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Designed for concurrency  
from the ground up,  
the Erlang language can be  
a valuable tool to help  
solve concurrent problems.

Erlang is a language developed to let mere 
mortals write, test, deploy, and 
debug fault-tolerant concurrent 

software.1 Developed at the Swedish telecom company 
Ericsson in the late 1980s, it started as a platform for 
developing soft realtime software for managing phone 
switches.2 It has since been open-sourced and ported to 
several common platforms, finding a natural fit not only 
in distributed Internet server applications, but also in 
graphical user interfaces and ordinary batch applications. 

Erlang’s minimal set of concurrency primitives, 
together with its rich and well-used libraries, give guid-
ance to anyone trying to design a concurrent program. 
Erlang provides an effective platform for concurrent 
programming for the following reasons: 
•  The language, the standard libraries (Open Telecom 

Platform, or OTP), and the tools have been designed 
from the ground up for supporting concurrency. 

•  There are only a few concurrency primitives, so it’s easy 
to reason about the behavior of programs (though there 
are limits to how easy this can ever be). 

•  The implementation makes the simple primitives fast 
and scalable, and makes effective use of modern multi-
core hardware, eliminating the need for more complex 
mechanisms. 

•  The execution model eliminates some classes of errors 
from unsynchronized access to shared state—or at least 
makes these errors more noticeable. Jim Larson, Google
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•  The model of concurrency is natural to 
think about and requires no math-
ematical sophistication. 

•  The environment makes failures 
detectable and recoverable, making it 
possible to deploy a less-than-perfect 
system in the fi eld that can nonethe-
less maintain high availability. 

•  The concurrency model maps naturally 
to distributed deployments. 

This article introduces the Erlang 
language and shows how it can be used 
in practice to implement concurrent 
programs correctly and quickly. 

SEQUENTIAL ERLANG
Erlang is built from a small number of 
sequential programming types and con-
cepts, and an even smaller number of 
concurrent programming types and con-
cepts. Those who want a full introduc-
tion can fi nd several excellent tutorials 
on the Web,3 but the following examples 
(required by functional programming 
union regulations) should convey the 
essentials. 

As shown in fi gure 1A, every fi le of 
Erlang code is a module. Declarations 
within the fi le name the module (which 
must match the fi lename) and declare 
which functions can be called from 
other modules. Comments run from the 
percent sign (%) to the end of the line. 

Factorial is implemented by two func-
tions. Both are named factorial, but they 
have different numbers of arguments; 
hence, they are distinct. The defi nition 
of factorial/2 (the two-argument version) 
is split into two clauses, separated by a 
semicolon. When factorial/2 is called, 
the actual parameters are tested against 
the patterns in each clause head in turn 

to fi nd the fi rst match, then the body (after the arrow) is 
evaluated. The value of the fi nal expression in the body 
is the return value of the call; no explicit return state-
ment is needed. Erlang is dynamically typed, so a call to 
factorial(“pancake”) will compile but will raise a runtime 
exception when it fails to match any clause. Tail-calls are 
optimized, so this code will run in constant space. 

Lists are enclosed in square brackets (see fi gure 1B). A 

A 
example1.erl 

-module(example1).
-export([factorial/1, qsort/1, member/2, foldl/3, sum/1]).

% Compute the factorial of a positive integer.
factorial(N) when is_integer(N), N > 0 -> factorial(N, 1).

% A helper function which maintains an accumulator.
factorial(1, Acc) -> Acc;
factorial(N, Acc) when N > 1 -> factorial(N - 1, N * Acc).

B
% Return a sorted copy of a list.
qsort([]) -> [];
qsort([Pivot | Xs]) ->
    qsort([X || X <- Xs, X < Pivot])
      ++ [Pivot]
      ++ qsort([X || X <- Xs, X >= Pivot]).

C
% Is X an element of a binary search tree?
member(_, empty) -> false;
member(X, {_, X, _}) -> true;
member(X, {Left, Y, _}) when X < Y -> member(X, Left);
member(X, {_, _, Right}) -> member(X, Right).

D
% “Fold” a function across elements of a list, seeding
% with an initial value.
% e.g. foldl(F, A0, [A, B, C]) = F(C, F(B, F(A, A0)))
foldl(_, Acc, []) -> Acc;
foldl(F, Acc, [X | Xs]) ->
    NewAcc = F(X, Acc),
    foldl(F, NewAcc, Xs).

% Give the sum of a list of numbers.
sum(Numbers) -> foldl(fun(N, Total) -> N + Total end, 0, Numbers).
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single vertical bar separates the first element from the rest 
of the list. If a list is used in a clause head pattern, it will 
match list values, separating them into their components. 
A list with a double vertical bar is a “list comprehension,” 
constructing a list through generator and filter expres-
sions. A double-plus (++) concatenates lists. 

Tuples (vectors) are enclosed in curly braces (see figure 
1C). Tuples in patterns will extract components out of 
tuples that they match. Identifiers that start with an 
uppercase letter are variables; those that start in lower-
case are atoms (symbolic constants such as enum values, 
but with no need to define a numerical representation). 
Boolean values are represented simply as atoms true and 
false. An underscore (_) in a pattern matches any value 
and does not create a binding. If the same fresh variable 
occurs several times in a pattern, the occurrences must 
be equal to match. Variables in Erlang are single-assign-
ment (once a variable is bound to a value, that value never 
changes). 

Not all list-processing operations can be expressed in 
list comprehensions. When we do need to write list-
processing code directly, a common idiom is to provide 
one clause for handling the empty list and another for 
processing the first element of a non-empty list. The 
foldl/3 function shown in figure 1D is a common utility 
that chains a two-argument function across a list, seeded 
by an initial value. Erlang allows anonymous functions 
(“fun” or closures) to be defined on the fly, passed as 
arguments, or returned from functions. 

Erlang has expressions that look like assignments but 
have a different semantics. The right-hand side of = is 
evaluated and then matched against the pattern on the 
left-hand side, just as when selecting a clause to match 
a function call. A new variable in a pattern will match 
against the corresponding value from the right-hand side. 

CONCURRENT ERLANG
Let’s introduce concurrent Erlang by translating a small 
example from Java: 

Sequence.java
// A shared counter.
public class Sequence {
    private int nextVal = 0;

    // Retrieve counter and increment.
    public synchronized int getNext() {
        return nextVal++;
    }

    // Re-initialize counter to zero.
    public synchronized void reset() {
        nextVal = 0;
    }
}

A sequence is created as an object on the heap, poten-
tially accessible by multiple threads. The synchronized 
keyword means that all threads calling the method must 
first take a lock on the object. Under the protection of the 
lock, the shared state is read and updated, returning the 
preincrement value. Without this synchronization, two 
threads could obtain the same value from getNext(), or 
the effects of a reset() could be ignored. 

Let’s start with a “raw” approach to Erlang, using the 
concurrency primitives directly. 

sequence1.erl (raw implementation)
-module(sequence1).
-export([make_sequence/0, get_next/1, reset/1]).

% Create a new shared counter.
make_sequence() ->
    spawn(fun() -> sequence_loop(0) end).

sequence_loop(N) ->
    receive
        {From, get_next} ->
            From ! {self(), N},
            sequence_loop(N + 1);
        reset ->
            sequence_loop(0)
    end.

% Retrieve counter and increment.
get_next(Sequence) ->
    Sequence ! {self(), get_next},
    receive
        {Sequence, N} -> N
    end.

% Re-initialize counter to zero.
reset(Sequence) ->
    Sequence ! reset.

The spawn/1 primitive creates a new process, returning 
its process identifier (pid) to the caller. An Erlang process, 
like a thread, is an independently scheduled sequential 
activity with its own call stack, but like an operating-sys-
tem process, it shares no data with other processes—pro-
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cesses interact only by sending messages 
to each other. The self/0 primitive 
returns the pid of the caller. A pid is used 
to address messages to a process. Here 
the pid is also the data abstraction—a 
sequence is just the pid of a server pro-
cess that understands our sequence-spe-
cifi c messaging protocol. 

The new process starts executing the 
function specifi ed in spawn/1 and will 
terminate when that function returns. 
Long-lived processes therefore avoid 
premature returns, often by executing 
a loop function. Tail-call optimization 
ensures that the stack does not grow in 
functions such as sequence_loop/1. The 
state of the sequence process is carried in 
the argument to this eternal call. 

Messages are sent with the syntax 
pid ! message. A message can be any 
Erlang value, and it is sent atomically 
and immutably. The message is placed in 
the receiving process’s mailbox, and the 
sender continues to execute—it does not 
wait for the receiving process to retrieve 
the message. 

A process uses the receive expression 
to extract messages from its mailbox. 
It specifi es a set of patterns and associ-
ated handler code and scans the mail-
box looking for the fi rst message that 
matches any of the patterns, blocking 
if no such message is found. This is the 
only blocking primitive in Erlang. Like 
the patterns in function clauses, the pat-
terns in receive options match structures 
and bind new variables. If a pattern uses 
a variable that has already been bound 
to a value, then matching the pattern 
requires a match with that value, as in 
the value for Sequence in the receive 
expression in get_next/1. 

The code here implements a simple client-server proto-
col. In a call, the client process sends a request message 
to the server process and blocks waiting for a response 
message. Here, the get_next/1 call request message is a 
two-element tuple: the client’s own pid followed by the 
atom get_next. The client sends its own pid to let the 

2FIGUR
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server.erl 
-module(server).
-export([start/1, loop/2, call/2, cast/2]).

% Client-server messaging framework.
%
% The callback module implements the following callbacks:
% init() -> InitialState
% handle_call(Params, State) -> {Reply, NewState}
% handle_cast(Params, State) -> NewState

% Return the pid of a new server with the given callback module.
start(Module) ->
    spawn(fun() -> loop(Module, Module:init()) end).

loop(Module, State) ->
    receive
        {call, {Client, Id}, Params} ->
            {Reply, NewState} = Module:handle_call(Params, State),
            Client ! {Id, Reply},
            loop(Module, NewState);
        {cast, Params} ->
            NewState = Module:handle_cast(Params, State),
            loop(Module, NewState)
    end.

% Client-side function to call the server and return its reply.
call(Server, Params) ->
    Id = make_ref(),
    Server ! {call, {self(), Id}, Params},
    receive
        {Id, Reply} -> Reply
    end.

% Like call, but no reply is returned.
cast(Server, Params) ->
    Server ! {cast, Params}.

Erlang 
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server know where to send the response, and the get_next 
atom will let us differentiate this protocol operation from 
others. The server responds with its own two-element 
tuple: the server pid followed by the retrieved counter 
value. Including the server pid lets the client distinguish 
this response from other messages that might be sitting it 
its mailbox. 

A cast is a request to a server that needs no response, 
so the protocol is just a request message. The reset/1 cast 
has a request message of just a bare atom. 

ABSTRACTING PROTOCOLS
Brief as it is, the Erlang implementation of sequences is 
much longer and less clear than the original Java version. 
Much of the code is not particular to sequences, however, 
so it should be possible to extract the message-passing 
machinery common to all client-server protocols into a 
common library. 

Since we want to make the protocol independent of 
the specifi cs of sequences, we need to change it slightly. 
First, we distinguish client call requests from cast requests 
by tagging each sort of request message 
explicitly. Second, we strengthen the 
association of the request and response by 
tagging them with a per-call unique value. 
Armed with such a unique value, we use 
it instead of the server pid to distinguish 
the reply. 

As shown in fi gure 2, the server 
module contains the same structure as 
the sequence1 module with the sequence-  
specifi c pieces removed. The syntax 
Module:function calls function in a module 
specifi ed at runtime by an atom. Unique 
identifi ers are generated by the make_
ref/0 primitive. It returns a new reference, 
which is a value guaranteed to be distinct 
from all other values that could occur in 
the program. 

The server side of sequences is now 
boiled down to three one-line functions, 
as shown in fi gure 3. Moreover, they 
are purely sequential, functional, and 
deterministic without message passing. This 
makes writing, analyzing, testing, and 
debugging much easier, so some sample 
unit tests are thrown in. 

STANDARD BEHAVIOURS
Erlang’s abstraction of a protocol pattern is called a behav-
iour. (We use the Commonwealth spelling, as that’s what 
is used in Erlang’s source-code annotations.) A behaviour 
consists of a library that implements a common pattern 
of communication, plus the expected signatures of the 
callback functions. An instance of a behaviour needs 
some interface code wrapping the calls to the library plus 
the implementation callbacks, all largely free of message 
passing. 

Such segregation of code improves robustness. When 
the callback functions avoid message-passing primitives, 
they become deterministic and frequently exhibit simple 
static types. By contrast, the behaviour library code is 
nondeterministic and challenges static type analysis. The 
behaviours are usually well tested and part of the stan-
dard library, however, leaving the application program-
mer the easier task of just coding the callbacks. 

Callbacks have a purely functional interface. Informa-
tion about any triggering message and current behaviour 
state are given as arguments, and outgoing messages 

 sequence2.erl (callback implementation)
-module(sequence2).
-export([make_sequence/0, get_next/1, reset/1]).
-export([init/0, handle_call/2, handle_cast/2]).
-export([test/0]).

% API
make_sequence()          -> server:start(sequence2).
get_next(Sequence)       -> server:call(Sequence, get_next).
reset(Sequence)          -> server:cast(Sequence, reset).

% Server callbacks
init()                   -> 0.
handle_call(get_next, N) -> {N, N + 1}.
handle_cast(reset, _)    -> 0.

% Unit test: Return ‘ok’ or throw an exception.
test() ->
    0 = init(),
    {6, 7} = handle_call(get_next, 6),
    0 = handle_cast(reset, 101),
    ok.

3FIGUR
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and a new state are given in the return value. The pro-
cess’s “eternally looping function” is implemented in the 
library. This allows for simple unit testing of the callback 
functions. 

Large Erlang applications make heavy use of behav-
iours—direct use of the raw message-
sending or receiving expressions is 
uncommon. In the Ericsson AXD301 
telecom switch—the largest known 
Erlang project, with more than a million 
lines of code—nearly all the application 
code uses standard behaviours, a major-
ity of which are the server behaviour.4 

Erlang’s OTP standard library pro-
vides three main behaviours: 

Generic server (gen_server). The 
generic server is the most common 
behaviour. It abstracts the standard 
request-response message pattern used 
in client-server or remote procedure 
call protocols in distributed computing. 
It provides sophisticated functionality 
beyond our simple server module: 
• Responses can be delayed by the server 
or delegated to another process. 
• Calls have optional timeouts. 
• The client monitors the server so that 
it receives immediate notifi cation of a 
server failure instead of waiting for a 
timeout. 

Generic fi nite state machine 
(gen_fsm). Many concurrent algo-
rithms are specifi ed in terms of a fi nite 
state machine model. The OTP library 
provides a convenient behaviour for 
this pattern. The message protocol that 
it obeys provides for clients to signal 
events to the state machine, possibly 
waiting for a synchronous reply. The 
application-specifi c callbacks handle 

these events, receiving the current state and passing a 
new state as a return value. 

Generic event handler (gen_event). An event manager 
is a process that receives events as incoming messages, 
then dispatches those events to an arbitrary number of 
event handlers, each of which has its own module of 
callback functions and its own private state. Handlers can 
be dynamically added, changed, and deleted. Event han-
dlers run application code for events, frequently selecting 
a subset to take action upon and ignoring the rest. This 
behaviour naturally models logging, monitoring, and 
“pubsub” systems. The OTP library provides off-the-shelf 

A
% Make a set of server calls in parallel and return a
% list of their corresponding results.
% Calls is a list of {Server, Params} tuples.
multicall1(Calls) ->
    Ids = [send_call(Call) || Call <- Calls],
    collect_replies(Ids).

% Send a server call request message.
send_call({Server, Params}) ->
    Id = make_ref(),
    Server ! {call, {self(), Id}, Params},
    Id.

% Collect all replies in order.
collect_replies(Ids) ->
    [receive {Id, Result} -> Result end || Id <- Ids].

B
multicall2(Calls) ->
    Parent = self(),
    Pids = [worker(Parent, Call) || Call <- Calls],
    wait_all(Pids).

worker(Parent, {Server, Params}) ->
    spawn(fun() ->      % create a worker process
        Result = server:call(Server, Params),
        Parent ! {self(), Result}
    end).

wait_all(Pids) ->
    [receive {Pid, Result} -> Result end || Pid <- Pids].

Erlang 
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event handlers for spooling events to files or to a remote 
process or host. 

The behaviour libraries provide functionality for 
dynamic debugging of a running program. They can be 
requested to display the current behaviour state, produce 
traces of messages received and sent, and provide statis-
tics. Having this functionality automatically available 
to all applications gives Erlang programmers a profound 
advantage in delivering production-quality systems. 

WORKER PROCESSES
Erlang applications can implement most of their func-
tionality using long-lived processes that naturally fit a 
standard behaviour. Many applications, however, also 
need to create concurrent activities on the fly, often fol-
lowing a more ad-hoc protocol too unusual or trivial to 
be captured in the standard libraries. 

Suppose we have a client that wants to make multiple 
server calls in parallel. One approach is to send the server 
protocol messages directly, shown in figure 4A. The client 
sends well-formed server call messages to all servers, then 
collects their replies. The replies may arrive in the inbox 
in any order, but collect_replies/1 will gather them in the 
order of the original list. The client may block waiting for 
the next reply even though other replies may be waiting. 
This doesn’t slow things down, however, since the speed 
of the overall operation is determined by the slowest call. 

To reimplement the protocol, we had to break the 
abstraction that the server behaviour offered. While this 
was simple for our toy example, the production-quality 
generic server in the Erlang standard library is far more 
involved. The setup for monitoring the server processes 
and the calculations for timeout management would 
make this code run on for several pages, and it would 
need to be rewritten if new features were added to the 
standard library. 

Instead, we can reuse the existing behaviour code 
entirely by using worker processes—short-lived, special-pur-
pose processes that don’t execute a standard behaviour. 
Using worker processes, this code becomes that shown in 
figure 4B.

We spawn a new worker process for each call. Each 
makes the requested call and then replies to the parent, 
using its own pid as a tag. The parent then receives each 
reply in turn, gathering them in a list. The client-side 
code for a server call is reused entirely as is. 

By using worker processes, libraries are free to use 
receive expressions as needed without worrying about 
blocking their caller. If the caller does not wish to block, 
it is always free to spawn a worker. 

DANGERS OF CONCURRENCY
Though it eliminates shared state, Erlang is not immune 
to races. The server behaviour allows its application code 
to execute as a critical section accessing protected data, 
but it’s always possible to draw the lines of this protection 
incorrectly. 

For example, if we had implemented sequences with 
raw primitives to read and write the counter, we would be 
just as vulnerable to races as a shared-state implementa-
tion that forgot to take locks: 

badsequence.erl
% BAD - race-prone implementation - do not use - BAD
-module(badsequence).
-export([make_sequence/0, get_next/1, reset/1]).
-export([init/0, handle_call/2, handle_cast/2]).

% API
make_sequence()    -> server:start(badsequence).
get_next(Sequence) ->
    N = read(Sequence),
    write(Sequence, N + 1), % BAD: race!
    N.
reset(Sequence)    -> write(Sequence, 0).
read(Sequence)     -> server:call(Sequence, read).
write(Sequence, N) -> server:cast(Sequence, {write, N}).

% Server callbacks
init()                     -> 0.
handle_call(read, N)       -> {N, N}.
handle_cast({write, N}, _) -> N.

This code is insidious as it will pass simple unit tests 
and can perform reliably in the field for a long time 
before it silently encounters an error. Both the client-side 
wrappers and server-side callbacks, however, look quite 
different from those of the correct implementation. By 
contrast, an incorrect shared-state program would look 
nearly identical to a correct one. It takes a trained eye to 
inspect a shared-state program and notice the missing 
lock requests. 

All standard errors in concurrent programming have 
their equivalents in Erlang: races, deadlock, livelock, 
starvation, and so on. Even with the help Erlang pro-
vides, concurrent programming is far from easy, and the 
nondeterminism of concurrency means that it is always 
difficult to know when the last bug has been removed. 

Testing helps eliminate most gross errors—to the 
extent that the test cases model the behaviour encoun-
tered in the field. Injecting timing jitter and allowing 
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long burn-in times will help the coverage; the combinato-
rial explosion of possible event orderings in a concurrent 
system means that no nontrivial application can be tested 
for all possible cases. 

When reasonable efforts at testing reach their end, 
the remaining bugs are usually heisenbugs,5 which occur 
nondeterministically but rarely. They can be seen only 
when some unusual timing pattern emerges in execution. 
They are the bane of debugging since they are difficult to 
reproduce, but this curse is also a blessing in disguise. If a 
heisenbug is difficult to reproduce, then if you rerun the 
computation, you might not see the bug. This suggests 
that flaws in concurrent programs, while unavoidable, 
can have their impact lessened with an automatic retry 
mechanism—as long as the impact of the initial bug 
event can be detected and constrained.

 
FAILURE AND SUPERVISION
Erlang is a safe language—all runtime faults, such as divi-
sion by zero, an out-of-range index, or sending a message 
to a process that has terminated, result in clearly defined 
behavior, usually an exception. Application code can 
install exception handlers to contain and recover from 
expected faults, but an uncaught exception means that 
the process cannot continue to run. Such a process is said 
to have failed. 

Sometimes a process can get stuck in an infinite loop 
instead of failing overtly. We can guard against stuck pro-
cesses with internal watchdog processes. These watchdogs 
make periodic calls to various corners of the running 
application, ideally causing a chain of events that cover 
all long-lived processes, and fail if they don’t receive a 
response within a generous but finite timeout. Process 
failure is the uniform way of detecting errors in Erlang. 

Erlang’s error-handling philosophy stems from the 
observation that any robust cluster of hardware must 
consist of at least two machines, one of which can react 
to the failure of the other and take steps toward recovery.6 
If the recovery mechanism were on the broken machine, 
it would be broken, too. The recovery mechanism must 
be outside the range of the failure. In Erlang, the process 
is not only the unit of concurrency, but also the range of 

failure. Since processes share no state, a fatal error in a 
process makes its state unavailable but won’t corrupt the 
state of other processes. 

Erlang provides two primitives for one process to 
notice the failure of another. Establishing monitoring of 
another process creates a one-way notification of failure, 
and linking two processes establishes mutual notifica-
tion. Monitoring is used during temporary relationships, 
such as a client-server call, and mutual linking is used for 
more permanent relationships. By default, when a fault 
notification is delivered to a linked process, it causes the 
receiver to fail as well, but a process-local flag can be set 
to turn fault notification into an ordinary message that 
can be handled by a receive expression. 

In general application programming, robust server 
deployments include an external “nanny” that will moni-
tor the running operating-system process and restart it if 
it fails. The restarted process reinitializes itself by reading 
its persistent state from disk and then resumes running. 
Any pending operations and volatile state will be lost, but 
assuming that the persistent state isn’t irreparably cor-
rupted, the service can resume. 

The Erlang version of a nanny is the supervisor behav-
iour. A supervisor process spawns a set of child processes 
and links to them so it will be informed if they fail. A 
supervisor uses an initialization callback to specify a 
strategy and a list of child specifications. A child specifi-
cation gives instructions on how to launch a new child. 
The strategy tells the supervisor what to do if one of 
its children dies: restart that child, restart all children, 
or several other possibilities. If the child died from a 
persistent condition rather than a bad command or a rare 
heisenbug, then the restarted child will just fail again. To 
avoid looping forever, the supervisor’s strategy also gives 
a maximum rate of restarting. If restarts exceed this rate, 
the supervisor itself will fail. 

Children can be normal behaviour-running processes, 
or they can be supervisors themselves, giving rise to a tree 
structure of supervision. If a restart fails to clear an error, 
then it will trigger a supervisor subtree failure, resulting 
in a restart with an even wider scope. At the root of the 
supervision tree, an application can choose the overall 
strategy, such as retrying forever, quitting, or possibly 
restarting the Erlang virtual machine. 

Since linkage is bidirectional, a failing server will 
notify or fail the children under it. Ephemeral worker 
processes are usually spawned linked to their long-lived 
parent. If the parent fails, the workers automatically 
fail, too. This linking prevents uncollected workers from 
accumulating in the system. In a properly written Erlang 
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application, all processes are linked into the supervision 
tree so that a top-level supervision restart can clean up all 
running processes. 

In this way, a concurrent Erlang application vulnerable 
to occasional deadlocks, starvations, or infinite loops can 
still work robustly in the field unattended. 

IMPLEMENTATION, PERFORMANCE, AND SCALABILITY
Erlang’s concurrency is built upon the simple primi-
tives of process spawning and message passing, and its 
programming style is built on the assumption that these 
primitives have a low overhead. The number of processes 
must scale as well—imagine how constrained object-ori-
ented programming would be if there could be no more 
than a few hundred objects in the system. 

For Erlang to be portable, it cannot assume that its 
host operating system has fast interprocess communica-
tion and context switching or allows a truly scalable 
number of schedulable activities in the kernel. Therefore, 
the Erlang emulator (virtual machine) takes care of sched-
uling, memory management, and message passing at the 
user level. 

An Erlang instance is a single operating-system process 
with multiple operating-system threads executing in it, 
possibly scheduled across multiple processors or cores. 
These threads execute a user-level scheduler to run Erlang 
processes. A scheduled process will run until it blocks or 
until its time slice runs out. Since the process is running 
Erlang code, the emulator can arrange for the scheduling 
slice to end at a time when the process context is mini-
mal, minimizing the context switch time. 

Each process has a small, dedicated memory area for 
its heap and stack. A two-generation copying collector 
reclaims storage, and the memory area may grow over 
time. The size starts small—a few hundred machine 
words—but can grow to gigabytes. The Erlang process 
stack is separate from the C runtime stack in the emulator 
and has no minimal size or required granularity. This lets 
processes be lightweight. 

By default, the Erlang emulator interprets the interme-
diate code produced by the compiler. Many substantial 
Erlang programs can run sufficiently fast without using 
the native-code compiler. This is because Erlang is a 
high-level language and deals with large, abstract objects. 
When running, even the interpreter spends most of its 
time executing within the highly tuned runtime sys-
tem written in C. For example, when copying bulk data 
between network sockets, interpreted Erlang performs on 
par with a custom C program to do the same task.7  

The significant test of the implementation’s efficiency 

is the practicality of the worker process idiom, as dem-
onstrated by the multicall2 code shown earlier. Spawning 
worker processes would seem to be much less efficient 
than sending messages directly. Not only does the parent 
have to spawn and destroy a process, but also the worker 
needs extra message hops to return the results. In most 
programming environments, these overheads would be 
prohibitive, but in Erlang, the concurrency primitives 
(including process spawning) are lightweight enough that 
the overhead is usually negligible. 

Not only do worker processes have negligible over-
head, but they also increase efficiency in many cases. 
When a process exits, all of its memory can be imme-
diately reclaimed. A short-lived process might not even 
need a collection cycle. Per-process heaps also eliminate 
global collection pauses, achieving soft realtime levels of 
latency. For this reason, Erlang programmers avoid reus-
able pools of processes and instead create new processes 
when needed and discard them afterward. 

Since values in Erlang are immutable, it’s up to the 
implementation whether the message is copied when sent 
or whether it is sent by reference. Copying would seem 
to be the slower option in all situations, but sending mes-
sages by reference requires coordination of garbage col-
lection between processes: either a shared heap space or 
maintenance of inter-region links. For many applications, 
the overhead of copying is small compared with the 
benefit from short collection times and fast reclamation 
of space from ephemeral processes. The low penalty for 
copying is driven by an important exception in send-by-
copy: raw binary data is always sent by reference, which 
doesn’t complicate garbage collection since the raw 
binary data cannot contain pointers to other structures. 

The Erlang emulator can create a new Erlang process 
in less than a microsecond and run millions of processes 
simultaneously. Each process takes less than a kilobyte of 
space. Message passing and context switching take hun-
dreds of nanoseconds. 

Because of its performance characteristics and lan-
guage and library support, Erlang is particularly good for: 
•  Irregular concurrency—applications that need to derive 

parallelism from disparate concurrent tasks 
•  Network servers 
•  Distributed systems 
•  Parallel databases 
•  GUIs and other interactive programs 
•  Monitoring, control, and testing tools 

So when is Erlang not an appropriate programming 
language, for efficiency or other reasons? Erlang tends not 
to be good for: 
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•  Concurrency more appropriate to synchronized parallel 
execution

•  Floating-point-intensive code
•  Code requiring nonportable instructions 
•  Code requiring an aggressive compiler (Erlang entries 

in language benchmark shoot-outs are unimpressive—
except for process spawning and message passing) 

•  Projects to implement libraries that must run under 
other execution environments, such as JVM (Java Vir-
tual Machine) or CLR (Common Language Runtime) 

•  Projects that require the use of extensive libraries writ-
ten in other languages 

Erlang can still form part of a larger solution in com-
bination with other languages, however. At a minimum, 
Erlang programs can speak text or binary protocols over 
standard interprocess communication mechanisms. In 
addition, Erlang provides a C library that other applica-
tions can link with that will allow them to send and 
receive Erlang messages and be monitored by an Erlang 
controlling program, appearing to it as just another 
(Erlang) process. 

CONCLUSION
With the increasing importance of concurrent program-
ming, Erlang is seeing growing interest and adoption. 
Indeed, Erlang is branded as a “concurrency-oriented” 
language. The standard Erlang distribution is under active 
development. Many high-quality libraries and applica-
tions are freely available for: 
• Network services
• GUIs for 3D modeling 
• Batch typesetting
• Telecom protocol stacks 
• Electronic payment systems 
• HTML and XML generation and parsing 
•  Database implementations and ODBC (Open Database          

Connectivity) bindings 
Several companies offer commercial products and 

services implemented in Erlang for telecom, electronic 
payment systems, and social networking chat. Erlang-
based Web servers are notable for their high performance 
and scalability.8

Concurrent programming will never be easy, but with 
Erlang, developers have a chance to use a language built 
from the ground up for the task and with incredible 
resilience engineered in language, runtime system, and 
standard libraries. 

The standard Erlang implementation and its docu-
mentation, ported to Unix and Microsoft Windows 
platforms, is open source and available for free download 
from http://erlang.org. You can fi nd a community forum 
at http://trapexit.org, which also mirrors several mailing 
lists. Q

REFERENCES

1. Erlang Web site; http://erlang.org. 
2.  Armstrong, J. 2003. Making reliable distributed systems 

in the presence of software errors. Ph.D. thesis, Swed-
ish Institute of Computer Science; http://www.erlang.
org/download/armstrong_thesis_2003.pdf.

3.  Erlang course; http://www.erlang.org/course/course.
html. 

4. See reference 2.
5.  Steele, G. L., Raymond, E. S. 1996. The New Hacker’s 

Dictionary, 3rd edition, Cambridge, MA: MIT Press.
6.  Armstrong, J. 2007. Programming Erlang: Software for a 

Concurrent World. Raleigh, NC: The Pragmatic Book-
shelf. 

7.  Lystig Fritchie, S., Larson, J., Christenson, N., Jones, D., 
Ohman, L. 2000. Sendmail meets Erlang: Experiences 
using Erlang for email applications. Erlang User’s Con-
ference; http://www.erlang.se/euc/00/euc00-sendmail.
ps. 

8.  Brown, B. 2008. Application server performance 
testing, includes Django, ErlyWeb, Rails, and others; 
http://berlinbrowndev.blogspot.com/2008/08/applica-
tion-server-benchmarks-including.html.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

JIM LARSON is a software engineer at Google. He has 
worked with Erlang for commercial products off and on since 
1999. He was the architect of the replication engine of the 
Amazon SimpleDB Web service at Amazon.com. He previ-
ously worked at Sendmail Inc. and the Jet Propulsion Labora-
tory. He has a B.A. in mathematics from Saint Olaf College, 
M.S. in mathematics from Claremont Graduate University, 
and M.S. in computer science from the University of Oregon. 
© 2008 ACM 1542-7730 /08/0900 $5.00

Erlang 
for Concurrent Programming


