clustered result. THenpper-
ations are scheduled either by calling a placement functiarall-
ing a routing function depending on whether they have preshpo

.2 Edge-centric Modulo Scheduler

Once priorities are calculated for all nodes in the RDFG, the
nodes are scheduled. For each target operation, first tieelglen
determines whether there are any placed producers or censum
If not, the target operation is placed in a scheduling sldohwiin-
imum cost; this is the only time where the placement functfon
called. For an operation that has placed producers or carsyum
the scheduler decides which edge to route first. The decision
made based on various factors such as schedule time and stage
changeability of producers or consumers, and how manymnguti
options are available.

Figure 7: Example from Figure 6 after fanout clustering.

When an edge is selected, the router is called and it firstldsci
the routing direction. Forward routing starts from the proer and
finds a compatible slot for the consumer; backward routingsdo

the opposite. When both producer and consumer are placéd, bo

directions are possible, and the decision is made basedage-st
changeability of the producer and consumer. Since onlyatioers
at the end of a route can have their stages re-assigned, ute ro
will select a direction that starts from a fixed operation.

4.2.1 Search Window Setup

The router will visit neighboring scheduling slots stagtfnom a
slot where a source operation is placed. The scheduler hesds
up the time axis of the search window with care. A search windo
that is too small can result in failure to find a compatible,sidile
there can be a waste of time if a window is too large. Even thoug
ASAP/ALAP times are not an accurate measure of the time flots
operations to be placed, they can be a good lower/upper biound
routing. The search window is determined by ASAP/ALAP tirfie o
the target operation considering stage re-assignmentn\i¢toging
an edge from a placed produc@) o a non-placed consumety,
ASAP time can be calculated by Equation d.denotes a placed
predecessor of. d(x, y)is the longest path delay betwegrrand
y. up(x)is the max number of stagesan be hoisted andn(x)is
the maximum number of stagegan be lowered. Similarly, ALAP
time is calculated by Equation 2 whesdenotes a placed successor
of C.

ASAP(C) = MAX (time(p)+d(p,C)— (up(p)—dn(P)) x 1(8
ALAP(C) = MIN (time(s)—d(C,s)+ (up(P)—dn(s))x II)
@)

4.2.2 Routing Cost Calculation

When scheduling an edge, a routing cost is calculated fdr eac

available slot. This cost is used by the router to deterntinetder
in which to explore slots during routing. Routing cost has¢h
primary components, described below.
Static cost. A fixed costCs:q1ic IS assigned to each slot so that
the scheduler can minimize the number of routing resoursed.u
Affinity cost. As described in Section 3.2.1, affinity cost is cal-
culated based on a slot's distance from placed producersia-Eq
tion 3 calculates the affinity between two operatigrendB. Affin-

ity is given to a pair of operations that have common consamer

(direct or indirect use of the destination Afand B). Common
consumers withirmax_distin the DFG are considered for affin-
ity calculation. num_cons(A,B,d)enotes the number of common
consumers oA andB at the distance in DFG.

Generate reduced DFG
Fanout clustering

Preprocess

Prioritize edges

Select target edge

Search window setup
Cost calculation

Target placed ?

Find slot |
(“Findvae) g
Place target

Route to others ?

Final schedule

Modulo Scheduler

Figure 8: System flow for edge-centric modulo scheduling.

max_dist

af finity(A, B) = Z gmar-dist=d . pum_cons(A, B, d)

d=1
3)
The affinity costC, ¢ ¢ is then calculated for each slot as follows,
wheredist is the distance in hops from the current slot to the slot
where the producer is placed. When there are multiple plpoed
ducersC, ¢y is summed for all producers.

af finity(A, B) =0

af finity(A,B) > 0 @)

0
Cars = { dist
af finity(A,B)
Probability cost. The router should take care not to block cer-

tain slots because they may be required for routing of futdiges.
Thus, a cost is assigned to each slot reflecting the probattiit it
will be required in the future. There are two cases: resgrekpen-
sive slots, and reserving slots to route results of prelopisiced
nodes. The individual probabilities are calculated as ritesd in
Section 3.2.2. These probabilities must then be combingether,
as a given slot may support multiple types of expensive dioe1Ia
and/or be used to route multiple placed nodes. Since theidhdi
ual probabilities are correlated, getting the exact overabability
for a slot is difficult. An approximation is obtained by trizaf the
probabilities independently. The following equation egses the
total probability P of a slot givenn individual probabilitiesp;:

P=3 (-0 (5)
k=1

Total routing cost. The total routing cost for a slot is obtained
by combining the three costs above:

(6)

C = Ostatic"’waff Xcaff"'wP x P P< 1
RS P=1

The costs are combined with weighting factarg; ; andwp. In
addition, if P = 1, the slot will definitely be required in the future
and cannot be used for routing the current edge; thus, igpatist
is infinite.

Dataflow dead slot detection probabilities for P2->C2 probabilities for M1, M2 combined probabilities affinity cost final mapping

tme |FUO|FUT|FU2|FU3|Fu4| [tme |FUO[FU1|FU2|Fus|Fus| [tme|Fuo[Fut[ru2[Fua]rusa]| [tme|Fuo[Fut[Fuz|[rus|Fus] [tme[Fuo[Futlru2[rusfru4] |tme |Fuo[Fu1|[Fu2|Fu3|Fus
e | W | v | e | Wew | e |
® '@ B " @ E) " @ ® e G V@ &) " ® a
e 1|3 1] 10 1 02 1] 10 02) 1 o 1 kS
2 | & 2 |10 2 02 2 [10 02 | o i 2 o 2 i
3 | & 3 | 0505 3 02 3 |05 05 |02] 3] 3)
4| & N 4 |os 05 4 02 4 |o0s o5 | % Rk 4 & 4 &
5 | & () 5 | 05 05 5 5 |05 05 [5 5 5 k)
K] Y 6 05 6 6 05 ' 6 i 6
7 7 05 7 02 7 06 ' 7 & 7
8 8 05 8 02 8 02|05 ’ 8 ’ 8
9 9 9 9 ’ 9 3 9
10 | @ ® 10 | @ ® 10 |@ 02 [@® RE) 02 [@] & 0| @ F) 10 | @
1 1 1" 02 1 0.2 Mmoo [|2 [€F) 4 "o
12 2 12 02 12 02 2] o |15 201
13 13 3 02 13 02 B o1 3| 4 B3] o |1
(a) (b) (c) (d) (e) () (9

Figure 9: Routing cost calculation example: (a) dataflow grah, (b) - (g) reservation table with computed routing costs.

4.2.3 Finding the Target probabilities of routing slots generated for the unplacgégiesfrom

Once all routing costs are updated, the router will startifigc P2 to C2 (Figure 9(b)). Then, it identifies dead slots that mok
path from the source to the target operation. Starting frsfothat lead to any compatible slots for C2, as indicated by dark lstatd
contains the source operation, the router visits neighlasiots in in Figure 9(b). Once all the dead slots are identified, proitials
the CGRA using a maze routing technique. Each neighboristg s| are propagated along the routing live slots. Figure 9(cjvstthe
is put into a priority queue and the router visits the slotsriter of final probabilities. Slot (0,2) gets 1.0 since there is onig path
their routing costs as calculated above. from P2. Slots (0,3) and (1,3) get the probability of 0.5 sitiwere

When a collapsed edge is routed, the router ensures thatiét fin ~are two routing options from the previous slot. o
a path that goes through at least as many FUs as the number of Next, probabilities are generated for the expensive opeist
collapsed nodes, so that the collapsed nodes can be expateled M1 and M2, that are not placed (Figure 9(d)). With two expemsi

into those FUs. A similar approach is taken for high-fanalges. operatip_ns and 10 available slots on FU 2, each slots get& a 0.
Because the high-fanout edges are scheduled with low fytithie probability. -~ . .
corresponding values are likely to have long lifetimes. refare, The probabilities in Figure 9(c) and Figure 9(d) are comdine
when high-fanout edges are routed, the scheduler attemfitsita using Equation 5 resulting in Figure 9(e). Based on the fitba
path that goes through a register file. ties calculated for unplaced edges and nodes, the routsrdipdth

If the target is already placed, the route is towards thetbimt ~ for the edge from P1to C1 as shown in Figure 9(e). There are two
contains the target operation. Otherwise, it will find a $hatt can candidate slots for C1; slot (3,11) and slot (4,11). Sincea@d
execute the target operation. Once a slot is found, the stded Y have a common consumer Z, the placement of C1 can affect the
checks if other edges connected to the target need to bedplace Number of routing resources used later when the edge from Y to
and recurses to route those edges. When an edge has a degendenZ is routed. As shown in Figure 9(f) and (g), slot (3,11) is-pre
on other edges as described in Section 3.4, the routing ésreef ~ ferred to slot (4,11) when considering the common consumer Z

until all edges in more critical paths are scheduled. Wheof éhe EMS utilizes the affinity heuristic [18] to make this decisioFor
edges are successfully routed, the scheduler moves on texte €ach slot, the affinity cost is assigned in a way that a higbst ¢
operation in priority order. is given as the distance from Y increases. Therefore, thedstér

When the scheduler places recurrence cycles, edges aesiplac Prefers slots that are close to Y and (3,11) is selected r btten
even if their target operations are not placed yet. By cgltime Z is scheduled, the routing cost can be reduced since Y andeC1 a
router function recursively for all operations in the cyctee sched- ~ Placed close to each other.

uler can put more effort into finding a legal mapping for theure
rence cycles. To prevent exponential compile time for laige 4.2.5 Register Constraints
currence cycles, the number of recursive calls is limited fixed

value. When the scheduler successfully routes all the ctede
edges, it finalizes the placement of the target operationpaod

ceeds with the next one.

In CGRAs, values with long live ranges can be more efficiently
routed through distributed register files. The schedulestroare-
fully manage register resources so that values stored inetfis-
ter file are successfully routed to consumers. Traditigna#g-

. ister allocation is performed after scheduling, and smide s in-
4.2.4 Routing Example serted when the register requirement exceeds the registeafiac-
Figure 9 shows an example of how EMS routes an edge with ity. Spilling in the CGRA is quite costly since it involvesuting
updated routing costs for each slot. Again, we assume neteggi to/from the memory units and may require complete rescliveglul
files in the target architecture for illustration purposése DFG in of the loop. Moreover, spilling can easily happen due to thalk

Figure 9(a) is mapped onto the 1x5 CGRA. Here, we assume thatsize of the register files.

P1, P2, X, and Y are already placed and the scheduler is aboutt EMS performs register allocation during scheduling to e\apill-
route the edge from P1 to C1. Further, C2 is a multiply opemati ing and guarantee routability through the register filesgifer
and can only execute on FU 3, and M1 and M2 are memory opera- allocation occurs frequently, as it is needed whenever tlger
tions and can only execute on FU 2. First, the scheduler leaés. visits a register file. So, a simple and fast allocation s&heras

developed that focuses on the routability of stored valugisice
EMS gives low priority to high-fanout edges, consumers @& th
same value are typically scheduled in different times. Tdteed-
uler needs to ensure that values stored in register filesecanuibed
to all of their future consumers. The details are omittechia pa-
per due to space constraints.

4.3 Postpass Steps

When EMS finds a legal schedule, it generates the conterits of t
CGRA's configuration memories. First, it expands the ca&p
operations onto the FU slots that were found. Then, conitel b
for the routing and computation resources are generatelddimg
MUX selection bits, FU opcode bits, and register file addesss

5. EXPERIMENTAL RESULTS
5.1 Experimental Setup

To evaluate the performance of EMS, we took 214 loops from
four media applications from the embedded domain (H.264 de-
coder, 3D graphics, AAC decoder, and MP3 decoder). The |oops
varying in size from 4 to 142 operations, were mapped onferdif
ent CGRA configurations.

The target CGRA architecture is a4 heterogeneous array as
shown in Figure 1. Functionality for memory access is linhite
4 FUs and multiplication to 6 FUs. The array contains a 64yentr
(16 of which are rotating) central RF with 8 read and 4 writetpo
wherein only FUs in the first row can directly read/write. éther
FUs can only read from the central RF via column buses. The cen
tral RF is primarily used for storing live-in values from thest
processor. Each FU has its own local RF consisting of 8 riati
register with one read and one write port. Local RFs can be als
written by FUs in diagonal directions (upper right/uppét/lewer
right/lower left). For example, local RF in PE 5 can be writtey
FUs 0, 2, 5, 8 and 10 and only FU 5 can read from it.

We created three architecture instances by differengjdti and
RF connectivity: mesh-plus, mesh-only and no-RF-sharitg.

0.9

g 04 DDRESC
&o3

H.264 3D AAC MP3 overall

Figure 10: Performance comparison of scheduling strategie
for the mesh-plus architecture. The fraction of the theoretcal
maximum performance is plotted.

1
09
038

g07

® 06 N

2 05 BNMS

g™ DEMS

g 04 ODRESC

803
02
0.1

0

H.264 3D AAC MP3 overall

Figure 11: Performance comparison of scheduling strategie
for the mesh-only architecture.

results of the loops within each domain and the last groupvsho
the overall performance across all 214 loops.

A more detailed view of the performance comparison between
EMS and DRESC is presented in Figure 13 for the mesh-plus con-
figuration. The x-axis shows all 214 target loops groupeddplia
cation. Within each application, loops are sorted by insir@aMIl.

The gray line shows the value of Mll for each loop. The achieve
Il for EMS is shown as solid circular dots. The achieved Il for
DRESC is shown only when it differs from EMS'’s achieved Il gas

mesh-plus, FUs are connected in a mesh network, meaning thatyertical line extending from the dot. For the mesh-plus iecture,

each FU is connected to its immediate neighboring FUs. Aalfdit
ally, FUs that are two hops apart are also connected. Thisiisa
ilar configuration to ADRES [14]. In the mesh-only configuoat
FU connectivity is limited to a simple mesh network. The ne-R
sharing configuration has same FU connectivity as mesh-boty
local RFs are not shared by FUs in diagonal directions, nmgani
that each RF can be written/read only by the neighbouring FU.
The performance and compile time of EMS were compared to
three different modulo scheduling techniquédsS: traditional it-
erative modulo scheduler that does not consider routingiefity;
NMS: node-centric modulo scheduler that employs the samedieuri
tics as EMS, but scheduling is conducted in a node-centric wa
and, DRESC: IMEC's simulated annealing based modulo sched-
uler. All evaluations were taken on an Intel Core 2 Duo system
running at 2.66GHz with 2GB memory. Compile time was mea-
sured by using only one core of the system. Scheduling gesult
were verified with a cycle accurate simulator.

5.2 Results

In modulo scheduling, Ml defines the theoretical upper libun
of the performance of the scheduled loop. Therefore, weutztked
the performance of the modulo scheduler by dividing MIl bg th
achieved Il in each loop. The performance comparison ofdhe f
different modulo scheduling techniques is shown in Figd&sl 1,
and 12 for the mesh-plus, mesh-only, and no-shared-RF ennfig
rations, respectively. The first four groups show the pentorce

EMS achieves an average ILP of 9.6 across all the loops.

The final measurement performed is compilation time. The to-
tal compile time of all 214 loops for each scheduling techriig
shown in Table 1.

5.3 Analysis and Discussion

Comparison with IMS. EMS always outperforms traditional
IMS by more than 25% for both mesh-plus and mesh-only con-
figurations. Even though IMS works quite well for conventibn
VLIWSs, the lack of a global resource management strateggesau
frequent routing failures which forces Il to be increased.

Comparison with NMS. EMS and NMS share most of the heuris-
tics developed in this paper, such as the various cost ragstiage
reassignment, and the reduced dataflow graph. However, EMS
achieves 10-13% performance increase while compile tinserera
duced by 27-46% compared to NMS. This demonstrates the bene-
fits of the edge-centric over the node-centric approach ih per-
formance and compile time measures, as illustrated in @e8til.

arch IMS | NMS | EMS | DRESC
mesh-plus| 655 | 2105 | 1185 | 22341
mesh-only | 1122 | 3046 | 2228 | 48035

Table 1: Compile time comparison (in seconds).

IS 177 : :
T . “__"" ot I"L

6 e .ng’,,. . S

o SRR, e ﬂ............I... ey I.."'I'

Figure 13: Performance comparison of EMS and DRESC for the mgh-plus architecture.

oims
BENMS
OEMS

O DRESC

performance ratio

H.264 3D AAC MP3 overall

Figure 12: Performance comparison of scheduling strategie
for the no-RF-sharing architecture.

Comparison with DRESC. DRESC consistently achieves the
best lls for most of the applications, except MP3 in the mesh-
plus architecture. Simulated annealing is an effectivatasgy for
CGRA scheduling, but its high performance comes at the dost o
slow compile time. When compared to DRESC, EMS shows quite
competitive performance results, achieving 98% and 91%RESC'’s
overall performance for mesh-plus and mesh-only architest re-
spectively.

For the mesh-plus architecture, EMS shows virtually theesam
performance as DRESC, achieving the same Il or better foemor
than 85% of loops (Figure 13). For most of the loops that are
scheduled at higher lls, the large number of live-ins washitte
tleneck for EMS. Since all of the live-ins are stored in thatcal
RF, there is high contention for central RF ports among the op
erations that consume live-ins. Though EMS reserves thigge h
contention resources by calculating probabilities in adea it still
fails to achieve the same Il as DRESC when the contentiorois to
high.

For the mesh-only architecture, EMS does not perform as well
especially for H.264 and 3D. Those two domains have many com-
munication patterns in which one producer feeds multiptesamers.
The execution of such communication patterns is signifigdint-
ited with the sparse interconnect in the array. This trenahase
obvious when looking at the results of no-RF-sharing coméigu
tion 12. EMS is achieving 85% of DRESC's performance when
interconnected further reduced by removing shared linkscal
RFs. This result shows that EMS is more vulnerable to a lack of
routing resources. We are currently investigating CGRAgies
that have low hardware cost but still enable EMS to achiegé hi
performance.

Compile time. Since there are no intelligent heuristics for global
management of routing resources in IMS, it shows the fasteat

pile time among the four scheduling techniques. Except NS,
EMS performs the fastest, showing more than 18x speedup over
DRESC. A systematic approach for placement and routingeitide
allows a reasonable compile time while achieving cometipier-
formance. Compile times for mesh-only are larger than npéss-
because the achieved lIs are usually higher. Since the glgnred
starts at the Ml for each loop, it takes more time to get tosthie-
tions with higher lls.

Effectiveness of HeuristicsEMS employs various heuristics to
guide the scheduler towards intelligent routing. The ¢ifecess
of individual heuristics varies based on the applicatioarahteris-
tics. The probability heuristic is effective for loops thwtve high
contention on limited resources such as central RF portseon-m
ory slots. Prioritizing edges based on the edge dependeraty-a
sis effectively schedules loops with large recurrenceesjobspe-
cially when there are many recurrence cycles and some nodes a
included in multiple cycles. Stage-reassignment is dffeavhen
DFGs have narrow and tall shapes.

6. RELATED WORK

Architectures. Many CGRA-like designs have been proposed in
the literature. The designs have different scalabilityfgrenance,
and compilability characteristics as discussed in Se@idn The
ADRES architecture [14] is an example of an 8x8 mesh of pioces
ing elements with both individual and central register fil&or-
phoSys [13] is another example of an 8x8 grid with a more sophi
ticated interconnect network; each node contains an ALUaand
small local register file. In the RAW architecture [22], eauide
is actually a MIPS processor, including memory, registarg] a
processor pipeline. In addition, there are both dynamicstatic
routing networks. PipeRench [7] is a 1-D architecture inchihi
processing elements are arranged in stripes to facilifptdiping.
RaPiD [3] consists of heterogeneous elements (ALUs andegi
ters) in a 1-D layout, connected by a reconfigurable intareotion
network. ElementCXI [5] and Ambric [8] are commercialized a
chitecture platforms that present large-scale CGRAs tagem-
bedded domain applications. Hundreds of computing nodes ar
connected in hierarchical interconnects and they explbRsand
TLP available in target applications.

Compilation Techniques.Many techniques have been proposed
for compiling to CGRAs. Lee et al. [10] propose a compilatam
proach for a generic CGRA. They generate pipeline schedates
innermost loop bodies so that iterations can be issued ssivedy.
The main focus of their work is to enable memory sharing betwe
operations of different iterations placed on the same @mging el-
ement. Our work proposes a generic scheduling strategynand
ory sharing and other such optimizations can be integratecoiur

system as a preprocessing step. [1] investigated a loggestihg 8. ACKNOWLEDGMENTS

problem in CGRA by dividing it into covering, partitioninghd Thanks to Greg Steffan and the anonymous referees who pro-
layout subproblems. It spatially partitions the CGRA andbma yjided excellent suggestions for improving the quality o6 thork.
each loop iteration onto the partitioned CGRA. Modulo schied This research was supported by Samsung Advanced Institute o
differs from this approach in that it time-multiplexes theay for Technology, the National Science Foundation grants CNE261
different loop iterations. and CCF-0347411, and equipment donated by Hewlett-Paekaird

RAWCC [11] tackles the scheduling problem for the RAW archi- |nte| Corporation.

tecture where all the communication is fully exposed to thec
piler. The scheduling problem is broken down into two tassa- 9
tial assignment and temporal assignment. Operations aceglin 1
each tile first, and time slots are assigned for operatiorsaoh

time. Convergent scheduling [12] is another compiler téspinm
proposed as a generic framework for instruction scheduimthe (2
RAW architecture. Their framework comprises a series ofiseu

tics that address independent concerns like load balanmingmu-
nication minimization, etc. [16] and [2] were also proposed [3]
instruction scheduling of tiled architectures. The sciiedurob-
lem in tiled architectures is quite similar to our problenthat the

compiler has to manage communications explicitly among-com “

putation resources. The main difference is that tiled #echires

usually have a dynamically routed network that can sustaines

level of routing congestion during runtime. Having no suahiting 5]
: .) . (6]

network in CGRAs, the scheduler is responsible for orchésty

every communication so that no congestion occurs. Whefgds [[71

[12], [16] and [2] focus on ILP and propose scheduling method

for acyclic regions of code, we focus on loop level paradiali The (8]

work of Mei et al. [14] is closest to our work, as discussed ét-S
tion 1.

Similar to CGRAs, clustered VLIW machines are also spatial a 9]
chitectures. Much work has been done towards compilinglis-c
tered VLIW machines [6, 17, 21]. Although some of the consept [10]
from these works can be adapted for CGRA compilation, they do
not consider the issue of routing values through the spaitse-i

connection network, which is a crucial step. The measurédfiof a =
ity used in our scheduler is similar to that used in Krishnetmus
affinity-based clustering [9]. [12]
Stage scheduling [4] re-assigns operations’ stages tontizai
register pressure for modulo scheduled loops. While stelgedsil- [13]
ing is applied as a post pass, EMS re-assigns stages dueingptth-
ulo scheduling process.
[14]
7. CONCLUSION -

This paper proposes edge-centric modulo scheduling, ae-eff
tive modulo scheduling technique for CGRAs. The distriduta-
ture of CGRAs, including sparse interconnect and disteibueg-
ister files, presents difficult challenges to a compiler. EMS [16]
cuses primarily on the routing problem, with placement geirby-
product of the routing process. Various routing cost metviere

introduced to give a global perspective of resource managemn [17]
the scheduler. Edges in the dataflow graph are categorizetiba
on their characteristics and EMS uses different strategiesute [18]

them. Overall, EMS improves performance by 25% over tranéi

modulo scheduling and achieves 85-98% of the performanee co
pared to a state-of-the-art simulated annealing technigS also [19]
reduces compilation time by 18x compared to simulated dimgea
Experimental results show that the performance of EMS lheavi

depends on the characteristics of loop structure as welesi- (20]

derlying CGRA architecture. This encourages an in-dep#tyais

of the application and exploration of the architecture imfilture. [21]
[22]

MRIEE%REN%§ Y. Kim, M. Kiemb, and K. Choi. Aatial

mapping algorithm for heterogeneous coarse-grained figewable
architectures. IfProc. of the 2006 Design, Automation and Test in Eujope
pages 363-368, Mar. 2006.

K. Coons, X. Chen, S. Kushwaha, K. McKinley, and D. Burgespatial path
scheduling algorithm for edge architectures1#th International Conference
on Architectural Support for Programming Languages and @peg Systems
pages 129-140, Oct. 2006.

C. Ebeling et al. Mapping applications to the RaPiD comféble architecture.
In Proc. of the 5th IEEE Symposium on Field-Programmable Gusto
Computing Machinepages 106-115, Apr. 1997.

A. E. Eichenberger and E. S. Davidson. Stage schedulrtgchnique to
reduce the register requirements of a modulo schedulrda. of the 28th
Annual International Symposium on Microarchitectysages 338—-349, Nov.
1995.

ElementCXI. http://www.elementcxi.com.

J. Ellis. Bulldog: A Compiler for VLIW ArchitectureMIT Press, Cambridge,
MA, 1985.

S. Goldstein et al. PipeRench: A coprocessor for stregmiultimedia
acceleration. IiProc. of the 26th Annual International Symposium on Compute
Architecture pages 28-39, June 1999.

A. M. Jones and M. Butts. Teroops hardware: A new masgiparallel mimd
computing fabric ic. INEEE 18th Hot Chips Symposiypages 32-41, Aug.
2006.

G. Krishnamurthy, E. Granston, and E. Stotzer. Affifigsed cluster
assignment for unrolled loops. Froc. of the 2002 International Conference on
Supercomputingpages 107-116, June 2002.

J. Lee, K. Choi, and N. Dutt. Compilation approach foarse-grained
reconfigurable architecturecEE Journal of Design & Test of Computers
20(1):26-33, Jan. 2003.

W. Lee et al. Space-time scheduling of instructiorelgyarallelism on a RAW
machine. IrEighth International Conference on Architectural Support
Programming Languages and Operating Systemages 46-57, Oct. 1998.
W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Ggeméscheduling.
In Proc. of the 35th Annual International Symposium on Micabétecture
pages 111-122, 2002.

G. Lu, H. Singh, M.-H. Lee, N. Bagherzadeh, F. J. Kurdalid E. M. C. Filho.
The MorphoSys parallel reconfigurable systenProc. of the 5th International
Euro-Par Conferencepages 727-734, 1999.

B. Mei et al. Exploiting loop-level parallelism on ca&-grained reconfigurable
architectures using modulo schedulingProc. of the 2003 Design,
Automation and Test in Europpages 296—301, Mar. 2003.

B. Mei, F. Veredas, and B. Masschelein. Mapping an H/28€ decoder onto
the ADRES reconfigurable architecture Rroc. of the 2005 International
Conference on Field Programmable Logic and Applicatiqregges 622—625,
Aug. 2005.

M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Safmy M. Oskin, and
S. J. Eggers. Instruction scheduling for a tiled dataflovhiéecture. In14th
International Conference on Architectural Support for §r@mming
Languages and Operating Systempages 141-150, Oct. 2006.

E. Nystrom and A. E. Eichenberger. Effective clustesigmsment for modulo
scheduling. IrProc. of the 31st Annual International Symposium on
Microarchitecture pages 103—-114, Dec. 1998.

H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graphledding:
Mapping applications onto coarse-grained reconfigurataei@ctures. IrProc.
of the 2006 International Conference on Compilers, Ardtitee, and Synthesis
for Embedded Systenpages 136—146, Oct. 2006.

M. Quax, J. Huisken, and J. Meerbergen. A scalable implgtation of a
reconfigurable WCDMA RAKE receiver. IRroc. of the 2004 Design,
Automation and Test in Europpages 230-235, Mar. 2004.

B. R. Rau. Iterative modulo scheduling: An algorithm $oftware pipelining
loops. InProc. of the 27th Annual International Symposium on
Microarchitecture pages 63—74, Nov. 1994.

J. Sanchez and A. Gonzélez. Modulo scheduling for gitributed
clustered VLIW architecture. IRroc. of the 33rd Annual International
Symposium on Microarchitecturpages 124—133, Dec. 2000.

M. B. Taylor et al. The Raw microprocessor: A computagbfabric for
software circuits and general purpose prograBEE Micro, 22(2):25-35,
2002.

