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ABSTRACT

Multisignatures allown signers to produce a short joint signature

on a single message. Multisignatures were achieved in the plain

model with a non-interactive protocol in groups with bilinear maps,

by Boneh et al [4], and by a three-round protocol under the Discrete

Logarithm (DL) assumption, by Bellare and Neven [3], with mul-
tisignature verification cost of, respectively(n) pairings or ex-
ponentiations. In addition, multisignatures with(1) verification
were shown in so-called Key Verification (KV) model, where each
public key is accompanied by a short proof of well-formedness,
again either with a non-interactive protocol using bilinear maps, by
Ristenpart and Yilek [15], or with a three-round protocol under the
Diffie-Hellman assumption, by Bagherzandi and Jarecki [1].

We improve on these results in two ways: First, we show a two-
round O(n)-verification multisignature secure under the DL as-
sumption in the plain model, improving on the three-round protocol
of [3]. Second, we show a two-rourd(1)-verification multisigna-
ture secure under the DL assumption in the KV model, improving
on assumptions in [15, 1] and communication rounds in [1]. Ex-
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1. INTRODUCTION

A multisignature protocol allows a group af players to sign
a common message in such a way that instead séparate sig-
natures the players produce a short string, called a multisignature,
which can be then verified against the set of the public keys of these
n players. Such scheme provides advantages over standard signa-
tures if the size of the multisignature is that of a single standard sig-
nature rather than signatures, and even more so if the verification
efficiency is comparable to single signature verification instead of
n signature verifications. Applications of multisignatures include
cases where the set of signers is small, e.g. distribution of certifi-
cate authorities, or authentication of routes in mobile networks, but
potential applications can also include large sets of signers, e.g. in
aggregation of broadcast acknowledgements, where it is especially
beneficial to reduce both multisignature sael verification time.

act security of both schemes matches (in ROM) that of Schnorr Rogue Key Attacks, KOSK Assumption. Multisignature proto-

signatures. The reduced round complexity is due to a new multi-

plicatively homomorphic equivocable commitment scheme which

cols based on various signature schemes are possible because of
homomorphic properties of arithmetic operations involved in sig-

can be of independent interest. Moreover, our KV model scheme Nature algorithms. For example, a BLS signature [5] on message

is enabled by a generalized forking lemma, which shows that stan-

dard non-interactive zero-knowledge (NIZK) proofs of knowledge
in ROM admit efficientsimultaneougpost-execution extraction of

under public key; = ¢®* is o; = H(m)®*. Therefore a multisig-
natures can be created as= o1 *...*x0,, and it can be verified un-
der the combined public key= y; * ... * y,, becauséd L(g, y) =

witnesses of all proof instances. As a consequence of this lemma,DL(H (m), o). However, the same homomorphic properties often

any DL-based multisignature secure in so-called Knowledge-of-

Secret-Key model can be implemented in the KV model using stan-

dard ROM-based NIZK’s of DL as proofs of key well-formedness.

Categories and Subject Descriptors

E.1 [Data Structures]; F.2.1 [Analysis of Algorithms and Prob-
lem Complexity]: Numerical Algorithms and Problems
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enable so-called “rouge key attacks” on such schemes. For exam-
ple, if an adversary picks public key, = ¢*/y: for somey;

and any chosen, he can then issue valid multisignatures under
keys{y1,y=}. Micali et al [12] showed how to avoid such rogue
key attacks under so-called “Knowledge of Secret Key” (KOSK)
assumption, which requires the adversary to essentially provide a
secret key for every public key it chooses.

Key Verification or Registration Models. Micali et al imple-
mented the KOSK assumption via an interactive pre-processing
protocol involving all potential signers [12]. However, it can also
be implemented in ey Verification(KV) model [1], where each

key y; admitted in a multisignature verification procedure must be
accompanied by a valid proof of well-formedness e.g. if 7;’'s

are non-interactive concurrently extractable proofs of secret key
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stipulates that a Certification Authority (CA) can certify a public
key only if its owner passes certain registration procedure. The KR
model thus shifts the proof verification overhead from multisigna-
ture verifiers to the CA's. (However, as we explain below, the KR



model requires non-standard trust assumptions on CA’s.) concurrently engage in any number of multisignature instances; (2)
Prior Work Related to DL-based Multisignatures. Multisig- A signer doesn’t need to know anything about other participating
nature schemes proven secure in the KR model in [15] use non-signers; (3) The message to be signed can be provided in the sec-
interactive proofs of key well-formedness and hence they are se-ond (last) protocol round; (4) Both schemes use standard DL-based
cure also in the KV model. Technically, the non-interactive proofs keys and can safely reuse e.g. the keys used for Schnorr signatures.
used by the schemes of [15] aretconcurrently extractable proofs These results are enabled by two contributions of general inter-
of knowledge. Instead, they are NIZK proofs of DL equality, called est. The low round complexity of both schemes is due to a new mul-
“proofs of secret key possession” in [15], which do not guarantee tiplicatively homomorphic equivocable commitment scheme (Sec-
efficient concurrent witness extraction, yet they turn out to suffice tion 4). As shown by Damgard [7], equivocable commitments due
for security of multisignatures based on the Gap Diffie-Hellman to Pedersen [13] imply a practical 3-round straight-line simulatable
(DH) assumption [15] or on Computational or Decisional DH as- ZKPK of DL in the CRS model. Our commitment scheme can play
sumptions in the Random Oracle Model (ROM) [1], following a the same role but it in addition it allows aggregatiomdfstances
general paradigm of replacing proofs of knowledge (e.g. of dis- of such proofs, thus compacting them to allow a short multisigna-
crete logarithm) with proofs of computational ability (e.g. of cor- ture, with an efficient reduction enabled by straight-line simulata-
rect exponentiation of a challenge), used e.g. in [17]. However, bility of the proof system. (We note that our commitment scheme
this paradigm seems to yield only schemes secure under assumpprovides only restricted equivocability, but enough for straight-line
tions related to the DH assumption, and not the Discrete Logarithm simulation of ZKPK of DL.) Secondly, short proofs of key well-
(DL) assumption. Thus, to implement DL-based multisignatures in formedness in our KV model scheme are enabled by a generalized
the KV model, one seemingly needs to resort to concurrently ex- forking lemma (Section 3), which shows that witnesses to polyno-
tractable zero-knowledge proofs of knowledge (ZKPK) of discrete mially many instances of standard ROM-based NIZK’s can be effi-
logarithm. Such proofs remain impractical in the standard model ciently simultaneouslextractedafter adversary ends its execution
(e.g. [8]), but in ROM, due to the results of Fischlin [9], concur- (as opposed to on-line extraction in Fischlin’s NIZK’s). This im-
rent ZKPK’s of DL can be achieved in a way that is arguably ef- plies that any DL-based multisignature secure under the KOSK as-
ficient enoughif these ZKPK’s are verified by CA's, but less so if ~ sumption is secure in the KV model in ROM when standard ROM-
they are attached to certificates and verified by multisignature re- based NIZK'’s are used as proofs of key well-formedness.eAn
ceivers as part of certificate verification. (In practice they seem to pectedpolynomial-time post-execution extraction of all witnesses
require about 10 times more bandwidth and computation than stan-in such proofs was previously shown by Jens Groth in [10], so our
dard ROM-based NIZK’s.) However, note that trusting the CA's to contribution is a strict polynomial-time extraction procedure which
perform proof verifications places non-standard trust assumptions matches up to a®(n?) factor, wheren is the number of proof

on CAs, becausall CA's must be trusted to perform those checks. instances, the time/probability bounds given by the Bellare-Neven
In particular, a multisignature in the KR model becomes insecure if version [3] of the Pointcheval-Stern forking lemma [14].

a key of a single participant in multisignature generation is certified Notation and Setting. We useG to denote a multiplicative group

by an untrustworthy CA. It has been an open problem whesttaer of prime orderq. All arithmetic operations are either done mod-
dardROM-based NIZK of DL, e.g(r, s) s.t.g° = ry# ™) can be ulo ¢, when involving elements ifi,, or they are operations i¥.

used instead of Fischlin's NIZK’s to implement the KOSK assump-
tion, thus leading to efficient multisignatures in the KV model. 2.

" _ MULTISIGNATURE SCHEMES
Multisignatures have also been proposed in the standard PKI set-

ting using groups with bilinear maps by Boneh et al [4, 2], and A multisignature Syntax. We define a multisignature scheme in
under the DL assumption by Bellare and Neven [3], but the mul- the ey verification model as a tupiéS = (Setup, KGen, MSign,
tisignature verification in these schemes requivés) pairings or Vrfy, KVrfy) whereSetup, KGen, Vrfy and KVrfy are efficient

exponentiations, respectively. Moreover, the DL-based scheme of pohapjilistic algorithms, anSign is a distributed protoca.t.
[3] requires 3 rounds of interaction, which makes the scheme less

convenient for applications where multisignature generation could
be piggybacked on a 2-round application protocol, e.g. aggregation
of authentication in route discovery (see e.g. [11]) or aggregation
of acknowledgments to a broadcast (see e.g. [6]).

Our Results. We provide two new multisignature schemes based
on the DL assumption, both with two-round protocols. The first
scheme (Section 4.2) is secure in the KV model, formally defined
in Section 2. It improves on a scheme implied by Micali et al [12]

e par «— Setup(1”), on input the security parametergener-
ates public parametepar.

e (sk,pk,m) «— KGen(par), executed by each user on input
par, generates this user’s secret k&y, the corresponding
public keypk, and a proof of validity of this public key, de-
notedr.

e MSign is a multisignature protocol executed by a group of

and Fischlin’s NIZKs [9] by using standard ROM-based NIZK of
DL as a proof of key well-formedness, thus reducing its size and
verification time to a minimum, and settling the open question men-
tioned above. Moreover, the exact security of our scheme matches
(in ROM) that of standard DL-based signatures by Schnorr [16], as
given by the forking lemma analysis of Pointcheval and Stern [14].
Such exact security seems unlikely to hold for the scheme implied
by the results of [12, 9]. Our second scheme (Section 6) is secure in
the plain model and us&3(n) exponentiations in verification, but
improves on the scheme of [3] by reducing the protocol rounds to
two, which seems minimal for DL-based schemes, while also pre-
serving the same exact security as that of Schnorr signatures. Our
schemes have several other convenient features: (1) A signer can

p

players who intend to sign the same messagé&ach player
P; executes this protocol on public inpytsr, messagen
and private inpukk;, his secret key. The output of the pro-
tocol is a multisignature denoted

{0,1} <« Vrfy(par,m,PKSet, o) verifies whethers is a
valid multisignature on message on be half of the set of
the players whose public keys are in the BESet.

{0,1} «— KVrfy(par, pk, 7) verifies whethepk is a valid
key, given the proofr.

This set of procedures must satisfy the followicgmpleteness
roperties: Lepar «— Setup(1¥). First, for any tuple(sk, pk, 7)



ExperimentExpy;s “*(A)

par < Setup(17); (sk*, pk*, ") «+ KGen(par); List — 0;

Run A(par, pk*,7™), and for every signature query made by.A do the following:

List < List U {m}; Execute proceduri®Sign on inputs(par, m, sk™), forwarding messages to and from
(We allow.A to make any number of such queries concurrently.)
WhenA halts, parse its output s, o, {(pkz, 72), (pks, 73), ..., (Pkn,Tn)}). SetPKSet =

(m ¢ List) A

{pk*} U {pk2, pks, ..., pkn}.

If (KVrfy(par,pki,m;) = 1foralli =2ton) A (Vrfy(par, m, PKSet, o) = 1) then return 1, otherwise return 0.

Figure 1: Chosen Message Attack against a Multisignature Scheme

outputted byKGen(par), KVrfy(par,pk,7) = 1. Second, for where the probability goes over the random coins of the adversary
any numbem and any message, if for ¢ = 1..n one generates  and all the randomness used in the experiment. We call a multisig-
(ski, pki, ;) by runningKGen(par) and executeMSign on input nature schemg, ¢, n, gs)-secure if it holds thaA dv ;s ™ (A) <
par, m, andsk;, then assuming that all messages between thesee for every adversaryél that runs in time at most makes at
players are delivered correctly, each player outputs the same stringmost gs signature queries and produces forgeries on behailf of
o that moreover satisfies parties. In random oracle model we also consider a notion of a
(t, €, n,qs, qn)-secure multisignature scheme whetés an adver-
pkn},o)=1 sary restricted to at mosgf, hash queries and the probability in the
experimentExpy,s ™ (A) is taken over random hash functions.
Remarks on the assumptions behind the syntax: We note that in [12] and [3] the notion of CMA forgery is broader
(1) In the security game in figure 1 we take a simplifying assump- than the one we consider above: As we pointed out in remark (4)
tion that theSetup procedure is executed by an honest party. How- above, their signers take as input the set of public keys of all partic-
ever, the public parameters in our two schemes are only needed tdpating playersPKSet along with the message as input. More-
define a multiplicative group of prime order where ke assump- over, their notion of multisignature security treats the multisigna-
tion holds, and such parameters can be chosen by any party. ture effectively as a signature orpair (m, PKSet): Their notion
(2) The syntax of a multisignature scheme in the KV model is a of forgery is extended to include a case where an attacker forges a
simplification of the syntax used by [15], which models potentially multisignature on a message that was previously signed by the hon-
interactive key registration processes. Here we only allow non- est player, but it was signed together with a different set of public

VrfY(par7 m, {pkl,pk27 .

interactive proofsr; of well-formedness of key;. Such proofs
can be verifieceither by CA's as part of the key registration pro-
cess (as in the KR model of [15fr by multisignature verifiers,
e.g. together with validation of a PKI certificate gn

(3) If the proof of validity of the public key is set to empty string
and the algorithniKVrfy just returns true, then the above definition
is equivalent to the definition of the multisignature schemes in the
plain model as proposed in [3].

(4) Unlike in the definition of multisignatures used by [12] and [3],

keys. In our model, such adversary would not be considered a suc-
cessful forger. However, a scheme secure according to our notion
implies a scheme secure in this stronger model if every mesaage
input into our multisignature protocol is simply amended by the set
of public keysPKSet.

3. GENERALIZED FORKING LEMMA

Consider an experiment in which an adversaryon inputpar,

we do not require the set of participant identities and/or the set interacts with a random oraclH : {0,1}* — Z,. Denote the

of their public keys as inputs to the multisignature protocol. The

participating players must be aware of one another in the proto-

randomness involved in this executionfas= (p, h1, ha, ...., hq,, ),
wherep is A’s random inputp; is thej-th response off, andg;,

col execution, but this information is needed only to ensure proper is the maximum number of hash queriésnakes. Lef2 denote the
communication, and does not need to be part of the inputs to the set of all vectorsf. The probability in all experiments we consider
cryptographic protocol. The schemes secure in this setting provide goes overf € €, unless noted otherwise. We consider as adver-

additional flexibility to applications of multisignatures; because in

many applications a signer might care only about the message it isis a (non-empty) set of up te indexesJ C {1, ...

sary'ssuccessin event thatd outputs a paifJ, {¢; }jcs) whereJ
;qn}. By con-

signing and not about the identities of the other signers. (Other- vention we assume that. fails then it outputgJ, {¢;}je.) s.t.

wise they can always include the list of participating players in the

signed message.) In such applications protocols of [12, 3] would setand allowing repetitions, and we assume thati {ji, ...
have to be preceded by an additional communication round wherethenj; < ...

participants broadcast their identities and/or keys.
Multisignature security in Key Verification model. As in previ-

ous works on multisignatures, e.g. [12, 3, 15], we define security of f; = (p, k1, ...

J = . Otherwise we assume thal| = n, by treating/ as amulti-
7]"}
< jn. For fixedpar, let S C Q be the set of
vectors f s.t. A(par, f) succeeds, and let = Pr[S]. Denote
the index set/ output by A(par, f) on f € S asInd(f). Let
yhi—1), e.9.f1 = p, f2 = (p, h1), etc. Theforking

a multisignature scheme as universal unforgeability under a chosenlemmaof Pointcheval and Stern [14] (see also Bellare and Neven
message attack against a single honest player. Namely we defing3]), considers a restricted class of algorithtdswheren = 1.

theadversarial advantagef .A against the multisignature scheme
MS = (Setup, KGen, MSign, Vrfy, KVrfy) as a probability that
experimenExpys ™ (A) described in figure 1 outputs i.e.

Advyg “™(A) = PrlExpys T (A) = 1] 1)

The lemma involves an execution ofaking algorithmF 4 which
runs.A on randomf € , and if f € S then it runs A again,
on randomyf’ chosen subject to the constraint thfat= f; where
{j} = Ind(f) (heren = 1 soInd(f) is a singleton iff € S).
Let ' = (p,h1,..., hj—1, h}, ..., hy, ). We say that algorithnd’4



has dorking succesi both f andf’ are inS, Ind(f’) = Ind(f),
andh’; # h;. The forking lemma lower-bounds the probability of
F4’s forking success in the above experiment(ay— 1/¢)*/qn
(see lemma 1 in [3]). A common application of this lemma is to
ROM-based NIZK'’s created via the Fiat-Shamir heuristic, where
value¢; in A’s output is a paifz;, 7;) wherez; is an instance of
a language membership probldmandr; = (a;, hj, z;) is a non-
interactive zero-knowledge proof foy € L, withh; = H(z;,a;)
playing the role of a verifier's challenge. A successful forking algo-
rithm outputs two such proofs involving the same instangethe
same prover’s first message, and different challenges; # b,
which for many proof systems allows for efficient extraction of a
witness forx; in L.

We describe this generalized forking process as algorittim,,
whereé denotes the expected value«dbr adversaryA(par) when
par is uniformly chosen.

Algorithm G F 4 on inputspar:

1. Pickf = (p, h1, ..., hq, ) — S

2. Compute(J, {¢; }jc.r) < A(par, ).

3. If J = () then stop (andails).

4. LetJ = {ji,....Jn} X = {(hy, ¢;)}jes and X’ = {}.
5. For: = 1 ton, repeat lines 5.1-5.2

5.1. Sebucc; =0, k; = 0 andkmqez = 8ngp /€ * In(8n/¢).
5.2. Repeatlines 5.2.1-5.2.4 undilcc; = 1 ork; > kmax

5.2.1 Incremenk;. Pick randomf’ in Q s.t. fj. = fj,.
5.2.2 Letf’ = (p7 hi, ..., hj;-1, ;L”h’:ls)
5.2.3 ComputéJ’,{¢}}jes) — Alpar, f').
5.2.4 Ifh}, # hj,, J' #0,andj; € J', then

add(n},, ¢},) to X’ and sesucc; = 1.
6. If for all i = 1 ton succ; = 1, then Outpu( X, X) .
6.1 Otherwise stop (arfdil).

LEmMMA 1. [Generalized Forking Lemma] Let IG be a ran-
domized algorithm that generatear and .4 be a randomized al-
gorithm making at mosf, hash queries s.t4(par) succeedgi.e.
outputs(J, {¢;};es) s.t.|J| = n) with probability ¢, where the
probability goes ovepar <~ 1G and f < Q. Letq > 8nq/é.
Then algorithmG F 4 (par) has aforking succesgi.e. outputs two
n-element listg X, X)) with probabilityfrk > ¢/8, where proba-
bility goes over coins diG andGF 4.

Note that if the running time afi(par) is bounded above by par)
then the running time o F.4 (par) is at mostt(par) * 8n%qy /¢ *
In(8n/€). Hence the expected running time@f 4 (par) over all
par is bounded above by the expected running timglgbar) mul-
tiplied by 8n%qy /€ * In(8n/é).

In the proof we will rely on the following version of the “splitting
lemma” of [14]. LetA,B,S C X x Y be any sets s.tB =
{(@.) | Pryev((x,y) € A] > 6} andA C 5.

LEMMA 2. [Splitting Lemma] For all A, B, S as above:

(1) Pr[B|A] > 1 — 4§/ Pr[A]

(2)Pr[AN B] > Pr[4] -4

(3)Pr[AN B | S] > Pr[A|S] — §/ Pr[S]
PrROOF Inequality (1) follows becausBr[B|A] < 1 — ¢/ Pr[A]
implies

Pr[A] Pr[AN B] + Pr[AN B]

Pr[B|A] * Pr[A] + Pr[A|B] * Pr[B]
(1 —6/Pr[A]) x Pr[A] + § x 1 = Pr[A]
Inequality (2) follows from (1) becauser[A N B] = Pr[B|A] *
Pr[A]. As for inequality (3), sinced N B C S, we havePr[A N

N

B | S] = Pr[An B]/Pr[S], and thus by (2) we havBr[A N
B | S] > (Pr[A] = 6)/ Pr[S] = Pr[A| S] — &/ Pr[S]. O
PROOF OFLEMMA 1. Lete(par) andfrk(par) be the success
probability of A andG F 4 for fixed inputpar.
Let P be the set of all possiblpar and P’ be the set opar
satisfyinge(par) > ¢/2. We will argue that for an inpugar € P,
frk(par) > e(par)/4. Then we have

frk > % Z frk(par)
| ‘parep’
1
> W Z e(par)/4 — Z e(par)/4
pareP par¢ P’

> ¢/4—¢/8 =¢/8,

where the last inequality follows becauser ¢ P’ implies that
e(par) < é/2

Fix an input instancgar € P’ and lete = e(par) andfrk =
frk(par). For f € S definei-Ind(f) as thei-th element off nd( f).
LetE = E1 N E: N ...N E, whereE;’s are defined as follows:

A; = {feS|jendf)}
Bj = {feQ|Prpcalf € Aj| fi = fi] > ¢/(2nan)}
E; = {fe€S|fe Bjwherej =i-Ind(f)}

We will argue thafrk > ¢/4 follows from the following inequality:
Pr[E|S] > 1/2 2

This is because iPr[E|S] > 1/2 thenf chosen in step 1 aiFFl4
is in E with probability Pr[E|S] * Pr[S] > ¢/2. Moreover, if
f € E C S then by definition ofE we have thaf € B;, for each
Ji € Ind(f) = {41, .-, jn}- Therefore, for eachfrom 1 to n, by
definition of B;,, the probability thatf’ chosen in line 5.2.2 satis-
fiesf' € Aj, (and hencg; € Ind(f")) is at least/2ng,. Since
the probability that;, = h;, is at mostl /g < ¢/8ngn < €/4ngn,
the probability that condition in line 5.2.4 is satisfied is at least
€/4nqn. Sincee > ¢/2, the probability that alBngy, /€ * In(8n/¢)
executions of loop 5.2 fail (for any giveiis at mostk/4n. By the
union bound, the probability that the rewinding procedure in step
5 fails for some; is thus at most/4. Hence, the probabilityrk
that GF 4 succeeds is at least the probability thfate £ C S
and that the procedure in step 5 does not fail, which is at least
€/2 —e/4 =¢e/4.

It remains to show that (2) holds. We will first argue:

Vi=1,.,n Pr[E;|S]>1-1/(2n) (3)
It's easy to see that (3) implies (2) (see explanations below):
Pr(E|S] = Pr[n,E:| 5] @)
= 1—Pr[U,E;i | 9] (5)
> 1-%" PrEi|s] (6)
= 1-3 (= PriE|s) ™

\Y]

=" a-@yen))) =12 @

Step (6) follows by the union bound while step (8) follows from
inequality (3).

Thus it remains to argue that (3) holds. Let us define the following:
Ay = {feS|j=i-Ind(f)}
B; {f €QIPrpealf’ € Aj| fj = £i] = ¢/(2nqn)}



Note thatiff € F; C Sthenf € A;- N B; for j = i-Ind(f), and M if there are efficiently computable operatiogs and ®4 s.t.

vice versa, which implies: if Openy(c1,di,m1) = 1 and Open (c2,d2,m2) = 1, then
an i Openg(c,d,m) = 1forc = ¢1 ®c c2, d = di ®q dz2, and
Viet,.n Ei = szl(Aj N B;) 9) m = mi ®m ma. For example, Pedersen commitment [134ds

ditively homomorphic, and therefore one can aggregate Pedersen
commitments on separate messages into a single Pedersen commit-
ment on thesumof these messages. Similarly, EIGamal encryption

The following sequence of inequalities implies (3) and hence con-
cludes the proof (see the explanations below):

Pr[E:|S] = Z% Pr[A§ nB;| S (10) can be used to implemenmuIt!plic_ativelyho_momorphic commit- _
j=1 ment scheme. Our construction is multiplicatively homomorphic,
> th Pr[A§~ A B§ | 9] (11) i.e.®misa group multiplication. For convenience we dengte
j=1 as® and®q as® in the sequel.

\Y]

qh i €
ZFl(Pr[AJ 5] 2ngn PI‘[S]) (12) Restricted Equivocability: A commitment scheme isquivoca-
1—-1/(2n) (13) bleif there exists an efficient simulator that generates the commit-
ment key K, indistinguishable from the real key, together with a
trapdoortd. The trapdoor allows the simulator to create fake com-
mitments which are indistinguishable from the real ones, but the
simulator can later decommit them any message. As far as we

Equality (10) follows from (9) and the fact that sects' N B; par-
tition setE; into ¢, non-intersecting subsets. Inequality (11) holds
becauses; C B; for all i. Inequality (12) follows from part (3) of

the splitting lemma (lemma 2) and the definition/8f. Equality know, no commitment scheme has been proposed that is equivo-
(13) follows because for anysetsAj partition setS into g, non- cable and multiplicatively homomorphic at the same time. Peder-
intersecting subsets, ‘jil Pr[A}|S] = Pr[S|S] = 1, while sen commitment is equivocable but only additively homomorphic,
an * (¢/(2nqn))/Pr(S] =1/(2n). O and while the commitment scheme based on EIGamal encryption
is multiplicatively homomorphic, it is perfectly binding, and hence
4. MULTIPLICATIVELY HOMOMORPHIC not equivocable (like every commitment scheme implemented with
standard public-key encryption). Here we do not create such com-
EQUNOCABLE COMMITMENTS mitment scheme either. Instead we show a simple scheme which

is multiplicatively homomorphic and hasstricted equivocability

in the sense that the simulator can open its fake commitments only
to messages of certain special form. Namely, we’'ll show a mul-
tiplicatively homomorphic commitment scheme a1 = G, s.t.

Commitments: We model a commitment schendein common
reference string (CRS) model as a tuple of probabilistic poly-time
algorithmsCSetup, CGen, Com andOpen, s.t.

e cpar « CSetup(1*) on input the security parameter gen- for any elementg, y* in G/{1}, the simulator can open its fake
erates public parametesgar, which also determine the com- ~ commitment to a message of the form = g (y*)”, given any
mitment message spadd. B in Z4 which the simulator receivesfter creating the fake com-

mitment. Moreover, while value can be chosen by the simulator
e K < CGen(cpar), on input the parametetpar, generates  after it receives3, the distribution ofa’s outputted by the sim-

a commitment keyx.. ulator must be indistinguishable from the uniform distribution in
Z4. Looking ahead, this type of restricted equivocability is enough
to enable straight-line simulation of a Zero-Knowledge Proof of
Knowledge (ZKPK) of discrete logarithfaL,(y) (see section 4.2

e {0,1} « Openg(c, d,m) determines ifl is a valid decom- below). This ZKPK is a basic building block of any multisignature
mitment of commitment to messagen. based on DL, and the straight-line simulatabled aggregatable
version of this proof system, enabled by our restricted-equivocable
These algorithms must satisfy a correctness requirement, namely ifand multiplicatively homomorphic commitment scheme, leads to a
cpar « CSetup(1”), K « CGen(cpar), (c,d) < Comg(m), multisignature scheme with fewer rounds and exact security match-
thenOpen  (c,d, m) = 1. A commitment scheme must also sat-  jng that of standard discrete-log based signatures.
isfy requirements of hiding and binding. Below we define a statis-  Formally, we model this type of restricted equivocability as fol-
tical notion of hiding and a computational notion of binding since |ows. Letf be a family of efficiently computable functions indexed
these are the variants of these notions which our scheme satisfies. by the commitment parametegar, fepar : D xD XS — M where
e-Hiding: For everycpar « CSetup(1%), mo,m1 € M, and D andS, like M, are defined bypar. We call a commitment
K« CGen(cpar), there is less than statistical difference be-  scheme-equivocable for function (familyj if there exist efficient

e (¢,d) «— Comg(m) generates the commitmeatand de-
commitmentd on message: € M.

tween distributions of's output byComx (mo) andComg (m1). algorithmstdCGen, tdCom andRstEqv, wheretdCGen(cpar, )
A commitment scheme iserfectlyhiding if ¢ = 0. — (K, td), tdCom (td) — (&, st), RstEqu (td, st, B) — (d, ),
(t, €)-Binding  For any.A running in timet and anycpar «— s.t.for any cpar outputted byCSetup and anyy* € S the follow-
CSetup(1") the probability of the following event is less than ing two properties hold: First, there is at mestatistical difference

between the distribution o& values output by.Gen(cpar) and by
tdCGen(cpar,y*). Second, for al( K, td) < tdCGen(cpar,y™)
where(c, do, d1,mo, m1) < A(K), K < CGen(cpar) and prob- andg e D, the following two distributions are identical:

ability goes over coins of Gen and A.

Openg (¢, do,mo) = Openg(c,di,mi1) =1 A mo # ma

Homomorphic Commitments: To enable aggregation of outputs {(¢;d;@) | a<D;m= foula,B,y"); (14)
produced by players into a single short multisignature, our com- (¢,d) < Comg(m) },
mitment scheme must itself support aggregation. This is possi- ((@ d Q) | (& st) — tdComg (td); (15)

ble if the commitment scheme fomomorphic We call a com- -
mitment scheme homomorphic for operatien, : M x M — (d, @) < RstEqu(td, st, 3) }



4.1 DL-Based Commitment Scheme

We describe a commitment scheme dend@t&dwhich is multi-
plicatively homomorphic on message space a multiplicative group
G of prime orderg, perfectly hiding, computationally binding un-
der the DL assumption, and equivocable for functjn: Z, x
Zq x G/{1} — G, fo(a,B,y%) = ¢*(y*)”. The scheme has
features of both Pedersen Commitment and EIGamal encryption:

e CSetup(1®): Setcpar + g, whereg generates group’
of prime orderg large enough so that theL assumption
in group G holds with security parametet. To simplify
notation we will assume that grouf and its orderg are
implicitly defined byg.

e CGen(g): Picky < G/{1} andau, aa <~ Z, S.t.a1 # o,
Seth « g°t, z — y*?,andK « (g, h,y, 2).

e Comg(m): Pickri,rs < Z, and return(c, d) wherec =
(g™ h™,y" 2" m) andd = (r1,72).

e Openk(c,d,m): Letc = (c1,c2) andd = (r1,72). Return
1iff (c1 = g™ A"2) A (c2 =y 2™m).

e tdCGen(cpar,y*): Picky <~ Z, andvi,y2 < Z;. Let
h=g"y=g" andz = (y°). SetK — (g,h,y,2)
andtd — (y*,v,7,72), and return( K, td).

e tdCom (td): Pickr,a,b < Zq. Setst « (r,a,b) and
return(é, st) whereé = (g", g*(v*)®).

e RstEquy(td,st,3): Computers = v '(b — 3), 11 =
r —~r2, anda = a — r1y1 (all modulog), and return(d, o)
whered = (r1,72). Note thatrq, r2, « satisfy the following
set of equations mogt

rit+yra=r, mrit+a=a, ypr:+B=>0 (16)

Therefore form = g°(y*)” we have(g" h™,y™ 2">m)
= (g",9%(y")?) = & and henc®pen (¢, d, m) = 1.

We argue the claimed security properties:

Perfect Hiding: Note that the commitment produced Ggmx on
m = y7 is a pair(g" T2 ¢ te2m2+ ) "and note that this is a
pair of random elements &' x G for everyr if a1 # a2 and
(T1,7’2) L Zq X Zq.

Computational Binding: The commitment schem@S is (¢, ¢)-
binding if theDL problem inG is (¢, €)-hard. Indeed, an attacker
A on binding can be used to solve tbd problem as follows:
Given theDL challenge(g, h), the reduction pickg, z < G s.t.
DLy(y) # DLin(z), and runsA(g, h,y, z). By assumption, with
probability ¢, A outputs(c, d, m,d’,m’) s.t. Openy(c,d,m) =
Openg(c,d',m') = 1 andm # m'. Denoted = (ri,r2),
d = (ri,ry), Ary = r1 — rf andAr, = ro — 75, Since
c = (g"h™,y"2"m) = (grihré,yﬂ/ém’) it follows that
Y21 2872 = m' /m andg®Tt A2 = 1. Therefore, eithen\r; =
Ary =00rDLy(h) = —Ary /Ars. ButAr; = Ary = 0 implies
thaty“™ 2272 = 1 and hencen = m/. Thus, ifm # m’, DL, (k)
can be computed asAr; /Ars.

Multiplicative Homomorphism: The commitment schen@s is
multiplicatively homomorphic onM = G. Operatorsg and ®
are defined as follows: 1€ = (ci,c2) andc’ = (cl,c3) then
c®c = (cich,cach), and ifd = (r1,72) andd’ = (ri,r5) then
d®d = (ri +717,7m2 +75).

Restricted Equivocability: The commitment schentsS is (2/q)-
equivocable for functiory, : Z, x Zq x G/{1} — G, where
fola, B,y*) = ¢g%(y*)P. First note that the statistical difference
between the distribution of key& (g,h,y,z) produced by
CGen(g) andtdCGen(g,y™) is at most2/q, because elements
andy are distributed identically in both cases, whilén CGen is
random inG subject to the constraidL,(h) # DL,(z), and in
tdCGen it is a random generator @¥. It remains to argue that for
everyg € G, y* € G/{1}, every K output bytdCGen(g,y"),
and everys € Zg, triple (¢, d, «) in distribution (14) is distributed
identically to triple (¢, d, «) in distribution (15). First note that
commitmente is a deterministic function of andm, and hence,
for everyg,y*, 3, it's a deterministic function ofd, «) because
m = ¢g*(y*)?. The fake decommitmeritis determined by the
same function of(ii, «). Therefore we only need to argue that
(d, a) and(d, o) part of these two distributions are identically dis-
tributed. First note thatd, o) = (71, r2, «) in the first distribution
is uniform in (Z,)®. We therefore need to argue that the same is
true about(d, ) = (r1,r2,a) in the second distribution. The
reason this holds is that for evety € G, y* € G/{1}, every
~,71,v2 chosen bydCGen(g,y*), and everys € Z,, algorithm
RstEqv assigns a unique triple 1, r2, ) to every triple(a, b, ),
i.e. (ri,m72,a) = F(a,b,r) whereF is a permutation offZ,)>.
Since(a, b, ) is chosen uniformly i(Z,)? by tdCom, (71,72, c)
outputted byRstEqv is uniform in(Z,)* as well.

4.2 Aggregatable ZKPK of DL with
Straight-Line Simulation

Three Round HVZK PK of DL: Let G be a prime order group of
orderqg and letg be a generator @f. An honest verifier zero knowl-
edge (HVZK) proof of knowledge (PK) dDL of a group element

y € G/{1}, denoted byq, e, s) can be performed by the following
protocol: The prover picks <~ Z, and computes the first message
a = ¢*; The verifier picks the challenge < Z, and sends it to
the prover; The prover computes the respanse ex + k where

x = DL4(y); Finally the verifier accepts if§° = ay®. For the
purpose of subsequent discussion we briefly recall that this proof
system is HVZK because for any challenga simulator can pick
the response uniformly in Z, and compute the first messagas
g°y~ ¢, and it is a proof of knowledge because= DL,(y) can

be computed from two accepting transcrifse, s) and(a, e’, s")
wheree’ # e (such two related transcripts can be achieved by
rewinding the prover) because if = ¢°y=°¢ = gs'y‘e/ then
z=DL,(y) = (s —s')(e — €)' mod q.

Three Round Straight-Line Simulatable and Computationally
Sound ZKPK of DL in the CRS Model: Using the restricted
equivocable commitment scheme lik&, one can compile the
HVZK PK of DL described above into a three round straight-line
simulatable and computationally sound ZKPK of DL in the CRS
model following the technique of Damgard [7]. (Even though the
commitment scheme is not fully equivocable, it has enough equiv-
ocability to allow straight-line simulation of this particular proof.)
LetC = (CGen, Com, Open, tdCGen, tdCom, RstEqv) be a com-
mitment scheme for public parametgrar = g over the group
generated by. AssumeC is (¢, e g )-binding ande z-equivocable

for function fepar : Zq X Zgq X G/{1} — G wherefear(a, 5,y) =
g“y°. Let(a, e, s) be a three round HVZK of PK dbL of a group
elementy € G/{1}. The compilation is as follows: The CRS
is the instance of the restricted equivocable commitment scheme.
The prover computeée, d) — Comg (a) and sends commitment

c to the verifier. The verifier picks the challengec Z, and



1. Setup(1”): Let G be a multiplicative group of prime ordes, where the DL assumption holds with security parametend
let g be a generator of!. RunCGen on inputg to obtain the commitment ke and set hash functiorg : G* — Z, and
H:G x{0,1}* x {0,1}* — Z,. The public parameter isar = (g, G, ¢, K).

2. KGen(par): PlayerP; picks his(sk;, pki, ;) tuple as follows:

Pickz; < Z,, computey; «— g% and sepk; «— v, ski «— 4
Construct a "proof of possession”of which is a NIZK proof of knowledge of; = DL, (y;):
Pickk < Zq, Sete — g(yi,gk), s «— k+ ex; (mod ¢) andr; < (s,e);

3. KVrfy(par, pk, 7): Letpk = y andw = (s, e); If e = G(y, g°y~°) thenaccept otherwisereject.
4. ProtocolMSign: Let P be the set of players that participate in the protocol. (Each player can determinefhafsatthe first step
of MSign.) PlayerP; on inputs(par, m, sk;), performs the following steps:
4.1 Pickk; < Z, and computed; — ¢" and(c;, d;) «— Com (A;) and broadcagty, c;);
4.2 Upon receivindy;, c;) for all P; € P, Sety «— HPjeP Yj, € — ®Pj6PCj ande «— H(y,c, m);
Computes; < ex; + k; (mod ¢) and broadcads;, d;);
4.3 Output multisignature = (s, e, ¢, d), wheres = ijep sj,d= EBpjede.

5. Vrfy(par, m, {pk1, pka, ..., pkn }, 0):

Parses as(e, s, ¢, d) and eaclpk; asy; and compute) — [, ..
If (e = H(y,c,m) A Openg(c,d,g°y~°) = 1) thenaccept otherwisereject.

Figure 2: MS1, a multisignature scheme in key verification model

sends it back to the prover. The prover responds wiitcom- B,y) = ¢%y”. When instantiated wit@S, the scheme\S1 re-
panied bya and the decommitmerd. The verifier accepts iff quires just three exponentiation per party for signing and two for
g° = ay® andOpen (¢, d,a) = 1. This proof system is straight-  verification, and it is secure under tB& assumption, with reduc-

line simulatable: The simulator rurte CGen(cpar) to obtain X tion efficiency matching those for standard DL-based signatures.
and the trapdootd. It then computegc, st) «— tdComg (td) The length of the resulting multisignature is onlyy| bits, be-
and sendg to the verifier. Upon receiving the challenge,the cause in commitment schend& the commitment can be omitted

simulator uses theestricted equivocability property of the com-  since it can be computed from the message and the decommitment.
mitment scheme to open the fake commitmetd a first message  The novelty of schem@1S1 is that it achieve®)(1)-cost verifi-
a such that the correspondir{g, e, s) be an accepting conversa- cation in the KV model based on only the DL assumption while

tion of three round HVZK PK oDL,(y) by computing(d, s) «— using short proofs of key well-formedness;| = 2|q|, each tak-
RstEqv (td, st,e). The simulator sends to the verifier= gy ¢, ing just 1 exponentiation to verify. In contrast, the combined re-
d ands. Since the commitment schemejs-equivocable for func- sults of [12] and [9] imply a DL-based KV-model multisignature

tion fepar(a, B,y) = g“y?, thus the view of the verifier communi-  with O(1) multisignature verification but with significantly more
cating with the simulator and the view of the verifier in the real pro- expensive proofs, and the scheme is either three rounds (and hence
tocol is at most g apart. This proof system is also computationally is less practical) or has worse exact security. The key fact enabling
binding based oL assumption. Namely for any cheating prover the security proof is the generalized forking lemma of section 3.

P, there exist an extractor such that given oracle acceBs tex- ) )

tractsz = DL(y) with a probability at least — 5. The extractor ~ THEOREM 3. If DL problem is(t', €')-hard in groupG and¢

runs the prover to receive an accepting conversdtion (a, s, d)). is a commitment scheme parameterized witthat is (¢5, e5)-

It then rewindsP* to the beginning of the second round and sends Pinding,ez-equivocable for functiorf, : Z, x Zy x G/{1} — G

her a different challenge’ # e to obtain another accepting con- St fo(@, 8,3) = ¢°y”, and multiplicatively homomorphic on

versation(c, ¢, (a',s',d')). We haveOpen (c,d,a) = 1 and group G, then multisignature schem®(S1 instantiated withC is
Openy (c,d’,a’) = 1. If a # o' then this is an attack against the (£, €, 7, gs, gn)-secure in the random oracle model where
binding property of the /commitment scheme and if= o/, since e < 8( +ep)+9en

g° = ay® andg® = a’y® , the extractor can extract the witness by € L,

settingz = DLy (y) = (s — s')(e — ¢/) . b2 Surgin(enge) MinE te) = dstsign

andtsgn is the time required for signing by each party.

5. DL-BASED MULTISIGNATURE IN
PROOF LetC =(CGen, Com, Open, tdCGen, tdCom, RstEqv)
THE KEY VERIFICATION MODEL be a commitment scheme for public parametgrg = ¢ and the

We show a two-round multisignature scheoS1 (figure 2) message spac®! equal toG generated by. AssumeC is mul-
secure under the Discrete Logarithm assumption in the Key Verifi- tiplicatively homomorphic,(¢s, eg)-binding ande g-equivocable
cation model. The\S1 scheme relies on a commitment scheme for function fepar : Zg X Zg x G/{1} — G wherefepar (e, 8,y) =
C = (CGen, Com, Open, tdCGen, tdCom, RstEqv) which is ex- g%y®. Given a(t, gs, g, n, €)-forger F, consider two simulators
actly like schemeCS of section 4.1, i.e. multiplicatively homo- By and; that simulate the role of the honest player as in the ex-
morphic on message spaceand equivocable for functioify (v, perimentExpy,s “™ interacting with the forgef-. B, takes as an



Init: SimHash:
(td, K) « tdCGen(g, y1);

par — (g,G, H, K); pk1 — y;

Construct a "proof of possession"of which is a
simulatedNIZK proof of knowledge oDL,(y1):

HashQueryg (y, w): If (y, u) is ani™ distinct query ofF to H
or g, then seG[(y, u)] < e;;
ReturnG[(y, u)];

T 2. s, —e . .
(e,5) — Zy; Gl(y1, 9%y )] — esm — (s, e); HashQuery,, (y, c,m): If (y,c,m) is ani™" distinct query of
Execute/” on input(par, pki, m1); FtoH or G, then seH|(y, ¢, m)] — e;;
ReturnH|[(y, ¢, m)];
SimMSign(m):
1. (¢, st) < tdComg (td); c1 < ¢; Send(y1, c1) to F; Finalize:
2. Upon receivindy,, ¢;) forall P; € P, do Upon receiving a valid forgerym, o, { (pki, mi) }i=2..n.) from
C ®Pj€PCj; Y — HPje‘P yji e — H(y,c,m); .?-—, parses = (s,e,c,d) andgki = y; andm; = (s;,€;) for
(d, @) — RstEqu (td, st,e); 51 — o; dy — d; 1=2,..,m C(zm[lljetey = Hi:l y: and queryH on (y, ¢, m)
andg on (y;, g%y~ ) fori = 2..n.
Send(s1,d1) to F Returmn (J here ] — {io i i . din i
3. Upon receivings;, d;) for all P; € P, do eturn(J, {¢;};cs) whereJ = {jo, j2, js..., jn} andjo is

the index ofe in the hash tablél and¢;, = (m, o) and for
i = 2..m, j;'s are the indices oé;’s in the hash tabl& and
b5 = (Yi, mi).

d— @Pjede; S ZPjEP Sjs
Returno = (e, s, ¢, d);

Figure 3: Procedures used in the simulation of multisignature schema1S1

input a set{ey, ..., eq,, } Wheree;’s are inZ, and runsSetup pro- in the first execution and the execution leading to the addition of
cedure to obtaipar and follows the real protocol.é. procedures (&4,,¢j,) to X;, all the computations and communications and in
KGen and MSign) on behalf of the honest player. Additionally, particular the queries submitted to the hash functiafrendg be-

By answers the forger's hash queries and performs an extra final-fore ;" query, must be the same, too. Thus the occurrendg®of
ization process by following procedur8mHash andFinalize in impliesy = ¢, ¢ = ¢ m = mandforalli = 2.n, yi = 4
figure 3. The simulatoB,, on the other hand, takes as an inputa gnq gy, 7= ggigi_éji_ The success everd?' can be par-

DL challengey: € Gi/{1} and ase{ex, ..., ¢4, } Wheree;'s are in titioned into two cases (1) eved! in which E®* happens and
Z4 and follows thelnit, SimMSign, SimHash andFinalize proce- Syt = g'g—tio (2) eventEZ5' in which E®' happens and
dures detailed in figure 3 to perform the initialization, answeringto < ¥~ gy . 2 . B B, bp
signature queries, answering to hash queries and finalization pro-9 ¥ ° # 9°9 . ObwogstE ' = By UEy" and hence
cesses, respectively. Intuitively, the simulatir embeds thL Pr[E®] < Pr[E;'] 4+ Pr[E;']. On the other hand according to
challenge in the public key of the honest player and utilizes the the generalized forking lemma"' can be lower bounded by,
(restricted equivocability property of the commitment schee  the success probability of the simulaf8y:

to simulate the signature protocol on behalf of the honest player.

Both By and 51, after receiving a valid forgery fronf, perform B o Pr[EP] < Pr[EP] + Pr[EE) (19)

a finalization phase in which the message-forged-multisignature 8

pair and the public-key -forged-POP pairs are returned together |If e;’s are uniformly distributed irZ, then F’s view in inter-
with the set of indices of the hash responses upon which they areaction with B, is identical to the real execution of the protocol.

based. Namely botl8, andB: return(J, {¢;},cs) s.t.if we de- As for By, Pi's public key and proof of possession of secret key,
noteJ = {jo,j2,73-,dn}, $o = (m,o) and for alli = 2..n, (y1,m1), is distributed as in the real execution of the protocol. This
@i = (yi, m;) then the following equations hold: is becausey; is uniform in G andr; is uniform in Zﬁ. SinceC

is eg-equivocable, by definition, the distributions of the commit-

Vrfy(par, m, {y1,92, ..., yn},0) =1 17 ment keys in the simulation and the real execution have at esost
Vi = 2..n: KVrfy(par,y;, m) =1 (18) statistical difference and additionally, the distribution of the tuples

(c1,d1, s1) generated in each signature instance in the interaction
The simulators3, and B; set up empty table& andH to simu- betweenF andB; is identical to the distribution of the same vari-
late the hash function§ and#, and use the sefes, ..., eq, } tO ables in the real execution. Thus, since our simulation is straight-
answer the hash queries. (This convention makes it easy to use thdine, total statistical distance betwegts view in interaction with
generalized forking lemma in relation B and2,.) By and in real execution is at most. This implies in particular

ConsiderG F 5, the forking algorithm associated with simulator  thates, = ¢, |es, — €| < ep and|Pr[E5°] — Pr[ES']| < €.
B, for either! = 0 ori = 1. The success event 6fF 5, denoted Thus equation (19) becomes:
by EP' is that the algorithmG F, outputsX; = {e;, ¢;}\2

JjeJ
and X; = {équsj}ye)‘,, ande; # ¢; forall j € J, whereJ = CTCE < pr[EP] 4 Pr[EP] + e (20)
{j0, J2, Js, ---» n } IS the set of indices of the hash responses par- 8
ticipating in the forgery produced by the first executionfas The actual reduction algorithR, runs bothG F'5, andG Fg, .
run by GF'z,. Thus according to th&inalize process in figure If E,5' happens, thep®y =0 = ¢°j~ %o and sincey = § and
3, ¢io = (m,(s,€j0,¢,d)), $jo = (1M, (5,&,¢,d)) and for e # Ejo thus> 7 zi = (s — §)(ejo — &,)" wherez; =

i=2.n, ¢;, = (yi, (si,e5,)) andg;, = (gi, (5:,€;,)). Since DLg(y:) for i = 1..n. On the other hand, since for dll= 2..n,
for i = 0 and everyi = 2..n, the random coins and the hash y; = i, g%y, ° = ¢*§, '¢ ande;, # é;,, thus theDL's for
responses of the algorithifi; previous toji" query is the same  all y;'s wherei € {2, ..., n} can be computed 8L, (y;) = (s; —



1. Setup(1”): Let G be a multiplicative group of prime ordgr where the DL assumption holds with security parametend letg
be a generator af. RunCGen on inputg to obtain the commitment kel and set the hash functid : G x {0,1}* x {0,1}* x
{0,1}* — Zg4. The public parameter igar = (g, G, q, K).

2. KGen(par): PlayerP; picks his(sk;, pki, ;) tuple as follows:

Pickz; < Z,, computey; « ¢ and sepk; « y;, sk; «+ x; andn; to the empty string.

3. KVrfy(par, pk, m): Since the scheme is in the plain mod€Vrfy just returnsrue.

4. ProtocolMSign: Let P be the set of players that participate in the protocol. (Each player can determinefhafsatthe first step
of MSign.) PlayerP; on inputs(par, m, sk;), performs the following steps:

4.1 Pickk; < Z, and computed; — g" and(c;, d;) — Comx (A;) and broadcadly;, c;);

4.2 Upon receivindy;, c;) for all P; € P, SetpkSet < {y;}p;er, ¢ ®Pjepcj ande; «— H(yi, ¢, pkSet, m);
Computes; < e;xz; + k; (mod ¢) and broadcads;, A4;, d;);

4.3 Output multisignature = (s, A, ¢, d), wheres = ijep sj,d= @Pjepdj andA = HPjGPAJ-.

5. Vrfy(par, m, {pklypk'27 7pk77}» U):

Parser as(s, A, ¢, d) and eaclpk; asy;. Fori = 1,2, ..., n, sete; <« H(yi, ¢, {y1, Y2, ---; Yn }, m).
If (9° = ATI;_, 4:°* A Openg(c,d, A) = 1) thenaccept otherwisereject.

Figure 4: MS2, a multisignature scheme in the plain model

§i)(ej; — &;,) . ThusR can computdL(y:) by setting COROLLARY 4. If DL problem is(t’, ¢')-hard in groupG with
prime orderq and the MS1 protocol, described in figure 2 is in-
- n - stantiated with the commitment scheifedescribed in subsection
DLy(y1) = —— > — 5i T % 4.1, then the resulting multisignature scheme(lise, n, g, qn )-
o ~ €0 =3 G T G secure in random oracle model where
If E2B0 happens, thefR immediately translates it into an at- e < 16¢ +18/q
tack against the binding property of the commitment schéme € ,
by outputting (¢, d, d, gy~ %0, g°y~%0). To see this note that t= 8n2qn In(8n/e) t = 3.4gsteap
as argued before; = §, ¢ = ¢ and sinceE,”° occurred, thus ) i .
g°y~%0 # g*y~ o and due to validity of the forgeries we have andt..p is the time of one exponentiation

Open(c,d, g°y~%0) = Openy(c,d, g y~%0) = 1. Moreover
the commitment keyk is output byCGen in the execution of3,. 6. DL-BASED MULTISIGNATURE

ThusPr[E®1] < ¢ andPr[EZ°] < e and hence equation (20) IN THE PLAIN MODEL
becomese — €x)/8 < € + e + er, which implies: o )
We show a two-round multisignature scheth¢S2 (figure 4)

€ < 8(¢' +¢ep) + 9k secure under the DL assumption in tA&in Public Keymodel.

The MS2 scheme relies on a commitment schefhe= (CGen,

Com, Open, tdCGen, tdCom, RstEqv) with the same properties as
were required by the\1S1 scheme of section 4.2, i.e. a commit-
ment scheme which is multiplicatively homomorphic and equivo-
cable for functionf, (o, 8, y) = g®y”. When instantiated with the
commitment schemé&S of section 4, multisignaturd1S2 is se-
cure under théL assumption in the plain model, has fast signing
procedure requiring only three exponentiations per player, and the
resulting multisignature takefq| bits. The multisignature verifi-
cation takesD(n) exponentiations, matching the efficiency of the
best previously known DL-based multisignature in the plain model
of [3]. However, the advantage of this scheme over the scheme of
[3] is in reduction of rounds from three to two. The exact security
we show for this scheme matches that of [3], and indeed matches

The running timetz of the reduction algorithnR is equal to
(8n2qn /€) In(8n/¢) times the maximum of running time of the al-
gorithmsB, and3;. But the running time o3, and3; is dom-
inated by the running time of the forge¥ plus the time spent
by the simulators to answer the hash and signing queries. Thus
tr < (8n2qh/e) In(8n/€)(t + gstsign) Wheretsiqy is the maxi-
mum time spent by the simulatofsy and B, to answer one sig-
nature query. On the other hand sirgeeither answers th®L
challenge or outputs an attack against the binding property of the
commitmentC, it must be true thamin(t', t5) < tg. Thus:

€ . ’
t> ———————min(t,tB) — ¢stsign
= 8n2gp In(8n/¢) (#t5) = dsteig

- the exact security bounds shown for standard DL-based signatures.
The corollary below follows by settings = 2/q, tg = ' and
e = €. Note also that ifMS1 is instantiated with the com- THEOREM 5. If DL problem is(t', ¢')-hard in group G and

mitment schem&S then the signing time consists of one single-  there exists a commitment scheme parameterized gvitmat is
exponentiation and two double-exponentiations and that the time (ts, ep)-binding, e z-equivocable for functiorf, : Z, X Z, x
of one double-exponentiation is 1.2 times the time of a group ex- G/{1} — G wheref,(a, 8,y) = g°y®, and multiplicatively ho-
ponentiation. momorphic on groud, then multisignature scheme inS2, de-
scribed in figure 4 igt, €, n, g5, gn)-secure in random oracle model



Init: SimHash:

(td, K) «— tdCGen(g, y1); ctr « 1; HashQuery,, (y, ¢, pkSet, m):

par — (g, H, K); pk1 — y1; If H[y, (c, pkSet,m)] is undefined, then
ExecuteF on input(par, pk1, ); If (y, y1 € pkSet) then

SimMSign(m): ctr « ctr +1;
For ally; € pkset s.t.y; # y1 do
1. (¢, st) « tdComk (td); c1 « & Hly:, (¢, pkSet, m)] <= Zq;
Send(ci,y1) to F; | Hly1, (¢, pkSet, m)] «— ectr;
2. Upon receivingc;, y;) forall P; € P, do eise Hly, (¢, pkSet, m)] < Zq;
€ ®Pj€7’cj; pkSet — {yi}piep; returnH[y, (c, pkSet, m)];
e1 — H(y1,c,pkSet,m); L
(d, @) — RstEqu (td, st e1); Finalize:
51— o;dy — d; Ay — goly; Upon receiving a valid forgerym, o, {(pki, 7:) }i=2.. from
Send(s1,di, A1) to F F, parsec = (s, A,c,d) andpk; = y; fori = 2..n; Let
pkSet = {yi}i=1..n. QueryH on (y1, ¢, pkSet, m);

3 ;Trégecemgq?fjfj) forsé!lfjfﬁj' do A Return ({jo}, {9, }) Where jo is the index of the hash r¢
PyepPma pyep I pyep sponse iH[y1, (¢, pkSet,m)] andg;, = (m, ).

returnc = (s, 4, ¢, d);

Figure 5: Procedures used in the simulation of multisignature schema152
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