Enforcing Safety and Consistency
Constraints in Policy-Based
Authorization Systems

ADAM J. LEE
University of Pittsburgh
and

MARIANNE WINSLETT
University of lllinois at Urbana-Champaign

In trust negotiation and other forms of distributed proving, networked entities cooperate to form
proofs of authorization that are justified by collections of certified attribute credentials. These
attributes may be obtained through interactions with any number of external entities and are
collected and validated over an extended period of time. Although these collections of creden-
tials in some ways resemble partial system snapshots, current trust negotiation and distributed
proving systems lack the notion of a consistent global state in which the satisfaction of authoriza-
tion policies should be checked. In this article, we argue that unlike the notions of consistency
studied in other areas of distributed computing, the level of consistency required during policy
evaluation is predicated solely upon the security requirements of the policy evaluator. As such,
there is little incentive for entities to participate in complicated consistency preservation schemes
like those used in distributed computing, distributed databases, and distributed shared memory.
We go on to show that the most intuitive notion of consistency fails to provide basic safety guar-
antees under certain circumstances and then propose several more refined notions of consistency
that provide stronger safety guarantees. We provide algorithms that allow each of these refined no-
tions of consistency to be attained in practice with minimal overheads and formally prove several
security and privacy properties of these algorithms. Lastly, we explore the notion of strategic
design trade-offs in the consistency enforcement algorithm space and propose several modifica-

This research was supported by the NSF under grants 1IS-0331707, CNS-0325951, and CNS-
0524695 and by Sandia National Laboratories under grant number DOE SNL 541065. A.J. Lee
was also supported in part by a Motorola Center for Communications graduate fellowship.

A preliminary version of this article appears in the Proceedings of the 13th ACM Conference on
Computer and Communications Security [Lee and Winslett 2006].

This work was carried out while A.J. Lee was at the University of Illinois at Urbana-Champaign.
Authors’ addresses: A. J. Lee, Department of Computer Science, University of Pittsburgh, 210
S. Bouquet St., Pittsburgh, PA 15260; email: adamlee@cs.pitt.edu; M. Winslett, Department of
Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin Ave., Urbana, IL
61801; email: winslett@cs.uiuc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credits is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.

© 2008 ACM 1094-9224/2008/12-ARTS8 $5.00 DOI: 10.1145/1455518.1455520.
http://doi.acm.org/10.1145/1455518.1455520.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8:2 . A. J. Lee and M. Winslett

tions to the core algorithms presented in this article. These modifications enhance the privacy-
preservation or completeness properties of these algorithms without altering the consistency
constraints that they enforce.

Categories and Subject Descriptors: C.2.4 [Distributed Systems]: Distributed applications;
D.4.6 [Operating Systems]: Security and Protection—access controls, authentication; K.6.5
[Management of Computing and Information Systems]: Security and Protection

General Terms: Security

Additional Key Words and Phrases: consistency, credentials, distributed proving, trust
negotiation

ACM Reference Format:

Lee, A. J. and Winslett, M. 2008. Enforcing safety and consistency constraints in policy-based
authorization systems. ACM Trans. Inf. Syst. Secur. 12, 2, Article 8 (December 2008), 33 pages.
DOI = 10.1145/1455518.1455520. http://doi.acm.org/10.1145/1455518.1455520.

1. INTRODUCTION

It is difficult to design flexible and secure authorization systems for envi-
ronments in which trust relationships cannot be determined a priori. Two
proposed authorization techniques for these types of environments are trust
negotiation [Becker and Sewell 2004; Bertino et al. 2004; Koshutanski and
Massacci 2005; Li et al. 2005; Li and Michelle 2003; Winsborough and Li
2002; Winslett et al. 2002; and Yu et al. 2003] and distributed proving [Bauer
et al. 2005; Minami and Kotz 2006; and Winslett et al. 2005]. In these types of
systems, participants collect certified credentials that describe their attributes,
environmental conditions, and other state information from any number of
external entities. These credentials can then be used when attempting to sat-
isfy the authorization policies protecting sensitive resources in the system.

To some extent, the collection of credentials used to satisfy a given autho-
rization policy acts as a partial snapshot of the system within which the pol-
icy is evaluated. This is an abuse of terminology, however, as this “snapshot”
is collected over a variable-length window of time and thus may not actually
represent a system state that ever existed; to avoid confusion, in this article we
will refer to these collections of credentials as views. Clearly, the correctness
of an authorization decision depends on the validity and stability of the view
used during policy evaluation. If we assume that each credential is stable
(i.e., that the assertion stated in the credential remains true until its preor-
dained expiration time) then policy evaluation can be reduced to the problem
of stable predicate evaluation on distributed snapshots [Chandy and Lamport
1985]. However, because it is possible for credentials to become invalidated
prematurely, this somewhat naive model of policy evaluation can erode the
safety guarantees of the underlying authorization system. That is, the satis-
faction of a policy in a naive decentralized authorization model does not nec-
essarily imply that all credentials used as evidence to satisfy the policy were
ever simultaneously valid, let alone simultaneously valid at the time when the
policy was determined to be satisfied. This is in stark contrast to central-
ized authorization systems in which a more transactional semantics for policy

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8:3

Bob GeoTech

_______________ [
E PetrolOps group credential issued E

Access request
QilCorp? PetrolOps?
Purchase > $10k?
PetrolOps and OilCorp credentials.
BBB?

A4

PetrolOps and OilCorp credentials
validated

PetrolOps group credential revoked .
Finance credential issued E
Purchase > $10k credential issued '

Access granted

Fig. 1. A graphical representation of Bob’s interaction with GeoTech.

evaluation can be easily enforced. This relaxation of the semantics of policy
satisfaction is especially worrisome in trust negotiation and distributed prov-
ing protocols, as interactions in these types of systems typically involve multi-
ple rounds of interaction and credential exchange. Consider the following two
examples of the problems that can be caused by unstable credentials.

Example 1. Figure 1 illustrates one case in which inconsistent credential
state can cause undesirable decisions to be made. In this scenario, Bob works
in the finance department of Acme Petroleum Corporation (APeC), though he
also spends part of his time on loan to the Petroleum Operations group helping
manage their operational budget. While consulting for the operations group,
Bob is given a PetrolOps group credential to allow him basic access to the op-
erations group’s resources. To speed up some of his research, Bob wishes to ac-
cess an online geological database provided by GeoTech, a third-party vendor.
GeoTech allows operations group members at Department of Energy certified
oil companies who are authorized to make purchases of over $10,000—which
is the cost of a department subscription to the database—trial access to their
service. Bob submits his PetrolOps group credential and APeC’s QilCorp cre-
dential to GeoTech along with a policy stating that it must provide proof of
membership in the Better Business Bureau to see his purchase authorization.
GeoTech verifies Bob’s PetrolOps credential and APeC’s OilCorp credential and
then sends Bob its BBB credential. As a consultant to the operations group,
Bob is not authorized to make purchases of more than $200, so he should not
be able to satisfy this policy. However, Bob can make purchases of this size for

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 4 . A. J. Lee and M. Winslett

Alice CDC

Access request >
Student? U.S. Citizen? NSF
-sponsored project?
Student and ProjectSpread >

credentials. Privacy Policy?

Student and ProjectSpread |
credentials validated .

ProjectSpread credential

Privacy policy Ked
revoke

reviewed

Access granted

Fig. 2. A graphical representation of Alice’s interaction with the CDC.

the finance group. Bob then activates his Finance group credential (which in-
validates his PetrolOps credential) and obtains a certified Purchase attestation
authorizing him to make purchases of up to $10,000 dollars, which he then
submits to GeoTech. GeoTech verifies this credential and grants Bob access to
the database. The inconsistent system view used by the database allows Bob
to convince GeoTech that he is an operations group member who is allowed to
make purchases of over $10,000 when he is actually either an operations group
member or a finance group member who is allowed to make purchases of over
$10,000.

Example 2. Figure 2 shows how premature credential revocations can lead
to inconsistencies that alter the expected semantics of policy satisfaction.
Alice is a Ph.D. student studying infectious diseases at State University. As
part of her research, Alice wishes to access an outbreak incident database
hosted by the Center for Disease Control. The CDC requires that academic
users of this data be U.S. citizens and members of an NSF-sponsored epidemi-
ology project. To this end, Alice discloses her Student credential issued by State
University and her ProjectSpread credential issued by the NSF. Alice considers
her citizenship private, however, and requires that she first receive a certified
privacy policy that she manually reviews prior to releasing her citizenship cre-
dential. Alice submits a policy to this effect to the CDC. The CDC verifies
Alice’s Student and ProjectSpread credentials and then discloses its certified
PrivacyPolicy to Alice. Just then, Alice’s research adviser calls and notifies
her that effective immediately, she will no longer be supported by the Spread

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8:5

project; the NSF then revokes her ProjectSpread credential. Alice then reviews
the PrivacyPolicy submitted by the CDC and decides that it is safe to disclose
her USCitizen credential. The CDC verifies this credential and permits Alice
to access the requested data, as it did not detect that her project membership
had been revoked prior to policy satisfaction.

The safety problems that emerged in the above examples occur because cre-
dentials are collected over a noninstantaneous window of time. In general,
credential and policy instabilities can arise from one or more of the following
four causes. First, the natural expiration of a credential can cause problems
if a previously-valid credential expires before other required credentials can
be validated. Second, inter-credential dependencies can give rise to problems
if, for example, the activation of a new role causes the revocation of a previ-
ously activated role (as in Example 1). Third, an external event might cause
the invalidation of a certain credential after it is validated, but prior to the
entire policy being satisfied. For example, the removal of Alice from the Spread
project in Example 2 caused credential revocation. Lastly, an unstable environ-
ment could cause policy instability if the policy is predicated on some aspect of
the environment, such as the time of day or occupancy status of a room.

To the best of our knowledge, the problem of enforcing view consistency in
trust negotiation and distributed proving systems has not been discussed else-
where in the literature. Though similar to the consistency problems studied in
distributed systems [Tanenbaum and van Steen 2002], distributed databases
[Cellary et al. 1988], and distributed shared memory [Adve and Gharachorloo
1996], this problem is in many ways their dual. In these previous works, en-
suring a consistent global state has been the concern of both data providers
and users, as many entities can update the values of data fields replicated at a
number of sites; this provides all parties with the incentive to cooperate. How-
ever, since a credential revocation can be made only by the issuer of that cre-
dential (and thus consistent update sequences can be attained trivially), the
problem studied in this article becomes the concern only of data consumers.
In fact, the degree to which each data consumer is concerned with this prob-
lem may even vary based on the criticality of the policy being evaluated. For
instance, a hardware store offering a discount to students of a particular uni-
versity will probably not be concerned if a student ID credential is revoked
after it has been issued for the semester, much less if it is revoked during a
policy evaluation; an electronic door lock protecting access to expensive labo-
ratory equipment at the university would care, however. Heavy-weight solu-
tions that require the cooperation of groups of certificate authorities (CAs) and
users are not suitable, as the consistency property required will vary from user
to user and preserving the autonomy of entities in the open system is of the
utmost importance.

In this article, we make several contributions regarding the level of safety
attainable when evaluating policies in authorization systems that employ trust
negotiation or other forms of distributed proving. To the best of our knowledge,
we present the first formalization of the view consistency problem for trust
negotiation and distributed proving systems and show how naive approaches

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8:6 . A. J. Lee and M. Winslett

to policy evaluation can lead to the permission of undesirable accesses to
system resources in the face of prematurely invalidated credentials (Section 2).
We then define several levels of credential view consistency, each of which
provides different guarantees on the types of inappropriate access conditions
that can be prevented (Section 3). We provide algorithms that can be in-
corporated into existing trust negotiation and distributed proving systems to
attain these levels of consistency and prove the correctness of each algorithm
(Section 4). We also demonstrate other desirable characteristics of these algo-
rithms and their extensions, including the fact that they require only minimal
cooperation between the users engaged in the the trust negotiation or distrib-
uted proving protocol and no cooperation between groups of CAs or other users
(Section 5). Finally, we comment on previous related work (Section 6) and
examine potential areas for future work (Section 7).

2. SYSTEM ASSUMPTIONS AND PROBLEM DEFINITION

In this section, we present our assumptions regarding the open systems in
which trust negotiation and distributed proving protocols are used. We then
formally describe the problem of determining the consistency level of a system
view used to evaluate an authorization policy.

2.1 System Model

An open system consists of a possibly infinite set £ of entities, each of which is
a resource provider, client, or both. Resource providers are entities who wish
to offer resources or services to other entities in the system, while clients are
entities that access the functionality offered by resource providers. Resource
providers may wish to enforce authorization checks on the resources or services
that they provide; trust negotiation or distributed proving will be used for this
purpose, as the lack of preexisting trust relationships in the system prevents
the use of traditional identity-based authorization mechanisms. Note that a
given resource provider may also be a client of other resource providers.

We place no limitations on the temporal duration of a trust negotiation
or distributed proving session other than those imposed by the underlying
protocol. For example, many trust negotiation protocols halt if no measur-
able progress is made during a particular round of the negotiation [Li et al.
2005; Yu et al. 2003]; we do not prevent this, nor do we require any such con-
straints be in place. Unless explicitly stated to the contrary, we assume that
the credentials used by an entity during the execution of one of these protocols
may be obtained dynamically at runtime. This assumption allows portions
of a distributed proof to be “outsourced” to other entities (as in Bauer et al.
[2005]; Minami and Kotz [2006]; and Winslett et al. [2005]) and permits enti-
ties to acquire new attribute certificates while a trust negotiation session is in
progress. These assumptions indicate that the collection of credentials used as
the view in which an authorization policy is satisfied may be composed of the
observations of an arbitrary number of entities and be collected over a variable-
width window of time.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8:7

We assume that the certified attribute and environmental state informa-
tion used to satisfy trust negotiation policies or form distributed proofs will be
issued by an arbitrary number of CAs that exist in the system. All creden-
tials issued will have an expiration time but may also be revoked prematurely
by the issuing CA (as was the case with Alice’s ProjectSpread credential in
Section 1). In the remainder of this article, we will denote the set of all creden-
tials by C and the set of all policies by P. Given a credential ¢ € C, we denote by
al(c) the earliest time at which the issuing CA would possibly consider ¢ to be
valid. In the case of X.509 certificates [Housely et al. 1999], a(c) would be the
time indicated in the “Not Before” field of the certificate; if no such field exists,
then a(c) indicates the issue time of the credential. Similarly, we denote the
expiration time of a credential ¢ by w(c).

We assume that once a credential is revoked, it will never again become
valid. For example, if Bob wishes to again activate his membership in the op-
erations group role after it is revoked (see Example 1), his previously-revoked
PetrolOps credential cannot again be used, he must obtain a new PetrolOps
credential. Since only the issuing CA may revoke a credential, each CA can
ensure that an omniscient view of the credentials that it has issued remains
consistent at all times. We assume that each CA offers an online method that
allows any entity to check the current status of a particular credential issued
by the CA. This functionality could be provided through the Online Certificate
Status Protocol (OCSP) [Myers et al. 1999] or by an online CA such as COCA
[Zhou et al. 2002].

2.2 Problem Definition

Prior to accepting a given credential as evidence that can be used to satisfy
some portion of an authorization policy, the policy evaluator must first verify
that the credential is valid. In this article, we are concerned with two types of
credential validity: syntactic and semantic.

Definition 2.1 Syntactic Validity. A credential c is syntactically valid if the
following conditions hold: (i) it is formatted properly, (ii) it has a valid digital
signature, (iii) the time «(c) has passed, and (iv) the time w(c) has not yet
passed.

Definition 2.2 Semantic Validity. A credential ¢ is semantically valid at
time ¢ if an online method of verifying ¢’s revocation status (e.g., by using
OCSP or COCA) indicates that ¢ was not revoked at some later time # such
that a(c) <t <t.

Informally, if a credential is syntactically valid, it is well-formed. The se-
mantic validity of a credential at a given time implies that the credential has
not been revoked by its issuer prior to that time; that is, the credential issuer
asserts that the meaning of the credential is still valid. To ground these defini-
tions with a real-world example, in the case of credit card validation, verifying
syntactic validity involves checking that the signature on the back of the card
matches the signature on the charge slip, the card has an appropriate issuer

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8:8 . A. J. Lee and M. Winslett

logo on the front, and the expiration date has not passed. Semantic valida-
tion occurs when the credit card clearinghouse authorizes a transaction. Note
that in the case that a credential is assumed to be a stable assertion, syntactic
validity implies semantic validity. We now define the more general concept of
validity and derive two propositions and a corollary that will be useful later in
the article.

Definition 2.3 Validity. A credential c is valid at time ¢ if it is both syntacti-
cally and semantically valid at time ¢.

PROPOSITION 2.4. If a credential c is found to be syntactically valid at a
time t' such that a(c) < t < w(c), then c is syntactically valid at all times t
where a(c) <t < w(c).

PROPOSITION 2.5. If a credential c is semantically valid at a time t > a(c),
then c is semantically valid at all times t where a(c) <t <t.

COROLLARY 2.6. If a credential c is valid at a time t such that a(c) <t <
w(c), then c is valid at all times t where a(t) <t <t.

As was observed earlier, each credential collected by an entity during a trust
negotiation or distributed proving protocol constitutes a piece of evidence at-
testing to a small portion of the global state of the network. During a trust
negotiation or the construction of a distributed proof, these pieces of evidence
are collected over time and used to incrementally satisfy a given authorization
policy. We now more precisely define one entity’s view of the system in terms
of the credentials acquired during a particular trust negotiation or distributed
proving session.

Definition 2.7 Credential State. Let the set T contain all possible
timestamps and the null value L. The state of a credential ¢ as observed by an
entity e is defined as s = (¢, r, syn, sem,,sem;) € C x (T'\{L}) x Bx T x T. The
value r indicates the local time at which ¢ was received by e. The Boolean value
syn is true if ¢ is syntactically valid, false otherwise. The values sem, and sem;
denote the most recent time that ¢ was verified to be semantically valid and
the first time that ¢ was found to be semantically invalid, respectively. If the
semantic validity of ¢ has not yet been checked, both sem, and sem; will be set
to L, otherwise at least one of these fields will contain a non-null timestamp
from the set T\ {L}. We use S to denote the set of all possible credential state
tuples. Throughout this article, we will use dot notation to access fields of
these state tuples (e.g., s.r represents the receipt time of the credential whose
state is stored in s).

Definition 2.8 View. A set of credential states observed by an entity e is
called one of e’s views of the system. A view contains at most one credential
state tuple for any particular credential c.

Given the above definitions, we now have a precise vocabulary for describing
an entity’s knowledge about the state of the system. Since this state informa-
tion is gathered over time, it cannot be considered to be a precise snapshot

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8:9

Table I. A Summary of Notation Introduced in Section 2

—¢& is the set of all entities —s € S is a credential state tuple in which:
—C is the set of all credentials —s.cis a credential .
__p is the set of all policies —s.r is the time at which ¢ was received

p —s.syn indicates ¢’s syntactic validity status

—T is the set of all timestamps —s.sem,, is the most recent time at which ¢ was
—a(c) denotes the start of ¢’s validity period observed to be semantically valid
—w(c) denotes ¢’s expiration time —s.sem; is the first time at which ¢ was observed

. to be semantically invalid
—VPtis a view containing state information for cre- y

dentials that entity e considers relevant to policy
P at time ¢

of the global state and thus the consistency of an entity’s view of the system
becomes important to consider.

Definition 2.9 Relevance. A credential c is considered relevant to a policy P
by entity e at time ¢ if e has received ¢ and e’s negotiation strategy considers
the satisfaction of P in some way dependent on ¢ at time ¢. Given a view V,
observed by entity e, VI is the subset of V, containing state information for
credentials that e considers to be relevant to P at time ¢.

Definition 2.10 View Consistency. A view VFis ¢-consistent if V/¢ satisfies
a predicate ¢ that places temporal constraints on the times at which e observes
the validity of each credential ¢ whose state information is stored in V¢,

Definition 2.9 is very subtle, as the concept of relevance will be different for
different negotiation strategies. Given the history of a trust negotiation ses-
sion, a trust negotiation strategy examines an incoming message containing
some number of credentials and policies to then determine the next step to be
taken during the negotiation process [Yu et al. 2003]. Thus, every trust negoti-
ation strategy implicitly defines its own concept of relevance. Further, the set
of credentials considered relevant to a policy P by a particular strategy might
change over time as multiple ways of satisfying a given policy are attempted.
For example, when evaluating the policy P = c1 A (ce V ¢3), a strategy may ini-
tially consider c¢; and ¢y relevant to P and determine whether a consistent view
can be constructed using these credentials. If this fails, then it may backtrack
and decide that ¢; and c3 are relevant to P and again attempt to construct a
consistent view.

Definition 2.10 fundamentally ties together the concepts consistency and
relevance. As a result, the notion of consistency can thus be undermined by
a faulty interpretation of relevance (for instance, by assuming that nothing is
relevant to P). At a minimum, a strategy should consider the set of credentials
used to satisfy P to be relevant to P and may also include other credentials
stored in its local state in this set (for instance, credentials used to satisfy
the release policies protecting credentials disclosed during the authorization
protocol invoked to satisfy P). Only the negotiation strategy has the autonomy
and local knowledge necessary to decide which credentials are relevant at each
moment and should thus be subjected to consistency requirements.

As a convenience to the reader, Table I contains a summary of the notation
introduced in this section.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 10 . A. J. Lee and M. Winslett

2.3 Practical Considerations for Consistency Enforcement

In this article, we focus on limiting the unexpected behaviors that trust negoti-
ation and distributed proving systems can manifest as a result of inconsistent
views. To this end, we define several enforceable notions of view consistency,
discuss the guarantees provided by each, and provide algorithms to attain
these levels of view consistency in practice. In proposing practical mechanisms
for view consistency enforcement, we will keep several high-level requirements
in mind.

2.3.1 Loose clock synchronization. A minimal level of clock synchroniza-
tion is necessary, as otherwise the expiration times stored in credentials could
not be reliably interpreted. However, we cannot assume that clocks are closely
synchronized (e.g., at second-level precision).

2.3.2 Minimal cooperation. View consistency is a concern only for the pol-
icy evaluator. We cannot assume that groups of CAs, groups of CAs and users,
or large groups of users will be willing to cooperate, as there is no incentive for
this.

2.3.3 Minimal impact to existing protocols. Trust negotiation and distrib-
uted proving have been active areas of research over the course of the last sev-
eral years. To ensure that the work done in these areas remains usable, view
consistency enforcement should require minimal changes to existing trust ne-
gotiation and distributed proving protocols.

We will bear these requirements in mind throughout the remainder of this
article; in Section 5 we will discuss the ways in which our solutions for enforc-
ing view consistency satisfy these requirements.

3. LEVELS OF CONSISTENCY

In this section, we present four increasingly more powerful levels of view con-
sistency. We show that the guarantees afforded by each of these consistency
levels can be strengthened if assumptions can (safely) be made about which of
the four reasons for credential invalidation described in Section 1 can be ex-
pected to apply during the course of the authorization protocol. This indicates
that like many other aspects of trust negotiation and distributed proving, the
choice of consistency level required is likely to be a strategic choice made inde-
pendently by each protocol participant. We defer all discussion pertaining to
unstable environments until Section 5.

3.1 Incremental Consistency

Most people have an intuitive understanding of how to satisfy a policy: present
evidence that each clause of the policy is satisfied. For instance, if Alice wishes
to cash a check and is asked for two forms of ID, she could, for example, produce
a driver’s license and a passport during her transaction with the bank teller.
The teller can verify that both IDs show Alice’s picture and list the same home
address and thus be reasonably satisfied that Alice is indeed who she says

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8:11

that she is. The teller is convinced that her view of the system is consistent
because Alice could produce valid instances of the required documents during
the course of their interaction. We call this intuitive notion of consistency
incremental consistency. To formally define incremental consistency, we first
define the predicates checked : S — B and ¢;,. : 2° — B.

checked(s) = (s.syn = true) A (s.sem, # 1) (1)
Gine(V) = Vs € V : checked(s) A (a(s.c) < sr < s.sem,) (2)

The predicate checked(s) is satisfied if and only if the syntactic validity of
s.c has been verified and s.c was ever observed to be semantically valid. The
predicate ¢;,.(V,) is satisfied if and only if each credential in the view V, was
valid at the point that it was received by e. Note that Corollary 2.6 is used
when computing the endpoints of each credential’s observed validity period.
Thus, the formal definition of incremental consistency is as follows.

Definition 3.1 Incremental Consistency. A view VF?isincrementally consis-
tent if and only if ¢;,.(VF?) is true.

Incremental consistency works for Alice and the bank teller, as it is exceed-
ingly unlikely that Alice’s driver’s license or passport will be revoked or become
invalid during their transaction. In addition to being intuitively useful, incre-
mental consistency is also widely used in practice. Current trust negotiation
prototypes (e.g., Becker and Sewell [2004], Bertino et al. [2004], Koshutan-
ski and Massacci [2005], and Winslett et al. [2002]) implement incremental
consistency by validating credentials as they are received. This approach to
credential validation is also discussed in many papers that present protocols
and strategies for trust negotiations and distributed proving that, to the best
of our knowledge, have not yet been implemented (e.g., Bonatti and Samarati
[2000], Li et al. [2005], Winsborough and Li [2002], and Winslett et al. [2005]
to name a few).

Incremental consistency works especially well when authorization policies
are stable predicates, such as “Alice has paid her 2005 income taxes” or
“process X has terminated.” If all relevant user attributes and environmen-
tal conditions are stable, then incremental consistency allows us to conclude
that all credentials used to satisfy a given policy were simultaneously valid at
the time of policy satisfaction. This, of course, assumes that we verify that no
credential expired naturally before the final decision was made.

If policy predicates are not stable, however, incremental consistency can-
not guarantee that all relevant credentials were ever valid simultaneously.
For example, recall Example 1 presented in Section 1. Figure 3 shows
GeoTech’s view of Bob’s credentials in this system, where the validity periods
of each credential are indicated with horizontal lines. GeoTech never observed
Bob’s PetrolOps and Purchase credentials to be valid simultaneously. With
intercredential dependencies, such as that between Bob’s PetrolOps and
Finance credentials, incremental consistency is not always a good choice.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8:12 . A. J. Lee and M. Winslett

e: receipt time =~
x: semantic validation

Purchase ———
PetrolOps |«

QilCorp P

time —

Fig. 3. An incrementally consistent view.

Although incremental consistency is the only form of view consistency sup-
ported by existing trust negotiation prototypes, we believe that this is only
because until now the issue of view consistency has not received any attention.
The trust negotiation and distributed proving literature is full of examples
motivating the use of these systems in computing grids, dynamic coalitions,
and ubiquitous computing environments. These environments are all highly
dynamic and, in some cases, could involve the use of mutually-exclusive roles
and access rights; under these conditions incremental consistency is likely to
be unsatisfactory. We now present three stronger notions of view consistency
that are easily enforceable in practice and discuss the guarantees that each
provides.

3.2 Internal Consistency

In this section, we define and discuss a stronger notion of view consistency
that we will call internal consistency. Informally, if an authorization decision
is made using an internally consistent view, then all credentials relevant to
the authorization decision were valid simultaneously at some point in time
during the authorization protocol. To formally define internal consistency, we
first define the functions start : 2° — T and end : 2° — T, and the predicate
¢int . 28 — B.

start(V) = min({sr | s € V}) 3)
end(V) = max({s.r | s € V}) (4)
¢int(V) = (Vs € V : checked(s))
Almax({a(s) | s € V}) < min({s.sem; | s € V'}))
Amax({a(s) | s € V}) < end(V))
Amin({w(s) | s € V}) > start(V))

(6))

The function start(V) is the earliest local time at which a credential in V
was received; similarly, end(V) is the latest local time at which a credential
in V was received. For a given view, V, these functions effectively bound the
duration of the interactive portion of the associated authorization protocol. The
predicate ¢;,; holds true if and only if (i) each credential in the view was at one
point observed to be valid, (ii) the last credential to become valid does so before

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8:13

e: receipt time
*: semantic validation

c3 ——t+—
C2 |

C1 Py 03

time —

Fig. 4. An internally consistent view.

the minimum known endpoint of any credential’s validity period, (iii) the last
credential to become valid does so before the end of the authorization protocol,
and (iv) the minimum known endpoint of any credential’s validity period occurs
after the start of the authorization protocol.

Definition 3.2 Internal Consistency. A view VP! is internally consistent
if and only if ¢ (VF?) is true.

Internal consistency does not imply that all relevant credentials used to sat-
isfy a policy are valid simultaneously at the moment the policy is decided to
be satisfied. Rather, it implies that all relevant credentials are valid simul-
taneously at some point during the authorization protocol. Given a graphic
representation of an internally consistent view, one should be able to draw at
least one vertical line that intersects each credential’s validity interval (see
Figure 4).

Internal consistency is an important consistency level to consider for several
reasons. Most importantly, by ensuring that all credentials used during a pro-
tocol were simultaneously valid, it prevents attacks in which one party evades
mutual exclusion constraints by strategically interleaving role activation and
deactivation events with credential disclosures (see Example 1). Further, in-
ternal consistency offers flexibility, as it does not constrain the point in time
during the protocol at which all credentials must be simultaneously valid; this
offers client entities the ability to deactivate roles as required by events exter-
nal to the authorization protocol without compromising the consistency of the
view used by their protocol execution partner. Lastly, if external events can-
not cause the revocation of a credential, then all credentials in an internally
consistent view can be shown to be valid at the time of policy satisfaction. How-
ever, should an external revocation occur, this is not the case. Recall Example
2, in which all of Alice’s credentials were valid at the start of the authorization
protocol, but due to the NSF’s revocation of her ProjectSpread credential, they
were not all valid at the time that the decision was made.

3.3 Stronger Levels of Consistency

In some cases, it might be desirable not only to have the guarantee that
each relevant credential in a given view was valid simultaneously at some
point during the authorization protocol, but also that they were all valid

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 14 . A. J. Lee and M. Winslett

e: receipt time e: receipt time
*: semantic validation *: semantic validation
c3 . c3 .
Cc2 ° _—_— Cc2 —_———————
(&) 'y >k C1 s %
time —> time —>
Fig. 5. An endpoint consistent view. Fig. 6. An interval consistent view.

simultaneously at the endpoint of the authorization protocol. In others, per-
haps it is required that each relevant credential is valid from the time that it
is received until the decision point of the authorization protocol, as this may
imply some level of stability in the system. We will call these levels of consis-
tency endpoint consistency and interval consistency, respectively (see Figures 5
and 6). These consistency levels are defined in terms of the ¢,,q : 2° — B and
Ginterva © 2°5 — B predicates.

Gend(V) = Vs € V : checked(s) A (a(s.c) < end(V) < s.sem,) (6)
Dinterval(V) = Vs € V : checked(s) A (a(s.c) < s.r <end(V) < s.sem,) 7

Definition 3.3 Endpoint Consistency. A view VP! is endpoint consistent if
and only if ¢ena(VE?) is true at the decision point ¢.

Definition 3.4 Interval Consistency. A view VP is interval consistent if and
only if ¢mteml(VeP *) is true at the decision point ¢.

Interval consistency clearly affords the policy evaluator a high level of
confidence in the outcome of the authorization decision. In Sections 3.1 and 3.2,
we showed that if certain assumptions could be made about the likelihood
of intercredential dependencies and external causes of revocation, then in-
crementally consistent and internally consistent views can actually become
endpoint consistent. Given the above definitions, it should be clear that the
following proposition holds.

PROPOSITION 3.5. An interval consistent view is also endpoint and in-
crementally consistent, and an endpoint consistent view is also internally
consistent.

One could imagine an extension of interval consistency requiring that all
relevant credentials remain valid from the time that they are received until
the end of the interaction between the two parties participating in the autho-
rization protocol. That is, if Bob negotiates with GeoTech to gain access to
their database (as in Example 1), GeoTech might want to guarantee that it
could detect if any of Bob’s credentials were revoked after the end of the autho-
rization protocol and consequently prevent Bob from further accessing their
database. In Minami and Kotz [2006], the authors propose an authorization
system for pervasive computing environments that accomplishes this under

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8: 15

the assumption that credential issuers will proactively push revocation infor-
mation to endpoints in the system. As discussed in Section 2.1, there is no
incentive for CAs to maintain the local state necessary to do this in a large
open system. In fact, the soundness of algorithms requiring these types of
assumptions depends on the reliability with which revocation information is
propagated. Enforcement algorithms for the consistency levels discussed in
this article will be proven sound without making such assumptions.

4. ALGORITHMS FOR CONSISTENCY ENFORCEMENT

In this section, we discuss the enforcement of the view consistency levels previ-
ously presented. We first enumerate the characteristics of an ideal algorithm
for consistent view construction and argue that such an algorithm is likely
to be impossible to construct in practice. We then discuss two practical algo-
rithms for consistent view construction and use these algorithms to define two
extreme points on a multidimensional spectrum of trade-offs affecting view
consistency algorithms. We evaluate the costs associated with each of these
algorithms and analyze the “distance” of these practical algorithms from the
idealized case.

4.1 Comments on the Ideal Case

Each algorithm that we present in this article, and in fact the entire notion of
view consistency, is based on the conclusions that can be drawn from the ob-
servations of a single entity. As such, the soundness of an algorithm designed
to create ¢-consistent views is only one concern of interest to entities wishing
to use that algorithm. Another important goal is quantifying the completeness
of this algorithm when compared to an algorithm run by an omniscient entity
with complete knowledge of the state of all credentials at all times; we will
refer to this as ideal completeness. Since entities in any realistic system can-
not know the global state of the system at any given time, ideal completeness
provides an interesting best case to which the algorithms that we develop can
be compared. As we develop the algorithms in this section, we will quantify
the shortcomings of these algorithms with respect to ideal completeness. Since
incremental consistency is easily implementable, we begin our discussion with
an algorithm for constructing internally consistent views.

4.2 Internal Consistency

Algorithm 1 ensures that the views used for authorization policy evaluation
are internally consistent. We make the following assumptions in Algorithm 1
(and later algorithms):

—The notation <, denotes random assignment from a set. For example, s <,
{0, 1} assigns to s a random salt value chosen from the set of all length-m
binary strings.

—ZEach entity e € £ has a set of credentials C, = {c1, ..., ¢p,}-

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 16 . A. J. Lee and M. Winslett

—There exists a globally agreed-upon cryptographic hash function 4 : {0, 1}* —
{0, 1}* where ¢ is the (fixed) output length of A(-).

—Each entity e chooses a parameter &, used to hide the number of credentials
that she possesses.

—Each entity maintains a hash table, EntityInfo, mapping entity names to
state information. The function EntityInfo.store : £ x (T \ {L}) x {0, 1}™ x
2005 _, | stores state information. The function EntityInfo.lookup : & —
(T \ {L}) x {0, 1}™ x 2/01" yetrieves state information.

—Each entity maintains a hash table, View, mapping credential identifiers to
credential state information. The function View.store : C x S — L stores
credential state information, while View.delete : C — L deletes state infor-
mation.

—The current local time is accessible via the local variable NOW.

Algorithm 1 works as follows. At the start of the authorization protocol,
each entity calls the INIT method to commit her credentials and a strategically-
chosen amount of random noise to the remote party. This allows entities to hide
the number of credentials that they possess from their partner in the protocol
execution. The amount of noise inserted by each entity is controlled by the
parameter k., which is strategically chosen by each entity to trade off between
privacy and the computational cost of the protocol. Each entity then stores her
remote partner’s set of committed credentials in the EntityInfo hash table. As
credentials are received from the remote party during the authorization pro-
tocol, the receiver checks to see if the credential was previously committed. If
so, the credential state information for this credential is created and stored; if
not, the credential is removed from View. Should one entity acquire new cre-
dentials at runtime, she can recommit her credential set to the remote party
by directly using the COMMIT method. If this occurs, the remote party must
immediately recheck the semantic validity of each credential stored in the cur-
rent view and update its associated credential state information (lines 17-23).

This credential recommit process involves fairly high communication over-
heads for the recipient, as it must contact up to |View| servers to revalidate all
potentially relevant credentials. To mitigate denial of service attacks against
implementations of this algorithm, entities should require that a recommit
message be accompanied by a credential that (i) is relevant at the moment it is
received, (ii) was not included in the previous credential set commitment, and
(iii) was issued within some fixed window of the time of the last negotiation
round. This will ensure that unless parties receive legitimate new credentials,
they cannot force excess semantic validity checks. We now highlight several
interesting properties of Algorithm 1.

PROPOSITION 4.1. Any view created using Algorithm 1 is incrementally
consistent.

PROOF. Lines 31-34 of Algorithm 1 ensure that each credential used during
the execution of an authorization protocol is valid when it is received. This

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8: 17

Algorithm 1 Internal Consistency

: {// Initialize a connection with entity e’}
: Function INIT(¢' € £) = COMMIT(e)

: {// Commit credentials to entity e’}

: Function COMMIT(e' € £) =

i s < {0, 1} {// create a salt}

k <k, —|C,| {// need k fake credentials}

: fori=1tok do

r; < {0, 1} {// generate fake credentials}
: CC, < {h(s|c1),...,h(s|cn), h(ry), ..., hG)}
: Shuffle CC, randomly

: Send (e, s, CC,) to e’

—

= e
NETEY

: {// Receive committed credentials from entity e’}
. Function Rcv(e € €,¢ € {0, 1}, CC, € 2001) =
. if EntityInfo.lookup(e’) # 1 then
for all (c, r, syn, sem,, sem;) € View do
t <~ NOW
if ¢ is semantically valid then
View.store(c, (c, r, true, t, sem;))
else
View.delete(c)
: EntitylInfo.store(e’, (NOW, s, CC,))

DD N NN R R
G WD QO XTI

: {// Receive a credential ¢ from entity e’}

: Function Rcv(e’' e £,c€(C) =

i t < NOW

: (rev, s, CCy) = EntityInfo.lookup(e’)

: if (s | ¢) ¢ CC, then

Reject ¢

: else if ((c is syntactically valid) and («(c) < rcv) and (c is semantically valid)) then
View.store(e, (c, t, true, t, L))

: else

Reject ¢

W oW W W W N NN
EORNRO®®IS

satisfies Definition 3.1 and thus any view created using Algorithm 1 is incre-
mentally consistent. O

PROPOSITION 4.2. All credentials accepted by Algorithm 1 were held by
their bearer at the time of the most recent credential recommit.

PROOF. For Algorithm 1 to accept some credential ¢; from entity e, it must
be the case that e committed c; at the last credential recommit (i.e., cc; € CC,).
The preimage resistance property of cryptographic hash functions implies that
to generate some cc; € CC,, e is required to know ¢;. This means that either (i)
¢; was issued to e prior to the last credential recommit or (ii) e correctly guessed
the contents of ¢; before it was issued. For case (i), the proposition is true by
definition. For case (ii), e must have correctly guessed the signature value that
would be placed on ¢; by its issuer; this is generally thought to be impossible

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8:18 . A. J. Lee and M. Winslett

without knowledge of the issuer’s private key. Thus, all credentials accepted by
Algorithm 1 were held by their bearer at the time of the most recent credential
recommit. O

THEOREM 4.3. If e’s execution of a trust negotiation or distributed proving
protocol for target policy P succeeds at time t while using Algorithm 1 to enforce
view consistency, then the view VI is internally consistent.

PROOF. We proceed by induction on the number of times the COMMIT
method is invoked by the remote party. The base case involves one invocation
of the COMMIT method; in this case, we will show that all credentials received
during the protocol were valid at the time that the credential set was commit-
ted. Assume that some credential ¢ such that (c, r, syn,, syn;, sem,, sem;) € VeP i+
is invalid at the start of the authorization protocol. By Proposition 4.1, ¢ later
becomes valid. This contradicts our assumption that once a credential becomes
invalid, it cannot again become valid and thus ¢ was valid at the time that the
credential set was committed. This implies that all credentials relevant to the
satisfaction of P were valid at the time that the credential set was committed.
Assume the claim is true for trust negotiation or distributed proving sessions
requiring up to n — 1 invocations of the COMMIT method. If the trust nego-
tiation or distributed proving session requires n invocations of the COMMIT
method, at the time of the n?* recommit, lines 17-23 ensure that any previ-
ously valid credentials are still valid. By an argument similar to that used in
the base case, we know that any credentials accepted after the n** recommit
were also valid at the time of the n** recommit. Since all credentials were valid
simultaneously at the time of the n?* recommit, Definition 3.2 is satisfied and
VP is internally consistent. O

PROPOSITION 4.4. Algorithm 1 does not disclose credential contents (e.g.,
credential types or attribute values) to the remote party. Further, if h(.)
approximates a random oracle, then no entity can guess the number of cre-
dentials held by their communication partner during a given run of the algo-
rithm, nor can they guess the number of new credentials committed during a
recommit.

PROOF. The first property follows from the preimage resistance property of
cryptographic hash functions. If A(-) approximates a random oracle, then its
output distribution should appear the same regardless of whether its input is
a structured credential or a random value. This implies that an adversary can-
not determine how many of the committed values correspond to actual creden-
tials versus random noise and therefore the second property holds. To prove
the third property, note that because credentials are committed using a dif-
ferent salt for each recommit, unused credentials and random commitments
cannot be tracked from recommit to recommit. Note also that newly-acquired
credentials replace either a previously unused credential or a random com-
mitment. Clearly if a new credential is used, the remote party can tell that
it was in the new set of committed credentials, but not the old set. However,
by an argument similar to that used to prove the second property, the adver-

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8: 19

Algorithm 2 Endpoint and Interval Consistency
: {// Receive a credential ¢ from entity e’}
Function Rcv(e' € £,c€C) =
: if ¢ is syntactically valid then

View.store(c, (c, NOW, true, L, 1))
else

Reject ¢

{// Invoked at the end of the access control protocol }
: Function VALIDATEALL(RelevantCreds € 2€) =
for all (c, r, syn, sem,, sem;) € View do
if ¢ € RelevantCreds then
t < NOW
if (w(c) > NOW) and (c is semantically valid) then
View.store(e, (c, 1, true, t, L))

15: else
16: Fail and report that ¢ is invalid

—
[S i

= e

sary cannot tell how many newly-acquired, but unused, credentials may be in
a commitment set, so the third property holds. O

Although Theorem 4.3 asserts the soundness of Algorithm 1, this algorithm
is not ideally complete as defined in Section 4.1. That is, it is possible for all
credentials to be valid simultaneously at the time of the last recommit even if
Algorithm 1 fails. Consider the case where Bob commits several credentials to
Alice, all of which are valid at the moment the committed credential set is sent
to Alice. However, before Alice can verify some credential ¢ that was committed
by Bob, ¢’s issuing CA revokes the credential. Alice thus cannot tell that ¢ was
valid at the time that the credential set was committed, though an omniscient
entity could. In Section 5.4, we propose an online credential status protocol
that allows Algorithm 1 to more closely approximate ideal completeness.

4.3 Endpoint and Interval Consistency

Algorithm 2 guarantees that all executions of an authorization protocol that
succeed do so using interval consistent views. In general, the strategy adopted
by this algorithm is similar to that taken in optimistic concurrency control al-
gorithms for transaction management. That is, credentials are syntactically
validated as they arrive, as this can be done without external interaction, but
are assumed to be semantically valid. When a decision point is reached, the
VALIDATEALL method is invoked to check the semantic validity of each rele-
vant credential in the view and terminate the protocol if any credentials are
found to be invalid. Because e’s strategy has reached a decision point, it will
have the clearest idea yet as to which submitted credentials are actually rele-
vant. If one of these credentials is invalid, however, e’s strategy can continue
to search for another set that satisfies the policy; this new set can then be
checked for validity, and so on. If only endpoint consistent views are required,

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 20 . A. J. Lee and M. Winslett

then both the semantic and syntactic validity checks can be delayed until the
VALIDATEALL method.

THEOREM 4.5. If an execution of a trust negotiation or distributed proving
protocol for a target policy P succeeds at time t while using Algorithm 2 to
enforce view consistency, then the view VI is interval, endpoint, internally and
incrementally consistent.

PROOF. Line 3 ensures that for each (c,r, syn,, syn;, sem,, sem;) € VeP*t, the
credential ¢ was syntactically valid at time # < r. Line 13 ensures that each ¢;
was semantically valid at some time ¢, > end(V?) and thus V* is interval con-
sistent by Corollary 2.6. It is therefore endpoint, internally, and incrementally

consistent by Proposition 3.5. O

Although Algorithm 2 is sound (by Theorem 4.5) it is not ideally complete.
Since the VALIDATEALL method takes some finite, but non-instantaneous,
amount of time to check the semantic validity of each ¢; whose state is stored
in V, it is entirely possible that each c¢; was valid at end(V), but one such cre-
dential was revoked before its semantic validity could be checked by the al-
gorithm. An omniscient entity could detect this event, even though it would
go undetected by Algorithm 2. The well-known limitations of causal orderings
and virtual clocks [Lamport 1978; Cheriton and Skeen 1993] lead us to the
following assertion regarding the ideal completeness of endpoint and interval
consistency algorithms.

THEOREM 4.6. Sound and ideally-complete endpoint and interval consis-
tency algorithms can exist if and only if the entity e constructing the view VI
can synchronize clocks with the issuer of each credential c whose state informa-
tion is stored in VI,

PRrROOF. We first show that clock synchronization is a necessary condition
for defining sound and ideally-complete endpoint and interval consistency al-
gorithms. The definitions of ¢.,q and ¢;,erva; require that each credential ¢
whose state information is stored in V! be semantically valid at the exact
time end(VP?), where end(VF?) is defined by Equation 4 as the moment that
the last credential relevant to the satisfaction of P was received by e. This im-
plies that e and each CA that issued a credential ¢; whose state information is
stored in V2 must be able to agree on the precise instant end(V*) to correctly
check the validity of each c; at end(VF). Since end(VF*) depends on delays in
both the network and e’s local processing queues, causal relationships cannot
be used to facilitate this agreement and thus e must be able to synchronize
clocks with each CA that issued a credential whose state information is stored
in VP,

We demonstrate that the ability to synchronize clocks with credential is-
suers is a sufficient condition for defining sound and ideally-complete endpoint
and interval consistent views by sketching a protocol that accomplishes this
task. Figure 7 illustrates an online credential status protocol that tells the re-
quester, e, not only whether the credential ¢ whose status was requested is still
valid (via the valid field), but also the most recent instant in time the creden-

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8:21

Client Service

ceC

{c, valid € B, tena € (T'\ L)} ;-1
s

Fig. 7. An online credential status protocol leveraging synchronized clocks.

tial was observed valid by the CA (via the t,,4 field). In the event that valid is
false, then t,,4 represents the time at which ¢ expired or was revoked; if valid
is true, then #,,4 is the time at which the CA responded to e’s request.

Note that clock synchronization allows t,,; to be translated to be relative
to e’s local clock; this field can be combined with a similarly translated value
of a(c) to give e an accurate view of ¢’s validity interval. If the protocol pre-
sented in Figure 7 is used to make the semantic validity check that occurs
on line 13 of Algorithm 2, e can accurately establish the concurrent validity
of all credentials that make up V. This is in contrast to a version of Al-
gorithm 2 relying on a certificate validation protocol like OCSP. In this case,
the algorithm can fail to recognize an endpoint or interval consistent view if
some credential c is valid at end(V?) but becomes revoked prior to having
its validity checked. This can occur because no causal relationship can be es-
tablished between end(VF?) and the validity of c; the ability to synchronize
clocks removes the need for this type of causal relationship. Since the ver-
sion of Algorithm 2 using the protocol presented in Figure 7 is still sound (by
Theorem 4.5), this shows that clock synchronization is a sufficient condition
for constructing a sound and ideally-complete endpoint or interval consistency
enforcement algorithm. O

4.4 Trade-offs in Consistency Enforcement

In examining Algorithms 1 and 2, a clear trade-off emerges. By deferring se-
mantic validation checks until the end of the protocol, Algorithm 2 reduces the
work for the verifier by allowing her to semantically validate only the creden-
tials that were ultimately determined to be relevant to the satisfaction of the
policy. This reduction in work comes at a price, however. In the case that the
policy being satisfied uses guard conditions to protect the disclosure of more
sensitive portions of the policy (e.g., as in Bonatti and Samarati [2000] and Li
et al. [2005]) optimistically assuming that credentials are semantically valid
could leak sensitive policy information to unauthorized viewers. To correct this
problem, each set of guard conditions must be viewed as a subnegotiation in
its own right, so that the semantic validity of the credentials satisfying the
guard conditions is checked before access is granted to the remaining policy.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 22 . A. J. Lee and M. Winslett

Alternatively, Algorithm 1 can be modified to call the VALIDATEALL method
at its conclusion. However, Algorithm 1 incurs much higher overheads for the
verifier, as each credential received must be validated throughout the protocol,
as its relevance cannot be fully determined until the end of the protocol.

These algorithms are two extreme points on the spectrum of possible con-
sistency enforcement algorithms. In some cases, an entity may prefer to ag-
gressively monitor the validity of some credentials received over the course of
the authorization protocol, while deferring checks on other credentials. For
instance, for the policy P = c¢; A(c2 V ¢3), it is clear that c; is relevant to the sat-
isfaction of P. Thus c¢; could be monitored more aggressively (using a scheme
like that in Algorithm 1), while checks on the validity of credentials ce and c3
could be delayed until the end of the protocol. Designing consistency enforce-
ment algorithms that balance this trade-off between relevance, work for the
verifier, and information leakage will be an interesting challenge.

5. DISCUSSION

In this section, we discuss several interesting facets of view consistency. In
particular, we show that the algorithms presented in this article satisfy the
requirements presented in Section 2.3, consider the effects of an unstable
environment on view consistency, and introduce the notion of strategic algo-
rithms for view consistency enforcement. We then propose a novel online cre-
dential status protocol that allows Algorithm 1 to very closely approach ideal
completeness, comment on the effects of poorly synchronized CA clocks, and
discuss practical considerations relating to the deployment of the algorithms
presented in this article.

5.1 Requirements Revisited

In Section 2.3 we presented three requirements that view consistency algo-
rithms should satisfy: loose clock synchronization, minimal cooperation, and
minimal impact on existing protocols. Each algorithm presented in this article
relies only on its local perception of time and causal event orderings; no syn-
chronization with external sources is necessary. Further, only a small amount
of cooperation between entities is required for these algorithms to function
correctly. Specifically, in Algorithm 1, only the two parties engaged in the au-
thorization protocol need to cooperate to form a consistent view. The only way
that the remote party can fail to cooperate in these algorithms is to incorrectly
commit her credential values; this failure can only deny her access to the re-
quested resource. Algorithm 2 requires no cooperation between entities in the
system to succeed. Lastly, the algorithms presented in this article have virtu-
ally no impact on existing trust negotiation and distributed proving protocols,
as they were designed to wrap the functionality already provided by existing
protocols and systems. By disabling credential verification in existing systems
and using wrapper code that implements the consistency checking algorithms
presented in this article, existing systems can enforce stronger levels of view
consistency.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8: 23

5.2 Dynamic Environments

In context-rich environments like smart buildings and grid computing sys-
tems, it is entirely possible for authorization policies to be predicated on the
state of the surrounding environment. For instance, authorization policies may
consider the time of day or the occupancy status of a room. A malicious client
can attempt to alter the state of their surrounding environment in unexpected
ways to twist the outcome of an authorization protocol.

The environmental inputs to an authorization protocol can consist of either
certified environmental information collected by the client (or some agent act-
ing on his behalf) or observations made by the resource provider. In the event
that only certified environmental information is used, then the endpoint and
interval consistency algorithms presented in this article can ensure that all
environmental assertions remain true throughout the duration of the autho-
rization protocol. However, ensuring that observational data regarding system
context does not become invalidated is a more difficult task. The resource
provider must either continuously monitor the pertinent state information or
register to be alerted should its value change. Periodically checking the state
is insufficient, as fluctuations of the value between checks cannot be detected.
If the resource provider has the capability to register such alerts, then this
mechanism combined with one of the algorithms presented in this article can
ensure that the consistency of their view can be protected from the effects
of unstable environmental conditions that are either naturally occurring or
maliciously induced.

5.3 Strategic Algorithm Design

Trust negotiation and distributed proving are dynamic processes, the proper-
ties of which depend on the strategies or tactics adopted by their participants
[Bauer et al. 2005; Winsborough and Li 2006; Yu et al. 2003]. Similarly, the
level of view consistency required by a given entity is to some extent also a
strategic decision (this is a further extension of the trade-off noted in Sec-
tion 4.4). The consistency enforcement algorithms presented in this article
were designed to enforce various safety properties, and thus our algorithms
focused on satisfying only these criteria. However, consistency may not always
be the only concern for some resource providers. Rather, they may wish to
enforce some level of consistency but require algorithms with stronger guaran-
tees regarding the availability of their services (i.e., they require an algorithm
that closely approaches ideal completeness) or privacy preservation than those
provided by the algorithms in this article.

For instance, recall that Algorithm 1 allows an entity Alice to hide her cre-
dentials in a set of credentials and fake commitments of size k.. To do this,
however, requires that she compute and disclose the results of k2, hashes; the
overhead of this process quickly becomes burdensome as k. increases. As a
more efficient option, we can use Merkle trees [Merkle 1979] to allow Alice to
hide her n credentials in a set of k, = 2° fake credentials with minimal over-
heads. Specifically, Alice need only compute and disclose a single commitment
value to hide her n credentials and her negotiation partner need only compute

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8:24 . A. J. Lee and M. Winslett

s hashes to determine whether a given credential is contained in a particular
commitment. We now briefly present this scheme, describe the upper bound
on its running time, and compare it to the commitment scheme presented as
part of Algorithm 1.

If Alice wishes to create a commitment hiding her n credentials in a set of
k. = 2° possible credentials, she first assigns each of her credentials a random
identifier from the set {0, 1}* and then creates a binary tree with 2° leaves,
where each leaf corresponds to exactly one identifier in the set {0, 1}°. Alice
then hashes each of her credentials and places each credential’s hash value
at the leaf of the tree corresponding to its identifier. Each unused subtree
of the binary tree is then removed and replaced with a random string from
{0, 1}¢ henceforth referred to as a fake subtree; recall from Section 4.2 that ¢
is the output bit length of the agreed-upon hash function, A(-). At this point,
Alice computes the Merkle hash of this modified binary tree and discloses this
single ¢-bit value as her commitment.

PROPOSITION 5.1. In the worst case, the Merkle tree commitment algorithm
requires O(ns) hash computations to produce a commitment value for n creden-
tials in a set of k. = 2° possible credentials.

PROOF. Note that the Merkle commitment algorithm achieves its worst run-
ning time when the number of fake subtrees is maximized, as this maximizes
the number of hash operations required to combine all real credentials and
fake subtrees; in practice, the number of fake subtrees is maximized when
the identifiers assigned to an entity’s actual credentials are uniformly distrib-
uted across the identifier space {0, 1}*. For ease of exposition, assume that the
number of credentials held by a given entity is a power of 2. In this case, the
resulting pruned binary tree constructed by the commitment algorithm will
consist of n tendrils of length logk, — logn = s — logn containing s — logn fake
subtrees and the hash of one real credential; these tendrils join the leaves of a
complete binary tree of depth logn (see Figure 8). Computing the Merkle hash
of this pruned tree then requires n(s+ 1) — nlogn — 1 hash operations: s —logn
hashes for each of the n tendrils and n — 1 hashes to combine these n tendrils
when hashing the complete binary tree of depth logn. O

For Alice to enable her partner in the authorization protocol to verify that a
particular credential ¢ is incorporated in her commitment value, she discloses
the hash values of the s nodes along the path from ¢ to the root of the Merkle
tree and the hash values representing the s subtrees connected to this path.
Her partner in the protocol can then recompute the value of the root of the
Merkle tree, thereby verifying that c is incorporated in this tree; this process
requires s hash computations.

PROPOSITION 5.2. The Merkle tree commitment algorithm does not disclose
credential contents (e.g., credential types or attribute values) to the remote party.
Further, if h(-) approximates a random oracle, then no entity can guess the num-
ber of credentials held by their commitment partner during a given run of the
algorithm, nor can they guess the number of new credentials committed during
a recommit.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8: 25

Fig. 8. An example worst-case pruned binary tree for an instance of the Merkle commitment
scheme in which an entity is committing four real credentials. Fake subtrees are denoted with an
x character.

Table II. Required Numbers of Hashes and Corresponding Hash Computation Times for Various
Configurations of the Merkle Commitment Algorithm

Number of actual credentials
ke 16 | 32 | 64 | 128 | 256
216 11207 (0.5 ms) | 383 (0.6 ms) 703 (1.8 ms) 1279 (3.4 ms) 2303 (6.3 ms)
232 || 463 (1.2 ms) | 895 (2.8 ms) 1727 (4.7 ms) 3327 (8.9 ms) 6399 (16.8 ms)
264 11 975(2.8 ms) | 1919 (5.2 ms) | 3775 (10.3 ms) | 7423 (19.8 ms) | 14591 (38.9 ms)
2128 1 1999 (5.4 ms) | 3967 (10.5 ms) | 7871 (20.9 ms) | 15615 (45.0 ms) | 30975 (83.0 ms)

PROOF. As in the proof of Proposition 4.4, the preimage resistance property
of h(-) and the fact that A(-) approximates a random oracle prevent the remote
party from distinguishing between real and fake leaves of the Merkle tree. By
induction, this prevents the remote party from distinguishing between real
and fake subtrees of the Merkle tree. This implies that the remote party can-
not determine the number of real credentials committed in a particular value,
aside from knowing that it is at least the number of credentials disclosed and
verified during the execution of the protocol and less than or equal to 2°. The
third property follows directly from this fact. O

Table II contains the number of hash operations required to generate Merkle
commitments for between 16 and 256 actual credentials hidden in sets contain-
ing between 216 and 2'2® potential credentials, along with the times required
to compute these numbers of hashes. Timings were calculated using a Java
implementation executed on a 2.5 GHz Pentium 4 with 512MB RAM running
Linux. All times reported are averages over 10 repeated trials. The resulting
running times indicate that entities can easily commit their credentials into
extremely large anonymity sets with only minimal computational and data
transmission overheads, compared to those that would be imposed by the com-
mitment scheme used in Algorithm 1. When combined with Propositions 5.1
and 5.2, this shows that changing only the commitment scheme used by Al-
gorithm 1 allows us to tune both the performance and privacy guarantees of
the algorithm without affecting the consistency property that it enforces. This

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 26 . A. J. Lee and M. Winslett

Client Service

c € C,nonce € {0,1}® >

{c, nonce, status}K§1

Fig. 9. An online credential status protocol.

suggests that further analysis of these types of strategic trade-offs in view con-
sistency algorithms may be an interesting area of future research.

5.4 Towards Completeness for Internal Consistency Algorithms

We now propose an online credential status verification protocol that, when
used in conjunction with Algorithm 1, allows the modified Algorithm 1 to more
closely approach ideal completeness. Figure 9 illustrates this two-message pro-
tocol. In this protocol, a client provides the verification service with a creden-
tial whose status she wishes to verify and a nonce value whose length is cho-
sen by the client. The service then determines the current validity status of
the provided credential and returns the credential, the nonce, and the current
status of the credential signed with its private key, K gl, whose public counter-
part, Kg, is assumed to be well-known.

Recall that Algorithm 1’s shortcomings with respect to ideal completeness
arise when all of Bob’s credentials are valid when they are committed to Alice,
but some credential is revoked before Alice validates it. Now, assume that
each CA runs the online credential status verification service implementing
the protocol presented in Figure 9. If Alice chooses a random nonce and sends
it to Bob prior to Bob committing his credential set to Alice, Bob can obtain
certified validity statements for each of his credentials from their respective
issuing CAs, each of which includes Alice’s nonce. Bob can then commit these
validity statements along with each of his credentials to Alice. As Bob discloses
a credential to Alice during the authorization protocol, he must also disclose
its associated certified validity statement to Alice. Figure 10 illustrates how
this protocol extends the commitment phase of Algorithm 1 to become a four-
step process. Note that although only the initial commitment of Algorithm 1
is shown in Figure 10, this protocol can be used for all commitments made
during an execution of the algorithm. Alice can now verify that the credential
was valid at the time that it was committed by Bob.

PROPOSITION 5.3. If a credential ¢ and its associated certified validity
statement cvs = {c, nonce, true} K5 are contained in the commitment set received
by Alice, then c was valid at the time that Alice disclosed her b-bit nonce to Bob
with probability 1 — 27°, provided that Alice chose her nonce value at random.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8: 27

Step 3: Obtain certified validity
statements
N

_ Step 1: Request to commit

Step 2: Nonce n

>

Alice | Step 4: Commit credentials
and validity statements

Fig. 10. An illustration of how the protocol presented in Figure 9 can be integrated with the
commitment phase of Algorithm 1.

PROOF. Assume that Bob obtained cvs prior to the time that Alice disclosed
nonce. This implies that Bob correctly guessed nonce, which he can do only
with probability 27° if Alice chose nonce at random. Thus, with probability
1 —27% Bob obtained cvs after Alice disclosed nonce. As long as Alice ensures
that a(c) is less than or equal to the time that she sent Bob nonce, then she
can conclude that ¢ was valid at the time that she disclosed nonce to Bob (by
Proposition 2.5). O

The above proposition allows Alice to conclude that all credentials used dur-
ing the authorization protocol were valid at the time of the most recent recom-
mit, provided that she chooses a new nonce for each recommit. This credential
status protocol allows a modified version of Algorithm 1 to more closely approx-
imate ideal completeness. An added benefit of this protocol is that it allows
Alice to shift the responsibility of verifying the semantic validity of Bob’s cre-
dentials to Bob; if Alice is a very busy resource provider, this could allow her
to increase the number of trust negotiation sessions that she can complete per
unit time. However, this modified Algorithm 1 is still incomplete, as each of
Bob’s credentials may be valid when he receives Alice’s nonce, but one of them
might be revoked prior to his obtaining a certified credential validity statement
from its issuing CA. This is similar to the problem discussed in Section 4.3 in
which Algorithm 2 could fail because validating all relevant credentials takes a
nonzero amount of time. As in that case, it is unlikely that ideal completeness
could be reached without the assumption of synchronized clocks.

5.5 A Note of Caution Regarding CA Clock Skew

The algorithms in this article assume that the times a(c) and w(c) are inter-
preted relative to the local clock, as is done in commodity software like Web
browsers. That is, if the local clock indicates that w(c) not yet passed, then c is
accepted as syntactically valid. While in many cases this is a safe assumption
to make, especially if online semantic validity checks are also made, it can in
some cases lead to troubles if CA clocks are poorly synchronized. For example,

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 28 . A. J. Lee and M. Winslett

consider the case in which an entity receives credentials ¢; (issued by CA 1
and expiring at time #;) and ¢y (preissued by CA 2 and becoming valid at time
to < t1) as part of an authorization protocol. Based on the local interpreta-
tion of #; and #, the validity period of these credentials overlaps. However, if
the clock at CA 2 is slower than the clock at CA 1 by at least #; — o, then de-
spite appearing to overlap, the validity intervals of ¢; and cs never actually
overlap.

Fortunately, the use of time synchronization protocols such as NTP [Mills
1992] by service providers reduces the likelihood of this type of error ran-
domly occurring between unrelated credentials. It is vital that CAs closely
synchronize their clocks if they issue mutually-exclusive certificates, so that
no misleading apparent overlaps can occur. Such apparent overlaps are
not introduced by the algorithms developed in this article, but rather by
the widespread notion of using a local interpretation of certificate expiration
times. Fortunately, there is no way for an attacker to exploit this type of
error without altering the clock of at least one CA before it issues a certifi-
cate that is subsequently used in the negotiation that the attacker wishes to
disrupt.

5.6 Deployment Considerations

It is clear that enforcing the levels of consistency discussed in this article comes
at the expense of increased computational and communication complexity. For
example, Algorithm 1 imposes computational and communication overheads
associated with creating and transmitting credential commitments, as well
as communication overheads resulting from semantic validity checks. Recall
from Section 5.3 that the costs of committing a set of credentials can be greatly
minimized through the use of Merkle trees, so the total overhead associated
with consistency enforcement is dominated by the costs of semantic validity
checks on the credentials exchanged during the protocol. Since the semantic
validity checks executed during any one round of a negotiation can be carried
out by accessing the appropriate CAs or revocation servers in parallel, the
running time overhead of Algorithm 1 scales as approximately O(RA), where R
is the number of rounds in the negotiation and A is the average time required
for a single semantic validity check. Similarly, Algorithm 2 requires that the
semantic validity of each credential be checked at the end of the protocol and
thus has running time overheads that scale as approximately O(A), as these
checks can also be parallelized.

Unfortunately, carrying out these types of semantic validity checks cannot
be avoided; without them, we cannot conclude whether a single credential is
valid at a given point in time, much less whether a view relating multiple
credentials is consistent. The actual overheads imposed by Algorithms 1 and 2
depend on the protocol used to check the semantic validity of a given creden-
tial. For example, Zhou et al. [2002] show that querying the revocation status
of a credential using a four-node deployment of the COCA system whose nodes
are spread across the United States and Europe takes an average of A = 2.27
seconds. Given that COCA process groups are designed to tolerate Byzantine

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8: 29

failures and use threshold cryptography and proactive secret sharing to en-
sure correct responses in the face of node compromises, this is not surprising.
However, this could lead to very high overheads if used in conjunction with
Algorithm 1. On the opposite end of the spectrum are simpler credential sta-
tus checking protocols, such as OCSP and the protocols presented in Figures 7
and 9. In these cases, A would be approximately the time required for one
round trip between the verifier and CA.

The consistency levels defined in this article have been adapted [Lee et al.
2007] to fit within the Minami-Kotz distributed proof system [Minami and
Kotz 2005]. A status checking protocol similar to that presented in Figure 9
was used to verify fact validity statuses and resulted in overheads of less than
30 percent during the proof construction and validation process. In these ex-
periments, fact status checks were not parallelized; this overhead could be
further reduced through parallelization. While there is not a direct mapping
between the Minami-Kotz distributed proof protocol and the trust negotiation
protocols discussed in this article, these low overheads are promising. When
coupled with the asymptotic analysis presented above, they suggest that the
overheads of semantic validity checks should be tolerable. This is particularly
true if the semantic validity check process can be safely offloaded to client
processes as discussed in Section 5.4, since heavily-loaded servers will then be
freed from further burdens.

6. RELATED WORK

Informally, a safety property of a distributed algorithm is a guarantee that
some (presumably bad) situation will not arise [Lamport 1977]. Previous
works regarding the safety of trust negotiation systems have focused on en-
suring that private information will not be inadvertently leaked during the
trust negotiation process. Yu et al. [2003] first defined the notion of “safe dis-
closure sequences.” Informally, they consider a trust negotiation safe if each
resource disclosed during the negotiation was “unlocked” (i.e., its authoriza-
tion policy was satisfied) at the time that it was disclosed. Winsborough and
Li [2006] note that under this notion of safety, private information that is not
explicitly revealed during a trust negotiation can still be inferred based on the
way that an entity carries out the negotiation. They propose several more re-
fined notions of safety for trust negotiation protocols based on the concept of
indistinguishability, each of which gives users stronger guarantees regarding
the amount of private information leaked during the negotiation. Irwin and
Yu [2005] propose another definition of safety based on the idea of information
gain. Our work is orthogonal to these previous works in that we are concerned
with ensuring that access to system resources will not be granted based on an
inconsistent interpretation of the underlying system state. It would be prudent
for system designers to consider both types of safety.

Another area of closely related work is that of concurrency control and con-
sistency enforcement in distributed systems, distributed databases, and dis-
tributed shared memory. Each of these areas has a rich body of literature,
surveys of which can be found in Tanenbaum and van Steen [2002], Cellary

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 30 . A. J. Lee and M. Winslett

et al. [1988], and Adve and Gharachorloo [1996], respectively. In general, these
problem domains assume that multiple entities will be updating values stored
at multiple locations within the system and as such, maintaining data consis-
tency is of concern to everyone. Therefore, solutions to the transaction manage-
ment problem in these domains typically involve the cooperation of multiple
entities, as every entity has incentive to cooperate. However, as was discussed
in Sections 1 and 2.1, groups of entities have no incentive to cooperate in solv-
ing the view consistency problem for trust negotiation and distributed proving
since this problem is of concern only to a particular resource provider evalu-
ating a particular policy. Therefore, the solutions developed in the distributed
systems, distributed databases, and distributed shared memory literature are
unsuitable for our problem domain; the solutions that we develop in this arti-
cle require only the cooperation of, at most, the two parties participating in the
authorization protocol.

A final area of related work is the collection of system state snapshots in
distributed systems. Collecting consistent snapshots that can be used to eval-
uate stable predicates over the system state is a well-known problem, to which
an elegant solution was presented by Chandy and Lamport [1985]. This algo-
rithm is not directly applicable to the problem addressed in this article, how-
ever, due to the unstable nature of credential statuses. There exist algorithms
for collecting distributed state snapshots that can be used to evaluate unstable
predicates (for a survey, see Babaoglu and Marzullo [1993]), though these algo-
rithms have very high overheads and make unreasonable assumptions about
process cooperation for our problem domain.

7. CONCLUSIONS AND FUTURE WORK

In this article, we presented the notion of view consistency in trust negotia-
tion and distributed proving authorization systems. We showed that failing to
consider the consistency of the system views used during executions of these
protocols can cause a marked decrease in the safety of the decisions made by
the underlying authorization system. We then defined the incremental, inter-
nal, endpoint, and interval consistency levels and demonstrated algorithms to
attain these consistency levels in practice. We proved the soundness of each of
these algorithms and commented on their completeness when compared to an
ideal algorithm run by an omniscient entity. These algorithms require at most
the cooperation of the two parties involved in the authorization process; should
any entity not cooperate, the algorithms will fail rather than violate the consis-
tency conditions that they were designed to enforce. We then explored the no-
tion of strategic design trade-offs for consistency enforcement algorithms. This
led us to propose several modifications to the algorithms presented in Section 4
that enhance the privacy-preservation properties of these algorithms or their
closeness to ideal completeness without altering the consistency constraints
that they enforce.

We are currently pursuing one important area of future work involving gen-
eralizing the consistency enforcement algorithms presented in this article to
work not only with attribute or environmental state information encoded in

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8:31

certificates, but also with more general sources of trustworthy information. As
an example, consider the distributed proof construction algorithm presented
by Minami and Kotz [2005]. In this article, the authors present a distributed
proof construction algorithm for pervasive computing environments in which
proofs are justified by atoms provided by nodes in the system. As it would be
unreasonable to expect each node in the system to run its own CA, these atoms
are simply signed using an RSA private key whose corresponding public key is
associated with the node. One could imagine this model also being adopted
in sensor networks, perhaps using keyed MACs rather than digital signa-
tures. These types of systems present some of the same challenges described in
Sections 1 and 2 of this article—namely that entities wish to use decentral-
ized information sources that have no incentive to cooperate with one another
to make decisions—and could thus benefit from the types of consistency en-
forcement mechanisms proposed in Section 4. Unfortunately, the mechanisms
presented in this article rely heavily on the semantics of certificate revoca-
tion and thus cannot be used directly in systems using more general forms of
trusted information. We are in the process of designing more general consis-
tency enforcement strategies that are applicable to a wider range of systems
using decentralized knowledge to make decisions in adversarial environments.
Initial results in this area can be found in Lee et al. [2007].

Additionally, there are several other areas of interesting future work relat-
ing to view consistency. As alluded to in Section 5.3, the design of consistency
enforcement algorithms that make a variety of trade-offs regarding safety,
availability, and privacy-preservation properties could prove to be a fruitful
area of investigation. Given the autonomous nature of the entities partici-
pating in trust negotiation and distributed proving authorization protocols, it
would be beneficial to explore the notion of interoperable families of algorithms
for consistency enforcement (as was done in Yu et al. [2003] for trust negotia-
tion strategies). This would allow each entity to acquire the consistency level
she requires without placing unnecessary constraints on her communication
partners. Another area of future work involves the development of consistent
views shared by several entities in the system. Given the falling costs associ-
ated with fine-grained clock synchronization via technologies such as GPS and
an increased interest in distributed authorization, interesting notions of view
consistency are likely to emerge from a study of this topic.

ACKNOWLEDGMENT

The authors wish to thank an anonymous reviewer who suggested the Merkle
commitment scheme explored in Section 5.3.

REFERENCES

ADVE, S. V. AND GHARACHORLOO, K. 1996. Shared memory consistency models: A tutorial. IEEE
Comput. 66-76.

BABAOGLU, O. AND MARZULLO, K. 1993. Consistent global states of distributed systems:
Fundamental concepts and mechanisms. In Distributed Systems, S. J. Mullender, ed.
Addison-Wesley, 55-96. Also available as University of Bologna Tech. rep. UBLCS-93-1 at
http://www.cs.unibo.it/pub/TR/UBLCS/1993/93-01.ps.gz.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

8: 32 . A. J. Lee and M. Winslett

BAUER, L., GARRISS, S., AND REITER, M. K. 2005. Distributed proving in access-control systems.
In Proceedings of the IEEE Symposium on Security and Privacy (SSP’05). 81-95.

BECKER, M. Y. AND SEWELL, P. 2004. Cassandra: Distributed access control policies with tunable
expressiveness. In Proceedings of the 5th IEEE International Workshop on Policies for Distrib-
uted Systems and Networks (NDSS’04). 159-168.

BERTINO, E., FERRARI, E., AND SQUICCIARINI, A. C. 2004. Trust-X: A peer-to-peer framework
for trust establishment. IEEE Trans. Knowl. Data Eng. 16, 7, 827-842.

BONATTI, P. AND SAMARATI, P. 2000. Regulating service access and information release on the
web. In Proceedings of the 7th ACM Conference on Computer and Communications Security
(CCS’00). 134-143.

CELLARY, W., GELENBE, E., AND MORZY, T. 1988. Concurrency Control in Distributed Database
Systems. Elsevier Science Publishing.

CHANDY, K. M. AND LAMPORT, L. 1985. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst. 3, 1, 63-75.

CHERITON, D. R. AND SKEEN, D. 1993. Understanding the limitations of causally and totally
ordered communication. In Proceedings of the ACM Symposium on Operating Systems Prinici-
ples (SOSP’93). 44-57.

HOUSELY, R., FORD, W., POLK, W., AND SOLO, D. 1999. Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. IETF Request for Comments RFC-2459.

IRWIN, K. AND YU, T. 2005. Preventing attribute information leakage in automated trust negoti-
ation. In Proceedings of the 12th ACM Conference on Computer and Communications Security
(CCS’05). 36-45.

KOSHUTANSKI, H. AND MASSACCI, F. 2005. Interactive credential negotiation for stateful busi-
ness processes. In Proceedings of the 3rd International Conference on Trust Management
(iTrust’05). 257-273.

LAMPORT, L. 1977. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.
SE-3, 2, 125-143.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Comm. ACM
21,7, 558-565.

LEE, A. J., MINAMI, K., AND WINSLETT, M. 2007. Lightweight consistency enforcement schemes
for distributed proofs with hidden subtrees. In Proceedings of the 12th ACM Symposium on
Access Control Models and Technologies (SACMAT’07). 101-110.

LEE, A. J. AND WINSLETT, M. 2006. Safety and consistency in policy-based authorization
systems. In Proceedings of the 13th ACM Conference on Computer and Communications Security
(CCS’06). 124-133.

L1, J., L1, N.,, AND WINSBOROUGH, W. H. 2005. Automated trust negotiation using cryptographic
credentials. In Proceedings of the 12th ACM Conference on Computer and Communications
Security (CCS’05). 46-57.

L1, N. AND MITCHELL, J. 2003. RT: A role-based trust-management framework. In Proceedings
of the 3rd DARPA Information Survivability Conference and Exposition (DISCEX’03). 201-213.

MERKLE, R. C. 1979. Secrecy, authentication, and public key systems. Ph.D. thesis, Stanford
University.

MiLLs, D. L. 1992. Network Time Protocol (Version 3) Specification, Implementation and Analy-
sis. IETF Request for Comments RFC-1305.

MiNAMI, K. AND KOTZ, D. 2005. Secure context-sensitive authorization. J. Perv. Mob. Comput. 1,
1, 123-156.

MinaMI, K. AND KOTZ, D. 2006. Scalability in a secure distributed proof system. In Proceedings
of the 4th International Conference on Pervasive Computing (PERVASIVE’06). 220-237.

MYERS, M., ANKNEY, R., MALPANI, A., GLAPERIN, S., AND ADAMS, C. 1999. X.509 Internet
public key infrastructure online certificate status protocol - OCSP. IETF RFC 2560.

TANENBAUM, A. S. AND VAN STEEN, M. 2002. Distributed systems: Principles and Paradigms.
Prentice Hall, Upper Saddle River, NJ.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

Safety and Consistency Constraints in Policy-Based Authorization Systems . 8: 33

WINSBOROUGH, W. H. AND LI, N. 2002. Towards practical automated trust negotiation. In
Proceedings of the 3rd IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY02). 92-103.

WINSBOROUGH, W. H. AND LI, N. 2006. Safety in automated trust negotiation. ACM Trans. Inf.
Syst. Secur. 9, 3, 352-390.

WINSLETT, M., YU, T., SEAMONS, K. E., HESS, A., JACOBSON, J., JARVIS, R., SMITH, B., AND
YU, L. 2002. Negotiating trust on the web. IEEE Internet Comput. 6, 6, 30-37.

WINSLETT, M., ZHANG, C., AND BONATTI, P. A. 2005. PeerAccess: A logic for distributed autho-
rization. In Proceedings of the 12th ACM Conference on Computer and Communications Security
(CCS’05). 168-179.

Yu, T., WINSLETT, M., AND SEAMONS, K. E. 2003. Supporting structured credentials and sensi-
tive policies through interoperable strategies for automated trust negotiation. ACM Trans. Inf.
Syst. Secur. 6,1, 1-42.

ZHOU, L., SCHNEIDER, F. B., AND VAN RENESSE, R. 2002. COCA: A secure distributed online
certification authority. ACM Trans. Comput. Syst. 20, 4, 329-368.

Received January 2007; revised July 2007; accepted August 2007

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 8, Pub. date: December 2008.

