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ABSTRACT
Distance bounding protocols have been proposed for many
security critical applications as a means of getting an upper
bound on the physical distance to a communication part-
ner. As such, distance bounding protocols are executed fre-
quently, e.g., to keep node locations up to date, etc. We
analyze distance bounding protocols in terms of their loca-
tion privacy and we show that they leak information about
the location and distance between communicating partners
even to passive attackers. This location and distance infor-
mation may be highly sensitive since it can form the basis
for access control, key establishment, or be used as input
to location aware applications. We analyze, in a number of
scenarios, how much information distance bounding proto-
cols leak. We further discuss several straightforward coun-
termeasures and show why they do not provide adequate
protection against distance leakage. Finally, we propose a
location private distance bounding protocol that maintains
the properties of existing distance bounding protocols while
leaking no information about the distance measured between
the communicating parties.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design —Distributed networks, Wireless

communication; C.3 [Computer Systems Organization]:
Special-Purpose And Application-Based Systems—Real-time

and embedded systems.

General Terms
Security, Theory.

Keywords
Wireless Security, Distance Bounding, Information Leakage.

1. INTRODUCTION
In recent years, distance bounding protocols [4] have been

proposed for several different classes of devices, e.g., wireless
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RF devices [27, 11], RFID [10, 8, 16], ultrasonic devices [21,
22] and UWB [14, 9]. All the proposed protocols have one
thing in common: they aim to provide an efficient and accu-
rate distance (or distance bound) between two nodes. Re-
gardless of the type of distance bounding protocol, the dis-
tance bound is obtained from a rapid exchange of messages
between two nodes called the prover and the verifier. In this
paper, we analyze this rapid message exchange, common
to all distance bounding protocols, in terms of the infor-
mation that a passive attacker can obtain from overhearing
the communication between two nodes executing a distance
bounding protocol.

In general, most protocols leak some kind of information,
e.g., by executing a protocol two nodes might reveal the fact
that they are present within the attackers radio range. What
makes the information leakage from distance bounding pro-
tocols especially severe is that the information that is leaked
is the same as the nodes participating in the protocol, i.e.,
the prover and verifier, will obtain after the execution of the
protocol. In distance bounding protocols, a passive attacker
is able to deduce not only the distance between the prover
and verifier, with the same accuracy as the nodes executing
the protocol, but also his own position relative to the prover
and verifier.

Distance bounding protocols are often used to allow nodes
to build topology maps of the network or to control access
to specific resources in the network, e.g., a node can only
access a specific resource if it is in a specific location. In
those application scenarios, the leaking of the distance will
effectively give the attacker the same map of the network as
the legitimate nodes have, or enable him to map out where
any special access zones might be. This can cause a severe
breach of security.

We analyze several straightforward ways of countering the
information leakage from distance bounding protocols and
we point out the weaknesses or strong assumptions appro-
priate for each of those solutions. We also identify eight dif-
ferent scenarios (different a priori attacker knowledge) that
affect the amount of information leaked to the attacker. Fi-
nally, we propose a location private distance bounding pro-
tocol (LP-DB) that solves the problems outlined above. Our
protocol also prevents distance leakage to an active attacker,
which starts an (unauthorized) distance bounding session;
we thus extend our attacker model to include active attack-
ers.

We summarize our contributions in the following points:
(i) we present a thorough investigation of the distance and
location information leaked from distance bounding proto-



cols in various scenarios, (ii) we analyze several different
straightforward countermeasures and discuss why they do
not provide adequate protection against this information
leakage (iii) we propose a location private distance bounding
protocol that leaks a minimum amount of information.

The rest of the paper is organized as follows: Section 2
gives a quick introduction to distance bounding protocols.
In Section 3 we analyse what information leaks from the dis-
tance bounding protocol and we build a basic model of the
attackers knowledge. In Section 4 we analyse the possible
ways of countering the leaking, and we expand the model
for the attackers knowledge to take different scenarios into
account. In Section 5 we describe our location private dis-
tance bounding protocol (LP-DB). In Section 6 we discuss
related work and we conclude the paper in Section 7.

2. BACKGROUND
Distance bounding denotes a class of protocols in which

one entity (the verifier) measures an upper-bound on its
distance to another (un-trusted) entity (the prover). Dis-
tance bounding protocols were first introduced by Brands
and Chaum [4] for the prevention of mafia-fraud attacks on
Automatic Teller Machines (ATMs). The purpose of Brands
and Chaum’s distance bounding protocol was to enable the
user’s smart-card (verifier) to check its proximity to the le-
gitimate ATM machine (prover). Figure 1 shows the main
principle of operation of distance bounding protocols.

In distance bounding protocols, the verifier challenges the
prover with a b-bit freshly generated nonce N . Upon re-
ception of the challenge, the prover computes an (authen-
ticated) response fP (N), and sends it to the verifier. The
verifier verifies the authenticity of the reply and measures
the time tVs − tVr between the challenge and the response.
This process is repeated k times to avoid the prover guess-
ing (part of) N and replying before the whole challenge is
received. Based on the measured time, the verifier estimates
the upper-bound on the distance to the prover. The time
tPs −tPr between the reception of the challenge and the trans-
mission of the response at the prover is either negligible com-
pared to the propagation time tPr − tVs or is lower bounded
by the prover’s processing and communication capabilities δ,
i.e., tPs − tPr ≥ δ.

The security of a distance bounding protocol relies on the
following observations. The challenge Ni cannot reach the
prover before it has been sent by the verifier, and its prop-
agation cannot be sped-up if the messages propagate at the
speed of light (e.g., over a radio channel); the message prop-
agation can therefore not be shortened by external attacks
or by untrusted provers. The prover’s responses are pro-
tected from external attacks by their unpredictability, and
from the untrusted prover by the fact that the responses are
functions fP (Ni) of the challenges; i.e., the prover cannot
send back the response before receiving the challenge. Given
this, distance bounding protocols provide to the verifier an
upper-bound on its distance to the prover.

After the execution of a distance bounding protocol the
verifier knows that the prover is within a certain distance,
namely:

dist =
tVs − tVr − δ

2
· c

where δ is the processing time of the prover (ideally 0) and
c is the propagation of the radio wave.
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N1, . . . , Nk ∈ {1, 0}

b

(tPr1) N1
oo (tVs1)

(tPs1) f(N1) // (tVr1) N ′
1 ← f(N1)

...
(tPrk) Nk

oo (tVsk)

(tPsk) f(Nk) // (tVrk) N ′
k ← f(Nk)

Verify N ′
1, . . . , N

′
k

Compute db(V ,P ) as a function of tVs1 . . . t
V
sk , t

V
r1 . . . t

V
rk

Figure 1: The main component of distance bound-
ing protocols consists of a rapid exchange of mes-
sages where the time of flight between the prover
and verifier is measured.

3. INFORMATION LEAKAGE FROM
DISTANCE BOUNDING PROTOCOLS

In this section we analyze the distance information leaked
from distance bounding protocols. The amount of informa-
tion leaked by the execution of a distance bounding protocol
depends on how much the attacker knows about his own po-
sition relative to the prover and verifier before the protocol
starts. In this section we assume that the attacker has no
information about the positions of the prover and verifier,
except that they are in his power range. In Section 4 we
will then expand the model to include the attacker’s knowl-
edge. Before we start the analysis we describe our system
and attacker models.

3.1 System and Attacker Model
We consider three nodes, the prover P , the verifier V and

the attacker M . The prover and verifier execute a distance
bounding protocol as described in Section 2. We assume
that the verifier is trusted and not compromised and that
both the prover and the verifier do not deliberately give any
information to the attacker.

The nature of the distance bounding protocol implies that
the verifier does not trust the prover (otherwise they could
use an authenticated ranging protocol [30]) but for the pur-
pose of this analysis we assume that the prover is honest and
complies with the distance bounding protocol to the best of
its capabilities. The prover and the verifier are within one
hop communication range and the delay introduced by the
message processing of the prover δp and verifier δv are public
values.

We consider that the attacker can listen to the radio com-
munication of both the prover and the verifier. We do not
require that the attacker holds any keys or any other se-
cret material that form part of the protocol between P and
V , however, the attacker does know the public parameters
of the distance bounding protocol and the type of hardware
used by the nodes and thus the processing time of the provers
and verifiers radios.

We do not assume any kind of time synchronization be-
tween the nodes, although we do assume that the nodes can
time-stamp messages with, at least, nanosecond precision;
examples of such hardware can be found in [12], and hard-
ware of more recent implementations of distance bounding
and authenticated ranging protocols in [8, 16, 19].
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Figure 2: The paths of three consecutive messages
in the rapid message exchange.

3.2 Distance leakage
If two nodes, the prover and the verifier, execute a dis-

tance bounding protocol under the assumptions described
in Section 3.1 the distance between the prover and verifier
leaks, even if the attacker remains completely passive, i.e.,
even if he does not participate in, or interfere with, the pro-
tocol execution.

In order to mount the attack the attacker needs to record
the time at which the messages from the rapid message ex-
change phase of the distance bounding protocol arrive at his
radio interface. The attacker must record the arrival time of
three consecutive messages to obtain enough information to
calculate the distance between P and V . The arrival times
Ti of three consecutive messages are illustrated in Figure 2
and can be described by the following three equations:

T0 = t0 + tvm (1)

T1 = t0 + tvp + δp + tpm (2)

T2 = t0 + 2tvp + δp + δv + tvm (3)

The attacker receives the first message at T0 which is the
time it was sent t0 plus the time it took the signal to prop-
agate from the verifier V to the attacker M . The next mes-
sage is the prover P ’s response to the first message, so the
time at which the attacker receives it T1 is the sum of the
time the first message was sent by the verifier t0, of the time
it took the message to propagate from V to P , of the time
P took to process the message δp and of the time it took the
message to propagate from P to M . The third message is
a response to the second message and it includes two prop-
agation times between V and P 1 2tvp and two processing
times δv and δp.

The attacker can now find the signals time of flight be-
tween the verifier V and prover P :

tvp =
(T2 − T0)− δp − δv

2
(4)

In order for V and P to measure the distance between
them, δv and δp must be small, and constant, public values
as described in Section 2.

When the attacker has found the signals time of flight
tvp using (4), the distance from V to P can be found by
multiplying tvp by the speed of light c

dvp = c · tvp (5)

1This assumes that the message propagates with equal speed
from V to P and from P to V , i.e., tvp = tpv
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Figure 3: The hyperboles, relative to P and V ,
leaked by two subsequent messages of a distance
bounding protocol for five different values of ∆f =
∆1 − δv.

In order to obtain equation (3) we assume that the veri-
fier sends its next challenge immediately after receiving the
response from the prover. This is true for mutual distance
bounding protocols [27, 29] but not for all types of distance
bounding protocols in general. In Section 4 we show that
in a number of scenarios, indeed only the two first messages
are needed for the attacker to obtain the distance dvp.

3.3 Location leakage
It is not only the distance between the prover and verifier

that leaks. From two subsequent distance bounding mes-
sages the attacker can infer his own location (x, y) relative
to the prover and verifier if he knows the distance between
P and V .

For the attacker to obtain information about his position
relative to the prover and verifier he needs the difference
between the arrival times of two subsequent messages ∆1.
The difference between the arrival times of two subsequent
messages follows from (1) and (2):

T1 − T0 = ∆1 = tvp + δp + tpm − tvm (6)

If we convert from time to distance by multiplying with c
on both sides, we get:

c∆1 = dvp + cδp + dpm − dvm

c(∆1 − δp)− dvp =
√

x2 + (dvp − y)2 −
√

x2 + y2 (7)

In order to describe the position of the attacker relative to
the prover and verifier we have to define a coordinate system
in which the prover, verifier and attacker have well defined
positions. In (7) we assume the verifier is located at (0,0)
and the location of the prover defines the positive direction
of the y-axis, i.e., the prover is located at (0,dvp).

To simplify the equations, we define the left side of equa-
tion (7) as a pseudo distance ∆p:

∆p ≡ c(∆1 − δp)− dvp for − dvp ≤ ∆p ≤ dvp (8)



which gives

∆p =
√

x2 + (dvp − y)2 −
√

x2 + y2

y =
±∆p

√

4x2 + d2vp −∆2
p + dvp

√

d2vp −∆2
p

2
√

d2vp −∆2
p

(9)

Equation (9) describes a hyperbole relative to the prover
and verifier, on which the attacker must be located. Differ-
ent examples of such hyperboles can be seen in Figure 3
along with the corresponding ∆f = ∆1 − δp values. In
essence, the messages sent by the prover and verifier work
like beacons in a TDOA [33, 7] system, only here the bea-
cons are not transmitted at the same time, but in a rapid
sequence.

3.4 Attacker initiates the Distance Bounding
Protocol

Another way information can leak from distance bounding
protocols is if the attacker takes the role of the prover (or
verifier) and initiates a distance bounding session with the
other node. This is a deviation from the passive attacker
model since the attacker is now actively sending bits to force
the distance to leak.

Most distance bounding protocols do not have any form of
authentication until after the rapid exchange of messages [4,
30] so even if the attacker does not hold a valid key he can
initiate the protocol and trick the prover (or the verifier) into
completing the rapid message exchange, at which point the
attacker will know the distance to the prover (verifier) and
abort the protocol before completing the authentication.

To the best of our knowledge no existing distance bound-
ing protocol include authentication in the setup phase. Some
use a shared key to communicate before the ranging phase
begins [10, 26] but do not prevent an external attacker from
initiating the protocol and completing (part of) the ranging
phase. Even if authentication is included in the setup phase
of the distance bounding protocol, the individual messages
of the rapid message exchange are not authenticated so an
attacker can still wait for two nodes to initiate the protocol
and then take over the rapid message exchange by overshad-
owing the signal from the valid node.

4. INFORMATION LEAKAGE
COUNTERMEASURES

In order to prevent information leakage from distance bound-
ing protocols, the attacker must be prevented from calcu-
lating the time of flight of the signal between the verifier
and the prover, as shown in equation (4). In this section,
we explore various solutions to this problem and we show
why each of the solutions fails to provide full protection
against distance and location leakage attacks. We will use
the lessons learned in this section to construct a location
private protocol (Section 5).

The protocols presented in this section all use single bits
as the messages N1, . . . , Nk and the function applied by the
prover is ⊕ (xor). The protocols that represent different
countermeasures, all have weaknesses that limit their effec-
tiveness but they highlight why the problem of information
leakage is not trivial to solve.

4.1 Adding random delay between messages
One way to make the calculation of the time of flight of

the signal between the prover and verifier tvp harder for the

P V
Np ∈ {0, 1}

k

Dp ∈ [Dmin, Dmax]
k

Cp ← h(Np, Dp)
Cp

//

Nv ∈ {0, 1}
k

Dv ∈ [Dmin, Dmax]
k

Nv [0]oo

Np[0]⊕Nv[0] //

Delayed rapid
... bit exchange

Nv [k]oo

Np[k]⊕Nv[k] //

EKpv
(V,Np,Dp)

//

Decrypt message and

verify Cp = h(Np, Dp)

Figure 5: Distance bounding protocol with random
delay between messages.

attacker, is by adding a random delay between the messages
of the rapid message (rapid bit) exchange in the protocol.
In this case, a new protocol is needed to make sure that the
prover and verifier can still compute the correct distance.
Such a protocol (Figure 5) will be discussed at the end of
this section.

If the prover and verifier add a random delay before send-
ing each bit of the rapid bit exchange, the equations describ-
ing the arrival time of the three subsequent messages will be
modified to include the random delay for both the prover
and the verifier:

T0 = t0 + tvm (10)

T1 = t0 + tvp + δp +Ωp + tpm (11)

T2 = t0 + 2tvp + δp + Ωp + δv +Ωv + tvm (12)

where Ωp is a random delay added by the prover P and Ωv

is a random delay added by the verifier V . The calculation
of the time of flight now becomes:

tvp =
(T2 − T0)− δp − Ωp − δv − Ωv

2
(13)

If the random delays Ωp and Ωv are set to 0 this equation is
the same as equation (4).

Equations (10) – (12) will vary depending on the attackers
knowledge about his own position relative to the prover and
verifier, e.g., if the attacker knows his distance to the prover
and verifier he will not need the third message to calculate
tvp. We have identified eight different scenarios, shown in
Figure 4, that represent different attacker knowledge. In the
rest of this paper we will refer to these scenarios by the letter
used in Figure 4, e.g., the scenario where the attacker has
no knowledge of the distance to either P or V is referred to
as scenario (a). Table 1 contains the equations for message
arrival time in all eight scenarios.

The equations describing the message arrival times are
derived as described in Section 3.2. The ’-’ in the third
column of Table 1 means that no equation is needed for T2 in
these scenarios because the first two equations are sufficient
for the attacker to compute the distance between the prover
and verifier.

If we look at the equations for tvp in scenario (b), (c) and
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Figure 4: Scenarios represent the attacker’s knowledge about his position relative to V and P . In all eight
scenarios the verifier V and the prover P are executing a distance bounding protocol and the attacker M is
able to listen to the traffic between V and P .

Reception time of Reception time of Reception time of Time of flight
the first message the second message the third message between P and V

Scenario T0 T1 T2 tvp
(a, e, f) t0+tvm t0+tvp+δp+Ωp+tpm t0+2tvp+δp+Ωp+δv+Ωv+tvm ((T2−T0)−δp−Ωp−δv−Ωv)/2

(b) t0+tvm t0+tvp+δp+Ωp+tpm - (T1−T0)−δp−Ωp−(tpm−tvm)

(c) t0 t0+2tvp+δp+Ωp - ((T1−T0)−δp−Ωp)/2

(d) t0+tvp t0+tvp+δp+Ωp t0+3tvp+δp+Ωp+δv+Ωv ((T2−T0)−δp−Ωp−δv−Ωv)/2 (*)

(g) t0+tvm t0+2tvp+δp+Ωp+tvm - ((T2−T0)−δp−Ωp)/2

(h) t0+tvp+tpm t0+tvp+δp+Ωp+tpm t0+3tvp+δp+Ωp+δv+Ωv+tpm ((T2−T0)−δp−Ωp−δv−Ωv)/2 (*)

(*) further more we have that (T1 − T0) = δp + Ωp

Table 1: Message reception times T0, T1 and T2 and the resulting equations for the time-of-flight between the
verifier and prover tvp for the eight scenarios described in Figure 4.

(g) (fourth column in Table 1), only the random delay added
by the prover P has an effect on the attacker’s calculations.
Similarly in scenario (d) and (h) only the random time added
by the verifier V has an effect on the calculations since we
have (T1 − T0) = δp + Ωp.

This means that in order to provide effective countermea-
sures (using the random delay based protocol) in all scenar-
ios, i.e., regardless of the a priori knowledge of the attacker,
both the prover and the verifier must add a random delay
between the messages.

In Figure 5 we give an example of a protocol where both
the prover and the verifier adds a random delay between
the messages in the rapid bit exchange. In this protocol
the prover first selects a k bit nonce Np and a delay vector
Dp with values between Dmin and Dmax. The prover then
creates a commitment by hashing the two values and sends
the commitment to initiate the protocol. The verifier picks
his own nonce Nv and his own delay vector Dv and starts
the delayed rapid bit exchange phase. The delayed rapid bit
exchange phase takes k rounds (one round for each bit in
the nonces). In the ith round the verifier will wait for Dv[i]
nanoseconds and then send the challenge. When the prover

receives the challenge he will wait for Dp[i] nanoseconds be-
fore sending back the response. After k rounds the entire
nonce has been exchanged and the prover opens the com-
mitment made in the setup phase so the verifier can check
if the nonce that was exchanged in the delayed rapid bit
exchange phase is correct and subtract the random delays
Dp from the round-trip time of each round. Once this step
is done the verifier has all the information needed to recon-
struct the time-of-flight of each bit and estimate the distance
to the prover.

The problem with such a protocol is that the prover also
needs to add a delay. If the prover is allowed to add a ran-
dom delay to the messages, the verifier can not be sure that
the prover actually waits as long as it claims. Even if the
prover commits to a series of delays in the setup phase of the
protocol the prover could still cheat consistently on all de-
lays, by subtracting a fixed amount from all the delay values
in his delay vector, thus making himself appear closer to the
verifier than he actually is. Since the same delay must be
subtracted from all the values in the provers delay vector (in
order to preserve consistency), this problem could be solved
by requiring that at least one of the delay values is 0 but
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Figure 6: Distance bounding protocol with multiple
challenges.

in this case the attacker would learn the same information
as without any delays at all, just by looking at the fastest
response.

Because this method would give the prover the ability to
claim a false location closer to the verifier, thus destroying
one of the most important properties of the distance bound-
ing primitive, this method can not be used as an effective
countermeasure.

4.2 Sending multiple challenges
Another way to add randomness to the attackers calcu-

lation is for the verifier to send multiple challenges to the
prover before the prover responds (correctly) to one of them.
This only works if the attacker is unable to distinguish be-
tween a transmission from the prover and a transmission
from the verifier, otherwise the attacker will just wait for
a response from the prover and then assume that it was a
response to the last message sent by the verifier.

If multiple challenges are sent, a protocol is needed to
make sure that the prover and verifier agree to which chal-
lenge the prover must (correctly) reply. We present such a
protocol in Figure 6.

In the distance bounding protocol in Figure 6, the prover
first selects a k bit nonce Np and transmits a hash of that
nonce to the verifier as a commitment. The verifier then
picks his own nonce and generates an array of values that
represent the number of messages the prover must receive
before answering. This array is then sent to the prover.
After this initial exchange of messages the rapid bit exchange
starts and the verifier starts sending challenges to the prover.
When the required number of challenges for round i has been
received, the prover responds with the challenge xor’ed with
the ith bit of his own nonce.

The verifier must send out the challenges quickly enough
(or close enough together) that a potential attacker can not
distinguish the provers responses from the verifiers chal-
lenges based on the inter message timing.

An attacker listening to a distance bounding protocol where
multiple challenges are sent, will have to guess which one is

the right challenge. When the attacker has guessed the chal-
lenge, he can assume that the next message is the response.
If the prover sends a random number of challenges (between
1 and n) for each response, the probability that the attacker
can guess m challenges in a row is:

P (attacker success) =

(

1

n

)m

(14)

For n = 10 challenges and m = 3 consecutive messages,
the probability of the attacker successfully guessing the three
correct challenges is (1/10)3 = .001. Note that m = 3 im-
plies scenario (a), (d), (e), (f) or (h) since, only in these
scenarios, the attacker needs three messages to learn the
distance between V and P .

A sophisticated attacker can use, e.g., signal fingerprint-
ing [18] or received signal strength (rss) [31] to distinguish
transmissions from the prover and verifier with a certain
probability, so the assumption of indistinguishability of the
prover and verifiers signal is very strong.

The relatively high probability of successfully guessing
three challenges and the assumption that the attacker can
not distinguish between transmissions from the prover and
verifier make this protocol an inadequate countermeasure to
information leakage.

4.3 Send challenges with a fixed interval
If the verifier sends challenges with a fixed interval, say,

every 100ms, the attacker will not be able to derive any
information from the time between receiving the response
from the prover T1 and receiving the next challenge from
the verifier T2. Essentially the attacker would only get T0

and T1.
This technique effectively prevents the distance and rela-

tive position from leaking in scenarios (a, d, e, f, h) but not
in (b, c, g) since only two messages are needed to calculate
the distance in these scenarios. So while sending challenges
with a fixed interval is a strong, and easy to implement,
countermeasure it does not solve the problem completely.

4.4 Hiding the transmission of messages
A different approach to counter information leakage from

distance bounding protocols is to hide the fact that any mes-
sages are being sent at all, thus preventing the attacker from
obtaining T0, T1 and T2.

In this section we will look at the advantages and disad-
vantages of using direct sequence spread spectrum (DSSS) [17]
or frequency hopping (FH) [13] to make detection of the
transmission harder for the attacker. In this context, the
immediate goal of using any spreading technique is to de-
prive the attacker of information regarding the arrival time
of the messages in the rapid bit exchange. Both DSSS and
FH have a number of features that become problematic when
nanosecond accuracy is needed [24]. To better illustrate the
impact of spreading and de-spreading on the delay, we give
a short review of the receiver synchronization procedure.

4.4.1 DSSS receiver synchronization
Direct sequence spread spectrum (DSSS) works by mod-

ulating the original data signal with a high frequency chip-
signal, or spreading code, thus spreading the resulting DSSS
signal over a wider frequency band. If the transmitter uses
the same amount of power to transmit the DSSS signal as
would have been used to transmit the original signal, less



energy is transmitted on each frequency (since more fre-
quencies are used). The DSSS signal can become difficult
to separate from channel background noise for someone who
does not know the correct chip-sequence [24, 5].

In order to receive a DSSS signal the sender and receiver
radios must be tightly synchronized2 such that the spreading
code and the de-spreading code are applied correctly. The
process of synchronizing the receiver radio to the sender ra-
dio is called signal accusation and is performed each time
a new transmission begins. The receiver must be tuned to
exactly match the phase of the incoming signal to correctly
apply the de-spreading code [24].

Acquisition is accomplished in a two step process. First
a rough synchronization is performed to synchronize the re-
ceiver to within one chip of the incoming signal, then a phase
locked loop (PLL) takes over and performs the final fine
grained synchronization. The PLL will track the phase of
the incoming signal and compensate for any Doppler shifts
or other changes (e.g., frequency drift of the two radios),
so once the signal is acquired the de-spreading can be per-
formed with negligible delay.

The problem with this process is that in the rapid bit ex-
change each message (i.e., each bit) is a separate transmis-
sion and therefore the signal must be acquired every time a
new bit arrives.

The acquisition delay depends on the design of the re-
ceiver. We briefly describe two receivers, one with a parallel
design and one with a serial design. For a detailed descrip-
tion of how these two receiver designs work, please refer
to [24, p. 746], here we will just describe the delay intro-
duced by the two designs.

A parallel receiver design with 2Nc signal correlations can
synchronize a receiver if it is within Nc chips of correct align-
ment. In such a case the signal acquisition time is given by
the following equation:

Tacq = λTc (15)

where λ is the number of chips that must be received before
a decision is made and Tc is the time it takes to receive one
chip. The equation shows that the more chips the receiver
receives before a synchronization decision is made, the longer
it takes to acquire the signal but a bigger λ also means that
the probability of erroneous acquisition is reduced.

The popular and much simpler and cheaper serial receiver
design has the disadvantage of a higher (and more unpre-
dictable) acquisition time. In the following equations PD is
defined as the probability of correct correlation and PFA as
the probability of false alarm as given by [24]:

(Tacq)max = 2NcλTc (16)

(Tacq)avg =
(2− PD)(1 +KPFA)

PD
(NcλTc) (17)

σacq = (2NcλTc)
2(1 +KPFA)
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)

(18)

It should be noted that other synchronization techniques
with faster acquisition times do exist, e.g., RASE [32], how-
ever these techniques are often highly susceptible to noise
and interference [24] and are thus not well suited for our
purpose.

2Synchronization in this case does not refer to time synchro-
nization on the application layer, but radio synchronization
in order to correctly apply the spreading code.

After the rough synchronization, control is handed off to
the phase locked loop (PLL) which will need a few more
chips to acquire complete lock.

It is clear that the serial receiver design introduces more
random delay than the parallel design, but even the parallel
design can fail to acquire the signal (if the synchronization
error is bigger than Nc chips). If that happens the receiver
must retry the acquisition and that will introduce uncer-
tainty in the delay. Since any random delay introduced by
the prover will be impossible for the verifier to compensate
for, it will adversely affect the result of a distance bounding
protocol.

4.4.2 DSSS code and message length
There are also several problems relating to the length of

the chip sequence (or spreading code) used.
By the length of the spreading code we mean the number

of chips of code per bit of data. The longer the spreading
code is, the harder it is for the attacker to detect the trans-
mission but it also takes longer to send and receive a single
bit of data (if the rate is fixed). This has implications on
the granularity of the distance bound since the prover must
wait for the entire chip sequence to arrive before responding,
in order to verify that it is indeed the right spreading code
being used.

Another problem with the length of the message is that
in order to acquire the signal, i.e., perform the course syn-
chronization, the receiver must get at least λ chips. If the
message is only one bit long then a preamble must be used.
This further increases the overall transmission time for each
message and thus reduces the granularity of the distance
bound.

4.4.3 Off-line attacks
A problem that signal spreading does not solve is off-line

attacks. A determined attacker can record the signal in the
entire band used for transmission and then do a brute force
attack on the spreading codes. Since the timing is not ob-
scured by the spreading technique (beyond what happens
during signal acquisition) the attacker will get the same in-
formation as with an online attack. A brute force attack
might be infeasible for DSSS but for FH it is trivial.

Because of the problems outlined in this section, signal
spreading alone can not be used to effectively prevent infor-
mation leaking without introducing other problems but we
will show that it can be an additional protection mechanism
when used in conjunction with our location private distance
bounding protocol described in Section 5.

5. LOCATION PRIVATE DISTANCE
BOUNDING PROTOCOL

Distance bounding protocols used to build topology maps
of a network or to control access to specific resources in a
network are prime targets for attack. The leaking of infor-
mation from these protocols will give the attacker the same
map of the network as the legitimate nodes have, or enable
him to map out where any special access zones might be.
This can be a severe breach of security.

In this section we present a distance bounding protocol
designed to minimize the amount of information that leaks
to an attacker. In order to prevent the attacker from being
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Figure 7: Distance bounding protocol that does not
leak information to a passive or active attacker.

able to learn the transmission times of the rapid bit exchange
our location private distance bounding protocol is based on
streams as illustrated in Figure 7.

Our protocol works in the following way: The prover picks
a k bit nonce and sends it to the verifier, encrypted with a
shared key. The verifier also picks a k bit nonce and a hidden
marker HM that will mark the beginning of valid data in
the data stream. The hidden marker is sent encrypted to
the prover. The verifier then starts sending random data
to the prover. The prover will xor this data with his own
stream of random bits and send it back to the verifier.

The way in which the streams are started and stopped is
important in order not to leak any information. The fol-
lowing describes the timing of the various steps after both
streams are established:

After both streams are established, the prover will con-
tinuously monitor the stream for the hidden marker while
xor’ing it with random bits and sending it back. When the
last bit of the hidden marker appears the prover will start
xor’ing the incoming data (which should now be the verifiers
nonce) with his own nonce and transmit this back to the ver-
ifier. The time at which the verifier starts transmitting the
hidden marker HM followed by the nonce Nv is randomly
chosen (within the setup window ws) so an attacker can not
deduce the transmission time of the nonce from the trans-
mission time of the start of the stream. The setup window
only begins after both streams are established.

The moment the verifier has sent the last bit of the hidden
marker he will begin to save the bit stream from the prover.
This will enable the verifier to count the number of bits
between the transmission of Nv and the reception of Nv⊕Np.

After the final bit of the verifiers nonce Nv has been sent,
the verifier continues to transmit random bits to make it
harder for the attacker to determine when the actual trans-
mission ended. The prover also switches back to random bits
after sending Nv⊕Np. When Nv⊕Np has been successfully
received, the verifier will stop the continuous transmission
after a short random delay, and after a another random delay
the prover will do the same. The short random delay must
be there or an attacker can measure the time between the
end of the verifiers transmission and the end of the provers
transmission to estimate the time of flight of the signal.

Once both streams have been terminated the prover will
count the number of bits in the saved bit stream between the
moment the verifier started to send out Nv and the moment
the first bit of Np ⊕Nv came back and subtract the known
processing time of the provers radio. This gives the verifier
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Figure 8: A functional diagram of the prover and
verifiers radios.

a round trip time and thus an upper bound on the distance
to the prover.

The location private distance bounding protocol works at
any bit rate, but for it to be useful, the bit rate must be
high enough to give a reasonable granularity. A bit rate of
1Gb/s will give a granularity of about 30cm. We will look
at the bit rate requirements of the protocol in more detail
in Section 5.5.

5.1 External attackers and malicious provers
A malicious prover can not cheat on the distance mea-

surement for the same reason that a prover using an exist-
ing distance bounding protocol described in Section 2 can
not cheat; he does not know the value of the challenge bit
Nv [i] before he has to send the response. The bit rate of the
streams must be the same in both directions, i.e., from the
verifier to the prover and back. That means that the prover
can only send the ith bit of Nv ⊕Np back after he receives
the ith bit of Nv . Even if the prover tries to guess the next
bit he has to wait until it is time to send the next bit before
doing so (otherwise he will violate the bit rate) and by that
time, he knows the actual value of the next bit of Nv, so
there is no opportunity to guess.

An external attacker can not get the distance to either the
prover or the verifier by initiating the protocol as it requires
communication using a shared key before the streams are
started. Once Np and the HM have been exchanged, the at-
tacker can not learn anything from listening to the streams
since the data transmitted looks completely random and be-
cause the streams are one long continues transmission the
attacker can not deduce any message arrival times. We anal-
yse the attackers chance of guessing valuable information in
Section 5.4.

5.2 Construction of the radios
To make it clear how location private distance bounding

protocol handles streams, we give a short description of a
possible construction of such a system.

A functional diagram of the prover and verifier is given in
Figure 8. The diagram shows in a schematic way how the
streaming part of the protocol could be realized. To read
the diagram assume that all the multiplexers start in posi-
tion 0. The prover sends out bits from a (pseudo) random
source while making sure that the HM -sequence does not
accidentally occur in the random bit stream.

When the bit stream reaches the prover it is fed through
an HM -detector that has two outputs. The first output



is the unchanged stream itself and the second output is a
signal that makes the prover’s multiplexer switch from input
0 to input 1 if the HM -sequence is found. The unchanged
stream is xor’ed with random bits (when the multiplexer is
at position 0) and then sent back to the prover.

When the verifiers multiplexers are switched to the state
marked 1 he starts the transmission of the hidden marker
HM and the nonce Nv. When the HM -sequence reaches the
prover he will detect it and switch his own multiplexer thus
sending back Np ⊕Nv.

5.3 HM remover and HM detector
In order to make sure that the random bits used in the

beginning and end of the location private distance bound-
ing protocol does not accidentally contain an HM -sequence,
the verifier must have a mechanism to ensure that if such
a sequence does occur it will be altered. The way in which
the random bit stream is altered is important as the prover
might introduce a bias in the bit stream and make the out-
put easily distinguishable from pure random.

In the following we assume that our HM -remover is a
shift-register with random bits coming in from the right and
going out through the left side (like in Figure 8). The HM -
remover has enough positions in its buffer to hold the size of
the HM -sequence N and all N bits are inspected in parallel.
When the left most bit is sent out a new random bit comes
in from the right, shifting the bits in the HM -remover. Only
the bits currently in the HM -remover can be altered and the
HM -remover is stateless, i.e., it does not “remember” what
bits it sent out.

The naive way to alter the stream is to flip a random
bit if the buffer matches the HM -sequence. However while
doing so will make sure that the bit string in the buffer is
no longer the HM -sequence, flipping a random bit might
accidentally recreate the HM -sequence further ahead in the
bit stream, e.g., suppose the HM is ’1 1 0 0’ and the bit
stream is ’. . . 1 1 0 1 1 0 0’. The four last bits in this stream
make up the HM -sequence and needs to be changed, but if
the verifier flips bit number four from the right (randomly
chosen) it will create the HM -sequence out of the first four
bits.

One way the HM -remover can avoid accidentally creat-
ing the HM -sequence further ahead in the bit stream is by
always flipping the last (left most) bit in the buffer if the
buffer matches the HM -sequence, but that will introduce a
bias since the last bit of the HM stays the same through out
a session and flipping it would create a slight overweight of
either ones or zeros.

To avoid this situation we propose the following way of
modifying the bit stream: When creating the HM make
sure that the last two bits are different, then, whenever an
unintentional HM -sequence is detected by the verifier, the
two least significant bits are flipped, i.e., ’0 1’→ ’1 0’ or ’1 0’
→ ’0 1’. If the two least significant bits are different, flipping
them will not introduce a bias in the stream of random bits
since the number of ones and zeros will remain constant and
it will ensure that the buffer no longer matches the HM -
sequence.

What about unintentionally creating the HM -sequence
from previously processed output and the newly flipped bits?
We prove that this situation can only occur in two situa-
tions, namely if the HM -sequence consists of all ones or all
zeros (except the last bit which must be different). By elim-
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Figure 9: The HM-sequence ends in ’1 0’ (left) or ’0
1’ (right) so if the flip of the two least significant bits
will cause the sequence to be recreated, if must be
because the whole sequence was ones (left) or zeros
(right).

inating these two extreme possibilities we make sure that
flipping the two least significant bits will never create the
HM -sequence.

To prove that only a sequence of all zeros (or all ones)
can create the HM -sequence if the last two bits are flipped,
we use the two illustrations in Figure 9. We start with no
assumptions on the bit sequence other than it ends in ’1 0’ or
’0 1’. The two sub figures in Figure 9 illustrate the situation
where the HM -sequence ends in ’1 0’ and ’0 1’ respectively.
We will just describe the ’1 0’ (left) case as the explanation
applies to both situations.

The top row depicts six bits of the pseudo random bit
stream that passes through the HM -detector. Now suppose
the bits b0–b4 matches the HM -sequence that must mean
that the last two bits are ’1 0’. The second line depicts the
situation when the last two bits are flipped. Now we see
that, first of all, if a new valid HM -sequence is created it
must mean that b2 must be one, otherwise the bits would
not create a valid HM . That in turn requires all the rest of
the bits to be one in order to create a valid HM -sequence. �

That means that for the verifier to generate a 160 bit
HM -sequence he should generate a 159 bit random nonce
and then append a one or a zero such that the final two
bits of the HM -sequence are either ’0 1’ or ’1 0’. The only
restriction that applies to the random nonce is that it can
not be all zeros or all ones.

5.4 Attackers guessing space
Transmitting a stream prevents the attacker from obtain-

ing information about when the verifier sent the nonce to
the prover. As previously explained, the verifier will estab-
lish the stream and then send random meaningless data for
a while before sending the hidden marker and the nonce,
the amount of time is chosen at random within the setup
window ws. The attacker has two options when trying to
guess the start of the nonce. The attacker can either guess
the HM -sequence with a probability of 2j−1 where j is the
length of the HM (the last bit is known once j − 1 bits
have been guessed), e.g., 2159 for a 160 bit HM , or he can
try to guess the start of the HM -sequence without actually
guessing the sequence.

For a bit rate of 1 Gb/s and a setup window of 500ms
there are 5 · 108 ≈ 230 possible starting points for the HM -
sequence. However since the HM has to end in either ’0
1’ or ’1 0’ the attacker can rule out starting points that do
not have one of these combinations at the end (i.e., end in
’1 1’ or ’0 0’), assuming the attacker knows the length of
the HM . That gives a guessing space for the attacker of
2.5 · 108 ≈ 229 possible start locations for the HM . Given
that the attacker only has one guess we believe that to be
sufficient. If a larger guessing space is needed the prover can



either increase the setup window ws or the protocol can be
executed with a higher stream bit rate.

The reason the attacker only has one guess is that, al-
though he can guess as many times as he wants, he has no
way of verifying the guess, even if he happens to guess cor-
rectly, so if he wants to attack the protocol he will have to
make a single guess and hope it is correct.

5.5 Bit rate and modulation
The verifier measures the time it takes for the prover to

respond to a challenge by counting the number of bits that
separates the start of his own transmission of Nv and the
reception of Np ⊕ Nv. This is the only way to measure
time since the continuous stream is already established by
the time the prover must send back Np ⊕Nv , and therefore
the prover can only add data to the stream and not send
asynchronous messages.

As a consequence of this, the time granularity with which
the prover can respond is equal to the bit rate. This means
that the bit rate must be sufficiently high to give a good
granularity of the distance. If the bit rate is 1Gb/s, i.e., one
bit every nanosecond, the distance granularity is approxi-
mately 30cm. Bit rates of 1+ Gb/s are not yet commonly
used in consumer electronics but several interesting prod-
ucts are already on the market (early 2008). WUSB [2]
have achieved a bit rate of up to 480 Mbit/s giving a dis-
tance granularity of about 60cm. There is also Sony’s Trans-
ferJet [3] with bit rates up to 560Mbit/s in optimal con-
ditions (about 50cm) and the wireless network standard
IEEE 802.11n [6] offers speeds of up to 248 Mbit/s (in the-
ory) giving a granularity of about 1.15 meters.

IEEE 802.15.3-2003 [25] is a MAC and physical layer stan-
dard for high-rate (1100 to 1055 Mb/s) wireless personal
area networks (WPANs) which gives a distance granularity
over shorter distances of 27 – 28 cm.

It is not only the bit rate that is important for the proto-
col but also the modulation. Suppose a bit rate of 1 Gb/s is
achieved with QPSK [1] modulation. That does not mean
that the radio receives one bit every nanosecond but rather
it receives two bits every two nanoseconds, reducing the dis-
tance granularity to 60 cm.

5.6 Hiding the stream with DSSS
We saw in Section 4.4 that DSSS can not be used alone

as a protection mechanism due to the unpredictable acqui-
sition time. This unpredictability is not a problem in the
stream based protocol however, since the exact arrival time
of the first bits of the stream have no meaning, and as noted
in Section 4.4, once the connection is established and the
verifier and prover are synchronized, the delay introduced
by the DSSS system is negligible.

For the prover and verifier to use DSSS the verifier must
pick a spreading code at the beginning of the protocol and
send this code encrypted to the prover along with the HM -
sequence. Following that, the stream is established as ex-
plained, with the exception that it is now being transmitted
using DSSS with the spreading code chosen by the verifier.

Using DSSS will force the attacker to search for the right
spreading code before trying to guess the position of the HM
within the stream. If the signal is spread over a large fre-
quency band the attacker might not even be able to separate
it from channel background noise. In this case the use of a
hidden marker in the stream is superfluous.

Another benefit of using DSSS on top of the stream based
distance bounding protocol is that several nodes can exe-
cute the protocol simultaneously with minimal interference,
thus making the system more robust. If DSSS is not used,
the protocol will occupy the channel for the duration of the
stream.

The only downside, and the reason that DSSS is only men-
tioned as an extension to the protocol, is that it either in-
creases the (already high) bit rate of the stream or it de-
creases the granularity of the distance bound. This is a
technical limitation that may become less important as new
high bit rate UWB systems become more common.

6. RELATED WORK
Distance bounding was first introduced by Brands and

Chaum [4] in 1993. Since then the notion has been used
in a number of different applications for wireless networks
including [23, 27, 30] and in sensor networks [15, 29, 28, 22].

Distance bounding protocols have also been proposed in
other contexts, e.g., for RFIDs [10, 8, 16] and ultra wide
band (UWB) devices [14, 9].

The information leaked by distance bounding protocols
has received very little attention so far. To the best of our
knowledge the only other attempt to solve some of the prob-
lems analyzed in this paper is a patent by Sahinoglu, Orlik
and Molisch [20] in which the authors present a protocol
that provide increased privacy for the prover.

The protocol in [20] is similar to the protocol we analyze in
Section 4 in that the prover and verifier agree on a delay be-
fore the actual ranging phase begins. The solution does not
consider the case where the prover is malicious and tries to
cheat on the distance, but only attempts to provide an hon-
est prover with increased privacy. The privacy is achieved
using a fixed set of autocorrelation codes from which one is
chosen at random by the verifier when the protocol begins.

While the solution presented in [20] does go some way
towards addressing the problem of information leakage, its
scope is significantly different from ours. It targets prover
privacy from external attackers only and the solution does
not provide protection against attacks in which the attacker
tries all autocorrelation codes off line as described in Sec-
tion 4.4.3.

Our work is the first to do a comprehensive analysis of
the information that leaks from a distance bounding pro-
tocol and to propose a solution that protects against both
malicious provers, passive eavesdroppers (including off-line
attacks) and attackers that try to actively initiate a distance
bounding session.

7. CONCLUSION
Distance bounding protocols for determining an upper

bound on the distance between two entities have been pro-
posed for many security critical applications including secure
localization and access control.

In this work, we showed that existing distance bounding
protocols leak distance and location information to an at-
tacker who overhears the communication between the prover
and verifier. We identified eight scenarios that represents
different a priori knowledge of the attacker. In each sce-
nario we analyzed how much information is leaked and how
the attacker can reconstruct the distance between the prover
and verifier. We also showed how the attacker can find his



own position relative to the prover and verifier. We further
analyzed different straightforward countermeasures and dis-
cuss why they do not provide adequate protection against
information leakage in distance bounding protocols. Finally,
we presented a location private distance bounding protocol
that preserves all the attractive properties of other distance
bounding protocols, but does not leak any range and dis-
tance information to the attacker. Our protocol can thus be
used for location private distance bounding or as a basis for
location private secure localization.
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