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ABSTRACT
The process of refactoring code — changing its structure while pre-
serving its meaning — has been identified as an important way of
maintaining code quality over time. However, it is sometimes diffi-
cult for progammers to identify which pieces of code are in need of
refactoring. “Smell detectors” are designed to help programmers in
this task, but most smell detectors not mesh well with “floss refac-
toring,” the common tactic in which refactoring and programming
are finely interleaved. In this paper we present a smell detector that
we have built with floss refactoring in mind by combining seven
principles, or habits, for designing usable smell detectors. We hope
that this combination can help the designers of future smell detec-
tors build tools that align with the way that programmers refactor.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques
; D.2.6 [Software Engineering]: Programming Environments

General Terms
Design, Human Factors

Keywords
smells, refactoring, tools

1. INTRODUCTION
Refactoring is the practice of restructuring code without changing
its externally observable behavior. In his influential book, Fowler
advocates frequent refactoring because it helps programmers un-
derstand code, find bugs, and add new features [4]. These recom-
mendations do indeed seem to produce benefits in practice; several
studies have shown quantitative improvements to code bases as a
result of refactoring [7, 5, 9] and others have confirmed that it is a
frequent practice [17, 18]. To automate the process of transforming
code, refactoring tools have been introduced for several environ-
ments, including IntelliJ IDEA (http://www.jetbrains.com/idea/),
Omnicore X-Develop (http://www.omnicore.com/en/xdevelop.
htm), and Xcode (http://developer.apple.com/tools/xcode/).

But before a programmer can refactor code, she must first rec-
ognize code that needs to be refactored. For example, consider the
following code snippet:

class TrainStation{
int lengthOf(Train t) {
return t.locomotiveCount() +

t.boxcarCount() +
1; //the caboose

}
...

The method lengthOf exhibits the FEATURE ENVY smell, be-
cause the method sends several messages to a Train object, but
sends no messages to itself. FEATURE ENVY is a problem that can
make software more difficult to change because a class’s respon-
sibilities are contained not only in the class itself, but also spread
throughout envious classes that access the class’s members. Table 1
describes several other code smells.

This smell can be alleviated by delegating the functionality to the
Train class:

class TrainStation{
int lengthOf(Train t) {
return t.length();

}
...
class Train{

int length() {
return locomotiveCount() +

boxcarCount() +
1; //the caboose

}
...

This particular refactoring can be achieved by sequencing three
smaller refactorings: Extract Method, Move Method, and Rename
Method. But the mechanics of these refactorings are not the topic
of this paper, which instead focuses on how the programmer recog-
nized that this code needs to be refactored.

Until recently, programmers have been forced to locate smells
manually. Because finding smells comes directly before refactor-
ing, the task of finding smells occurs during one of three other pro-
gramming activities: adding features, fixing bugs, or doing a code
review [4, pp. 58–59]. However, looking for smells during these
activities can be difficult. There are two reasons for this. First,
novice programmers sometimes cannot locate smells as proficiently
as more experienced programmers, as Mäntylä has shown in an ex-
periment [11]. Second, because of the number of smells (22 listed
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DATA CLUMPS A group of data objects that are du-
plicated across code [4]

FEATURE ENVY Code that uses many features from
classes other than its own [4]

REFUSED BEQUEST A method that overrides a super-
class method, but does not use the
super method’s functionality [4]

SWITCH STATEMENT A switch statement, typically dupli-
cated across code [4]

MESSAGE CHAIN A series of method calls to “drill
down” to a desired object [4]

TYPECAST Changing an object from a one type
to another type [3]

INSTANCEOF An operator that introspects on the
type of an object [3]

MAGIC NUMBER A hard-coded value that is poorly
documented [4]

LONG METHOD A method with too much code [4]

LARGE CLASS A class with too much code [4]

COMMENTS Comments denote code that is not
self-explanatory [4]

Table 1: Some smell names and descriptions

in Fowler’s book alone [4]), it is impractical to expect a program-
mer, even an expert programmer, to look for all smells at all times.

Fortunately, many smells can be detected automatically by tools.
One of the first smell detection tools provided code smell visualiza-
tions to help programmers locate code smells. In Van Emden and
Moonen’s jCosmo [3], the tool analyzes the entire program and
displays a graph; the size and color of the graph nodes show which
parts of the system are affected by which code smells.

As we have suggested previously [12], it appears that program-
mers refactor frequently to maintain healthy code, interleaving
refactoring with other tasks such as adding features. We call this
floss refactoring, and contrast it with root canal refactoring, where
a programmer refactors code intensively and exclusively once it has
become unhealthy.

If a programmer were to use a smell detector during floss refac-
toring, she would need to run it frequently, interleaved with pro-
gram modifications. Because the programmer performs floss refac-
torings only if they help accomplish an immediate programming
goal, the programmer would not be interested in smells in code un-
related to the code currently being worked on. However, because
tools like jCosmo display smells for the entire program, and thus
take considerable time to analyze the code, these tools are not ap-
propriate for smell detection during floss refactoring.

CodeNose [15] addresses the limitations of jCosmo by present-
ing programmers with a representation of detected smells inside
the editor. Built on top of the Eclipse programming environment
(http://www.eclipse.org/), CodeNose underlines locations in the
program text where smells have been detected, much like Eclipse’s
standard compiler warnings:

A similar line-based indicator for smell detectors has been inde-
pendently proposed by Hayashi and colleagues [6], Bisanz [1],

and Tsantalis and colleagues [16]. Indeed, the presentation of
smells in the same manner as compiler warnings is intuitively
appealing for several reasons. First, both smells and warnings
tell the programmer about a “problem” with the source code, so
it makes sense to report them similarly. Second, underlining is
the default user interface mechanism supported by static analy-
sis tools such as the Eclipse Test and Performance Tools Plat-
form (http://www.eclipse.org/tptp/), where programmers can eas-
ily build their own custom smell detection tools. Third, underlining
allows the programmer to quickly see smells while editing code,
making the presentation apparently suitable for floss refactoring.

However, we argue that two characteristics of code smells make
underlining an inappropriate mechanisms for communicating the
smells to the programmer:

1. Whereas a piece of code either generates a compiler warning
or it does not, a code smell may be subtle or flagrant, with
many shades between. For example, whether a method has
the LONG METHOD smell depends on what the programmer
considers “too long”, which may depend on the context of
the program. Smell detectors that underline code typically
deal with this by using thresholds, but static thresholds may
not be sufficiently flexible in every context.

2. Using underlining for code smell identification does not scale
well. Consider again the TrainStation example above.
While it is a relatively small method, it contains at least three
code smells: FEATURE ENVY, MAGIC NUMBER, and COM-
MENTS. Depending on the rest of the program, other smells
like REFUSED BEQUEST may be present in the snippet as
well. Indeed, nearly all the code in this method smells!
Underlining everything that contains even a whiff of a code
smell could quickly overwhelm the programmer, making the
detector useless.

We see that presenting detected code smells is difficult because
of their complexity and abundance. Previous researchers have
worked towards explaining smell complexity by providing expres-
sive visualizations of code smells [14, 13], but do not discuss how
to manage smell abundance. This paper addresses how a smell de-
tector can handle both the complexity and the abundance of smells.

2. THE SEVEN HABITS
In this section, we identify seven characteristics of an effective
smell detector, based on the nature of code smells themselves and
the context in which programmers find them.

Scalability
Code smells can emanate from many pieces of code, and the same
code can give off several smells. A smell detector should not only
be able to explain the detected smells in detail, but should also do
so without overloading the programmer.

Availability
Performing refactoring is often a frequent process during program
development, and therefore finding code smells is also frequent.
Rather than forcing the programmer to frequently go through a se-
ries of drawn out steps in order to see if a tool finds any code smells,
a smell detector should make smell information as available as soon
as possible, with no effort on the part of the programmer.

Unobtrusiveness
Because programmers refactor frequently during floss refactoring,
finding smells is inherently intermingled with other kinds of pro-
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gram edits: it is not a separate task. Thus, a smell detection tool
should be unobtrusive and not block the programmer while the tool
gathers, analyzes, and displays smell information.

Context-Sensitivity
Code smells may occur in any part of code base, but it is most
important to fix those that are directly relevant to the current pro-
gramming task. Indeed, fixing smells in a context-insensitive man-
ner may be a premature optimization. Therefore, a smell detector
should first and foremost point out smells relevant to the current
programming context.

Expressiveness
Many code smells are inherently complex; they can relate to several
program elements that may be distributed in many places across the
program text. A smell detector should go further than simply telling
the programmer that a smell exists; it should help the programmer
find the source(s) of the problem by explaining why the smell exists.

Relativity
Not every kind of smell that a tool can detect has equal value to
the programmer. This is because some smells are obvious to the
naked eye (e.g., LONG METHOD), while others are difficult for
a programmer to find (e.g., FEATURE ENVY) [11]. Thus, a tool
should place more emphasis on the smells that are more difficult to
recognize without a tool.

Relationality
Many smells do not emanate from a single point in the code, but in-
stead speak about relationships between several program elements.
Once again FEATURE ENVY is a good example: it is caused by a
relationship between a class and its clients. Thus, a smell detec-
tion tool should be capable of showing relationships between code
fragments that give rise to smells.

3. AN EFFECTIVE SMELL DETECTOR
We have built a prototype smell detector that gratifies the seven
habits. The tool provides three different views on the code smells:
it starts in Ambient View, shows an overview in Active View, and
finally reveals smell details in Explanation View. While we de-
scribe the tool textually in this section, it is more useful to see
it in action; a series of short screencasts can be found at http:
//multiview.cs.pdx.edu/refactoring/smells.

3.1 Ambient View
The initial view of the smell detector is ambient, where a visual

representation of contextually relevant smells is displayed in the
program editor, behind the program text (Fig. 1, top). This visu-
alization is intended to be visible and available at all times during
code editing and navigating, translucent enough as to be unobtru-
sive.

The visualization is composed of circular sectors, which we call
wedges, radiating from a central point in a half-circle. Each wedge
represents a code smell, and the radius of each wedge represents
the degree to which the current programming context exhibits that
smell. For example, at the top of Figure 1, the southernmost wedge
indicates the strongest smell while the northernmost wedge indi-
cates the weakest smell. As the programmer navigates through the
code, the location of the wedges on screen remain fixed, but the
radius of each of the wedges change as the programmer’s context
changes. The radius of each wedge is controlled by a smell ana-
lyzer that evaluates a smell in the programmer’s context. However,

Figure 1: Three progressively more informative views of the
code smells in program code.
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the maximum screen area available for each wedge is bounded, and
thus the visualization is designed to scale as the number of smells
increases.

Wedges are colored from red-to-green, north-to-south. Smells
are assigned to wedges such that the southernmost (and greenest)
wedge is the most obvious smell and the northernmost (and red-
dest) wedge is the least obvious smell. Our subjective obviousness
ordering is reflected in Table 1, where the least obvious smell ap-
pears at the top, as it does in Ambient View1. For example, at the
top of Figure 1, the view indicates that there is a strong unobvious
smell (in this case, FEATURE ENVY, although the smell names are
intentionally omitted from this view) as well as a strong obvious
smell (LARGE CLASS). Because more obvious smells are distin-
guished from less obvious smells, both spatially and chromatically,
the programmer can judge the relative importance of the displayed
smells.

The purpose of this view is to allow the programmer to occasion-
ally glance at the visualization to determine if there are any strong,
relevant code smells and to give a rough estimate of their extent.
There is very little burden or commitment on the part of a program-
mer to determine whether a smell exists; she only needs to glance
at the visualization, unlike with most existing smell detection tools
which require the programmer to activate the tool and inspect the
results. Indeed, such batch-smell-detection tools are applicable in
only 1 of 3 refactoring tasks (code inspection) [4, pp.58-59], and
are less useful for floss refactoring.

3.2 Active View
If the programmer observes something interesting or unusual in

the Ambient View, she can then mouse-over a wedge to reveal the
name of that wedge’s associated smell. In the middle of Figure 1,
we have moused-over the second smell from the top. If the pro-
grammer is interested in further details of the detected smell, she
can click on the smell label to activate the Explanation View.

The purpose of the Active View is to provide a little more infor-
mation than the Ambient View, and to help the programmer tran-
sition to the Explanation View. Again, the transition from view to
view in order to reveal more information was designed to be as fast
and as painless as possible.

3.3 Explanation View
The Explanation View provides detailed information about a par-

ticular smell. In essence, this view was designed to explain why the
smell’s wedge has the displayed radius in the most expressive way
possible. Each smell is displayed using different visual elements,
but smells in the Explanation View typically have two common
components.

Summary Pane. In the bottom panel of Figure 1, a summary
pane is displayed at the upper right of the editor. This pane is fixed
relative to the program code (that is, it does not move when the pro-
grammer navigates away), but may be moved manually within the
editor at the programmer’s behest. Generally, this pane displays a
summary of the data collected from the smell analyzer. In the Fig-
ure, the summary pane for the FEATURE ENVY smell shows that 4
members from the Passenger class are accessed.

Editor Annotations. The code editor is typically annotated to
point out where smells originate from. For example, in the Figure
you can see where the 4 members of the Passenger class are
referenced in the editor. Each member reference to an external class
is related together visually using the same color highlight.
1We currently have implemented analyzers for all the smells in Ta-
ble 1, with the exception of REFUSED BEQUEST, MAGIC NUM-
BER, and COMMENTS.

Taken together, editor annotations and the summary pane were
built to help the programmer not only understand if code smells,
but why the code smells.

3.4 Technical Details
While we have outlined how our smell detection tool works in

general, a number of technical details have significant bearing on
the tool’s practicality.

First, how does the tool determine the radius of each wedge in
the Ambient View? The maximum size of each wedge is fixed, so
that it does not monopolize the program editor. An individual smell
analyzer is responsible for converting a smell in the programmer’s
working context to a scalar value between zero and the maximum
radius of the wedge. While the formula for the radius is differ-
ent for different analyzers, some formulas are more complex than
others. For instance, LARGE CLASS is a relatively simple formula
because the radius increases as the size of the class increases, while
FEATURE ENVY incorporates the number of external classes ref-
erenced, the number of external members referenced, and whether
internal members are referenced.

Second, how does the tool search for smells efficiently? Sev-
eral smell analyzers require complex program analysis, so as the
number and complexity of analyzers increase, the development en-
vironment may begin to respond more slowly. However, having
detection run in a background thread and caching smell results for
unchanged program elements have been important techniques for
maintaining acceptable performance. Moreover, we hope that a
more intelligent search strategy, starting in the programmer’s cur-
rent context and radiating outward to less contextually relevant
code, will improve performance even further.

Third, what constitutes the programmer’s “current context?” In
our implementation, we define current context as the the union of
all methods, whole or partial, that are visible in the open editor.
More sophisticated definitions of context may be used as well, such
as task contexts used by the Mylyn tool [8] or Parnin and Görg’s
usage contexts [?].

4. PLANNED EVALUATION
We plan on completing an evaluation in the near future. We are
primarily interested in showing that our “habits,” as embodied by
the tool, are useful in helping programmers do their jobs. To that
end, we propose an experiment with three parts.

In the first part, we ask the programmer to inspect several pieces
of source code, and then tell us when the detector is displaying an
interesting smell. We will also purposely tell the programmer to
pause at specific points in the source code, and tell us which smells
and in which order they would ask the tool for more detailed infor-
mation. The purpose of this part of the experiment is to determine
if the tool conveys smell information to the programmer efficiently.

In the second part of the experiment, we ask programmers to
use the Explanation View to learn more about one or two smells.
Each time they use the Explanation View, we will ask the program-
mer about the extent of the smell, how likely she is to correct the
smell, and whether the display tells her something surprising about
the code. The purpose of this part of the experiment is to deter-
mine whether the Explanation View is sufficiently detailed to con-
vey complex smell information.

We will repeat these two parts with each programmer, except that
we will not give the programmer the aid of the tool. Our intent is
to establish a baseline for judging the programmers’ behaviors, and
to allow programmers to respond in a more comparative manner in
the final part of the experiment.

In the final part, we ask programmers to subjectively evaluate



their experience with the tool. We will use a questionnaire where
the programmers answer a variety of questions about whether the
tool helped them quickly and efficiently find and understand smells
in the code. Moreover, we will ask a series of questions regarding
how the programmers might use the tool in their own code.

We hope that this proposed evaluation will help show that our
smell detection tool, and thus our guidelines, are an effective ap-
proach to smell detection.

5. CONCLUSION
We have presented seven principles for the design of code smell
detectors that fit into the typical floss refactoring workflow, and de-
scribed a realization of these principles in the form of an ambient
smell detector. While we feel that the seven principles are impor-
tant to building usable smell detectors, we have not yet verified that
this is the case, and plan to do so in a forthcoming experiment.
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