
that the computer receives all the data 
that have collected on a drum field be
tween readings, the normal procedure is to 
ask for more than expected. A disconnect 
pulse is automatically generated at the 
end of a complete drum revolution, and 
the number of words read is determined 
from the word counter contents. 

Some of the data sources have messages 
which contain more information than will 
fit into one drum register. To handle 
such information, another feature has 
been added to the drums associated with 
these sources: the drum has been divided 
into multiple word slots of adjacent reg
isters. For this application the only 
meaningful status bit is the one associated 
with the first register of a slot, and the 

AT the risk of being redundant, this 
paper will begin by stressing the 

growing importance of linear program
ming in business, industry, and govern
ment, as it is this importance which is its 
motivation. 

Primarily, it is the application of linear 
programming with which the paper will 
deal. Optimal planning of procedures 
has become a necessity, rather than a 
luxury, to present-day management. 
For example, one organization is presently 
saving an estimated $20,000 a day by 
optimal planning through linear program
ming procedures. Without too great a 
stretch of the imagination, the fascinating 
possibilities of linear programming linked 
with automation might be pictured. 
This could yield factories staffed with 
skilled technicians to feed data from 
changing markets into computers, which 
would then choose the optimal combina
tions of specifications and direct the 
machinery to produce under these new 
specifications. There are countless other 
such possibilities which could make effec
tive use of this powerful tool. 

R C. GTJNDERSON is with Remington Rand Univac, 
St. Paul, Minn. 

source identity is contained in the first 
register of a slot. The operations associ
ated with those drums are almost identical 
to those of the single register drums. 

In addition to the input buffer drums 
just described, there are output buffer 
drums which handle outgoing data. 
They operate in a similar, though inverse, 
manner to the input drums. 

Conclusion 

Fig. 4 illustrates a portion of the com
puter in the test cell. Because of its size 
and layout, it was not possible to obtain 
a picture of the whole computer. The 
unit in the foreground is the operator's 
maintenance console. It contains switches 

It is not intimated here that the use of 
linear approximations is a new addition 
to mathematics or economics. Rather, 
it is the wider acceptance of their use
fulness which is new. This, coupled with 
the fact that much work has been done in 
the past decade to develop a general 
formulation of the computational pro
cedures involved in linear programming, 
presents an exciting facet of computer 
application to users and manufacturers. 

I t is evident, then, that some consid
eration should be given to the require
ments of this problem in the building of 
our future computers. Essentially, the 
actual needs are for the most part familiar 
to the computer industry. Moreover, 
the logical properties of computers which 
this problem requires are extremely 
compatible with those desired by logicians. 

Let some of the qualities of this prob
lem which make it especially well adapted 
to high-speed digital computation be 
examined for a moment. First, since 
input and output time still lags behind 
computation time on all present-day 
large-scale computers, the relatively small 
amount of input, simple but voluminous 
computations and logical operations, and 
the small amount of output required, lend 

for manual data or instructioti entry and 
manual control, neon indicator lights for 
the major flip-flops and registers in the 
computer, visual and audible indicators 
for computer generated alarms, marginal 
checking controls and indicators, and 
power system and air-conditioning indi
cators. The cutout contains a view of 
one of the memory units. 

The computer, including the directly 
connected input-output equipment, con
tains approximately 12,500 tubes. I t has 
an execution time of 12 microseconds for 
arithmetic instructions, excluding "multi
ply" and "divide," which require 15.5 
and 53 microseconds, respectively. The 
prototype model has been in satisfactory 
operation for more than one year. 

themselves well to computers. Second, 
the iterative nature of the matrix manip
ulations is ideally suited to stored pro
gram computation. Finally, the ability 
to generalize the procedure, enabling 
the solution of a number of maximization 
or minimization problems containing 
dissimilar data, reduces the programming 
involved to mere data preparation. 

In the following, some of the essential 
physical properties of a computer which 
make handling linear programming prob
lems more efficient will be discussed. 
Operating on matrices by rows or columns 
necessitates much greater rapid access 
storage than an element by element 
operation would require. Present-day 
problems, which undoubtedly will soon be 
dwarfed, require a minimum of 4,000 
words, and would run much more effi
ciently with 8,000 to 12,000 words of 
rapid access storage. The so-called 
"housekeeping" operations required by 
the limitations of present storage systems 
increase running time by approximately 
one fifth. 

The Simplex method of solution, prob
ably the most efficient and most used 
linear programming procedure, requires 
access to the stored matrix of coefficients 
at random, as dictated by the computa
tion. Moreover, the generation of an 
additional vector during each major 
iteration necessitates a large-capacity 
secondary storage in the more sophisti
cated problems. There is, then the 
additional requirement of a large, random 
access, secondary storage media, prob
ably 15,000 to 30,000 words in size, 
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backed up by several hundred thousand 
words of magnetic tape storage. 

The scaling and storing of the matrix 
elements, the packed floating vector 
representation of numbers, and the 
necessity of shifting for multiplication 
and division of scalars suggests the im
portance of addressable shifting registers 
with the possibility of both left and right 
shifts. 

Since the solution process is iterative in 
nature, and since it is impossible to 
predict at any point the number of itera
tions necessary to reach a solution, it is 
essential that there be some facility for 
repeating general sequences. This may 
be accomplished by either or both of 
two methods, "b-boxing" or repetitive 
commands. Although b-boxes have some 
advantages, these seem outweighed by 
the versatility and flexibility of a com
mand structure which accomplishes the 
same and possibly more. For example, 
the entire linear programming procedure 
is cyclic in nature, and within this major 
cycle are contained several minor cycles, 
each of which has subcycles, and in some 
instances sub-subcycles. So the pos
sibility of an array of b-boxes approaching 
the number of rapid access storage cells 
required by the problem is presented. 
Furthermore, some thought should be 
given to the considerable cost of addi
tional hardware required by b-boxing. 

In addition to the afore-mentioned 
physical properties, some thought should 
be given to the command features most 
desirable for this problem. Let the 
implications of address structure be con
sidered first. It is quite evident that 2-
address logic has distinct advantages over 
single-address logic in so far as the mathe
matical operations are concerned. A 
significant reduction in the number of 
commands required to perform the arith
metic can be realized by combining 
several steps in one command. For 
example, in forming the sum of two 
vectors, it is necessary to set a component 
of one of the vectors in the sum register, 
add the corresponding component of the 
second vector to it, and store the result. 
With single-address logic, this would re
quire three operations, but with 2-address 
logic the procedure may be accomplished 
by a single command. Similarly, in 
forming the scalar product of two vectors, 
it is possible with a 2-address structure to 
form the product of two corresponding 
vector components and add the result to 
the product of the preceding components 
in a single operation. In fact, by proper 
modification, the entire scalar product 
may be performed by a single command. 
The arithmetic instructions present one 

area of command structure where 3-
address logic might be contemplated. 

Evidence indicates that 2-address logic 
is also desirable for the logical operations 
required by the procedure. Although a 
certain amount of the "housekeeping" 
operations could be done rather efficiently 
by a single-address scheme, the extreme 
versatility of the 2-way conditional jumps 
allows a much more general approach to 
the problem with less housekeeping. 
Furthermore, the logical sums and prod
ucts which prove very useful in the matrix 
and vector manipulations require two 
addresses to make their operation feas
ible. In no instance does it appear that 
3-address logic could increase efficiency 
to any great extent. 

In keeping with the logical structure of 
commands, the actual properties of the 
command for which linear programming, 
or any type of problem involving matrix 
or vector arithmetic, has a particular 
need will also be considered. As indi
cated previously, a command which may 
be easily modified is necessary to perform 
the sum of two vectors most efficiently. 
This command should be such that the 
sum of two corresponding components 
may be formed and stored in one opera
tion. Similarly the scalar product of two 
vectors should be performed in such a 
manner that the procedure may be 
generalized without extensive house
keeping. It is quite evident that the 
more instructions that are required to 
perform these general and often used 
operations, the more presetting or re
setting that becomes necessary. As a 
result of these first two arithmetic opera
tions, a third requirement is evidenced, 
namely a method to rescale the resultant 
vector and scalar to their proper positions; 
this requires a command which will ex
plore the resultant for the first significant 
digit of each component, and indicate in 
which position this digit appears. 

Before investigating the properties of 
the logical commands required for an 
efficient linear programming procedure, it 
is necessary to, have some understanding 
of the nature of the linear systems in
volved, and the methods of representing 
the numbers occurring in these systems. 
The matrix of coefficients of the original 
systems are generally rectangular, with a 
high incidence of zero coefficients. For 
greatest efficiency in storage and speed of 
arithmetic operations, some method of 
suppressing these zero elements seems to 
be indicated. For, as the user of any 
linear program gains experience and con
fidence, the dimensions of the systems in
crease to the point where time and stor
age space are of very real importance. 

Therefore, the problem of developing 
some form of number representation 
which will suppress zero coefficients and 

- still preserve the significance of the non
zero elements of the matrix is presented. 

Both of these may be accomplished by 
a type of floating point representation 
known as floating vector. This system 
allows 32 bits of significance plus a sign 
bit, and a characteristic or scale factor of 
15 bits for each column of the matrix. 
Furthermore, there is no need for addi
tional floating point arithmetic hardware, 
since each vector is operated on as a unit 
using the normal arithmetic operations, 
which are generally faster and more effi
cient. The use of such a representation is 
contingent of course upon the existence of 
a double length accumulator or sum regis
ter to prevent overflow in the scalar prod
uct of two vectors. 

By giving each vector one, or several, 
keywords, which have digits indicating 
the position of nonzero components and 
zeros indicating the position of zero com
ponents of the vector, the significant ele
ments only may be stored and all zero 
elements of the matrix ignored. For 
example, the vector 

X = (3, 0, 1, 0, 0, 5) (1) 

would have the binary keyword 

101001 (2) 

and the vector would be stored thus: 

Binary 
Location Representation 

A . 101001 
A + 1 000011 
A + 2 000001 
A + 3 000101 (3) 

By a representation of this sort, both in
creased speed and reduced storage may be 
accomplished without losing the signifi
cance of the numbers involved. 

The question now arises as to how this 
floating vector notation may most effi
ciently be used. First, the numbers must 
be packed and the vector keyword formed. 
To do this, each component of the vector 
must be tested for significance, a digit 
inserted in the keyword in the proper 
position, and the significant components 
stored. Second, there must be some 
method of interpreting the keyword in 
order to unpack the vector for some part 
of the procedure such as the vector sum. 
Finally, to reduce the amount of time 
consumed in forming the countless num
bers of scalar products, the corresponding 
significant components of two vectors 
must be predetermined to preclude the 
possibility of multiplication by zero. 
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Again, caution should be exercised in de
termining the numbers of commands 
necessary to perform these operations so 
that a generalization of the procedure will 
not entail too extensive housekeeping. 

The first of these logical problems may 
be solved by a number of different ap
proaches. However, the second problem, 
the interpretation of the keyword for 
unpacking, requires an instruction which 

FRED GRUENBERGER 

IN discussing the use of a variable-word-
length computer, this paper will be 

restricted entirely to past history; that is, 
ideas and practices that are actually in 
operation. This implies, of course, that 
only the 702 will be talked about and the 
implied comparison to fixed-word-length 
machines is to a machine like the 701. 

FRED GRUENBBRGER is with the General Electric 
Company, Richland, Wash., and E. H. COUGHRAN 
is with the International Business Machines Cor
poration, Richland, Wash. 

examines the word digit by digit and con
trols the storing of the significant com
ponents in their proper position in the 
vector, suggesting a type of conditional 
jump command. The zero suppression 
multiply may be accomplished by forming 
the logical product of the keywords of two 
vectors, forming a new keyword which 
would control the multiply sequence ex
actly as the unpacking procedure. To 

E. H. COUGHRAN 

At Hanford, Wash., the 702 has been 
used for scientific computing, with what is 
regarded as considerable success, since its 
installation in June 1955. The percent
age of available machine time devoted to 
numerical analysis has steadily increased, 
standing currently at about 20 per cent. 
This is not to say that mathematics is 
taking time away from commercial work, 
but rather reflects the increase in effi
ciency on commercial problems and a 

illustrate the advantage of this operation, 
let it be supposed there is the vector, 

y = (2. 1,0, 4, 0,0) (4) 

with the binary keyword, 

110100 (5) 

and suppose forming the scalar product 
of y and the vector x given by equation 
(1) is desired. This would be accom
plished by forming the logical product of 
the keywords (2) and (5) 

(2) 101001 
(5) 110100 (6) 

100000 

indicating that the only corresponding 
significant components of the two vectors 
are the first, and the scalar product would 
then involve only a single multiplication 
rather than six multiplications and five 
additions. 

I t is estimated that a computer de
signed with all of the afore-mentioned 
qualities would reduce the running time 
of present procedures by as much as a 
factor of ten. Since most of the require
ments of this problem are compatible 
with many other types of problems, and 
furthermore, since many of these features 
may be found on existing machines, such 
as the Univac Scientific, it is the conten
tion in this paper that all of these require
ments should be fully investigated so that 
they may be incorporated in the future 
machines of this industry. 

general increase in mathematical problems 
as time goes by. Scientific computing has 
covered a wide gamut of problems, in
cluding linear programming, numerical 
integration, differential equations, and 
many complicated formula evaluations, 
as well as work on reactor data and 
weather data which might be called 
scientific data processing. 

This work demands one large machine 
to serve for both commercial and scientific 
problems. This is a common situation, 
and perhaps any machine would suffice; 
it has been pointed out that through an 
automatic programming system, any 
machine can be made to appear like any 
other. Indeed, most programming is 
done with reference to the automatic 
programming system rather than the 
particular machine. The main conten
tion here is that a variable-word-length 

Considerations in Making a Data 

Gathering System Compatible 

B. L. WADDELL 

THE paper discusses the design prob
lems facing the data systems engi

neers who are required to produce a 
data-collection system that will be able 
to enter a computer easily. Some 
empirical formulas are presented with a 
discussion of how to use these formulas. 

B. L. WADDELL is with G. M. Gianninni and 
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The many recording tools and their 
application to data systems which are 
being prepared for entry into computers 
are described with a discussion of the 
place of each recording device. The 
second section of the paper is a critical 
analysis of four data recording or gather
ing systems designed to go directly to a 
digital computer. 

Using a Variable-Word-Length 

Computer for Scientific Calculation 
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