
large amount of work involved in chang­
ing the Gestalt system program to corre­
spond to the change of vocabulary re­
quired to include some new feature. I t 
is hoped that a solution to this difficulty 
will be found by writing a program to 
generate translation programs which will 
translate from statements in arbitrary 
Gestalt languages into selections of com­
puter behavior. 

The goal of the experimental pro­
gramming phase of this work is to allow 
the programmer to alter drastically his 
planned attack on a very large and com­
plex problem, and try out the new solu­
tion within a matter of days, while the new 
approach is fresh in his mind. All too 
often a volatile thought pattern dis­
appears in the months of arduous toil re­
quired to program a complex problem 
using ordinary techniques. I t is unlikely 
that present and future problems being 
considered at the Servomechanisms Lab­
oratory could be solved with limited man­
power without the use of these techniques. 

Concluding Remarks 

It seems appropriate to close this paper 
by again acknowledging the very real 
debt which is owed to all of the various 

LIKE many comparable groups, mem­
bers of the computing facility at the 

Boeing Airplane Company feel that it 
takes too long to prepare a problem for 
a digital computing machine. The daily 
repetition of effort expended in outlining 
a problem for coding, the tedious task of 
coding the instructions, and the time con­
sumed in checking-out or "debugging" 
the instructions all emphasize this fact. 
In this jet age, it is vital to shorten the 
time from the definition of a problem to 
its solution. 

A new plan of attack for problem setup 
is necessary to shorten the elapsed time by 

MANDALAY GREMS and R. E. PORTER are with 
the Boeing Airplane Company, Seattle, Wash. 

schools of computer programming for sub­
stantial contributions upon which this 
paper is based. The emergence and de­
velopment of these various techniques in 
the past several years have established 
firmly the intellectual climate necessary 
for continued expansion in these di­
rections. There are several groups in 
the United States which for some time 
have been developing systems for using 
computers which have many, if not all, of 
the attributes of Gestalt programming 
systems as defined here. The purpose of 
this paper has been to try to establish the 
outlines of the abstract structure of this 
type of system. It is hoped that this 
analysis will prove useful to all who are 
interested in connecting humans and 
computers by clarifying the problems 
and relationships involved. 

In its full generality Gestalt pro­
gramming is not just a computer tech­
nique, but is a problem-solving tech­
nique, i.e., a point is reached where it is 
difficult to tell which is more important, 
the human, the problem, or the com­
puter. The extension of these tech­
niques and concepts is sure to have a pro­
found influence on the design and opera­
tion of future computers, so much so that 
it seems probable that the term "corn-

shifting more of the monotonous burden 
of coding to the machine. It is a gen­
erally accepted belief that whenever rules 
for computing can be definitely estab­
lished, they can be defined as a set of 
machine instructions. Therefore, the 
starting point for an automatic comput­
ing system i» clarifying these rules to fit 
the requirements of a general problem. 

A natural way to communicate a math­
ematical problem to a computer is by the 
written equation. This can be accom­
plished by a system allowing a digital 
computing machine to accept a problem 
directly in equation form together with 
a list of input data. The elapsed time for 
a problem is therefore shortened because 
this system eliminates the tedious task 
of coding the machine instructions. The 

lb- puter" for describing these mechanisms 
his will become less and less appropriate, 
ie- The day is fast approaching, if it is not 
in already here, when the arithmetic ca-

ted pabilities of a machine will be its least 
iry valuable attributes. If the logical trend 
di- toward more and more elaborate systems 
in of this type continues, the primary attri-

tne bute of a computing machine will be its 
ng flexibility in the most general sense. 
of Even if significant advances in the speed 
ng of computer elements can be achieved, 
of these gains will be swiftly swallowed up if 

;he the logical design of these machines is not 
his advanced to fit the peculiar requirements 
his of these techniques, to obtain the same 
ire results with much fewer operations, 
nd At the present state of the art, these 
ms future developments can only be sensed 

in a most intuitive way, although, for 
ro- example, the growing concept of a micro-
:h- programmed computer appears to be a 
:h- well-founded first step. Continued and 
: is rapid advance in these directions both in 
nf, programming techniques and in computer 
m- design, can only be achieved by building 
:h- on experience gained in studies using 
ro- present-day facilities. I t is hoped that 
ra- the presentation of these ideas will en-
lat courage the participation of other groups 
m- in this fascinating line of endeavor. 

setup time for each problem is then more 
dependent on the complete understanding 
of the mathematics and the logic rather 
than on the physical characteristics of 
one special computer. 

The BACAIC System 

The Boeing Airplane Company Alge­
braic Interpretive Computing System, 
commonly called BACAIC, is a means of 
communicating directly with a machine. 
It is a self-contained system for solving a 
mathematical problem on a digital com­
puter. This problem must be of a type 
which can be completely described by a 
set of algebraic and logical expressions. 
A working record of the entire system, 
including a file of library subprograms, is 
kept on magnetic tape. The library is 
made up of pieces originally constructed 
in a consistent fashion. This is im­
portant in order to establish a general 
pattern of rules for a system to follow. 

The integrated system performs two 
distinct functions for each problem: 
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Table I. Definition of Symbols 

Symbol Use Explanation 

' A-Z A + B Refer to all parameters by the letters A 
\ through Z, (except K) 
K1-K99 Kl + B Refer to all constants by a X-number 
1-50 1 + -B Refer to the value (computed or estimated) 

of an expression by its expression number 

Data reference. 

Mathematical 
operations.. 

Transcendental 
functions 

Logical control. 

+ X+Y Addition 
— X — Y Subtraction 
• X • Y Multiplication 
/ X/Y Division 
PWR X PWR N CX)^, the quantity X raised to the power N 
SRT SRT X s/X, the square root of the quantity X 
SQR S Q R [ Z + F ] The quantity following this symbol is 

squared 

SIN SIN A Sine of angle A. A is in radians 
COS COS A Cosine of angle A. A is in radians 
ASN ASN A Arcsine A, the angle is in radians 
ACN ACN.A Arccosine A, the angle is in radians 
E X P E X P X (e)x, exponential to the X 
LOG LOG X The natural logarithm of X 

( [ or $ [A+B Front bracket for a term 
] or , A+B] Back bracket for a term 
* A — B* Y A substitution symbol. Compute the 

quantity on the left side of the symbol,* 
and substitute it for the parameter, 
constant or expression number on the 
right side of the symbol 

T R N TRN 8 Transfer to execute expression number 8 

WHN 

GRT 

USE 

LES 

Modification of da ta . .MOD. 
LIM 

/When the value for A is J: the value for B, 
WBN A GRT B USE 8. J compute expression number 8 next. 

j Otherwise, compute the following con-
V secutive expression 

WBN A LES B USE 8. /When the value for A is ^ the value for B, 
J compute expression number 8 next. 
j Otherwise, compute the following con-
>• secutive expression 

Modify the value for H by adding the 
increment B to H to form a new H. The 
operation symbols + , —, •, and / can 
be used with the increment. Test this 
new value for H against the limit R. If 
the limit is exceeded, additional input 
data for the next case are read by the 
card reader at the appropriate time. If 
the limit is not exceeded, the reading of 
input data is by-passed and the next 
case is computed using this new H value 
of input. This procedure is a means 
for computing families of cases of data 
when one value of input is repeatedly 
altered by a preset amount. If more 
than one "Modify and Limit" expression 
is tested, the last LIM tested is the 
effective one 

.MOD H+B LIM R.. ' 

Table look-up and. 
interpolation 

ARG.. 
TBL* 

ARG X TBL K2*Y. 

Selection of results. . , 

TAB TAB A Kl 3 29 T. 

PCH PCH £42 A K1Q. 

< To find Y = / (*) . The number in K2 is the 
number of the table to investigate. The 
tables are consecutively numbered as 
they are read by the card reader and 
stored in memory. The selected table is 
scanned and the corresponding linearly 
interpolated value .for the argument X 
is computed. This value is substituted 
for Y 

i Select the values for the indicated data 
symbols and store the values on a tape 
for later printing. Multiple TAB ex­
pressions are allowed with a maximum 
of six symbols per card. When the 
computing is finished for all cases of 
data, the stored values are printed. 
Data for all cases for one TAB card are 
printed prior to any printing for the next 
following card. The data are printed 
as decimal numbers and in the same order 
as indicated on the card. TAB cards 
always immediately follow the final 
equation or control expression 

The PCH expression is similar to the TAB 
expression, except that the stored data 
values are punched on cards as decimal 
numbers rather than printed as columns, 
of data. PCH cards always immediately 
follow the final TAB card (when TAB is 
used) or the final equation or control 
jexpression 

1. It reads the algebraic expressions and 
translates them to machine language. 

2. It computes results from given data, 
using the coded machine language instruc­
tions. 

The choice of one of these functions is 
selected manually by the machine op­
erator through controls on the console 
panel. This choice causes certain por­
tions of the system to be operative and 
other portions to be by-passed. 

The algebraic equations and logical 
controls which describe a problem are 
punched directly on cards to be read by 
the machine. These expressions are then 
translated by the computer to machine 
language instructions. The resulting 
machine instructions are automatically 
punched in binary form on cards. 
The time required for translating and 
machine-coding a problem usually aver­
ages 2 to 5 minutes; e.g., 10 expressions 
require about 2 minutes and 50 expres­
sions require about 5 minutes. 

The machine-coded instruction cards, 
accompanied by a set of given values for 
input data, are fed to the computer 
whenever computing is to take place. 
The results of the computing for one set 
of input data is printed (or stored for 
later printing) before another set of given 
values for input data is read. Computing 
of results for one problem continues for all 
sets of input data which are ready in the 
machine. The computing time per prob­
lem is dependent on the number of sets of 
given data and on the complexity of the 
computing pattern. The computing time 
usually ranges from a few seconds to 1 
minute for each data case. 

The algebraic equations and controls 
for a problem are written in terms of famil­
iar symbols for reference to data values, 
mathematical operations, transcendental 
functions, logical control, table look-up 
and interpolation, systematic modifica­
tion of data, and selection of results for 
printing or punching. The mathemati­
cal symbols such as + , —, *, / , SIN, 
COS, LOG, and EXP are familiar to most 
people and an endeavor is made to assign 
mnemonic symbols to other operations. 

DEFINITION OF SYMBOLS • 

The mnemonic symbols for writing 
the expressions are grouped as shown in 
Table I. 

INPUT DATA FORM 

The input data for a problem are pre­
pared in the same manner as for desk 
computing; i.e., a list of the values in 
terms of a reference symbol, a coefficient 
with a decimal point, and a possible 
power of 10 for this coefficient. When 
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the power 10 is zero, the zero is omitted, 
e.g. 

A =3.75 

1F=0.00375 X103 

Jf=375X10-2 

Preparing the data in this manner pro­
vides the opportunity for entering items 
of data in either a floating or stated sys­
tem of notation, and eliminates the 
necessity for changing each item of data 
to a preset notation system. Once the 
power of 10 is established for each value 
of data in the system, it is automatically 
adjusted for all operations performed on 
that value. 

PROBLEM SETUP ' 

Example 1. To illustrate the ease of 
preparing a problem for the BACAIC 
system, evaluate 

Y=e-x*$mCX (1) 

for values of X from —0.99 to 1.00 in in­
tervals of 0.01, and tabulate the corre­
sponding values for X and F. 

This problem is written as three ex­
pressions for BACAIC: 

1. MOD X+Kl LIM K2 
Modify a value for X 

2. EXP [K3-X-X] -SIN [C-X]* Y 
Compute Y 

3. TAB X Y Tabulate X and Y 

Each expression is punched on a card and 
the three cards are read by the machine. 
These expressions are machine-coded by 
the BACAIC system and a resulting set of 
instructions is punched on cards by the 
system. These instruction cards are fed 
to the machine with the following values 
of input data: 

C=5.0 Kl =0.1 X3=0.0 
X = - 1 . 0 # 2 = 0.99 

The expressions for this problem are 
executed consecutively in the foregoing 
order unless otherwise indicated. The 
machine accepts the data and repeatedly 
computes values for X and Y until the 
limiting value for X is exceeded. When 
the computing is finished, the 199 sets of 
values for the X and F results are tabu­
lated. 

Example 2. Compute both roots for 
multiple values of C with constant values 
for A and B. 

AX2+BX + C = 0 (2) 

To solve for both roots, rewrite the equa­
tions as follows: 

*-B+VB*-±AC^X 

2A 

-B-\/B2-4:AC=y 
2A 

To illustrate a comparison and selection, 
assume the following conditions: 

When the discriminant (B2 — 4AC) is 
positive, use its true value. 

When the discriminant (B2 — 4AC) is 
negative, use a value of zero. 

This problem is written as five expres­
sions for BACAIC: 

1. B-B-K4-A-C 
Evaluate discriminant 

2. WHN 1 GRT Kb USE 4 
Compare values and select 

3. #5*1 
Substitute zero 

4. [Kl-B+SRT 1]/[K2-A]*X 
Compute X 

5. [ i Q - 5 - S R T l]/[#2-.4]*F 
Compute Y 

The five expressions are machine-coded 
by the system. The punched instruction 
cards are fed to the machine with the 
given input data. 
The input data are: 

5=6.0 #4=4.0 # 1 = -1 .0 
4=1 .0 # 5 = 0 # 2 = 2.0 

(Case 1) C=5.0 
(Case 2) C=4.5 
(Case 3) C = 9.0 
(Case 4) C = 18.0 

The machine accepts the data for case 1, 
computes a result for each expression, 
and prints these five results for case 1. 
The machine then reads the second value 
for C, computes each result and prints 
the five results for case 2. This proce­
dure continues for the four given values 
ofC. 

The two illustrated examples demon­
strate the general plan for writing the 
expressions where each expression is 
punched on an individual card. The 
examples also demonstrate the difference 
between selective printing of results and 
the printing of all results for each case. 
There is a noticeable difference in the 
printing time for the two methods. This 
factor should be considered at setup 
time, as the needs of the problem or the 
needs of the programmer determine the 
type of printing. 

Criteria for Coding 

I t may be asked how a machine can 
consistently interpret and translate the 
algebraic equations so quickly and so 
accurately. This idea is plausible when 
it is accepted that a set of rules for the 
machine in its own language is sufficient 
for translating. These rules must be 

definite and exact for all situations. 
The BACAIC system now appears 
straightforward and relatively simple. 
The present system differs considerably 
from the original plan, as the former in­
cludes more details and special features. 

In order to establish an over-all plan for 
interpreting the equations directly from 
the cards, many decisions for writing the 
equations and controls had to be for­
mulated. Some of these decisions were 
mandatory as they depend on the partic­
ular computer in use. The BACAIC 
system was written especially for the 
International Business Machines Cor­
poration (IBM) Model 701. However, 
much of the planning and organizing of 
the system can easily be transferred to 
another digital computer. The reader of 
the IBM 701 reads a maximum of 72 upper­
case letters, numerals, and symbols. 
This dictates that one level of punching 
or printing is recognized by the machine, 
thereby eliminating the possibility of 
punching or printing subscripts or super­
scripts in the familiar way. This limita­
tion is easily overcome by an appropriate 
symbol to signify the operation or mean­
ing to the machine. 

Some of the early decisions depended 
entirely on the anticipated types of prob­
lems to be studied and the characteristics 
of their data. The question of floating 
point arithmetic versus stated point 
arithmetic arose with stronger arguments 
in favor of the floating point system. In 
the floating point system, the elimination 
of the problem of scaling values of input 
data is very satisfying. The use of this 
arithmetical system for BACAIC is 
proving to be an attractive feature for 
inexperienced personnel. The rules for 
machine computing in the floating point 
system were firmly established at an 
earlier time when the library subprograms 
were written. These library subpro­
grams for floating point arithmetic were 
incorporated in the system and the rules 
governing them were accepted unchanged. 
Fortunately, a standard pattern for the 
input-output to these library subpro­
grams had been adhered to and was 
readily adaptable to a system. 

One of the next questions to be solved 
concerned the values for constants and 
data. If the actual values of data are in­
cluded in the expressions, the digits of 
the numbers occupy too many of the 72 
available card columns, so a scheme for 
referring to all data by symbols was de­
veloped. The values for the corre­
sponding symbols are entered at comput­
ing time. This scheme has the added 
feature of making it very convenient to 
alter values without rewriting the expres-
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sions. Originally, the 25 alphabetic letters 
A through Z (except K) and the 99 K's 
(K1-K99) seemed sufficient for data 
reference, but this is proving to be inade­
quate for some problems. The numbers 
1-50 are data reference symbols for the 
values of the corresponding expression 
results. These values are estimated 
values for the expressions or computed 
values for the expressions. A reference 
of this type provides a simple means for 
using a computed result for one expres­
sion as an input value for another ex­
pression. In the*second expression of 
example 2 

WHN 1 GRT Kb USE 4 

the 1 refers to the result of the first 
expression; i.e., the value of the dis­
criminant (B2—4AC). This reference is 
especially convenient in a problem when 
an estimated value of a result is needed to 
start the computing, but after the first 
computation, the symbol refers to the 
most recently computed result. 

Many mathematical problems require 
a choice of operations at various levels of 
the solution. The designers of comput­
ing machines recognize the need to select 
and transfer, as they invariably include 
machine codes for "transfer on plus," 
"transfer on minus," or "transfer on 
zero." In an automatic system, this need 
for a conditional transfer is even more 
urgent. It is the only means for describ­
ing a problem as a complete picture when 
part of the picture is dependent on a 
previous computation in the same prob­
lem. When this select and transfer fea­
ture is included in a system, problems 
dealing with iteration, integration, and 
progressive summation are easily manip­
ulated. Without this feature, a system 
is very limited in its application. 

The foregoing information helps to 
outline a general plan for an automatic 
computing system. After these notions 
are settled and accepted, the rules for 
writing the expressions are considered 
with respect to the capabilities of the 
machine. The limitation of any com­
puting machine is that it executes exactly 
all instructions which it receives and it 
remembers only the information it is told 
to remember. 

The mnemonic symbols for certain 
operations are readily recognized and 
accepted as three adjacent letters, such as 
SIN, TAB, LOG. This starts a pattern 
for mnemonic symbols for all operations, 
and recognition for the exact symbols is 
easier when the first two letters of a sym­
bol are not the same as the first two letters 
of another symbol. 

The use of parentheses for the grouping 

of terms within terms is very essential 
when writing equations. It is natural 
to use parentheses or brackets in equa­
tions for the purpose of grouping terms 
to be used as one operation; e.g., SIN 
(A-\-B+C). It is necessary to close all 
bracketed groups; i.e., the brackets must 
travel in pairs. Therefore, a separate 
symbol is needed for the front bracket 
and a separate symbol is needed for the 
back bracket. This ability must be avail­
able in an automatic system, and from 
experience must be increased in an auto­
matic system to include equivocal situa­
tions. In the second expression of Ex­
ample 1, the sine term is coded as "SIN 
[C-X]." This removes the doubtful 
meaning for 

the sine of C to be multiplied by X 

or 

the sine of the product, C multiplied by X 

Without the ability to group operations, 
a system is extremely limited in its useful­
ness. I t is a toy and not a tool for com­
puting. 

The arithmetic operation for division is 
another stumbling block to a smooth 
system. The division concept presents a 
few difficulties, as up to this time all 
operations are assumed to be in the nu­
merator. Obviously, an exception to the 
rule is necessary. The revised rule for 
writing expressions states that all opera­
tions are in the numerator except those 
following a division symbol. Then, only 
the symbol or bracketed term immediately 
following the division symbol is in the 
denominator. This practice is successful 
and is relatively simple to contend with for 
all situations. This rule is demonstrated 
in the fourth and fifth expressions for 
example 2, where the numerator is 
divided by a product. 

Interpreting an Expression 

The ability of a machine program to 
analyze a given algebraic expression and 
determine the unambiguous sequence of 
computations intended by the originator 
of the expression is subject both to the 
natural rules of algebra and to the re­
strictions imposed by the machine pro­
grammer. Certain restrictions result in 
the consistency so vital to machine pro­
grams yet impose no hardship upon the 
person writing an expression; e.g., the 
substitution of 3-letter mnemonic codes 
such as SIN, COS, and SQR for sine, 
cosine, and square. This makes machine 
decoding much simpler without detracting 
from the natural appearance of the ex­
pression. Any restrictions on the use of 

arithmetic symbols or the grouping of 
terms are more difficult to justify. The 
number of permissible symbols and the 
length of any one algebraic expression is 
usually influenced by the data input and 
internal storage capabilities of the ma­
chine used. It is in the best interests of 
the machine program's users to concede 
everything to the naturalness of writing 
an expression. Only the limit of the 
programmer's ingenuity dictates the re­
strictions which need apply. 

The principal problem in interpreting 
an expression is that of defining the rules 
which the machine must follow to produce 
an unambiguous operating sequence. 

A few of the contingencies encountered 
are illustrated in the following examples: 

Example 3. 

a sin b+-—x+y (3) 
d 

Example 4, 

ay+\q+(nz-r)(a+b)+'p^{ SIN v (4) 

The first contingency is the "understood 
multiplication" illustrated in the terms 
"a sin b" or ' 'ay.'' This type of operation 
was eliminated from BACAIC expressions 
by making it illegal (the simplest way out 
of any coding dilemma). The rule that 
all arithmetic operations must be indi­
cated by the appropriate symbol simplifies 
the initial translation step. It is possible 
to have the machine itself supply the 
understood operation symbols at the cost 
of extra programming. 

The next contingency is that of having 
a choice as to which operation to perform 
first. This choice can neither be elimi­
nated by a rule nor left to the discretion of 
the machine. A human computer has a 
choice of either of two operations when 
starting to compute the result of example 
3. He may divide c by d or compute the 
sine of b. Five such choices are possible in 
example 4. These choices cannot be left 
to a machine. Instead, a way must be 
determined of defining an order of opera­
tions having no chance of duplication or 
ambiguity during machine interpretation. 

The normal rule of algebra that all 
multiplication and division must be per­
formed before terms are combined is only 
a partial answer to the problem. In 
example 3, the function operation "sine 
b" must be performed before it can be 
multiplied by "a" and this multiplication 
must be performed before the entire term 
(a sin b) can be added to the quotient 
of c divided by d. Possible ambiguities in 
operation sequences may be avoided by 
combining the normal rules of algebra 
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Table II. Right Operand Condition Table 

Operation 
Requiring 
Operand 

Adjacent Right 
Item 

Item Following Right 
Item 

Right Operand Corresponding to 
the Stated Conditions 

A function such as 
SIN, COS, LOG 

Multiply or divide 
(• or / ) 

Add or subtract 
( + or - ) 

An item symbol. 
such as A, B, 
K15 

A group of terms. 
indicated by [ ] 

An item symbol. 
such as A, B, 
K15 

A group of terms. 
indicated by [ ] 

A function such as. 
SIN, COS, LOG 

An item symbol 
such as A, B, 
K15 

A group of terms 
indicated by [ ] 

A function such as 
SIN, COS, LOG 

. . or / , + or 
expression 
symbols 

. . or / , + or 
expression 
symbols 

. . or / , + or 
expression 
symbols 

. . or / , + or 
expression 
symbols 

. Irrelevant. . . 

—, ], special, 
termination 

—, ], special, 
termination 

—, ], special, 
termination 

—, ], special, 
termination 

. o r / . 

+ or —, ], special expres­
sion termination sym­
bols 

• o r / 

-j- or —, ], special expres­
sion termination sym­
bols 

. Irrelevant 

.The item indicated by A, B, K15 

.The result of the last operation 
performed within the brackets 

.The item indicated by A, B, K\5 

.The result of the last operation 
performed within the brackets 

.The result of the function opera­
tion 

The result of the last multiplica­
tion, division or function opera­
tion performed before the next 
add or subtract operation is 
encountered 

The item indicated by A, B, K15 

.The result of the last multiplica­
tion, division or function opera­
tion performed before the next 
add or subtract operation is 
encountered 

.The result of the last operation 
performed within the brackets 

.The result of the function opera­
tion 

Note 1. All other sequences of symbols are violations of expression writing rules. 
Note 2. All operation symbols in the following right items must be in the same group as that of the opera­
tion requiring a right operand. 

with the rule that operations are per­
formed in the order they are encountered 
in the expression from left to right. The 
resulting combination is specifically stated 
by the following rules. 

RULES FOR DETERMINING OPERATION 

SEQUENCE 

1. Scan the expression from left to 
right assigning ascending operation se­
quence numbers to every function opera­
tion; e.g., sin b in example 3. 

2. Rescan the expression from left to 
right continuing the assignment of ascend­
ing operation sequence numbers to every 
multiplication or division symbol; e.g., 
fl-sin b and c/d in example 3. 

3. Again rescan the expression from 
left to right continuing the assignment of 
ascending operation sequence numbers to 
every addition or subtraction symbol; 
e.g., a sin b-\-c/d and that result — x, etc., 
in example 3. 

The three foregoing rules are easily 
programmed and permit the machine to 
choose automatically an unambiguous 
sequence of operations for an algebraic 
expression. 

Example 5. 

®® © ® © ®^\{Operation 
i Sequence (5) 

A • SIN B + C/D -X + Y {Numbers 

This example shows the original expression 
of example 3 in BACAIC form with the 
sequence of operations indicated above the 
operation symbols. 

Example 6 

Examples 3 and 5 ignore the problem 
which arises when operations are grouped 
by parenthesis or "bracket" symbols (see 
example 4). This grouping of operations 
is very necessary to the writer of an alge­
braic expression. I t is essentially a 
mathematical shorthand notation which 
permits him to specify the general order in 
which he desires computations performed. 
Since the human computer handles these 
groups of terms by working "from the in­
side out," a machine must do the same. 
This is accomplished by the assignment of 
a "group number" to every significant 
symbol in the expression in accordance 
with the following rules. 

RULES FOR GROUP NUMBER ASSIGNMENT 

1. Scan all significant items of the 

expression from left to right assigning the 
same group number to each item until a 
left (front) bracket symbol is encountered. 
(Note: If no left bracket is present in an 
expression, all items will have the same 
group number.) 

2. When a left (front) bracket symbol 
is encountered, increase the current group 
number by one and assign this increased 
number to that bracket symbol and to all 
successive items until another bracket 
symbol is encountered. 

3. When a right (back) bracket sym­
bol is encountered, assign the current 
group number to that bracket symbol and 
then decrease the current group number 
by one, assigning this decreased count 
to all successive items until either another 
bracket symbol or the end of the ex­
pression is reached. (Note: All groups 
must be completely enclosed; e.g., there 
must be an equal number of left and right 
brackets.) 

The machine system is programmed to 
work "from the inside out" by first assign­
ing group numbers to all expression items 
in accordance with the preceding rules, 
second determining the maximum group 
number and applying the "rules for deter­
mining operation sequence" to that group, 
third decreasing that number by one and 
reapplying the operation sequencing rules 
to this next group, etc., until all groups 
have received their operation sequence 
numbers. 

Example 6 shows the original expression of 
example 4 in BACAIC form with the 
group numbers indicated below each group 
and the corresponding sequence numbers 
indicated above each operation symbol. 

Observe that the group number dis­
tinguishes a level of grouping rather than 
a particular group; e.g., there are several 
group 2's in example 6. An examina­
tion of example 6 also reveals that al­
though the operations are performed in a 
seemingly heterogeneous manner, the 
operand needed by each operation is cal­
culated in time to permit an uninter­
rupted sequence of operations. 

After the operation sequence is defined, 
the final problem is defining how the ma­
chine is to find the proper operand or 
operands for each operation. The most 

© ® ® ®®®®®®®®®@© [6) 
A- Y+[Q + [NPWRZ-R]-\A+B]+[C-D]/[D/X+Q]]-SIN V 
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Table Left Operand Condition Table 

Left Operand Corresponding to the 
Stated Conditions 

Item Preceding 
Left Item Adjacent Left Item 

Operation 
Requiring 
Operand 

The result of the function operation. 

The item indicated by A, B, K15. 

The result of the function operation. 

The result of the last operation per-, 
formed within the brackets 

The result of the last multiplication, 
division or function operation per­
formed after the first preceding 
add, subtract, [ symbol or the start 
of the expression is encountered 

The item indicated by A, B, K15.... 

The result of the last^ multiplication. 
division or function operation per­
formed after the first preceding 
add, subtract, [ symbol or the start 
of the expression is encountered 

The result of the last operation per-. 
formed within the brackets 

The result of the last preceding, 
addition or subtraction operation 
after the [ symbol or the start of 
the expression is encountered 

The item indicated by A, B, K15.... 
The result of the last preceding 

addition or subtraction operation 
after the [ symbol or the start of 
the expression is encountered 

The result of the last operation per­
formed within brackets 

i as . A function such as , 
SIN, COS, LOG 

. or / , + or 
start of expression^ 

A function such a s , 
SIN, COS, LOG 

. or / , + or - , [, 
start of expression 

A function such as 1 
SIN, COS, LOG,, 
or . or / 

. + or —, [, start of • 
expression 

. A function such as) 
SIN, COS, LOG, 
or . or / 

. + or —, [, start of I 
expression 

. A function such as") 
SIN,COS,LOG,or( 
. or / or + or — 

. [, start of expression ) 
A function such as | 

SIN, COS, LOG.or j 
. or / or + or -

. [, start of expression I 

An item symbol such 
as A, B, Klo 

A group of items | 
indicated by [ ] 

A function such as 
PWR, GRT, LES 

An item symbol such 
as A, B, Klo 

A group of items 
indicated by [ ] 

An item symbol such 
as A, B, Klo 

A group of items 
indicated by [ ] 

Multiply or divide 
(. or / ) 

Add or 
( + or 

subtract 
- ) 

j 

Note 1. All other sequences of symbols are violations of expression writing rules 
Note 2 All operation symbols in the preceding left items must be in the same group as that of the opera­
tion requiring a left operand. 

common type of operation requires two 
operands, that is, a quantity both to the 
left and to the right of the operation 
symbol. Other operations such as the 
sine function require only one operand 
which is normally written to the right of 
the operation symbol. Therefore, as the 
machine examines each operation symbol, 
it must have a means of distinguishing 
those operations requiring a single 
operand from those requiring both a left 
and a right operand. 

Examples 5 and 6 indicate that either 
operand may be the result of a previous 
calculation rather than an item symbol­
ized in the original expression. They also 
indicate results of previous operations are 
not necessarily used in the next operation. 
These facts require that the result of every 
operation be stored separately within the 
machine for use at any later time while 
computing that expression. In other 
words, the computing sequence is such 
that the result of an operation cannot 
automatically become one of the operands 
for the following operation. The use of 
brackets in an expression requires that 
either operand may be the result of a 
group of operations as well as a single 
quantity or previous result. A summary 
of the conditions governing the selection 
of a right operand for the various opera­
tions and the corresponding expression 
context is given in Table II. A similar 
summary for the selection of a left operand 
is given in Table III. 

The previously assigned group numbers 
and operation sequence numbers are used 
in the selection of operands to meet the 
conditions summarized in Tables II and 
III . Application of the following rules by 
the machine enables it to select the proper 
right operand for each indicated opera­
tion. 

RULES FOR DETERMINING RIGHT 

OPERAND 

1. Beginning at the operation requir­
ing a right operand, scan all expression 
items to its right having group numbers 
equal to or greater than that of the opera­
tion itself. Record the maximum opera­
tion sequence number encountered before: 

(a) An operation sequence number, with 
the same group number, is encountered 
which is greater than that of the original 
operation sequence number, or 

(b) A right (back) bracket symbol with 
a group number equal to that of the original 
operation's group number is encountered, or 

(c) An item having a group number less 
than that of the operation itself is en­
countered, or 

(d) The end of the expression is reached. 

2. When no operation sequence num­
ber is recorded prior to meeting conditions 
1(a), 1(&), 1(c), or 1(d), the item imme­
diately to the right of the original opera­
tion is its proper right operand. 

3. When an operation sequence num­
ber is recorded prior to meeting condition 
1(a), 1(b), 1(c), or 1(d), the result corre­
sponding to the maximum operation 
sequence number recorded is the proper 
right operand. 

Similarly, the machine selects left 
operands for each indicated operation 
which requires one by applying the follow­
ing rules. 

RULES FOR DETERMINING LEFT OPERAND 

1. Beginning at the operation requir­
ing a left operand, scan all expression 
items to its left having group numbers 
equal to or greater than that of the opera­
tion itself. Record the maximum opera­
tion sequence number encountered before: 

(a) An operation sequence number, with 
the same group number, is encountered 
which is greater than that of the original 
operation sequence number, or 

(b) A left (front) bracket symbol with a 
group number equal to that of the original 
operation's group number is encountered, or 

(c) An item having a group number less 
than that of the operation itself is en­
countered, or 

(d) The start of the expression is reached. 

2. When no operation sequence num­
ber is recorded prior to meeting condition 
1(a), 1(b), 1(c), or 1(d), the item immedi­
ately to the left of the original operation 
is its proper left operand. 

3. When an operation sequence num­
ber is recorded prior to meeting condition 
1(a), 1(b), 1(c), or l(^), the result corre­
sponding to the maximum operation se­
quence number recorded is the proper left 
operand. 

The machine system determines the 
operation sequence and the corresponding 
operands, and records its findings in a 
sequence table. A 3-address operation se­
quence table is a familiar way of recording 
such information. Table IV illustrates 
the BACAIC Operation Sequence Table 
for the expression given in example 3. 

EXPRESSION INTERPRETATION RULES 

The steps involved in the machine 
interpretation of an algebraic expression 
are summarized in the following rules. 

1. Scan the expression's characters classi­
fying them into operation, operand, expres­
sion result, grouping, computation control, 
and expression termination symbols. 

2. While performing the classification, 
eliminate all extraneous spaces and mne­
monic characters and fill in appropriate 
items for all "understood" symbols. 

3. Assign group counts to all expression 
items. 
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Table IV . Operation Sequence Table 

Seq. Right Left 
No. Operand Operation Operand Result 

Sine 

Multiply, . 

Divide. . .. 

Add 

Subtract... 

Add 

B . . . 

,..[71. . 

. . D . . . 

...H... 
. . . X . . . . 

. . Y . . . . 

•H 

..a 
...H 

. a 
...a 
.. a 

Note 1. The contents of this table is given sym­
bolically rather than in machine codes and storage 
location addresses. 

Note 2. The result for the entire expression corre­
sponds to that for the maximum sequence number 
in the entire expression; e.g.,1 6 

4. Assign operation sequence numbers in 
accordance with these groupings and the 
sequence determination rules. 
5. Determine the operands corresponding 
to each operation. 

6. Record the operating data in a form 
from which actual machine instruction 
sequences may be assembled. 

Translating a Sequence Table to 
Machine Instructions 

Once a sequence table is prepared, a few 
more specific decisions are necessary be­
fore it can be translated to machine 
instructions. Probably the most im­
portant is that concerning the storage of 
the values of input data. A need for a 
convenient method of reference to either 
an address of a data value in the sequence 
table or an actual location in storage is 
evident. This need is handled by re­
serving an area in storage for values of 
data. This concept is similar to the 
need for boxes at a post office. In this 
reserved area, one box or location is set 
aside for each data reference symbol, 
i.e., (A-Z), (KI-K99) and (1-50). 

Each box originally contains zero, and 
remains at zero until a value is placed in it. 
A value can be entered in each box either 
as an item of input data or as a computa­
tional result. The current value in any 
box is the only value available at any 
time. 

Another decision is whether the entire 
contents of the master tape or only the 
coded machine instruction deck is avail­
able at computing time. When the en­
tire tape is available, the machine is able 
to print comments and other information 
appropriate to any situation. 

A minor detail (one which is probably 
assumed to be a fact) is the packing of 

high-speed storage in a unique fashion for 
each different problem. This utilizes the 
storage more advantageously and requires 
less reading of records from the master 
tape. 

The procedure involved in translating 
each sequence table to machine instruc­
tions is as follows. The sequence tables 
are scanned for the mathematical opera­
tion codes. Each different code is re­
corded once and a complete list made of 
all the operation codes referred to in the 
expressions for one problem. This list of 
codes is incorporated in an index of infor­
mation for library subprograms. A loca­
tion is assigned to each required sub­
program and this assigned location is 
stored in the index. When the location 
assignments are finished, this index is 
punched on cards. These cards are used 
during computing time by a relocation 
program to pack the specified library sub­
programs in working storage. The in­
formation in this index is also used to in­
sert the addresses for the machine instruc­
tions which are dependent on the actual 
location of each of the library sub­
programs. 

This index is now discarded and full 
attention is directed toward each sequence 
table and the preparation of the corre­
sponding machine instructions for that ex­
pression. The actual locations of the in­
put data and of the result data for each 
operation code are taken from the se­
quence table. These are stored as 
addresses for certain machine instruc­
tions of the library subprogram for that 
operation code. These machine instruc­
tions containing the references to data 
and to subprograms are packed adjacent 
to similar machine instructions for the 
previous operation code in the same table. 
This procedure of storing data locations as 
addresses of instructions and then packing 
the instructions continues for each opera­
tion code of a sequence table. The com­
plete set of machine instructions for the 
one expression is punched on cards in 
binary form to be used at computing time. 
The entire process is repeated for each 
subsequent table. When the punching 
for the last expression takes place, the 
automatic coding for the problem is 
finished. 

Computing Procedure 

The master tape is used during com­
puting time as it retains the bulk of the 
system instructions. The coded binary 
cards containing the instructions for a 
problem are used repeatedly with varied 
values of input data. The instruction 
cards are fed to the machine together with 

heading cards for identifying the results. 
At the start of computing time, the work­
ing storage is filled with those portions of 
the system needed to prepare the machine 
for computing. The library subprograms 
are packed adjacent to one another in 
working storage. An area originally set 
to zero is reserved for values of input data. 
The input data is read as decimal numbers 
and stored in the area reserved for the 
corresponding symbols. Only one value 
is saved for any one symbol at a time. 
A new value merely replaces the old value 
for the same symbol. After these pre­
liminary preparations are finished, a con­
tinuous cycle of machine action takes 
place. The computing always starts with 
the first expression and ends with the last 
expression. Normally, the expressions 
are executed consecutively but a TRN 
or USE symbol alters this normal routine. 
Loops for iteration or integration can be 
included between the first and last ex­
pression by means of the logical control 
symbols. All computing is performed in 
floating point arithmetic. The results 
are available for each case after executing 
the last expression for that case. When­
ever an intermediate result of computing 
is needed, it must be written as a separate 
expression. This cycle of reading input 
data, computing results, and printing or 
storing result data is broken when the 
problem is finished or when some inter­
ruption of machine action occurs. 

Computing Controls 

The following computing controls are 
necessary to increase the over-all useful­
ness and flexibility of a computing system. 

1. The choice of an expression to execute 
due to the result of a comparison. 

2. The systematic modification of input 
data when it varies by regular intervals. 

3. The selective printing of input data and 
computed results. 

4. The selective punching of input data 
and computed results. 

5. The printing of comments with perti­
nent information which describes errors or 
points out violations in usage of the library 
subprograms, the input data, the expres­
sions, or other machine instructions. 

6. The interruption of computing due to 
an emergency and the later restoration of 
data for continued computing from the 
point of interruption. 

7. A combination of the last two features; 
i.e., the printing of comments, the inter­
ruption of the computing, and the later 
restoration of the data for continued 
computing. 

An explanation and description of these 
controls clarifies the benefits which they 
add to an otherwise incomplete system. 
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COMPARISON AND SELECTION SAMPLE 03 EXPRESSIONS SAMPLE PROBLEM FOR RACAIC 

It is assumed that the expressions are 
written in the correct sequence for com­
puting, and that this same physical se­
quence is maintained throughout the 
problem. In other words, a reference to 
expression number 1 is always the first 
expression of the written set; and a refer­
ence to expression number 2 is always the 
second expression of the written set. 

Often, a comparison of two values or a 
selection of a specific expression is de­
sirable at some definite point in the com­
puting which upsets this normal sequence. 
Suppose that the following condition is 
necessary, "when the value for A is greater 
than the value for B, use equation number 
6 to compute the value for C; otherwise, 
use the next equation to compute the 
value for C." This selection is written as 
follows: 

WHN A GRT B USE 6 

A comparison of this type is one of the 
logical controls which can be handled by 
the system in the same manner as a math­
ematical equation. Therefore, insert this 
logical control in its proper sequence with 
the set of expressions. Each of the values 
to be compared can be computed prior to 
the comparison in the same expression. 
For example, 

WHN [A+R-T] GRT [SIN [X+Y]-W] 
USE 10 

MODIFICATION OF DATA 

Some mathematical problems are of the 
type similar to example 1, Y=e~xi sin 
CX, where Y is evaluated for all values 
of X from -0 .99 to +1.00 in intervals of 
0.01. Similar situations frequently arise 
and it seems appropriate for the machine 
to prepare its next new value of input 
whenever possible. The symbolic ex­
pression for this data preparation is 

MOD X+Kl LIM K2 

The value for the increment Kl is added 
to the value for X and the sum replaces 
X. This new value for X is compared 
with the limiting value for K2. If X is 
less than K2, the input data reading rou­
tine is by-passed at the beginning of the 
next case. If X is greater than K2, 
cards for input data are read by the ma­
chine at the beginning of the next case. 
The arithmetic operation attached to the 
increment can be + , —, •, or / . The 
data values can be positive or negative 
since the signs are tested to insure modi­
fication in the indicated direction. 

SELECTIVE PRINTING 

The BACAIC system did not initially 
include selective printing. This short-

1 MOD X +K1 LIM K2 
2 EXP $K3 - X.X » . SIN $C • X» * Y 
3 TAB X Y 

X VALUE Y VALUE 

THE ORIGINAL INPUT DATA FOR CASE NUMBER 1 

5.0 -1.1 Kl 0.2 K? 1.0 

THE SELECTED RESULTS ARE LISTED AS FOLLOWS. 

X VALUE 
•90000000-
70000000-
50000000-
30000000-

100000000-
100000000 
30000000 
50000000 
70000000 
90000000 
110000000 

8-
8-
8-
8-
9-
9-
8-
8-
8-
8-
8-

Y VALUE 
43486215 
21489906 
46609057-
91164176-
47465517-
47465517 
91164176 
46609057 
21489906-
43486215-
21039020-

8' 
8' 
8' 
8' 
8' 
8' 
8' 
8 
8' 
8 
8 

THE COMPUTING IS COMPLETED FOR ALL CASES OF DATA ENTERED IN THE MACHINE. 

Fig. 1 . A solution of a problem by the B A C A I C system 

coming was immediately realized when 
unnecessary printing of all results for a 
problem took place. This complete print­
ing of intermediate results was confusing 
and difficult to explain to inexperienced 
personnel. I t was also a needless waste 
of valuable machine time. The symbol 
chosen for selective printing is TAB. A 
reference to any data symbol is allowed 
with a maximum of six references per 
TAB. Each TAB symbol is written as 
a separate expression. The TAB cards 
follow the equation and control cards. 
When the computing is finished for one 
case of input data, the indicated values 
are selected and stored on a magnetic 
tape. For the following expression 

TAB A K5 7 R 19 42 

the values for A, K5, result 7, R, result 19 
and result 42 are selected and stored. 
The system then by-passes all printing 
routines at that time and continues to 
compute the next case of data. At the 
end of computing for a problem, the 
selected and stored data are listed. 
Multiple TAB expressions are permitted, 
but the printing for the first TAB is com­
pleted before any printing fpr the second 
TAB takes place. 

SELECTIVE PUNCHING 

Selective punching satisfies the need for 
a form of output which can be used as 
direct input to another machine program. 
In the BACAIC system, the data values 

are selected and stored the same as for 
selective printing. However, unlike TAB, 
this is an additional function of the system 
and does not replace another function. 
When the computing is finished for a 
problem, the selected and stored data 
values are punched on cards as decimal 
numbers. A maximum of six data refer­
ence symbols is allowed per PCH code. 
The PCH expression cards follow all other 
expression cards. 

DIAGNOSTIC ASSISTANCE 

There are two legitimate types of ma­
chine stops when BACAIC is controlling 
the machine: 

1. A STOP when the operation of the 
machine can be continued. 

2. A STOP when the operation of the 
machine cannot be continued. 

Each of these stops can be caused by 
keypunching errors, computing difficulties 
or machine malfunction. In order to 
distinguish which error caused the ma­
chine to stop, a "machine trail" is printed. 
This "machine trail" includes a pertinent 
comment to state the reason for stopping 
and to indicate corrective measures. It 
also includes the exact location in the 
memory unit of this unexecuted instruc­
tion, the number of the expression it was 
examining or computing, and the next 
instruction to execute after the corrective 
measures are accomplished. This last-
mentioned transfer instruction is impor-
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tant if the computing can be continued 
from that point. All of these are aids to 
locating an error or discrepancy and to 
provide a written record for future refer­
ence or study of the expressions and the 
program. An example of a "machine 
trail" is: 

INTERRUPTION OF COMPUTING 

Occasionally, the computation for 
multiple cases of data must be interrupted 
before the computing is finished for all the 
cases. The computing can be carried on 
at a later time if the values for the param­
eters, the constants, and the results in 
the memory can be restored to the identi­
cal values at the time of the interruption. 
When an interruption is necessary, a 
SENSE switch is turned ON while the 
machine is computing. The results for the 
current case of data are computed and 
printed' or stored. In those instances 
where selected values are stored for later 
printing or punching, this printing or 
punching of the accumulated data also 
takes place. The afore-mentioned perti­
nent data are punched in binary cards. 
These same data are printed to be used as 
a reference for the purpose of cross-check­
ing the data and results. When the time 
arrives to continue the computation, these 
binary cards are fed to the machine prior 
to the decimal input data for the un­
finished cases. A console SENSE switch is 
turned ON which controls the reading of 
binary data cards and storing them in the 
memory unit prior to computing the first 
expression. The contents of the memory 
unit are hereby restored to the identical 
values at the time of the interruption. 
The computing is then carried on as if no 
break had occurred. 

INTERRUPTION AFTER DIAGNOSTIC 

ASSISTANCE 

Sometimes a violation of a computing 
rule for a library subprogram is caused 
by an incorrect value of data. When this 
value is an incorrect input value, it prob­
ably is sufficient to note the error in the 
data, to print the current results at that 
computing point, and to start computing 
for the next case of data. Zero values are 
stored for that case of result values in 
problems which include a TAB or PCH 
expression. This prevents the possibility 
of printing or punching erroneous results 
unwittingly. 

When the incorrect value encountered 
is one which was developed in the com­
puting, an attempt to determine the cause 
of the error is recommended. The inter­
ruption control is activated by turning 
on a console SENSE switch. This causes 
all values in the reserved area to be printed 

as decimal numbers and to be punched as 
binary data. All data previously stored 
for the TAB or PCH are handled the 
same as for the end of computing. It is as­
sumed that the cause of the error can be 
detected after examining these printer 
decimal data. The binary values for 
these data are fed to the machine at a 
later time so that computing continues 
from the beginning of the next case. An 
example of an error which causes the 
machine to stop is shown in the follow­
ing: 

Computing Features 

The addition of various extra features 
contributes to the operating smoothness 
of any computing system. The ability 
directly to include empirical or other 
functions resulting from test result corre­
lation minimizes mathematical curve 
fitting and hence elapsed setup time. 
Complete machine identification of re­
sults saves clerical time and reduces 
errors resulting from misinterpretation of 
unidentified data. The originator of a 
problem needs assurance that the machine 
interprets his problem correctly. This is 
accomplished by the system comparing 
machine results with the results antici­
pated by him. Other features can be 
added as the need arises to expand a sys­
tem. 

TABLE LOOK-UP AND INTERPOLATION 

A table look-up routine is needed to 
satisfy all those conditions of data which 
cannot be easily expressed by equations. 
In many instances, this set of table data 
is prepared more quickly than one equa­

tion or multiple equations for the data. 
Tables can be altered from one computing 
time to the next when table data are part 
of the input data rather than part of the 
expressions. 

In cases where empirical data are 
used for parts of the computing, it is often 
advisable to resort to a table look-up 
and interpolation routine. At the present 
time, only linear interpolation is available 
in the BACAIC system. 

The values for the table look-up routine 
enter the machine in a manner similar to 
entering values of regular input data, 
except that the pairs of table data are 
stored consecutively. The first item of 
each pair of values must be in consecutive 
ascending or descending order. The 
maximum size for each table is arbitrarily 
limited to 400 half words or 100 pairs 
of values in the BACAIC system. The 
tables are stored as consecutive records on 
a magnetic drum whose limit of 4096 half 
words is also the limit of half words for all 
tables. The system prepares an index 
for locating each table whenever it is 
needed. 

Suppose that the first table on the drum 
is an X, Y, table such as: 

X Y 
2.0 20. 
3.0 30. 
5.0 50. 

Find the corresponding value for Y when 
X=3.72 and K3 = 1.0. The expression 
for BACAIC is as follows: 

A R G I T B L i T 3 * F 

The value stored in K3 is the number of 
the table used to find Y. This expression 
is interpreted to read "look up the argu­
ment X in the first table and substitute 
this value for F." Incidentally, the 
argument can be computed prior to the 
lookup routine in the same expression. 
For example, 

ARG[Z+F-SRT[SQR SIN .4+SQR 
COSi4]]TBL-Kl*F 

IDENTIFICATION OF RESULT VALUES 

Up to this time, little attention has been 
paid to identifying the quantities to be 
computed for each problem. During the 

54 TWO ADJACENT OPERATION CODES I N AN EXPRESSION 

DECIMAL NUMBERS OCTAL LOCATIONS 

CONTROL PROG. E X P . NUMBER STOPPED AT TRANSFER TO 
13 4 3752 1654 

11 F 0 0 7 THE ARGUMENT IS TOO LARGE. ADD MORE VALUES TO THE TABLE. 

DECIMAL NUMBERS OCTAL LOCATIONS 

CONTROL PROG. E X P . NUMBER • STOPPED AT TRANSFER TO 

3 1 5 3222 5136 

13 CASE RESULTS WRONG. PUSH START FOR N E X T CASE, OR SENSE 1 FOR I N T E R R U P T 

DECIMAL NUMBERS OCTAL LOCATIONS 

CONTROL PROG. E X P . NUMBER STOPPED AT TRANSFER TO 
3 1 5 6362 5136 
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JOB 7959 38 EXPRESSIONS DATA REDUCTION - FR 205 FOR WIND TUNNEL 

1 JK13 - K17./K18 
2 K13/SK13 - K17» 
3 $K13 + K17»/$K18 . SK13 - K17». 
4 $K17 + 1 . SQR El PWR 2 
5 F/4 
6 K3 . SM - Nt 
7 WHN 6 GRT K16 USE 9 
8 K16 - 6 * 6 
9 $J + K2 . SM - N»» • SKI + 6« 
10 9 + 5N - 5» . K9 + SM - 5« . K8 + SP - 5» . K7 
11 SRTSSSH/lt PWRJK17/2. - K17./1, 
12 K17 + 1 . SQR 11 
13 12 PWR 3 
14 SRTSG + K14» 
15 SRTSK13 . K11/K12. 
16 K4 . K5 . 15 . H . 11/S14 . 13» 
17 K17 + 1 . SQR E 
18 17/12 
19 18 PWR 3 
20 K4 . K5/K6 . H/F . 11/E • 19 
21 SK18/SK13 + K17»« PWR 3 
22 K10 - K7 
23 21 . 15 . 22 . L/16/14 
24 K22/S23.K21. 
25 SQR24.SQR$SQR24» + K19.SQR$SQR24t + K20.SQR24 - K21.23.24 + K22 * Q 
26 WHN 25 GRT K16 USE 28 
27 K16 - Q * Q 
28 WHN Q LES K26 USE 31 
29 24 - 25/$K23.SQR$SQR24».24 + K24.24.SQR24 + K25.24 - K21.23i * 24 
30 TRN 25 
31 K17 • 1 . SQR 24 
32 31 PWR 2 
33 L/32 
34 K17 + K13 • SQR 24 
35 K13 . SQR E . 20 . K6 
36 K13/K18 . 5 . SQR E 

01266 37 10 + 33,'34.2'2-' 5,'$22 + 35i 
38 37/536.K6t 

1 2 3 4 PO 6 
TEST 8 9 FG MN 12 
13 14 15 16 17 18 
19 AO/AL 21 A? - ACR 23 24 
25 26 27 28 29 30 
31 32 P2E 34 35 QO 
D INLET CD INLET 

THE ORIGINAL INPUT DATA FOR CASE NUMBER 1 

Kl .04 K2 23.39 K3 0.0 K4 0.983 
K5 6.1575 K6 4.891 . K7 0.3849 K8 1.3902 
K9 2.9732 K10 6.1575 Kll 32.174 K12 53.345 
K13 1.4 K14 459.0 K15 0.2 K16 0.0 
K17 1.0 K18 2,0 K19 15.0 K20 75.0 
K21 216.0 K22 125.0 K23 6.0 K24 60.0 
K25 150.0 K26 1.0 -4 A 114.0 B 20.0 
C 1.0 D 7025.0 E 1.99 F 14.76 
G 110. H 8.05 I 6.00 J -288.0 

+ L 9.99 M 6.80 N 3.30 P 7.41 

CASE NUMBER 1. THE COMPUTED RESULTS 

1 2 3 4 PO 6 
01266 20000000 8- 35000000 7- 30000000 7- 77037089 7- 19159602 7-

TEST 8 9 FG MN 12 
01266 9 82454000- 7- 47740751 7- 66182211 8- 108760170 

01266 13 14 J5 16 17 18 
01266 12864995 7- 23853721 6- 91890304 8- 96560392 8- 17920200 7- 16476804 

19 AO/AL 21 A2 - ACB 23 24 
01266 44732052 7- 100409966 8- 57870380 8- 57726000 7- 133139777 8- 50446148 

25 26 27 28 29 30 
01266 28 31 50446148 8- 25 

31 32 P2E 34 35 QO 
01266 105089628 8- 11897598 7- 83966528 7- 13562739 7- 27227557 (,- 53111758 

D INLET CD INLET 
01266 72863860 7- 28049417 8-

THE COMPUTING IS COMPLETED FOR ALL CASES OF DATA ENTERED IN THE MACHINE. 

Fig. 2 Actual data reduction problem and results 

computing of a problem, the only printed 
information other than the given expres­
sions and the input data is the computed 
results. When each result is printed, it is 
identified by a corresponding result 
column heading. 

8 -

8 -

The quantities to be computed are not 
the same for all problems, therefore, the 
result column headings are not the same 
for all problems. These headings must 
be introduced individually for each prob­
lem. They are separate from the ex­

pressions which they identify so that they 
do not interfere with the mathematical 
symbols and abbreviations and are not 
interpreted. These heading cards are fed 
to the machine in back of the expression 
cards. The headings are stored in the 
memory unit during the computing and 
each is available for printing whenever the 
corresponding value or column of values 
is printed. 

CHECKING OF SAMPLE DATA 

In many instances, it is desirable to 
check the accuracy of the machine-coded 
instructions before computing multiple 
cases of data. A satisfactory check of 
the accuracy is a comparison of a set of 
anticipated (hand-calculated) results with 
a set of machine computed results. This 
comparison of results checks the accuracy 
of the coded instructions for: 

1. The interpretation of the mathematical 
symbols. 

2. The machine-coding of the operations. 

3. Comprehensiveness of the library sub­
programs. 

A set of sample data includes a value for 
each data reference symbol in the ex­
pressions for the problem. I t also in­
cludes a value for the anticipated result 
to each expression. These anticipated 
results are fed to the machine in the same 
manner as input data. / 

The machine computed results for the 
algebraic equations are self-explanatory. 
The machine computed results for the 
logical controls of the BACAIC system 
are indicated as follows: 

The Machine Computed 
Expression Result 

WHN A GRT B 6 or the number of the next 
USE 6 consecutive expression 

WHN A LES B 8 or the number of the next 
USE 8 consecutive expression 

TRN 12 12 
ARG M TBL K\ * Y Y the interpolated value 

from the table to be 
substituted for Y 

M O D H + I L I M 7 . .[H + X] the incremented 
value for H 

The computing is started in the normal 
manner. The computed result for ex­
pression number 1 is compared with its 
anticipated result. If these two values 
are the same (slide-rule accuracy), ex­
pression number 2 is computed and its 
two results are compared, then number 3, 
etc. When the computing is finished for 
all the expressions the value for the ma­
chine computed result for each expression 
is printed. 
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If the two results (anticipated and com­
puted) for a comparison are not the same 
for an expression, both result values are 
immediately printed for that expression. 
Accompanying these values are appro­
priate comments and sufficient data to 
analyze the difference. These data in­
clude the values for the parameters, the 
values for the constants, and the values' 
for the computed results stored in the 
memory unit at that time. Usually this 
information is sufficient to isolate or to 
indicate where the discrepancy occurred. 

In order to locate more than one error 
during each check-out period, the com­
puting is continued without interruption. 
The value for the anticipated result for the 
questionable expression is substituted for 
the computed result for that expression, 
and the computing is continued for the 
next expression. This test and substitu­
tion is made so that an error in one expres­
sion at the beginning of a check cannot be 
reflected throughout the computation. If 
this substitution were not made, it is 
possible the results of the succeeding ex­
pressions might not compare with the 
anticipated hand-calculated results. 

If the difference (as explained) is the 
result, of an incorrectly keypunched ex­
pression card, a new program must be 
coded by the machine. After the ex­
pression cards are corrected as indicated, 
the coding phase is repeated. If there 
are only small differences between the 
anticipated results and the computed 
results, the computer accepts the coding 
for the expressions. 

When the reason for the difference be­
tween the expected and computed results 
is not obvious after examining the data 
print-out for the sample computation, the 
coding of the expression or expressions 
must be repeated. The reason for the 
error may be discovered if the 3-address 
Sequence Table is printed. This Se­
quence Table indicates the order of ma­
chine execution for each operation in the 
expression. The table is printed as fol­
lows: 

sequence table is not sufficient. In these 
cases the coding is repeated and the table 
of character codes for the expression is 
printed. This, however, is of very little 
use without an explanation of the char­
acter codes and is used only in extreme 
cases. 

When the results compare favorably for 
each expression, the instruction cards for 
the program are accepted as correct. 

Economic Aspects 

The BACAIC system is a completely 
automatic system for which the only re­
quired information for a new problem is: 

often results from vague or poorly written 
individual operating procedures. 

A vital point of interest to most com­
puter users concerns the amount of 
elapsed time from the outline of a problem 
to the time when the first production re­
sults are ready. Service to outside de­
partments based on overnight or 24-hour 
planning is probably the best that any 
installation can reasonably strive for. 
When using the BACAIC system for solu­
tion of a problem, this goal is within 
reason. An estimate of the time re­
quired to solve a special problem can be 
based on the approximate time required 
to perform the various steps as follows: 

Number of Expressions 10 Expr. 30 Expr. 50 Expr. 

1. Write the expressions and prepare the data 1 hr. 
2. Key punch the expressions and data '/* hr.. 
3. Machine code the expressions 2 min 
4. Machine compute one set of results 10 sec. 

2 hrs 4 hrs. 
1 hr V/t hrs. 
3 min 5 min. 

40 sec 1 min. 

1. The algebraic expressions with the 
result column headings. 

2. The decimal input data for each case. 

The operation of the machine is entirely 
dependent on the instructions contained in 
the system. A few of these are controlled 
by the ON or OFF position of some ex­
ternal switches on the console panel. 
However, the machine operator (not the 
originator of the problem) is responsible 
for the position of these switches. 

This system encourages the pro­
grammer to direct more attention toward 
the mathematical preparation of the ex­
pressions. This is a field in which he 
probably is better trained and more 
experienced than in the field of machine 
coding. More time can be spent con­
centrating on the phases of the problem 
which require human judgment and 
decision and less time on the tedious task 
of coding. Also, a minor detail which is 
quickly apparent after the first attempt 
with BACAIC, is the noticeable lack of 
careless errors. When a comment for a 

Sequence 
Number 

Address for the 
Left-hand 
Quantity 

Operation 
Code 

Address for the 
Right-hand 

Quantity 
Address for 

the Result 

The exact sequence of the machine opera­
tions can be examined and the reason for 
the error determined. A possible mis­
placed front or back bracket symbol can 
alter the correct sequence. 

There will be occasions when even this 

careless error is machine printed on the 
result sheet, a greater effort is made by the 
programmer to eliminate such errors be­
fore using the machine The standardiz­
ing of the procedure for the machine 
operator helps to avoid confusion which 

The time allotments for the various 
steps are generous and can be decreased by 
improving the pieces of the system and 
also by increasing the experience of the 
programmers for writing the expressions. 
Often, a different approach to the same 
problem results in fewer expressions and 
shorter machine time. 

It required approximately 18 man-
months to outline the plan, develop the 
ideas, establish the rules, write the in­
structions, and "debug" these instruc­
tions for the BACAIC system. These 
18 man-months were spread through an 
elapsed time of 1 year. At the end of the 
first 10 months, most of the system was in 
working order. The usual elusive errors 
and unreasonable reasoning had to be 
located and deleted. The majority of the 
subprograms were already available, and 
only had to be altered to include error 
comments rather than error stops. 

The writing of the instructions for this 
system is proving to be a never-ending 
process and will only cease when more 
advanced ideas are not forthcoming. It 
could easily be in a continuous state of 
change if all the ideas for improvement 
are accepted and included. 

The Adaptability of a Natural System 

A 1-to 2-hour informal discussion de­
scribing the general outline and opera­
tion of BACAIC is our method of intro­
ducing it to various engineering groups. 
In each case, this discussion is followed by 
the distribution of a written digest of the 
BACAIC system. This digest quickly 
reviews the preparatory steps for writing 
both the expressions and data and out-
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lines the operating steps for the machine 
procedure. Many of the rules for writing 
the expressions are merely a review of the 
fundamentals taught to a beginning 
student of algebra. These rules must be 
strictly adhered to so that both the pro­
grammer and the machine interpret each 
situation in the same manner. The talk 
accompanied by the digest proves to be 
sufficient information for a beginner. 
Naturally, there are individual questions 
at a later time. These questions usually 
concern the inclusion of additional fea­
tures to improve the system. All of these 
new ideas are welcome and whenever 
possible they are included immediately. 

VERY little experience has been accu­
mulated in the operation of a large 

commercial data-processing center. 
However, reflection on the subject has 

BRUSE MONCREIFF is with The Rand Corporation, 
Santa Monica, Calif. 

It is worth mentioning that most im­
provements and additions are readily in­
cluded. The BACAIC system was orig­
inally planned with that desired flexibility 
in mind. It is fairly easy to include an 
additional mnemonic symbol but, if the 
symbol is to refer to a library subprogram 
for its operation, the library subprogram 
must also be available. 

The specific information for each prob­
lem; i.e., the expressions and the input 
data, can be relayed by means of the tele­
phone from another department to the 
computing facility. This service is possi­
ble because of the standard procedure of 
the BACAIC system after the expressions 

led to the conclusion that, in the large-
scale operation of such a system, there 
will be a different emphasis from the one 
usually present in the operation of a large-
scale computing installation. The gen­
eral administrative problem in both cases 
is, of course, to keep both staff and equip-

are formulated. The availability of tele­
phone service tends to decrease the 
elapsed time for solving a problem, and 
also tends to increase the correctness, of 
the written expressions. Individual pride 
and reputation play an important part in 
reducing careless errors. Usually, the 
"debugging" of the expressions is possible 
in a few minutes prior to any machine 
operation. This fact is of tremendous 
advantage economically since without an 
automatic system considerable machine 
time is spent on check-out for each prob­
lem. 

Conclusions 

A natural computation language elimi­
nates the machine coding details cur­
rently responsible for the expenditure of 
large amounts of man and machine time. 
This language can include complete ma­
chine operating directions as well as the 
mathematical problem statements. The 
time now spent in digital computer prob­
lem preparation can be reduced by as 
much as 90 per cent through the use of 
machine self-coding systems. A funda­
mental computation language makes 
evolutionary machine changes possible 
without extensive personnel retraining. 
The man-hours required to construct an 
autocoding system are no more than those 
formerly spent on a subprogram library. 
The basic interpretive principles for an 
algebraic computing system are applicable 
to most present-day stored program 
digital computers. These principles can 
be incorporated in the hardware of future 
machines. 

ment operating efficiently. In the latter 
case, however, the emphasis is on new 
problem preparation, while in the case 
of the business application the emphasis 
must be on the efficient day-after-day 
operation of the same routines. The 
automatic supervisory routine described 
here is an attempt to solve those operat­
ing and programming problems peculiar 
to this "routine-dominated" situation. 

The excuse for solving these problems 
with a machine program, rather than 
by instructions to the operator, is 
twofold: 

1. The human operator cannot compete 
in spaed witii the machine in making routine 
decisions and in controlling the processing 
operations. 

Lincoln Laboratory Utility Program 

System 

H. D. BENNINGTON C. H. GAUDETTE 

THIS paper discusses a utility program 
system to assist the coding, check-out, 

maintenance, and documentation of large-

EC. D. BENNINGTON and C. H. GAUDBTTE are with 
the Lincoln Laboratory of the Massachusetts 
Institute of Technology, Lexington, Mass. 

scale control programs. A typical pro­
gram contains 50,000 instructions, 1,000,-
000 bits of data storage, and is prepared 
by a staff of 20 to 40 programmers, many 
relatively inexperienced. The utility 
system requires 25,000 registers. 

A n Automatic Supervisor for the 

IBM 702 

BRUSE MONCREIFF 
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