
that the computer receives all the data
that have collected on a drum field be
tween readings, the normal procedure is to
ask for more than expected. A disconnect
pulse is automatically generated at the
end of a complete drum revolution, and
the number of words read is determined
from the word counter contents.

Some of the data sources have messages
which contain more information than will
fit into one drum register. To handle
such information, another feature has
been added to the drums associated with
these sources: the drum has been divided
into multiple word slots of adjacent reg
isters. For this application the only
meaningful status bit is the one associated
with the first register of a slot, and the

AT the risk of being redundant, this
paper will begin by stressing the

growing importance of linear program
ming in business, industry, and govern
ment, as it is this importance which is its
motivation.

Primarily, it is the application of linear
programming with which the paper will
deal. Optimal planning of procedures
has become a necessity, rather than a
luxury, to present-day management.
For example, one organization is presently
saving an estimated $20,000 a day by
optimal planning through linear program
ming procedures. Without too great a
stretch of the imagination, the fascinating
possibilities of linear programming linked
with automation might be pictured.
This could yield factories staffed with
skilled technicians to feed data from
changing markets into computers, which
would then choose the optimal combina
tions of specifications and direct the
machinery to produce under these new
specifications. There are countless other
such possibilities which could make effec
tive use of this powerful tool.

R C. GTJNDERSON is with Remington Rand Univac,
St. Paul, Minn.

source identity is contained in the first
register of a slot. The operations associ
ated with those drums are almost identical
to those of the single register drums.

In addition to the input buffer drums
just described, there are output buffer
drums which handle outgoing data.
They operate in a similar, though inverse,
manner to the input drums.

Conclusion

Fig. 4 illustrates a portion of the com
puter in the test cell. Because of its size
and layout, it was not possible to obtain
a picture of the whole computer. The
unit in the foreground is the operator's
maintenance console. It contains switches

It is not intimated here that the use of
linear approximations is a new addition
to mathematics or economics. Rather,
it is the wider acceptance of their use
fulness which is new. This, coupled with
the fact that much work has been done in
the past decade to develop a general
formulation of the computational pro
cedures involved in linear programming,
presents an exciting facet of computer
application to users and manufacturers.

I t is evident, then, that some consid
eration should be given to the require
ments of this problem in the building of
our future computers. Essentially, the
actual needs are for the most part familiar
to the computer industry. Moreover,
the logical properties of computers which
this problem requires are extremely
compatible with those desired by logicians.

Let some of the qualities of this prob
lem which make it especially well adapted
to high-speed digital computation be
examined for a moment. First, since
input and output time still lags behind
computation time on all present-day
large-scale computers, the relatively small
amount of input, simple but voluminous
computations and logical operations, and
the small amount of output required, lend

for manual data or instructioti entry and
manual control, neon indicator lights for
the major flip-flops and registers in the
computer, visual and audible indicators
for computer generated alarms, marginal
checking controls and indicators, and
power system and air-conditioning indi
cators. The cutout contains a view of
one of the memory units.

The computer, including the directly
connected input-output equipment, con
tains approximately 12,500 tubes. I t has
an execution time of 12 microseconds for
arithmetic instructions, excluding "multi
ply" and "divide," which require 15.5
and 53 microseconds, respectively. The
prototype model has been in satisfactory
operation for more than one year.

themselves well to computers. Second,
the iterative nature of the matrix manip
ulations is ideally suited to stored pro
gram computation. Finally, the ability
to generalize the procedure, enabling
the solution of a number of maximization
or minimization problems containing
dissimilar data, reduces the programming
involved to mere data preparation.

In the following, some of the essential
physical properties of a computer which
make handling linear programming prob
lems more efficient will be discussed.
Operating on matrices by rows or columns
necessitates much greater rapid access
storage than an element by element
operation would require. Present-day
problems, which undoubtedly will soon be
dwarfed, require a minimum of 4,000
words, and would run much more effi
ciently with 8,000 to 12,000 words of
rapid access storage. The so-called
"housekeeping" operations required by
the limitations of present storage systems
increase running time by approximately
one fifth.

The Simplex method of solution, prob
ably the most efficient and most used
linear programming procedure, requires
access to the stored matrix of coefficients
at random, as dictated by the computa
tion. Moreover, the generation of an
additional vector during each major
iteration necessitates a large-capacity
secondary storage in the more sophisti
cated problems. There is, then the
additional requirement of a large, random
access, secondary storage media, prob
ably 15,000 to 30,000 words in size,

Computer Design to Facilitate Linear

Programming

R. C. GUNDERSON

Gunderson—Computer Design to Facilitate Linear Programming 75

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1455410.1455437&domain=pdf&date_stamp=1956-02-07

backed up by several hundred thousand
words of magnetic tape storage.

The scaling and storing of the matrix
elements, the packed floating vector
representation of numbers, and the
necessity of shifting for multiplication
and division of scalars suggests the im
portance of addressable shifting registers
with the possibility of both left and right
shifts.

Since the solution process is iterative in
nature, and since it is impossible to
predict at any point the number of itera
tions necessary to reach a solution, it is
essential that there be some facility for
repeating general sequences. This may
be accomplished by either or both of
two methods, "b-boxing" or repetitive
commands. Although b-boxes have some
advantages, these seem outweighed by
the versatility and flexibility of a com
mand structure which accomplishes the
same and possibly more. For example,
the entire linear programming procedure
is cyclic in nature, and within this major
cycle are contained several minor cycles,
each of which has subcycles, and in some
instances sub-subcycles. So the pos
sibility of an array of b-boxes approaching
the number of rapid access storage cells
required by the problem is presented.
Furthermore, some thought should be
given to the considerable cost of addi
tional hardware required by b-boxing.

In addition to the afore-mentioned
physical properties, some thought should
be given to the command features most
desirable for this problem. Let the
implications of address structure be con
sidered first. It is quite evident that 2-
address logic has distinct advantages over
single-address logic in so far as the mathe
matical operations are concerned. A
significant reduction in the number of
commands required to perform the arith
metic can be realized by combining
several steps in one command. For
example, in forming the sum of two
vectors, it is necessary to set a component
of one of the vectors in the sum register,
add the corresponding component of the
second vector to it, and store the result.
With single-address logic, this would re
quire three operations, but with 2-address
logic the procedure may be accomplished
by a single command. Similarly, in
forming the scalar product of two vectors,
it is possible with a 2-address structure to
form the product of two corresponding
vector components and add the result to
the product of the preceding components
in a single operation. In fact, by proper
modification, the entire scalar product
may be performed by a single command.
The arithmetic instructions present one

area of command structure where 3-
address logic might be contemplated.

Evidence indicates that 2-address logic
is also desirable for the logical operations
required by the procedure. Although a
certain amount of the "housekeeping"
operations could be done rather efficiently
by a single-address scheme, the extreme
versatility of the 2-way conditional jumps
allows a much more general approach to
the problem with less housekeeping.
Furthermore, the logical sums and prod
ucts which prove very useful in the matrix
and vector manipulations require two
addresses to make their operation feas
ible. In no instance does it appear that
3-address logic could increase efficiency
to any great extent.

In keeping with the logical structure of
commands, the actual properties of the
command for which linear programming,
or any type of problem involving matrix
or vector arithmetic, has a particular
need will also be considered. As indi
cated previously, a command which may
be easily modified is necessary to perform
the sum of two vectors most efficiently.
This command should be such that the
sum of two corresponding components
may be formed and stored in one opera
tion. Similarly the scalar product of two
vectors should be performed in such a
manner that the procedure may be
generalized without extensive house
keeping. It is quite evident that the
more instructions that are required to
perform these general and often used
operations, the more presetting or re
setting that becomes necessary. As a
result of these first two arithmetic opera
tions, a third requirement is evidenced,
namely a method to rescale the resultant
vector and scalar to their proper positions;
this requires a command which will ex
plore the resultant for the first significant
digit of each component, and indicate in
which position this digit appears.

Before investigating the properties of
the logical commands required for an
efficient linear programming procedure, it
is necessary to, have some understanding
of the nature of the linear systems in
volved, and the methods of representing
the numbers occurring in these systems.
The matrix of coefficients of the original
systems are generally rectangular, with a
high incidence of zero coefficients. For
greatest efficiency in storage and speed of
arithmetic operations, some method of
suppressing these zero elements seems to
be indicated. For, as the user of any
linear program gains experience and con
fidence, the dimensions of the systems in
crease to the point where time and stor
age space are of very real importance.

Therefore, the problem of developing
some form of number representation
which will suppress zero coefficients and

- still preserve the significance of the non
zero elements of the matrix is presented.

Both of these may be accomplished by
a type of floating point representation
known as floating vector. This system
allows 32 bits of significance plus a sign
bit, and a characteristic or scale factor of
15 bits for each column of the matrix.
Furthermore, there is no need for addi
tional floating point arithmetic hardware,
since each vector is operated on as a unit
using the normal arithmetic operations,
which are generally faster and more effi
cient. The use of such a representation is
contingent of course upon the existence of
a double length accumulator or sum regis
ter to prevent overflow in the scalar prod
uct of two vectors.

By giving each vector one, or several,
keywords, which have digits indicating
the position of nonzero components and
zeros indicating the position of zero com
ponents of the vector, the significant ele
ments only may be stored and all zero
elements of the matrix ignored. For
example, the vector

X = (3, 0, 1, 0, 0, 5) (1)

would have the binary keyword

101001 (2)

and the vector would be stored thus:

Binary
Location Representation

A . 101001
A + 1 000011
A + 2 000001
A + 3 000101 (3)

By a representation of this sort, both in
creased speed and reduced storage may be
accomplished without losing the signifi
cance of the numbers involved.

The question now arises as to how this
floating vector notation may most effi
ciently be used. First, the numbers must
be packed and the vector keyword formed.
To do this, each component of the vector
must be tested for significance, a digit
inserted in the keyword in the proper
position, and the significant components
stored. Second, there must be some
method of interpreting the keyword in
order to unpack the vector for some part
of the procedure such as the vector sum.
Finally, to reduce the amount of time
consumed in forming the countless num
bers of scalar products, the corresponding
significant components of two vectors
must be predetermined to preclude the
possibility of multiplication by zero.

76 Gunderson—Computer Design to Facilitate Linear Programming

Again, caution should be exercised in de
termining the numbers of commands
necessary to perform these operations so
that a generalization of the procedure will
not entail too extensive housekeeping.

The first of these logical problems may
be solved by a number of different ap
proaches. However, the second problem,
the interpretation of the keyword for
unpacking, requires an instruction which

FRED GRUENBERGER

IN discussing the use of a variable-word-
length computer, this paper will be

restricted entirely to past history; that is,
ideas and practices that are actually in
operation. This implies, of course, that
only the 702 will be talked about and the
implied comparison to fixed-word-length
machines is to a machine like the 701.

FRED GRUENBBRGER is with the General Electric
Company, Richland, Wash., and E. H. COUGHRAN
is with the International Business Machines Cor
poration, Richland, Wash.

examines the word digit by digit and con
trols the storing of the significant com
ponents in their proper position in the
vector, suggesting a type of conditional
jump command. The zero suppression
multiply may be accomplished by forming
the logical product of the keywords of two
vectors, forming a new keyword which
would control the multiply sequence ex
actly as the unpacking procedure. To

E. H. COUGHRAN

At Hanford, Wash., the 702 has been
used for scientific computing, with what is
regarded as considerable success, since its
installation in June 1955. The percent
age of available machine time devoted to
numerical analysis has steadily increased,
standing currently at about 20 per cent.
This is not to say that mathematics is
taking time away from commercial work,
but rather reflects the increase in effi
ciency on commercial problems and a

illustrate the advantage of this operation,
let it be supposed there is the vector,

y = (2. 1,0, 4, 0,0) (4)

with the binary keyword,

110100 (5)

and suppose forming the scalar product
of y and the vector x given by equation
(1) is desired. This would be accom
plished by forming the logical product of
the keywords (2) and (5)

(2) 101001
(5) 110100 (6)

100000

indicating that the only corresponding
significant components of the two vectors
are the first, and the scalar product would
then involve only a single multiplication
rather than six multiplications and five
additions.

I t is estimated that a computer de
signed with all of the afore-mentioned
qualities would reduce the running time
of present procedures by as much as a
factor of ten. Since most of the require
ments of this problem are compatible
with many other types of problems, and
furthermore, since many of these features
may be found on existing machines, such
as the Univac Scientific, it is the conten
tion in this paper that all of these require
ments should be fully investigated so that
they may be incorporated in the future
machines of this industry.

general increase in mathematical problems
as time goes by. Scientific computing has
covered a wide gamut of problems, in
cluding linear programming, numerical
integration, differential equations, and
many complicated formula evaluations,
as well as work on reactor data and
weather data which might be called
scientific data processing.

This work demands one large machine
to serve for both commercial and scientific
problems. This is a common situation,
and perhaps any machine would suffice;
it has been pointed out that through an
automatic programming system, any
machine can be made to appear like any
other. Indeed, most programming is
done with reference to the automatic
programming system rather than the
particular machine. The main conten
tion here is that a variable-word-length

Considerations in Making a Data

Gathering System Compatible

B. L. WADDELL

THE paper discusses the design prob
lems facing the data systems engi

neers who are required to produce a
data-collection system that will be able
to enter a computer easily. Some
empirical formulas are presented with a
discussion of how to use these formulas.

B. L. WADDELL is with G. M. Gianninni and
Company, Inc., Pasadena, Calif.

The many recording tools and their
application to data systems which are
being prepared for entry into computers
are described with a discussion of the
place of each recording device. The
second section of the paper is a critical
analysis of four data recording or gather
ing systems designed to go directly to a
digital computer.

Using a Variable-Word-Length

Computer for Scientific Calculation

Gruenberger, Coughran—Using a Variable-Word-Length Computer 77

