
large amount of work involved in chang­
ing the Gestalt system program to corre­
spond to the change of vocabulary re­
quired to include some new feature. I t
is hoped that a solution to this difficulty
will be found by writing a program to
generate translation programs which will
translate from statements in arbitrary
Gestalt languages into selections of com­
puter behavior.

The goal of the experimental pro­
gramming phase of this work is to allow
the programmer to alter drastically his
planned attack on a very large and com­
plex problem, and try out the new solu­
tion within a matter of days, while the new
approach is fresh in his mind. All too
often a volatile thought pattern dis­
appears in the months of arduous toil re­
quired to program a complex problem
using ordinary techniques. I t is unlikely
that present and future problems being
considered at the Servomechanisms Lab­
oratory could be solved with limited man­
power without the use of these techniques.

Concluding Remarks

It seems appropriate to close this paper
by again acknowledging the very real
debt which is owed to all of the various

LIKE many comparable groups, mem­
bers of the computing facility at the

Boeing Airplane Company feel that it
takes too long to prepare a problem for
a digital computing machine. The daily
repetition of effort expended in outlining
a problem for coding, the tedious task of
coding the instructions, and the time con­
sumed in checking-out or "debugging"
the instructions all emphasize this fact.
In this jet age, it is vital to shorten the
time from the definition of a problem to
its solution.

A new plan of attack for problem setup
is necessary to shorten the elapsed time by

MANDALAY GREMS and R. E. PORTER are with
the Boeing Airplane Company, Seattle, Wash.

schools of computer programming for sub­
stantial contributions upon which this
paper is based. The emergence and de­
velopment of these various techniques in
the past several years have established
firmly the intellectual climate necessary
for continued expansion in these di­
rections. There are several groups in
the United States which for some time
have been developing systems for using
computers which have many, if not all, of
the attributes of Gestalt programming
systems as defined here. The purpose of
this paper has been to try to establish the
outlines of the abstract structure of this
type of system. It is hoped that this
analysis will prove useful to all who are
interested in connecting humans and
computers by clarifying the problems
and relationships involved.

In its full generality Gestalt pro­
gramming is not just a computer tech­
nique, but is a problem-solving tech­
nique, i.e., a point is reached where it is
difficult to tell which is more important,
the human, the problem, or the com­
puter. The extension of these tech­
niques and concepts is sure to have a pro­
found influence on the design and opera­
tion of future computers, so much so that
it seems probable that the term "corn-

shifting more of the monotonous burden
of coding to the machine. It is a gen­
erally accepted belief that whenever rules
for computing can be definitely estab­
lished, they can be defined as a set of
machine instructions. Therefore, the
starting point for an automatic comput­
ing system i» clarifying these rules to fit
the requirements of a general problem.

A natural way to communicate a math­
ematical problem to a computer is by the
written equation. This can be accom­
plished by a system allowing a digital
computing machine to accept a problem
directly in equation form together with
a list of input data. The elapsed time for
a problem is therefore shortened because
this system eliminates the tedious task
of coding the machine instructions. The

lb- puter" for describing these mechanisms
his will become less and less appropriate,
ie- The day is fast approaching, if it is not
in already here, when the arithmetic ca-

ted pabilities of a machine will be its least
iry valuable attributes. If the logical trend
di- toward more and more elaborate systems
in of this type continues, the primary attri-

tne bute of a computing machine will be its
ng flexibility in the most general sense.
of Even if significant advances in the speed
ng of computer elements can be achieved,
of these gains will be swiftly swallowed up if

;he the logical design of these machines is not
his advanced to fit the peculiar requirements
his of these techniques, to obtain the same
ire results with much fewer operations,
nd At the present state of the art, these
ms future developments can only be sensed

in a most intuitive way, although, for
ro- example, the growing concept of a micro-
:h- programmed computer appears to be a
:h- well-founded first step. Continued and
: is rapid advance in these directions both in
nf, programming techniques and in computer
m- design, can only be achieved by building
:h- on experience gained in studies using
ro- present-day facilities. I t is hoped that
ra- the presentation of these ideas will en-
lat courage the participation of other groups
m- in this fascinating line of endeavor.

setup time for each problem is then more
dependent on the complete understanding
of the mathematics and the logic rather
than on the physical characteristics of
one special computer.

The BACAIC System

The Boeing Airplane Company Alge­
braic Interpretive Computing System,
commonly called BACAIC, is a means of
communicating directly with a machine.
It is a self-contained system for solving a
mathematical problem on a digital com­
puter. This problem must be of a type
which can be completely described by a
set of algebraic and logical expressions.
A working record of the entire system,
including a file of library subprograms, is
kept on magnetic tape. The library is
made up of pieces originally constructed
in a consistent fashion. This is im­
portant in order to establish a general
pattern of rules for a system to follow.

The integrated system performs two
distinct functions for each problem:

A Truly Automatic Computing System

MANDALAY GREMS R. E. PORTER

10 Grems, Porter—A Truly Automatic Computing System

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1455410.1455415&domain=pdf&date_stamp=1956-02-07

Table I. Definition of Symbols

Symbol Use Explanation

' A-Z A + B Refer to all parameters by the letters A
\ through Z, (except K)
K1-K99 Kl + B Refer to all constants by a X-number
1-50 1 + -B Refer to the value (computed or estimated)

of an expression by its expression number

Data reference.

Mathematical
operations..

Transcendental
functions

Logical control.

+ X+Y Addition
— X — Y Subtraction
• X • Y Multiplication
/ X/Y Division
PWR X PWR N CX)^, the quantity X raised to the power N
SRT SRT X s/X, the square root of the quantity X
SQR S Q R [Z + F] The quantity following this symbol is

squared

SIN SIN A Sine of angle A. A is in radians
COS COS A Cosine of angle A. A is in radians
ASN ASN A Arcsine A, the angle is in radians
ACN ACN.A Arccosine A, the angle is in radians
E X P E X P X (e)x, exponential to the X
LOG LOG X The natural logarithm of X

([or $ [A+B Front bracket for a term
] or , A+B] Back bracket for a term
* A — B* Y A substitution symbol. Compute the

quantity on the left side of the symbol,*
and substitute it for the parameter,
constant or expression number on the
right side of the symbol

T R N TRN 8 Transfer to execute expression number 8

WHN

GRT

USE

LES

Modification of da ta . .MOD.
LIM

/When the value for A is J: the value for B,
WBN A GRT B USE 8. J compute expression number 8 next.

j Otherwise, compute the following con-
V secutive expression

WBN A LES B USE 8. /When the value for A is ^ the value for B,
J compute expression number 8 next.
j Otherwise, compute the following con-
>• secutive expression

Modify the value for H by adding the
increment B to H to form a new H. The
operation symbols + , —, •, and / can
be used with the increment. Test this
new value for H against the limit R. If
the limit is exceeded, additional input
data for the next case are read by the
card reader at the appropriate time. If
the limit is not exceeded, the reading of
input data is by-passed and the next
case is computed using this new H value
of input. This procedure is a means
for computing families of cases of data
when one value of input is repeatedly
altered by a preset amount. If more
than one "Modify and Limit" expression
is tested, the last LIM tested is the
effective one

.MOD H+B LIM R.. '

Table look-up and.
interpolation

ARG..
TBL*

ARG X TBL K2*Y.

Selection of results. . ,

TAB TAB A Kl 3 29 T.

PCH PCH £42 A K1Q.

< To find Y = / (*) . The number in K2 is the
number of the table to investigate. The
tables are consecutively numbered as
they are read by the card reader and
stored in memory. The selected table is
scanned and the corresponding linearly
interpolated value .for the argument X
is computed. This value is substituted
for Y

i Select the values for the indicated data
symbols and store the values on a tape
for later printing. Multiple TAB ex­
pressions are allowed with a maximum
of six symbols per card. When the
computing is finished for all cases of
data, the stored values are printed.
Data for all cases for one TAB card are
printed prior to any printing for the next
following card. The data are printed
as decimal numbers and in the same order
as indicated on the card. TAB cards
always immediately follow the final
equation or control expression

The PCH expression is similar to the TAB
expression, except that the stored data
values are punched on cards as decimal
numbers rather than printed as columns,
of data. PCH cards always immediately
follow the final TAB card (when TAB is
used) or the final equation or control
jexpression

1. It reads the algebraic expressions and
translates them to machine language.

2. It computes results from given data,
using the coded machine language instruc­
tions.

The choice of one of these functions is
selected manually by the machine op­
erator through controls on the console
panel. This choice causes certain por­
tions of the system to be operative and
other portions to be by-passed.

The algebraic equations and logical
controls which describe a problem are
punched directly on cards to be read by
the machine. These expressions are then
translated by the computer to machine
language instructions. The resulting
machine instructions are automatically
punched in binary form on cards.
The time required for translating and
machine-coding a problem usually aver­
ages 2 to 5 minutes; e.g., 10 expressions
require about 2 minutes and 50 expres­
sions require about 5 minutes.

The machine-coded instruction cards,
accompanied by a set of given values for
input data, are fed to the computer
whenever computing is to take place.
The results of the computing for one set
of input data is printed (or stored for
later printing) before another set of given
values for input data is read. Computing
of results for one problem continues for all
sets of input data which are ready in the
machine. The computing time per prob­
lem is dependent on the number of sets of
given data and on the complexity of the
computing pattern. The computing time
usually ranges from a few seconds to 1
minute for each data case.

The algebraic equations and controls
for a problem are written in terms of famil­
iar symbols for reference to data values,
mathematical operations, transcendental
functions, logical control, table look-up
and interpolation, systematic modifica­
tion of data, and selection of results for
printing or punching. The mathemati­
cal symbols such as + , —, *, / , SIN,
COS, LOG, and EXP are familiar to most
people and an endeavor is made to assign
mnemonic symbols to other operations.

DEFINITION OF SYMBOLS •

The mnemonic symbols for writing
the expressions are grouped as shown in
Table I.

INPUT DATA FORM

The input data for a problem are pre­
pared in the same manner as for desk
computing; i.e., a list of the values in
terms of a reference symbol, a coefficient
with a decimal point, and a possible
power of 10 for this coefficient. When

Grems, Porter—A Truly Automatic Computing System 11

the power 10 is zero, the zero is omitted,
e.g.

A =3.75

1F=0.00375 X103

Jf=375X10-2

Preparing the data in this manner pro­
vides the opportunity for entering items
of data in either a floating or stated sys­
tem of notation, and eliminates the
necessity for changing each item of data
to a preset notation system. Once the
power of 10 is established for each value
of data in the system, it is automatically
adjusted for all operations performed on
that value.

PROBLEM SETUP '

Example 1. To illustrate the ease of
preparing a problem for the BACAIC
system, evaluate

Y=e-x*$mCX (1)

for values of X from —0.99 to 1.00 in in­
tervals of 0.01, and tabulate the corre­
sponding values for X and F.

This problem is written as three ex­
pressions for BACAIC:

1. MOD X+Kl LIM K2
Modify a value for X

2. EXP [K3-X-X] -SIN [C-X]* Y
Compute Y

3. TAB X Y Tabulate X and Y

Each expression is punched on a card and
the three cards are read by the machine.
These expressions are machine-coded by
the BACAIC system and a resulting set of
instructions is punched on cards by the
system. These instruction cards are fed
to the machine with the following values
of input data:

C=5.0 Kl =0.1 X3=0.0
X = - 1 . 0 # 2 = 0.99

The expressions for this problem are
executed consecutively in the foregoing
order unless otherwise indicated. The
machine accepts the data and repeatedly
computes values for X and Y until the
limiting value for X is exceeded. When
the computing is finished, the 199 sets of
values for the X and F results are tabu­
lated.

Example 2. Compute both roots for
multiple values of C with constant values
for A and B.

AX2+BX + C = 0 (2)

To solve for both roots, rewrite the equa­
tions as follows:

-B+VB-±AC^X

2A

-B-\/B2-4:AC=y
2A

To illustrate a comparison and selection,
assume the following conditions:

When the discriminant (B2 — 4AC) is
positive, use its true value.

When the discriminant (B2 — 4AC) is
negative, use a value of zero.

This problem is written as five expres­
sions for BACAIC:

1. B-B-K4-A-C
Evaluate discriminant

2. WHN 1 GRT Kb USE 4
Compare values and select

3. #5*1
Substitute zero

4. [Kl-B+SRT 1]/[K2-A]*X
Compute X

5. [i Q - 5 - S R T l]/[#2-.4]*F
Compute Y

The five expressions are machine-coded
by the system. The punched instruction
cards are fed to the machine with the
given input data.
The input data are:

5=6.0 #4=4.0 # 1 = -1 .0
4=1 .0 # 5 = 0 # 2 = 2.0

(Case 1) C=5.0
(Case 2) C=4.5
(Case 3) C = 9.0
(Case 4) C = 18.0

The machine accepts the data for case 1,
computes a result for each expression,
and prints these five results for case 1.
The machine then reads the second value
for C, computes each result and prints
the five results for case 2. This proce­
dure continues for the four given values
ofC.

The two illustrated examples demon­
strate the general plan for writing the
expressions where each expression is
punched on an individual card. The
examples also demonstrate the difference
between selective printing of results and
the printing of all results for each case.
There is a noticeable difference in the
printing time for the two methods. This
factor should be considered at setup
time, as the needs of the problem or the
needs of the programmer determine the
type of printing.

Criteria for Coding

I t may be asked how a machine can
consistently interpret and translate the
algebraic equations so quickly and so
accurately. This idea is plausible when
it is accepted that a set of rules for the
machine in its own language is sufficient
for translating. These rules must be

definite and exact for all situations.
The BACAIC system now appears
straightforward and relatively simple.
The present system differs considerably
from the original plan, as the former in­
cludes more details and special features.

In order to establish an over-all plan for
interpreting the equations directly from
the cards, many decisions for writing the
equations and controls had to be for­
mulated. Some of these decisions were
mandatory as they depend on the partic­
ular computer in use. The BACAIC
system was written especially for the
International Business Machines Cor­
poration (IBM) Model 701. However,
much of the planning and organizing of
the system can easily be transferred to
another digital computer. The reader of
the IBM 701 reads a maximum of 72 upper­
case letters, numerals, and symbols.
This dictates that one level of punching
or printing is recognized by the machine,
thereby eliminating the possibility of
punching or printing subscripts or super­
scripts in the familiar way. This limita­
tion is easily overcome by an appropriate
symbol to signify the operation or mean­
ing to the machine.

Some of the early decisions depended
entirely on the anticipated types of prob­
lems to be studied and the characteristics
of their data. The question of floating
point arithmetic versus stated point
arithmetic arose with stronger arguments
in favor of the floating point system. In
the floating point system, the elimination
of the problem of scaling values of input
data is very satisfying. The use of this
arithmetical system for BACAIC is
proving to be an attractive feature for
inexperienced personnel. The rules for
machine computing in the floating point
system were firmly established at an
earlier time when the library subprograms
were written. These library subpro­
grams for floating point arithmetic were
incorporated in the system and the rules
governing them were accepted unchanged.
Fortunately, a standard pattern for the
input-output to these library subpro­
grams had been adhered to and was
readily adaptable to a system.

One of the next questions to be solved
concerned the values for constants and
data. If the actual values of data are in­
cluded in the expressions, the digits of
the numbers occupy too many of the 72
available card columns, so a scheme for
referring to all data by symbols was de­
veloped. The values for the corre­
sponding symbols are entered at comput­
ing time. This scheme has the added
feature of making it very convenient to
alter values without rewriting the expres-

12 -A Truly Automatic Computing System Grems, Porter-

sions. Originally, the 25 alphabetic letters
A through Z (except K) and the 99 K's
(K1-K99) seemed sufficient for data
reference, but this is proving to be inade­
quate for some problems. The numbers
1-50 are data reference symbols for the
values of the corresponding expression
results. These values are estimated
values for the expressions or computed
values for the expressions. A reference
of this type provides a simple means for
using a computed result for one expres­
sion as an input value for another ex­
pression. In the*second expression of
example 2

WHN 1 GRT Kb USE 4

the 1 refers to the result of the first
expression; i.e., the value of the dis­
criminant (B2—4AC). This reference is
especially convenient in a problem when
an estimated value of a result is needed to
start the computing, but after the first
computation, the symbol refers to the
most recently computed result.

Many mathematical problems require
a choice of operations at various levels of
the solution. The designers of comput­
ing machines recognize the need to select
and transfer, as they invariably include
machine codes for "transfer on plus,"
"transfer on minus," or "transfer on
zero." In an automatic system, this need
for a conditional transfer is even more
urgent. It is the only means for describ­
ing a problem as a complete picture when
part of the picture is dependent on a
previous computation in the same prob­
lem. When this select and transfer fea­
ture is included in a system, problems
dealing with iteration, integration, and
progressive summation are easily manip­
ulated. Without this feature, a system
is very limited in its application.

The foregoing information helps to
outline a general plan for an automatic
computing system. After these notions
are settled and accepted, the rules for
writing the expressions are considered
with respect to the capabilities of the
machine. The limitation of any com­
puting machine is that it executes exactly
all instructions which it receives and it
remembers only the information it is told
to remember.

The mnemonic symbols for certain
operations are readily recognized and
accepted as three adjacent letters, such as
SIN, TAB, LOG. This starts a pattern
for mnemonic symbols for all operations,
and recognition for the exact symbols is
easier when the first two letters of a sym­
bol are not the same as the first two letters
of another symbol.

The use of parentheses for the grouping

of terms within terms is very essential
when writing equations. It is natural
to use parentheses or brackets in equa­
tions for the purpose of grouping terms
to be used as one operation; e.g., SIN
(A-\-B+C). It is necessary to close all
bracketed groups; i.e., the brackets must
travel in pairs. Therefore, a separate
symbol is needed for the front bracket
and a separate symbol is needed for the
back bracket. This ability must be avail­
able in an automatic system, and from
experience must be increased in an auto­
matic system to include equivocal situa­
tions. In the second expression of Ex­
ample 1, the sine term is coded as "SIN
[C-X]." This removes the doubtful
meaning for

the sine of C to be multiplied by X

or

the sine of the product, C multiplied by X

Without the ability to group operations,
a system is extremely limited in its useful­
ness. I t is a toy and not a tool for com­
puting.

The arithmetic operation for division is
another stumbling block to a smooth
system. The division concept presents a
few difficulties, as up to this time all
operations are assumed to be in the nu­
merator. Obviously, an exception to the
rule is necessary. The revised rule for
writing expressions states that all opera­
tions are in the numerator except those
following a division symbol. Then, only
the symbol or bracketed term immediately
following the division symbol is in the
denominator. This practice is successful
and is relatively simple to contend with for
all situations. This rule is demonstrated
in the fourth and fifth expressions for
example 2, where the numerator is
divided by a product.

Interpreting an Expression

The ability of a machine program to
analyze a given algebraic expression and
determine the unambiguous sequence of
computations intended by the originator
of the expression is subject both to the
natural rules of algebra and to the re­
strictions imposed by the machine pro­
grammer. Certain restrictions result in
the consistency so vital to machine pro­
grams yet impose no hardship upon the
person writing an expression; e.g., the
substitution of 3-letter mnemonic codes
such as SIN, COS, and SQR for sine,
cosine, and square. This makes machine
decoding much simpler without detracting
from the natural appearance of the ex­
pression. Any restrictions on the use of

arithmetic symbols or the grouping of
terms are more difficult to justify. The
number of permissible symbols and the
length of any one algebraic expression is
usually influenced by the data input and
internal storage capabilities of the ma­
chine used. It is in the best interests of
the machine program's users to concede
everything to the naturalness of writing
an expression. Only the limit of the
programmer's ingenuity dictates the re­
strictions which need apply.

The principal problem in interpreting
an expression is that of defining the rules
which the machine must follow to produce
an unambiguous operating sequence.

A few of the contingencies encountered
are illustrated in the following examples:

Example 3.

a sin b+-—x+y (3)
d

Example 4,

ay+\q+(nz-r)(a+b)+'p^{ SIN v (4)

The first contingency is the "understood
multiplication" illustrated in the terms
"a sin b" or ' 'ay.'' This type of operation
was eliminated from BACAIC expressions
by making it illegal (the simplest way out
of any coding dilemma). The rule that
all arithmetic operations must be indi­
cated by the appropriate symbol simplifies
the initial translation step. It is possible
to have the machine itself supply the
understood operation symbols at the cost
of extra programming.

The next contingency is that of having
a choice as to which operation to perform
first. This choice can neither be elimi­
nated by a rule nor left to the discretion of
the machine. A human computer has a
choice of either of two operations when
starting to compute the result of example
3. He may divide c by d or compute the
sine of b. Five such choices are possible in
example 4. These choices cannot be left
to a machine. Instead, a way must be
determined of defining an order of opera­
tions having no chance of duplication or
ambiguity during machine interpretation.

The normal rule of algebra that all
multiplication and division must be per­
formed before terms are combined is only
a partial answer to the problem. In
example 3, the function operation "sine
b" must be performed before it can be
multiplied by "a" and this multiplication
must be performed before the entire term
(a sin b) can be added to the quotient
of c divided by d. Possible ambiguities in
operation sequences may be avoided by
combining the normal rules of algebra

Grems, Porter—A Truly Automatic Computing System 13

Table II. Right Operand Condition Table

Operation
Requiring
Operand

Adjacent Right
Item

Item Following Right
Item

Right Operand Corresponding to
the Stated Conditions

A function such as
SIN, COS, LOG

Multiply or divide
(• or /)

Add or subtract
(+ or -)

An item symbol.
such as A, B,
K15

A group of terms.
indicated by []

An item symbol.
such as A, B,
K15

A group of terms.
indicated by []

A function such as.
SIN, COS, LOG

An item symbol
such as A, B,
K15

A group of terms
indicated by []

A function such as
SIN, COS, LOG

. . or / , + or
expression
symbols

. . or / , + or
expression
symbols

. . or / , + or
expression
symbols

. . or / , + or
expression
symbols

. Irrelevant. . .

—,], special,
termination

—,], special,
termination

—,], special,
termination

—,], special,
termination

. o r / .

+ or —,], special expres­
sion termination sym­
bols

• o r /

-j- or —,], special expres­
sion termination sym­
bols

. Irrelevant

.The item indicated by A, B, K15

.The result of the last operation
performed within the brackets

.The item indicated by A, B, K\5

.The result of the last operation
performed within the brackets

.The result of the function opera­
tion

The result of the last multiplica­
tion, division or function opera­
tion performed before the next
add or subtract operation is
encountered

The item indicated by A, B, K15

.The result of the last multiplica­
tion, division or function opera­
tion performed before the next
add or subtract operation is
encountered

.The result of the last operation
performed within the brackets

.The result of the function opera­
tion

Note 1. All other sequences of symbols are violations of expression writing rules.
Note 2. All operation symbols in the following right items must be in the same group as that of the opera­
tion requiring a right operand.

with the rule that operations are per­
formed in the order they are encountered
in the expression from left to right. The
resulting combination is specifically stated
by the following rules.

RULES FOR DETERMINING OPERATION

SEQUENCE

1. Scan the expression from left to
right assigning ascending operation se­
quence numbers to every function opera­
tion; e.g., sin b in example 3.

2. Rescan the expression from left to
right continuing the assignment of ascend­
ing operation sequence numbers to every
multiplication or division symbol; e.g.,
fl-sin b and c/d in example 3.

3. Again rescan the expression from
left to right continuing the assignment of
ascending operation sequence numbers to
every addition or subtraction symbol;
e.g., a sin b-\-c/d and that result — x, etc.,
in example 3.

The three foregoing rules are easily
programmed and permit the machine to
choose automatically an unambiguous
sequence of operations for an algebraic
expression.

Example 5.

®® © ® © ®^\{Operation
i Sequence (5)

A • SIN B + C/D -X + Y {Numbers

This example shows the original expression
of example 3 in BACAIC form with the
sequence of operations indicated above the
operation symbols.

Example 6

Examples 3 and 5 ignore the problem
which arises when operations are grouped
by parenthesis or "bracket" symbols (see
example 4). This grouping of operations
is very necessary to the writer of an alge­
braic expression. I t is essentially a
mathematical shorthand notation which
permits him to specify the general order in
which he desires computations performed.
Since the human computer handles these
groups of terms by working "from the in­
side out," a machine must do the same.
This is accomplished by the assignment of
a "group number" to every significant
symbol in the expression in accordance
with the following rules.

RULES FOR GROUP NUMBER ASSIGNMENT

1. Scan all significant items of the

expression from left to right assigning the
same group number to each item until a
left (front) bracket symbol is encountered.
(Note: If no left bracket is present in an
expression, all items will have the same
group number.)

2. When a left (front) bracket symbol
is encountered, increase the current group
number by one and assign this increased
number to that bracket symbol and to all
successive items until another bracket
symbol is encountered.

3. When a right (back) bracket sym­
bol is encountered, assign the current
group number to that bracket symbol and
then decrease the current group number
by one, assigning this decreased count
to all successive items until either another
bracket symbol or the end of the ex­
pression is reached. (Note: All groups
must be completely enclosed; e.g., there
must be an equal number of left and right
brackets.)

The machine system is programmed to
work "from the inside out" by first assign­
ing group numbers to all expression items
in accordance with the preceding rules,
second determining the maximum group
number and applying the "rules for deter­
mining operation sequence" to that group,
third decreasing that number by one and
reapplying the operation sequencing rules
to this next group, etc., until all groups
have received their operation sequence
numbers.

Example 6 shows the original expression of
example 4 in BACAIC form with the
group numbers indicated below each group
and the corresponding sequence numbers
indicated above each operation symbol.

Observe that the group number dis­
tinguishes a level of grouping rather than
a particular group; e.g., there are several
group 2's in example 6. An examina­
tion of example 6 also reveals that al­
though the operations are performed in a
seemingly heterogeneous manner, the
operand needed by each operation is cal­
culated in time to permit an uninter­
rupted sequence of operations.

After the operation sequence is defined,
the final problem is defining how the ma­
chine is to find the proper operand or
operands for each operation. The most

© ® ® ®®®®®®®®®@© [6)
A- Y+[Q + [NPWRZ-R]-\A+B]+[C-D]/[D/X+Q]]-SIN V

u Grems, Porter—A Truly Automatic Computing System

Table Left Operand Condition Table

Left Operand Corresponding to the
Stated Conditions

Item Preceding
Left Item Adjacent Left Item

Operation
Requiring
Operand

The result of the function operation.

The item indicated by A, B, K15.

The result of the function operation.

The result of the last operation per-,
formed within the brackets

The result of the last multiplication,
division or function operation per­
formed after the first preceding
add, subtract, [symbol or the start
of the expression is encountered

The item indicated by A, B, K15....

The result of the last^ multiplication.
division or function operation per­
formed after the first preceding
add, subtract, [symbol or the start
of the expression is encountered

The result of the last operation per-.
formed within the brackets

The result of the last preceding,
addition or subtraction operation
after the [symbol or the start of
the expression is encountered

The item indicated by A, B, K15....
The result of the last preceding

addition or subtraction operation
after the [symbol or the start of
the expression is encountered

The result of the last operation per­
formed within brackets

i as . A function such as ,
SIN, COS, LOG

. or / , + or
start of expression^

A function such a s ,
SIN, COS, LOG

. or / , + or - , [,
start of expression

A function such as 1
SIN, COS, LOG,,
or . or /

. + or —, [, start of •
expression

. A function such as)
SIN, COS, LOG,
or . or /

. + or —, [, start of I
expression

. A function such as")
SIN,COS,LOG,or(
. or / or + or —

. [, start of expression)
A function such as |

SIN, COS, LOG.or j
. or / or + or -

. [, start of expression I

An item symbol such
as A, B, Klo

A group of items |
indicated by []

A function such as
PWR, GRT, LES

An item symbol such
as A, B, Klo

A group of items
indicated by []

An item symbol such
as A, B, Klo

A group of items
indicated by []

Multiply or divide
(. or /)

Add or
(+ or

subtract
-)

j

Note 1. All other sequences of symbols are violations of expression writing rules
Note 2 All operation symbols in the preceding left items must be in the same group as that of the opera­
tion requiring a left operand.

common type of operation requires two
operands, that is, a quantity both to the
left and to the right of the operation
symbol. Other operations such as the
sine function require only one operand
which is normally written to the right of
the operation symbol. Therefore, as the
machine examines each operation symbol,
it must have a means of distinguishing
those operations requiring a single
operand from those requiring both a left
and a right operand.

Examples 5 and 6 indicate that either
operand may be the result of a previous
calculation rather than an item symbol­
ized in the original expression. They also
indicate results of previous operations are
not necessarily used in the next operation.
These facts require that the result of every
operation be stored separately within the
machine for use at any later time while
computing that expression. In other
words, the computing sequence is such
that the result of an operation cannot
automatically become one of the operands
for the following operation. The use of
brackets in an expression requires that
either operand may be the result of a
group of operations as well as a single
quantity or previous result. A summary
of the conditions governing the selection
of a right operand for the various opera­
tions and the corresponding expression
context is given in Table II. A similar
summary for the selection of a left operand
is given in Table III.

The previously assigned group numbers
and operation sequence numbers are used
in the selection of operands to meet the
conditions summarized in Tables II and
III . Application of the following rules by
the machine enables it to select the proper
right operand for each indicated opera­
tion.

RULES FOR DETERMINING RIGHT

OPERAND

1. Beginning at the operation requir­
ing a right operand, scan all expression
items to its right having group numbers
equal to or greater than that of the opera­
tion itself. Record the maximum opera­
tion sequence number encountered before:

(a) An operation sequence number, with
the same group number, is encountered
which is greater than that of the original
operation sequence number, or

(b) A right (back) bracket symbol with
a group number equal to that of the original
operation's group number is encountered, or

(c) An item having a group number less
than that of the operation itself is en­
countered, or

(d) The end of the expression is reached.

2. When no operation sequence num­
ber is recorded prior to meeting conditions
1(a), 1(&), 1(c), or 1(d), the item imme­
diately to the right of the original opera­
tion is its proper right operand.

3. When an operation sequence num­
ber is recorded prior to meeting condition
1(a), 1(b), 1(c), or 1(d), the result corre­
sponding to the maximum operation
sequence number recorded is the proper
right operand.

Similarly, the machine selects left
operands for each indicated operation
which requires one by applying the follow­
ing rules.

RULES FOR DETERMINING LEFT OPERAND

1. Beginning at the operation requir­
ing a left operand, scan all expression
items to its left having group numbers
equal to or greater than that of the opera­
tion itself. Record the maximum opera­
tion sequence number encountered before:

(a) An operation sequence number, with
the same group number, is encountered
which is greater than that of the original
operation sequence number, or

(b) A left (front) bracket symbol with a
group number equal to that of the original
operation's group number is encountered, or

(c) An item having a group number less
than that of the operation itself is en­
countered, or

(d) The start of the expression is reached.

2. When no operation sequence num­
ber is recorded prior to meeting condition
1(a), 1(b), 1(c), or 1(d), the item immedi­
ately to the left of the original operation
is its proper left operand.

3. When an operation sequence num­
ber is recorded prior to meeting condition
1(a), 1(b), 1(c), or l(^), the result corre­
sponding to the maximum operation se­
quence number recorded is the proper left
operand.

The machine system determines the
operation sequence and the corresponding
operands, and records its findings in a
sequence table. A 3-address operation se­
quence table is a familiar way of recording
such information. Table IV illustrates
the BACAIC Operation Sequence Table
for the expression given in example 3.

EXPRESSION INTERPRETATION RULES

The steps involved in the machine
interpretation of an algebraic expression
are summarized in the following rules.

1. Scan the expression's characters classi­
fying them into operation, operand, expres­
sion result, grouping, computation control,
and expression termination symbols.

2. While performing the classification,
eliminate all extraneous spaces and mne­
monic characters and fill in appropriate
items for all "understood" symbols.

3. Assign group counts to all expression
items.

Grems, Porter—A Truly Automatic Computing System 15

Table IV . Operation Sequence Table

Seq. Right Left
No. Operand Operation Operand Result

Sine

Multiply, .

Divide. . ..

Add

Subtract...

Add

B . . .

,..[71. .

. . D . . .

...H...
. . . X

. . Y

•H

..a
...H

. a
...a
.. a

Note 1. The contents of this table is given sym­
bolically rather than in machine codes and storage
location addresses.

Note 2. The result for the entire expression corre­
sponds to that for the maximum sequence number
in the entire expression; e.g.,1 6

4. Assign operation sequence numbers in
accordance with these groupings and the
sequence determination rules.
5. Determine the operands corresponding
to each operation.

6. Record the operating data in a form
from which actual machine instruction
sequences may be assembled.

Translating a Sequence Table to
Machine Instructions

Once a sequence table is prepared, a few
more specific decisions are necessary be­
fore it can be translated to machine
instructions. Probably the most im­
portant is that concerning the storage of
the values of input data. A need for a
convenient method of reference to either
an address of a data value in the sequence
table or an actual location in storage is
evident. This need is handled by re­
serving an area in storage for values of
data. This concept is similar to the
need for boxes at a post office. In this
reserved area, one box or location is set
aside for each data reference symbol,
i.e., (A-Z), (KI-K99) and (1-50).

Each box originally contains zero, and
remains at zero until a value is placed in it.
A value can be entered in each box either
as an item of input data or as a computa­
tional result. The current value in any
box is the only value available at any
time.

Another decision is whether the entire
contents of the master tape or only the
coded machine instruction deck is avail­
able at computing time. When the en­
tire tape is available, the machine is able
to print comments and other information
appropriate to any situation.

A minor detail (one which is probably
assumed to be a fact) is the packing of

high-speed storage in a unique fashion for
each different problem. This utilizes the
storage more advantageously and requires
less reading of records from the master
tape.

The procedure involved in translating
each sequence table to machine instruc­
tions is as follows. The sequence tables
are scanned for the mathematical opera­
tion codes. Each different code is re­
corded once and a complete list made of
all the operation codes referred to in the
expressions for one problem. This list of
codes is incorporated in an index of infor­
mation for library subprograms. A loca­
tion is assigned to each required sub­
program and this assigned location is
stored in the index. When the location
assignments are finished, this index is
punched on cards. These cards are used
during computing time by a relocation
program to pack the specified library sub­
programs in working storage. The in­
formation in this index is also used to in­
sert the addresses for the machine instruc­
tions which are dependent on the actual
location of each of the library sub­
programs.

This index is now discarded and full
attention is directed toward each sequence
table and the preparation of the corre­
sponding machine instructions for that ex­
pression. The actual locations of the in­
put data and of the result data for each
operation code are taken from the se­
quence table. These are stored as
addresses for certain machine instruc­
tions of the library subprogram for that
operation code. These machine instruc­
tions containing the references to data
and to subprograms are packed adjacent
to similar machine instructions for the
previous operation code in the same table.
This procedure of storing data locations as
addresses of instructions and then packing
the instructions continues for each opera­
tion code of a sequence table. The com­
plete set of machine instructions for the
one expression is punched on cards in
binary form to be used at computing time.
The entire process is repeated for each
subsequent table. When the punching
for the last expression takes place, the
automatic coding for the problem is
finished.

Computing Procedure

The master tape is used during com­
puting time as it retains the bulk of the
system instructions. The coded binary
cards containing the instructions for a
problem are used repeatedly with varied
values of input data. The instruction
cards are fed to the machine together with

heading cards for identifying the results.
At the start of computing time, the work­
ing storage is filled with those portions of
the system needed to prepare the machine
for computing. The library subprograms
are packed adjacent to one another in
working storage. An area originally set
to zero is reserved for values of input data.
The input data is read as decimal numbers
and stored in the area reserved for the
corresponding symbols. Only one value
is saved for any one symbol at a time.
A new value merely replaces the old value
for the same symbol. After these pre­
liminary preparations are finished, a con­
tinuous cycle of machine action takes
place. The computing always starts with
the first expression and ends with the last
expression. Normally, the expressions
are executed consecutively but a TRN
or USE symbol alters this normal routine.
Loops for iteration or integration can be
included between the first and last ex­
pression by means of the logical control
symbols. All computing is performed in
floating point arithmetic. The results
are available for each case after executing
the last expression for that case. When­
ever an intermediate result of computing
is needed, it must be written as a separate
expression. This cycle of reading input
data, computing results, and printing or
storing result data is broken when the
problem is finished or when some inter­
ruption of machine action occurs.

Computing Controls

The following computing controls are
necessary to increase the over-all useful­
ness and flexibility of a computing system.

1. The choice of an expression to execute
due to the result of a comparison.

2. The systematic modification of input
data when it varies by regular intervals.

3. The selective printing of input data and
computed results.

4. The selective punching of input data
and computed results.

5. The printing of comments with perti­
nent information which describes errors or
points out violations in usage of the library
subprograms, the input data, the expres­
sions, or other machine instructions.

6. The interruption of computing due to
an emergency and the later restoration of
data for continued computing from the
point of interruption.

7. A combination of the last two features;
i.e., the printing of comments, the inter­
ruption of the computing, and the later
restoration of the data for continued
computing.

An explanation and description of these
controls clarifies the benefits which they
add to an otherwise incomplete system.

16 Grems, Porter-'—A Truly Automatic Computing System

COMPARISON AND SELECTION SAMPLE 03 EXPRESSIONS SAMPLE PROBLEM FOR RACAIC

It is assumed that the expressions are
written in the correct sequence for com­
puting, and that this same physical se­
quence is maintained throughout the
problem. In other words, a reference to
expression number 1 is always the first
expression of the written set; and a refer­
ence to expression number 2 is always the
second expression of the written set.

Often, a comparison of two values or a
selection of a specific expression is de­
sirable at some definite point in the com­
puting which upsets this normal sequence.
Suppose that the following condition is
necessary, "when the value for A is greater
than the value for B, use equation number
6 to compute the value for C; otherwise,
use the next equation to compute the
value for C." This selection is written as
follows:

WHN A GRT B USE 6

A comparison of this type is one of the
logical controls which can be handled by
the system in the same manner as a math­
ematical equation. Therefore, insert this
logical control in its proper sequence with
the set of expressions. Each of the values
to be compared can be computed prior to
the comparison in the same expression.
For example,

WHN [A+R-T] GRT [SIN [X+Y]-W]
USE 10

MODIFICATION OF DATA

Some mathematical problems are of the
type similar to example 1, Y=e~xi sin
CX, where Y is evaluated for all values
of X from -0 .99 to +1.00 in intervals of
0.01. Similar situations frequently arise
and it seems appropriate for the machine
to prepare its next new value of input
whenever possible. The symbolic ex­
pression for this data preparation is

MOD X+Kl LIM K2

The value for the increment Kl is added
to the value for X and the sum replaces
X. This new value for X is compared
with the limiting value for K2. If X is
less than K2, the input data reading rou­
tine is by-passed at the beginning of the
next case. If X is greater than K2,
cards for input data are read by the ma­
chine at the beginning of the next case.
The arithmetic operation attached to the
increment can be + , —, •, or / . The
data values can be positive or negative
since the signs are tested to insure modi­
fication in the indicated direction.

SELECTIVE PRINTING

The BACAIC system did not initially
include selective printing. This short-

1 MOD X +K1 LIM K2
2 EXP $K3 - X.X » . SIN $C • X» * Y
3 TAB X Y

X VALUE Y VALUE

THE ORIGINAL INPUT DATA FOR CASE NUMBER 1

5.0 -1.1 Kl 0.2 K? 1.0

THE SELECTED RESULTS ARE LISTED AS FOLLOWS.

X VALUE
•90000000-
70000000-
50000000-
30000000-

100000000-
100000000
30000000
50000000
70000000
90000000
110000000

8-
8-
8-
8-
9-
9-
8-
8-
8-
8-
8-

Y VALUE
43486215
21489906
46609057-
91164176-
47465517-
47465517
91164176
46609057
21489906-
43486215-
21039020-

8'
8'
8'
8'
8'
8'
8'
8
8'
8
8

THE COMPUTING IS COMPLETED FOR ALL CASES OF DATA ENTERED IN THE MACHINE.

Fig. 1 . A solution of a problem by the B A C A I C system

coming was immediately realized when
unnecessary printing of all results for a
problem took place. This complete print­
ing of intermediate results was confusing
and difficult to explain to inexperienced
personnel. I t was also a needless waste
of valuable machine time. The symbol
chosen for selective printing is TAB. A
reference to any data symbol is allowed
with a maximum of six references per
TAB. Each TAB symbol is written as
a separate expression. The TAB cards
follow the equation and control cards.
When the computing is finished for one
case of input data, the indicated values
are selected and stored on a magnetic
tape. For the following expression

TAB A K5 7 R 19 42

the values for A, K5, result 7, R, result 19
and result 42 are selected and stored.
The system then by-passes all printing
routines at that time and continues to
compute the next case of data. At the
end of computing for a problem, the
selected and stored data are listed.
Multiple TAB expressions are permitted,
but the printing for the first TAB is com­
pleted before any printing fpr the second
TAB takes place.

SELECTIVE PUNCHING

Selective punching satisfies the need for
a form of output which can be used as
direct input to another machine program.
In the BACAIC system, the data values

are selected and stored the same as for
selective printing. However, unlike TAB,
this is an additional function of the system
and does not replace another function.
When the computing is finished for a
problem, the selected and stored data
values are punched on cards as decimal
numbers. A maximum of six data refer­
ence symbols is allowed per PCH code.
The PCH expression cards follow all other
expression cards.

DIAGNOSTIC ASSISTANCE

There are two legitimate types of ma­
chine stops when BACAIC is controlling
the machine:

1. A STOP when the operation of the
machine can be continued.

2. A STOP when the operation of the
machine cannot be continued.

Each of these stops can be caused by
keypunching errors, computing difficulties
or machine malfunction. In order to
distinguish which error caused the ma­
chine to stop, a "machine trail" is printed.
This "machine trail" includes a pertinent
comment to state the reason for stopping
and to indicate corrective measures. It
also includes the exact location in the
memory unit of this unexecuted instruc­
tion, the number of the expression it was
examining or computing, and the next
instruction to execute after the corrective
measures are accomplished. This last-
mentioned transfer instruction is impor-

Grems, Porter—A Truly Automatic Computing System 17

tant if the computing can be continued
from that point. All of these are aids to
locating an error or discrepancy and to
provide a written record for future refer­
ence or study of the expressions and the
program. An example of a "machine
trail" is:

INTERRUPTION OF COMPUTING

Occasionally, the computation for
multiple cases of data must be interrupted
before the computing is finished for all the
cases. The computing can be carried on
at a later time if the values for the param­
eters, the constants, and the results in
the memory can be restored to the identi­
cal values at the time of the interruption.
When an interruption is necessary, a
SENSE switch is turned ON while the
machine is computing. The results for the
current case of data are computed and
printed' or stored. In those instances
where selected values are stored for later
printing or punching, this printing or
punching of the accumulated data also
takes place. The afore-mentioned perti­
nent data are punched in binary cards.
These same data are printed to be used as
a reference for the purpose of cross-check­
ing the data and results. When the time
arrives to continue the computation, these
binary cards are fed to the machine prior
to the decimal input data for the un­
finished cases. A console SENSE switch is
turned ON which controls the reading of
binary data cards and storing them in the
memory unit prior to computing the first
expression. The contents of the memory
unit are hereby restored to the identical
values at the time of the interruption.
The computing is then carried on as if no
break had occurred.

INTERRUPTION AFTER DIAGNOSTIC

ASSISTANCE

Sometimes a violation of a computing
rule for a library subprogram is caused
by an incorrect value of data. When this
value is an incorrect input value, it prob­
ably is sufficient to note the error in the
data, to print the current results at that
computing point, and to start computing
for the next case of data. Zero values are
stored for that case of result values in
problems which include a TAB or PCH
expression. This prevents the possibility
of printing or punching erroneous results
unwittingly.

When the incorrect value encountered
is one which was developed in the com­
puting, an attempt to determine the cause
of the error is recommended. The inter­
ruption control is activated by turning
on a console SENSE switch. This causes
all values in the reserved area to be printed

as decimal numbers and to be punched as
binary data. All data previously stored
for the TAB or PCH are handled the
same as for the end of computing. It is as­
sumed that the cause of the error can be
detected after examining these printer
decimal data. The binary values for
these data are fed to the machine at a
later time so that computing continues
from the beginning of the next case. An
example of an error which causes the
machine to stop is shown in the follow­
ing:

Computing Features

The addition of various extra features
contributes to the operating smoothness
of any computing system. The ability
directly to include empirical or other
functions resulting from test result corre­
lation minimizes mathematical curve
fitting and hence elapsed setup time.
Complete machine identification of re­
sults saves clerical time and reduces
errors resulting from misinterpretation of
unidentified data. The originator of a
problem needs assurance that the machine
interprets his problem correctly. This is
accomplished by the system comparing
machine results with the results antici­
pated by him. Other features can be
added as the need arises to expand a sys­
tem.

TABLE LOOK-UP AND INTERPOLATION

A table look-up routine is needed to
satisfy all those conditions of data which
cannot be easily expressed by equations.
In many instances, this set of table data
is prepared more quickly than one equa­

tion or multiple equations for the data.
Tables can be altered from one computing
time to the next when table data are part
of the input data rather than part of the
expressions.

In cases where empirical data are
used for parts of the computing, it is often
advisable to resort to a table look-up
and interpolation routine. At the present
time, only linear interpolation is available
in the BACAIC system.

The values for the table look-up routine
enter the machine in a manner similar to
entering values of regular input data,
except that the pairs of table data are
stored consecutively. The first item of
each pair of values must be in consecutive
ascending or descending order. The
maximum size for each table is arbitrarily
limited to 400 half words or 100 pairs
of values in the BACAIC system. The
tables are stored as consecutive records on
a magnetic drum whose limit of 4096 half
words is also the limit of half words for all
tables. The system prepares an index
for locating each table whenever it is
needed.

Suppose that the first table on the drum
is an X, Y, table such as:

X Y
2.0 20.
3.0 30.
5.0 50.

Find the corresponding value for Y when
X=3.72 and K3 = 1.0. The expression
for BACAIC is as follows:

A R G I T B L i T 3 * F

The value stored in K3 is the number of
the table used to find Y. This expression
is interpreted to read "look up the argu­
ment X in the first table and substitute
this value for F." Incidentally, the
argument can be computed prior to the
lookup routine in the same expression.
For example,

ARG[Z+F-SRT[SQR SIN .4+SQR
COSi4]]TBL-Kl*F

IDENTIFICATION OF RESULT VALUES

Up to this time, little attention has been
paid to identifying the quantities to be
computed for each problem. During the

54 TWO ADJACENT OPERATION CODES I N AN EXPRESSION

DECIMAL NUMBERS OCTAL LOCATIONS

CONTROL PROG. E X P . NUMBER STOPPED AT TRANSFER TO
13 4 3752 1654

11 F 0 0 7 THE ARGUMENT IS TOO LARGE. ADD MORE VALUES TO THE TABLE.

DECIMAL NUMBERS OCTAL LOCATIONS

CONTROL PROG. E X P . NUMBER • STOPPED AT TRANSFER TO

3 1 5 3222 5136

13 CASE RESULTS WRONG. PUSH START FOR N E X T CASE, OR SENSE 1 FOR I N T E R R U P T

DECIMAL NUMBERS OCTAL LOCATIONS

CONTROL PROG. E X P . NUMBER STOPPED AT TRANSFER TO
3 1 5 6362 5136

18 Grems, Porter—A Truly Automatic Computing System

JOB 7959 38 EXPRESSIONS DATA REDUCTION - FR 205 FOR WIND TUNNEL

1 JK13 - K17./K18
2 K13/SK13 - K17»
3 $K13 + K17»/$K18 . SK13 - K17».
4 $K17 + 1 . SQR El PWR 2
5 F/4
6 K3 . SM - Nt
7 WHN 6 GRT K16 USE 9
8 K16 - 6 * 6
9 $J + K2 . SM - N»» • SKI + 6«
10 9 + 5N - 5» . K9 + SM - 5« . K8 + SP - 5» . K7
11 SRTSSSH/lt PWRJK17/2. - K17./1,
12 K17 + 1 . SQR 11
13 12 PWR 3
14 SRTSG + K14»
15 SRTSK13 . K11/K12.
16 K4 . K5 . 15 . H . 11/S14 . 13»
17 K17 + 1 . SQR E
18 17/12
19 18 PWR 3
20 K4 . K5/K6 . H/F . 11/E • 19
21 SK18/SK13 + K17»« PWR 3
22 K10 - K7
23 21 . 15 . 22 . L/16/14
24 K22/S23.K21.
25 SQR24.SQR$SQR24» + K19.SQR$SQR24t + K20.SQR24 - K21.23.24 + K22 * Q
26 WHN 25 GRT K16 USE 28
27 K16 - Q * Q
28 WHN Q LES K26 USE 31
29 24 - 25/$K23.SQR$SQR24».24 + K24.24.SQR24 + K25.24 - K21.23i * 24
30 TRN 25
31 K17 • 1 . SQR 24
32 31 PWR 2
33 L/32
34 K17 + K13 • SQR 24
35 K13 . SQR E . 20 . K6
36 K13/K18 . 5 . SQR E

01266 37 10 + 33,'34.2'2-' 5,'$22 + 35i
38 37/536.K6t

1 2 3 4 PO 6
TEST 8 9 FG MN 12
13 14 15 16 17 18
19 AO/AL 21 A? - ACR 23 24
25 26 27 28 29 30
31 32 P2E 34 35 QO
D INLET CD INLET

THE ORIGINAL INPUT DATA FOR CASE NUMBER 1

Kl .04 K2 23.39 K3 0.0 K4 0.983
K5 6.1575 K6 4.891 . K7 0.3849 K8 1.3902
K9 2.9732 K10 6.1575 Kll 32.174 K12 53.345
K13 1.4 K14 459.0 K15 0.2 K16 0.0
K17 1.0 K18 2,0 K19 15.0 K20 75.0
K21 216.0 K22 125.0 K23 6.0 K24 60.0
K25 150.0 K26 1.0 -4 A 114.0 B 20.0
C 1.0 D 7025.0 E 1.99 F 14.76
G 110. H 8.05 I 6.00 J -288.0

+ L 9.99 M 6.80 N 3.30 P 7.41

CASE NUMBER 1. THE COMPUTED RESULTS

1 2 3 4 PO 6
01266 20000000 8- 35000000 7- 30000000 7- 77037089 7- 19159602 7-

TEST 8 9 FG MN 12
01266 9 82454000- 7- 47740751 7- 66182211 8- 108760170

01266 13 14 J5 16 17 18
01266 12864995 7- 23853721 6- 91890304 8- 96560392 8- 17920200 7- 16476804

19 AO/AL 21 A2 - ACB 23 24
01266 44732052 7- 100409966 8- 57870380 8- 57726000 7- 133139777 8- 50446148

25 26 27 28 29 30
01266 28 31 50446148 8- 25

31 32 P2E 34 35 QO
01266 105089628 8- 11897598 7- 83966528 7- 13562739 7- 27227557 (,- 53111758

D INLET CD INLET
01266 72863860 7- 28049417 8-

THE COMPUTING IS COMPLETED FOR ALL CASES OF DATA ENTERED IN THE MACHINE.

Fig. 2 Actual data reduction problem and results

computing of a problem, the only printed
information other than the given expres­
sions and the input data is the computed
results. When each result is printed, it is
identified by a corresponding result
column heading.

8 -

8 -

The quantities to be computed are not
the same for all problems, therefore, the
result column headings are not the same
for all problems. These headings must
be introduced individually for each prob­
lem. They are separate from the ex­

pressions which they identify so that they
do not interfere with the mathematical
symbols and abbreviations and are not
interpreted. These heading cards are fed
to the machine in back of the expression
cards. The headings are stored in the
memory unit during the computing and
each is available for printing whenever the
corresponding value or column of values
is printed.

CHECKING OF SAMPLE DATA

In many instances, it is desirable to
check the accuracy of the machine-coded
instructions before computing multiple
cases of data. A satisfactory check of
the accuracy is a comparison of a set of
anticipated (hand-calculated) results with
a set of machine computed results. This
comparison of results checks the accuracy
of the coded instructions for:

1. The interpretation of the mathematical
symbols.

2. The machine-coding of the operations.

3. Comprehensiveness of the library sub­
programs.

A set of sample data includes a value for
each data reference symbol in the ex­
pressions for the problem. I t also in­
cludes a value for the anticipated result
to each expression. These anticipated
results are fed to the machine in the same
manner as input data. /

The machine computed results for the
algebraic equations are self-explanatory.
The machine computed results for the
logical controls of the BACAIC system
are indicated as follows:

The Machine Computed
Expression Result

WHN A GRT B 6 or the number of the next
USE 6 consecutive expression

WHN A LES B 8 or the number of the next
USE 8 consecutive expression

TRN 12 12
ARG M TBL K\ * Y Y the interpolated value

from the table to be
substituted for Y

M O D H + I L I M 7 . .[H + X] the incremented
value for H

The computing is started in the normal
manner. The computed result for ex­
pression number 1 is compared with its
anticipated result. If these two values
are the same (slide-rule accuracy), ex­
pression number 2 is computed and its
two results are compared, then number 3,
etc. When the computing is finished for
all the expressions the value for the ma­
chine computed result for each expression
is printed.

Grems, Porter—A Truly Automatic Computing System 19

If the two results (anticipated and com­
puted) for a comparison are not the same
for an expression, both result values are
immediately printed for that expression.
Accompanying these values are appro­
priate comments and sufficient data to
analyze the difference. These data in­
clude the values for the parameters, the
values for the constants, and the values'
for the computed results stored in the
memory unit at that time. Usually this
information is sufficient to isolate or to
indicate where the discrepancy occurred.

In order to locate more than one error
during each check-out period, the com­
puting is continued without interruption.
The value for the anticipated result for the
questionable expression is substituted for
the computed result for that expression,
and the computing is continued for the
next expression. This test and substitu­
tion is made so that an error in one expres­
sion at the beginning of a check cannot be
reflected throughout the computation. If
this substitution were not made, it is
possible the results of the succeeding ex­
pressions might not compare with the
anticipated hand-calculated results.

If the difference (as explained) is the
result, of an incorrectly keypunched ex­
pression card, a new program must be
coded by the machine. After the ex­
pression cards are corrected as indicated,
the coding phase is repeated. If there
are only small differences between the
anticipated results and the computed
results, the computer accepts the coding
for the expressions.

When the reason for the difference be­
tween the expected and computed results
is not obvious after examining the data
print-out for the sample computation, the
coding of the expression or expressions
must be repeated. The reason for the
error may be discovered if the 3-address
Sequence Table is printed. This Se­
quence Table indicates the order of ma­
chine execution for each operation in the
expression. The table is printed as fol­
lows:

sequence table is not sufficient. In these
cases the coding is repeated and the table
of character codes for the expression is
printed. This, however, is of very little
use without an explanation of the char­
acter codes and is used only in extreme
cases.

When the results compare favorably for
each expression, the instruction cards for
the program are accepted as correct.

Economic Aspects

The BACAIC system is a completely
automatic system for which the only re­
quired information for a new problem is:

often results from vague or poorly written
individual operating procedures.

A vital point of interest to most com­
puter users concerns the amount of
elapsed time from the outline of a problem
to the time when the first production re­
sults are ready. Service to outside de­
partments based on overnight or 24-hour
planning is probably the best that any
installation can reasonably strive for.
When using the BACAIC system for solu­
tion of a problem, this goal is within
reason. An estimate of the time re­
quired to solve a special problem can be
based on the approximate time required
to perform the various steps as follows:

Number of Expressions 10 Expr. 30 Expr. 50 Expr.

1. Write the expressions and prepare the data 1 hr.
2. Key punch the expressions and data '/* hr..
3. Machine code the expressions 2 min
4. Machine compute one set of results 10 sec.

2 hrs 4 hrs.
1 hr V/t hrs.
3 min 5 min.

40 sec 1 min.

1. The algebraic expressions with the
result column headings.

2. The decimal input data for each case.

The operation of the machine is entirely
dependent on the instructions contained in
the system. A few of these are controlled
by the ON or OFF position of some ex­
ternal switches on the console panel.
However, the machine operator (not the
originator of the problem) is responsible
for the position of these switches.

This system encourages the pro­
grammer to direct more attention toward
the mathematical preparation of the ex­
pressions. This is a field in which he
probably is better trained and more
experienced than in the field of machine
coding. More time can be spent con­
centrating on the phases of the problem
which require human judgment and
decision and less time on the tedious task
of coding. Also, a minor detail which is
quickly apparent after the first attempt
with BACAIC, is the noticeable lack of
careless errors. When a comment for a

Sequence
Number

Address for the
Left-hand
Quantity

Operation
Code

Address for the
Right-hand

Quantity
Address for

the Result

The exact sequence of the machine opera­
tions can be examined and the reason for
the error determined. A possible mis­
placed front or back bracket symbol can
alter the correct sequence.

There will be occasions when even this

careless error is machine printed on the
result sheet, a greater effort is made by the
programmer to eliminate such errors be­
fore using the machine The standardiz­
ing of the procedure for the machine
operator helps to avoid confusion which

The time allotments for the various
steps are generous and can be decreased by
improving the pieces of the system and
also by increasing the experience of the
programmers for writing the expressions.
Often, a different approach to the same
problem results in fewer expressions and
shorter machine time.

It required approximately 18 man-
months to outline the plan, develop the
ideas, establish the rules, write the in­
structions, and "debug" these instruc­
tions for the BACAIC system. These
18 man-months were spread through an
elapsed time of 1 year. At the end of the
first 10 months, most of the system was in
working order. The usual elusive errors
and unreasonable reasoning had to be
located and deleted. The majority of the
subprograms were already available, and
only had to be altered to include error
comments rather than error stops.

The writing of the instructions for this
system is proving to be a never-ending
process and will only cease when more
advanced ideas are not forthcoming. It
could easily be in a continuous state of
change if all the ideas for improvement
are accepted and included.

The Adaptability of a Natural System

A 1-to 2-hour informal discussion de­
scribing the general outline and opera­
tion of BACAIC is our method of intro­
ducing it to various engineering groups.
In each case, this discussion is followed by
the distribution of a written digest of the
BACAIC system. This digest quickly
reviews the preparatory steps for writing
both the expressions and data and out-

20 Grems, Porter—A Truly Automatic Computing System

lines the operating steps for the machine
procedure. Many of the rules for writing
the expressions are merely a review of the
fundamentals taught to a beginning
student of algebra. These rules must be
strictly adhered to so that both the pro­
grammer and the machine interpret each
situation in the same manner. The talk
accompanied by the digest proves to be
sufficient information for a beginner.
Naturally, there are individual questions
at a later time. These questions usually
concern the inclusion of additional fea­
tures to improve the system. All of these
new ideas are welcome and whenever
possible they are included immediately.

VERY little experience has been accu­
mulated in the operation of a large

commercial data-processing center.
However, reflection on the subject has

BRUSE MONCREIFF is with The Rand Corporation,
Santa Monica, Calif.

It is worth mentioning that most im­
provements and additions are readily in­
cluded. The BACAIC system was orig­
inally planned with that desired flexibility
in mind. It is fairly easy to include an
additional mnemonic symbol but, if the
symbol is to refer to a library subprogram
for its operation, the library subprogram
must also be available.

The specific information for each prob­
lem; i.e., the expressions and the input
data, can be relayed by means of the tele­
phone from another department to the
computing facility. This service is possi­
ble because of the standard procedure of
the BACAIC system after the expressions

led to the conclusion that, in the large-
scale operation of such a system, there
will be a different emphasis from the one
usually present in the operation of a large-
scale computing installation. The gen­
eral administrative problem in both cases
is, of course, to keep both staff and equip-

are formulated. The availability of tele­
phone service tends to decrease the
elapsed time for solving a problem, and
also tends to increase the correctness, of
the written expressions. Individual pride
and reputation play an important part in
reducing careless errors. Usually, the
"debugging" of the expressions is possible
in a few minutes prior to any machine
operation. This fact is of tremendous
advantage economically since without an
automatic system considerable machine
time is spent on check-out for each prob­
lem.

Conclusions

A natural computation language elimi­
nates the machine coding details cur­
rently responsible for the expenditure of
large amounts of man and machine time.
This language can include complete ma­
chine operating directions as well as the
mathematical problem statements. The
time now spent in digital computer prob­
lem preparation can be reduced by as
much as 90 per cent through the use of
machine self-coding systems. A funda­
mental computation language makes
evolutionary machine changes possible
without extensive personnel retraining.
The man-hours required to construct an
autocoding system are no more than those
formerly spent on a subprogram library.
The basic interpretive principles for an
algebraic computing system are applicable
to most present-day stored program
digital computers. These principles can
be incorporated in the hardware of future
machines.

ment operating efficiently. In the latter
case, however, the emphasis is on new
problem preparation, while in the case
of the business application the emphasis
must be on the efficient day-after-day
operation of the same routines. The
automatic supervisory routine described
here is an attempt to solve those operat­
ing and programming problems peculiar
to this "routine-dominated" situation.

The excuse for solving these problems
with a machine program, rather than
by instructions to the operator, is
twofold:

1. The human operator cannot compete
in spaed witii the machine in making routine
decisions and in controlling the processing
operations.

Lincoln Laboratory Utility Program

System

H. D. BENNINGTON C. H. GAUDETTE

THIS paper discusses a utility program
system to assist the coding, check-out,

maintenance, and documentation of large-

EC. D. BENNINGTON and C. H. GAUDBTTE are with
the Lincoln Laboratory of the Massachusetts
Institute of Technology, Lexington, Mass.

scale control programs. A typical pro­
gram contains 50,000 instructions, 1,000,-
000 bits of data storage, and is prepared
by a staff of 20 to 40 programmers, many
relatively inexperienced. The utility
system requires 25,000 registers.

A n Automatic Supervisor for the

IBM 702

BRUSE MONCREIFF

Moncreiff—An Automatic Supervisor for the IBM 702 21

