
Multisignatures Secure under the
Discrete Logarithm Assumption

and a Generalized Forking Lemma

Ali Bagherzandi
Dept. of Computer Science

University of California, Irvine
zandi@ics.uci.edu

Jung Hee Cheon
Dept. of Math. Sciences
Seoul National University
jhcheon@snu.ac.kr

Stanisław Jarecki
Dept. of Computer Science

University of California, Irvine
stasio@ics.uci.edu

ABSTRACT
Multisignatures allown signers to produce a short joint signature
on a single message. Multisignatures were achieved in the plain
model with a non-interactive protocol in groups with bilinear maps,
by Boneh et al [4], and by a three-round protocol under the Discrete
Logarithm (DL) assumption, by Bellare and Neven [3], with mul-
tisignature verification cost of, respectively,O(n) pairings or ex-
ponentiations. In addition, multisignatures withO(1) verification
were shown in so-called Key Verification (KV) model, where each
public key is accompanied by a short proof of well-formedness,
again either with a non-interactive protocol using bilinear maps, by
Ristenpart and Yilek [15], or with a three-round protocol under the
Diffie-Hellman assumption, by Bagherzandi and Jarecki [1].

We improve on these results in two ways: First, we show a two-
round O(n)-verification multisignature secure under the DL as-
sumption in the plain model, improving on the three-round protocol
of [3]. Second, we show a two-roundO(1)-verification multisigna-
ture secure under the DL assumption in the KV model, improving
on assumptions in [15, 1] and communication rounds in [1]. Ex-
act security of both schemes matches (in ROM) that of Schnorr
signatures. The reduced round complexity is due to a new multi-
plicatively homomorphic equivocable commitment scheme which
can be of independent interest. Moreover, our KV model scheme
is enabled by a generalized forking lemma, which shows that stan-
dard non-interactive zero-knowledge (NIZK) proofs of knowledge
in ROM admit efficientsimultaneouspost-execution extraction of
witnesses of all proof instances. As a consequence of this lemma,
any DL-based multisignature secure in so-called Knowledge-of-
Secret-Key model can be implemented in the KV model using stan-
dard ROM-based NIZK’s of DL as proofs of key well-formedness.

Categories and Subject Descriptors
E.1 [Data Structures]; F.2.1 [Analysis of Algorithms and Prob-
lem Complexity]: Numerical Algorithms and Problems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08,October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

General Terms
Algorithms, Reliability, Security

1. INTRODUCTION
A multisignature protocol allows a group ofn players to sign

a common message in such a way that instead ofn separate sig-
natures the players produce a short string, called a multisignature,
which can be then verified against the set of the public keys of these
n players. Such scheme provides advantages over standard signa-
tures if the size of the multisignature is that of a single standard sig-
nature rather thann signatures, and even more so if the verification
efficiency is comparable to single signature verification instead of
n signature verifications. Applications of multisignatures include
cases where the set of signers is small, e.g. distribution of certifi-
cate authorities, or authentication of routes in mobile networks, but
potential applications can also include large sets of signers, e.g. in
aggregation of broadcast acknowledgements, where it is especially
beneficial to reduce both multisignature sizeandverification time.
Rogue Key Attacks, KOSK Assumption. Multisignature proto-
cols based on various signature schemes are possible because of
homomorphic properties of arithmetic operations involved in sig-
nature algorithms. For example, a BLS signature [5] on messagem
under public keyyi = gxi is σi = H(m)xi . Therefore a multisig-
natureσ can be created asσ = σ1∗...∗σn, and it can be verified un-
der the combined public keyy = y1 ∗ ... ∗ yn becauseDL(g, y) =
DL(H(m), σ). However, the same homomorphic properties often
enable so-called “rouge key attacks” on such schemes. For exam-
ple, if an adversary picks public keyy2 = gx/y1 for somey1

and any chosenx, he can then issue valid multisignatures under
keys{y1, y2}. Micali et al [12] showed how to avoid such rogue
key attacks under so-called “Knowledge of Secret Key” (KOSK)
assumption, which requires the adversary to essentially provide a
secret key for every public key it chooses.
Key Verification or Registration Models. Micali et al imple-
mented the KOSK assumption via an interactive pre-processing
protocol involving all potential signers [12]. However, it can also
be implemented in aKey Verification(KV) model [1], where each
key yi admitted in a multisignature verification procedure must be
accompanied by a valid proof of well-formednessπi, e.g. if πi’s
are non-interactive concurrently extractable proofs of secret key
knowledge. A version of this model was introduced by Ristenpart
and Yilek [15] as aKey Registration(KR) model for PKI, which
stipulates that a Certification Authority (CA) can certify a public
key only if its owner passes certain registration procedure. The KR
model thus shifts the proof verification overhead from multisigna-
ture verifiers to the CA’s. (However, as we explain below, the KR

model requires non-standard trust assumptions on CA’s.)
Prior Work Related to DL-based Multisignatures. Multisig-
nature schemes proven secure in the KR model in [15] use non-
interactive proofs of key well-formedness and hence they are se-
cure also in the KV model. Technically, the non-interactive proofs
used by the schemes of [15] arenotconcurrently extractable proofs
of knowledge. Instead, they are NIZK proofs of DL equality, called
“proofs of secret key possession” in [15], which do not guarantee
efficient concurrent witness extraction, yet they turn out to suffice
for security of multisignatures based on the Gap Diffie-Hellman
(DH) assumption [15] or on Computational or Decisional DH as-
sumptions in the Random Oracle Model (ROM) [1], following a
general paradigm of replacing proofs of knowledge (e.g. of dis-
crete logarithm) with proofs of computational ability (e.g. of cor-
rect exponentiation of a challenge), used e.g. in [17]. However,
this paradigm seems to yield only schemes secure under assump-
tions related to the DH assumption, and not the Discrete Logarithm
(DL) assumption. Thus, to implement DL-based multisignatures in
the KV model, one seemingly needs to resort to concurrently ex-
tractable zero-knowledge proofs of knowledge (ZKPK) of discrete
logarithm. Such proofs remain impractical in the standard model
(e.g. [8]), but in ROM, due to the results of Fischlin [9], concur-
rent ZKPK’s of DL can be achieved in a way that is arguably ef-
ficient enoughif these ZKPK’s are verified by CA’s, but less so if
they are attached to certificates and verified by multisignature re-
ceivers as part of certificate verification. (In practice they seem to
require about 10 times more bandwidth and computation than stan-
dard ROM-based NIZK’s.) However, note that trusting the CA’s to
perform proof verifications places non-standard trust assumptions
on CA’s, becauseall CA’s must be trusted to perform those checks.
In particular, a multisignature in the KR model becomes insecure if
a key of a single participant in multisignature generation is certified
by an untrustworthy CA. It has been an open problem whetherstan-
dardROM-based NIZK of DL, e.g.(r, s) s.t.gs = ryH(y,r) can be
used instead of Fischlin’s NIZK’s to implement the KOSK assump-
tion, thus leading to efficient multisignatures in the KV model.

Multisignatures have also been proposed in the standard PKI set-
ting using groups with bilinear maps by Boneh et al [4, 2], and
under the DL assumption by Bellare and Neven [3], but the mul-
tisignature verification in these schemes requiresO(n) pairings or
exponentiations, respectively. Moreover, the DL-based scheme of
[3] requires 3 rounds of interaction, which makes the scheme less
convenient for applications where multisignature generation could
be piggybacked on a 2-round application protocol, e.g. aggregation
of authentication in route discovery (see e.g. [11]) or aggregation
of acknowledgments to a broadcast (see e.g. [6]).
Our Results. We provide two new multisignature schemes based
on the DL assumption, both with two-round protocols. The first
scheme (Section 4.2) is secure in the KV model, formally defined
in Section 2. It improves on a scheme implied by Micali et al [12]
and Fischlin’s NIZKs [9] by using standard ROM-based NIZK of
DL as a proof of key well-formedness, thus reducing its size and
verification time to a minimum, and settling the open question men-
tioned above. Moreover, the exact security of our scheme matches
(in ROM) that of standard DL-based signatures by Schnorr [16], as
given by the forking lemma analysis of Pointcheval and Stern [14].
Such exact security seems unlikely to hold for the scheme implied
by the results of [12, 9]. Our second scheme (Section 6) is secure in
the plain model and usesO(n) exponentiations in verification, but
improves on the scheme of [3] by reducing the protocol rounds to
two, which seems minimal for DL-based schemes, while also pre-
serving the same exact security as that of Schnorr signatures. Our
schemes have several other convenient features: (1) A signer can

concurrently engage in any number of multisignature instances; (2)
A signer doesn’t need to know anything about other participating
signers; (3) The message to be signed can be provided in the sec-
ond (last) protocol round; (4) Both schemes use standard DL-based
keys and can safely reuse e.g. the keys used for Schnorr signatures.

These results are enabled by two contributions of general inter-
est. The low round complexity of both schemes is due to a new mul-
tiplicatively homomorphic equivocable commitment scheme (Sec-
tion 4). As shown by Damgard [7], equivocable commitments due
to Pedersen [13] imply a practical 3-round straight-line simulatable
ZKPK of DL in the CRS model. Our commitment scheme can play
the same role but it in addition it allows aggregation ofn instances
of such proofs, thus compacting them to allow a short multisigna-
ture, with an efficient reduction enabled by straight-line simulata-
bility of the proof system. (We note that our commitment scheme
provides only restricted equivocability, but enough for straight-line
simulation of ZKPK of DL.) Secondly, short proofs of key well-
formedness in our KV model scheme are enabled by a generalized
forking lemma (Section 3), which shows that witnesses to polyno-
mially many instances of standard ROM-based NIZK’s can be effi-
ciently simultaneouslyextractedafter adversary ends its execution
(as opposed to on-line extraction in Fischlin’s NIZK’s). This im-
plies that any DL-based multisignature secure under the KOSK as-
sumption is secure in the KV model in ROM when standard ROM-
based NIZK’s are used as proofs of key well-formedness. Anex-
pectedpolynomial-time post-execution extraction of all witnesses
in such proofs was previously shown by Jens Groth in [10], so our
contribution is a strict polynomial-time extraction procedure which
matches up to anO(n2) factor, wheren is the number of proof
instances, the time/probability bounds given by the Bellare-Neven
version [3] of the Pointcheval-Stern forking lemma [14].
Notation and Setting. We useG to denote a multiplicative group
of prime orderq. All arithmetic operations are either done mod-
ulo q, when involving elements inZq, or they are operations inG.

2. MULTISIGNATURE SCHEMES

A Multisignature Syntax. We define a multisignature scheme in
the key verification model as a tupleMS = (Setup, KGen, MSign,
Vrfy, KVrfy) whereSetup, KGen, Vrfy and KVrfy are efficient
probabilistic algorithms, andMSign is a distributed protocols.t.

• par ← Setup(1κ), on input the security parameterκ gener-
ates public parameterspar.

• (sk, pk, π) ← KGen(par), executed by each user on input
par, generates this user’s secret keysk, the corresponding
public keypk, and a proof of validity of this public key, de-
notedπ.

• MSign is a multisignature protocol executed by a group of
players who intend to sign the same messagem. Each player
Pi executes this protocol on public inputspar, messagem
and private inputski, his secret key. The output of the pro-
tocol is a multisignature denotedσ.

• {0, 1} ← Vrfy(par, m, PKSet, σ) verifies whetherσ is a
valid multisignature on messagem on be half of the set of
the players whose public keys are in the setPKSet.

• {0, 1} ← KVrfy(par, pk, π) verifies whetherpk is a valid
key, given the proofπ.

This set of procedures must satisfy the followingcompleteness
properties: Letpar ← Setup(1κ). First, for any tuple(sk, pk, π)

ExperimentExpuu−cma
MS (A)

par← Setup(1κ); (sk∗, pk∗, π∗)← KGen(par); List← ∅;

RunA(par, pk∗, π∗), and for every signature querym made byA do the following:

List← List ∪ {m}; Execute procedureMSign on inputs(par, m, sk∗), forwarding messages to and fromA.

(We allowA to make any number of such queries concurrently.)

WhenA halts, parse its output as(m, σ, {(pk2, π2), (pk3, π3), ..., (pkn, πn)}). SetPKSet = {pk∗} ∪ {pk2, pk3, ..., pkn}.

If (KVrfy(par, pki, πi) = 1 for all i = 2 to n) ∧ (m 6∈ List) ∧ (Vrfy(par, m, PKSet, σ) = 1) then return 1, otherwise return 0.

Figure 1: Chosen Message Attack against a Multisignature Scheme

outputted byKGen(par), KVrfy(par, pk, π) = 1. Second, for
any numbern and any messagem, if for i = 1..n one generates
(ski, pki, πi) by runningKGen(par) and executesMSign on input
par, m, andski, then assuming that all messages between these
players are delivered correctly, each player outputs the same string
σ that moreover satisfies

Vrfy(par, m, {pk1, pk2, ...pkn}, σ) = 1

Remarks on the assumptions behind the syntax:
(1) In the security game in figure 1 we take a simplifying assump-
tion that theSetup procedure is executed by an honest party. How-
ever, the public parameters in our two schemes are only needed to
define a multiplicative group of prime order where theDL assump-
tion holds, and such parameters can be chosen by any party.
(2) The syntax of a multisignature scheme in the KV model is a
simplification of the syntax used by [15], which models potentially
interactive key registration processes. Here we only allow non-
interactive proofsπi of well-formedness of keyyi. Such proofs
can be verifiedeither by CA’s as part of the key registration pro-
cess (as in the KR model of [15])or by multisignature verifiers,
e.g. together with validation of a PKI certificate onyi.
(3) If the proof of validity of the public key is set to empty string
and the algorithmKVrfy just returns true, then the above definition
is equivalent to the definition of the multisignature schemes in the
plain model as proposed in [3].
(4) Unlike in the definition of multisignatures used by [12] and [3],
we do not require the set of participant identities and/or the set
of their public keys as inputs to the multisignature protocol. The
participating players must be aware of one another in the proto-
col execution, but this information is needed only to ensure proper
communication, and does not need to be part of the inputs to the
cryptographic protocol. The schemes secure in this setting provide
additional flexibility to applications of multisignatures; because in
many applications a signer might care only about the message it is
signing and not about the identities of the other signers. (Other-
wise they can always include the list of participating players in the
signed message.) In such applications protocols of [12, 3] would
have to be preceded by an additional communication round where
participants broadcast their identities and/or keys.
Multisignature security in Key Verification model. As in previ-
ous works on multisignatures, e.g. [12, 3, 15], we define security of
a multisignature scheme as universal unforgeability under a chosen
message attack against a single honest player. Namely we define
theadversarial advantageof A against the multisignature scheme
MS = (Setup, KGen, MSign, Vrfy, KVrfy) as a probability that
experimentExpuu−cma

MS (A) described in figure 1 outputs1, i.e.

Advuu−cma
MS (A) = Pr[Expuu−cma

MS (A) = 1] (1)

where the probability goes over the random coins of the adversary
and all the randomness used in the experiment. We call a multisig-
nature scheme(t, ε, n, qs)-secure if it holds thatAdvuu−cma

MS (A) ≤
ε for every adversaryA, that runs in time at mostt, makes at
most qs signature queries and produces forgeries on behalf ofn
parties. In random oracle model we also consider a notion of a
(t, ε, n, qs, qh)-secure multisignature scheme whereA is an adver-
sary restricted to at mostqh hash queries and the probability in the
experimentExpuu−cma

MS (A) is taken over random hash functions.
We note that in [12] and [3] the notion of CMA forgery is broader

than the one we consider above: As we pointed out in remark (4)
above, their signers take as input the set of public keys of all partic-
ipating playersPKSet along with the messagem as input. More-
over, their notion of multisignature security treats the multisigna-
ture effectively as a signature on apair (m, PKSet): Their notion
of forgery is extended to include a case where an attacker forges a
multisignature on a message that was previously signed by the hon-
est player, but it was signed together with a different set of public
keys. In our model, such adversary would not be considered a suc-
cessful forger. However, a scheme secure according to our notion
implies a scheme secure in this stronger model if every messagem
input into our multisignature protocol is simply amended by the set
of public keysPKSet.

3. GENERALIZED FORKING LEMMA
Consider an experiment in which an adversaryA, on inputpar,

interacts with a random oracleH : {0, 1}∗ → Zq. Denote the
randomness involved in this execution asf = (ρ, h1, h2,, hqh),
whereρ isA’s random input,hj is thej-th response ofH, andqh

is the maximum number of hash queriesAmakes. LetΩ denote the
set of all vectorsf . The probability in all experiments we consider
goes overf ∈ Ω, unless noted otherwise. We consider as adver-
sary’ssuccessan event thatA outputs a pair(J, {φj}j∈J) whereJ
is a (non-empty) set of up ton indexesJ ⊆ {1, ..., qh}. By con-
vention we assume that ifA fails then it outputs(J, {φj}j∈J) s.t.
J = ∅. Otherwise we assume that|J | = n, by treatingJ as amulti-
setand allowing repetitions, and we assume that ifJ = {j1, ..., jn}
then j1 ≤ ... ≤ jn. For fixed par, let S ⊆ Ω be the set of
vectorsf s.t. A(par, f) succeeds, and letε = Pr[S]. Denote
the index setJ output byA(par, f) on f ∈ S as Ind(f). Let
fj = (ρ, h1, ..., hj−1), e.g.f1 = ρ, f2 = (ρ, h1), etc. Theforking
lemmaof Pointcheval and Stern [14] (see also Bellare and Neven
[3]), considers a restricted class of algorithmsA wheren = 1.
The lemma involves an execution of aforking algorithmFA which
runsA on randomf ∈ Ω, and if f ∈ S then it runsA again,
on randomf ′ chosen subject to the constraint thatf ′j = fj where
{j} = Ind(f) (heren = 1, soInd(f) is a singleton iff ∈ S).
Let f ′ = (ρ, h1, ..., hj−1, h

′
j , ..., h

′
qh

). We say that algorithmFA

has aforking successif both f andf ′ are inS, Ind(f ′) = Ind(f),
andh′j 6= hj . The forking lemma lower-bounds the probability of
FA’s forking success in the above experiment by(ε − 1/q)2/qh

(see lemma 1 in [3]). A common application of this lemma is to
ROM-based NIZK’s created via the Fiat-Shamir heuristic, where
valueφj in A’s output is a pair(xj , πj) wherexj is an instance of
a language membership problemL andπj = (aj , hj , zj) is a non-
interactive zero-knowledge proof forxj ∈ L, with hj = H(xj , aj)
playing the role of a verifier’s challenge. A successful forking algo-
rithm outputs two such proofs involving the same instancexj , the
same prover’s first messageaj , and different challengeshj 6= h′j ,
which for many proof systems allows for efficient extraction of a
witness forxj in L.

We describe this generalized forking process as algorithmGFA,
whereε̂ denotes the expected value ofε for adversaryA(par) when
par is uniformly chosen.

Algorithm GFA on inputspar:
1. Pickf = (ρ, h1, ..., hqh)← Ω.
2. Compute(J, {φj}j∈J)← A(par, f).
3. If J = ∅ then stop (andfails).
4. LetJ = {j1, ..., jn}, X = {(hj , φj)}j∈J andX ′ = {}.
5. Fori = 1 to n, repeat lines 5.1-5.2
5.1. Setsucci = 0, ki = 0 andkmax = 8nqh/ε̂ ∗ ln(8n/ε̂).
5.2. Repeat lines 5.2.1-5.2.4 untilsucci = 1 or ki > kmax

5.2.1 Incrementki. Pick randomf ′ in Ω s.t.f ′ji
= fji .

5.2.2 Letf ′ = (ρ, h1, ..., hji-1, h
′
ji

, ..., h′qs
).

5.2.3 Compute(J ′, {φ′j}j∈J′)← A(par, f ′).
5.2.4 Ifh′ji

6= hji , J ′ 6= ∅, andji ∈ J ′, then
add(h′ji

, φ′ji
) to X ′ and setsucci = 1.

6. If for all i = 1 to n succi = 1, then Output(X, X ′) .
6.1 Otherwise stop (andfail).

LEMMA 1. [Generalized Forking Lemma] Let IG be a ran-
domized algorithm that generatespar andA be a randomized al-
gorithm making at mostqh hash queries s.t.A(par) succeeds(i.e.
outputs(J, {φj}j∈J) s.t. |J | = n) with probability ε̂, where the
probability goes overpar

r← IG and f
r← Ω. Let q > 8nqh/ε̂.

Then algorithmGFA(par) has aforking success(i.e. outputs two
n-element lists(X, X ′)) with probabilityfrk ≥ ε̂/8, where proba-
bility goes over coins ofIG andGFA.

Note that if the running time ofA(par) is bounded above byt(par)
then the running time ofGFA(par) is at mostt(par) ∗ 8n2qh/ε̂ ∗
ln(8n/ε̂). Hence the expected running time ofGFA(par) over all
par is bounded above by the expected running time ofA(par) mul-
tiplied by8n2qh/ε̂ ∗ ln(8n/ε̂).

In the proof we will rely on the following version of the “splitting
lemma” of [14]. LetA, B, S ⊆ X × Y be any sets s.t.B =
{(x, y) | Pry′∈Y [(x, y′) ∈ A] ≥ δ} andA ⊆ S.

LEMMA 2. [Splitting Lemma] For all A, B, S as above:
(1) Pr[B|A] ≥ 1− δ/ Pr[A]
(2) Pr[A ∩B] ≥ Pr[A]− δ
(3) Pr[A ∩B | S] ≥ Pr[A|S]− δ/ Pr[S]

PROOF. Inequality (1) follows becausePr[B|A] < 1 − δ/ Pr[A]
implies

Pr[A] = Pr[A ∩B] + Pr[A ∩ B̄]

= Pr[B|A] ∗ Pr[A] + Pr[A|B̄] ∗ Pr[B̄]

< (1− δ/ Pr[A]) ∗ Pr[A] + δ ∗ 1 = Pr[A]

Inequality (2) follows from (1) becausePr[A ∩ B] = Pr[B|A] ∗
Pr[A]. As for inequality (3), sinceA ∩ B ⊆ S, we havePr[A ∩

B | S] = Pr[A ∩ B]/Pr[S], and thus by (2) we havePr[A ∩
B | S] ≥ (Pr[A]− δ)/ Pr[S] = Pr[A | S] − δ/ Pr[S].

PROOF OFLEMMA 1. Let ε(par) and frk(par) be the success
probability ofA andGFA for fixed inputpar.

Let P be the set of all possiblepar andP ′ be the set ofpar
satisfyingε(par) > ε̂/2. We will argue that for an inputpar ∈ P ′,
frk(par) ≥ ε(par)/4. Then we have

frk ≥ 1

|P|
∑

par∈P′

frk(par)

≥ 1

|P|

 ∑
par∈P

ε(par)/4−
∑

par/∈P′

ε(par)/4


≥ ε̂/4− ε̂/8 = ε̂/8,

where the last inequality follows becausepar /∈ P ′ implies that
ε(par) ≤ ε̂/2

Fix an input instancepar ∈ P ′ and letε = ε(par) and frk =
frk(par). Forf ∈ S definei-Ind(f) as thei-th element ofInd(f).
Let E = E1 ∩ E2 ∩ ... ∩ En whereEi’s are defined as follows:

Aj = {f ∈ S | j ∈ Ind(f)}
Bj = {f ∈ Ω | Prf ′∈Ω[f ′ ∈ Aj | f ′j = fj] ≥ ε/(2nqh)}
Ei = {f ∈ S | f ∈ Bj wherej = i-Ind(f)}

We will argue thatfrk > ε/4 follows from the following inequality:

Pr[E|S] ≥ 1/2 (2)

This is because ifPr[E|S] ≥ 1/2 thenf chosen in step 1 ofGFA
is in E with probability Pr[E|S] ∗ Pr[S] ≥ ε/2. Moreover, if
f ∈ E ⊆ S then by definition ofE we have thatf ∈ Bji for each
ji ∈ Ind(f) = {j1, ..., jn}. Therefore, for eachi from 1 to n, by
definition ofBji , the probability thatf ′ chosen in line 5.2.2 satis-
fiesf ′ ∈ Aji (and henceji ∈ Ind(f ′)) is at leastε/2nqh. Since
the probability thath′ji

= hji is at most1/q < ε̂/8nqh < ε/4nqh,
the probability that condition in line 5.2.4 is satisfied is at least
ε/4nqh. Sinceε > ε̂/2, the probability that all8nqh/ε̂ ∗ ln(8n/ε̂)
executions of loop 5.2 fail (for any giveni) is at mostε/4n. By the
union bound, the probability that the rewinding procedure in step
5 fails for somei is thus at mostε/4. Hence, the probabilityfrk
that GFA succeeds is at least the probability thatf ∈ E ⊆ S
and that the procedure in step 5 does not fail, which is at least
ε/2− ε/4 = ε/4.

It remains to show that (2) holds. We will first argue:

∀i=1,..,n Pr[Ei|S] ≥ 1− 1/(2n) (3)

It’s easy to see that (3) implies (2) (see explanations below):

Pr[E|S] = Pr[∩n
i=1Ei | S] (4)

= 1− Pr[∪n
i=1Ēi | S] (5)

≥ 1−
∑n

i=1
Pr[Ēi | S] (6)

= 1−
∑n

i=1
(1− Pr[Ei | S]) (7)

≥ (1−
∑n

i=1
(1− (1-1/(2n)))) = 1/2 (8)

Step (6) follows by the union bound while step (8) follows from
inequality (3).

Thus it remains to argue that (3) holds. Let us define the following:

Ai
j = {f ∈ S | j = i-Ind(f)}

Bi
j = {f ∈ Ω | Prf ′∈Ω[f ′ ∈ Ai

j | f ′j = fj] ≥ ε/(2nqh)}

Note that iff ∈ Ei ⊆ S thenf ∈ Ai
j ∩Bj for j = i-Ind(f), and

vice versa, which implies:

∀i=1,..,n Ei =
⋃qh

j=1
(Ai

j ∩Bj) (9)

The following sequence of inequalities implies (3) and hence con-
cludes the proof (see the explanations below):

Pr[Ei|S] =
∑qh

j=1
Pr[Ai

j ∩Bj | S] (10)

≥
∑qh

j=1
Pr[Ai

j ∩Bi
j | S] (11)

≥
∑qh

j=1
(Pr[Ai

j | S]− ε

2nqh Pr[S]
) (12)

= 1− 1/(2n) (13)

Equality (10) follows from (9) and the fact that setsAi
j ∩ Bj par-

tition setEi into qh non-intersecting subsets. Inequality (11) holds
becauseBi

j ⊆ Bj for all i. Inequality (12) follows from part (3) of
the splitting lemma (lemma 2) and the definition ofBi

j . Equality
(13) follows because for anyi setsAi

j partition setS into qh non-
intersecting subsets, so

∑qh
j=1 Pr[Ai

j |S] = Pr[S|S] = 1, while
qh ∗ (ε/(2nqh))/Pr[S] = 1/(2n).

4. MULTIPLICATIVELY HOMOMORPHIC
EQUIVOCABLE COMMITMENTS

Commitments: We model a commitment schemeC in common
reference string (CRS) model as a tuple of probabilistic poly-time
algorithmsCSetup, CGen, Com andOpen, s.t.

• cpar← CSetup(1κ) on input the security parameterκ, gen-
erates public parameterscpar, which also determine the com-
mitment message spaceM.

• K ← CGen(cpar), on input the parameterscpar, generates
a commitment keyK .

• (c, d) ← ComK (m) generates the commitmentc and de-
commitmentd on messagem ∈M.

• {0, 1} ← OpenK (c, d, m) determines ifd is a valid decom-
mitment of commitmentc to messagem.

These algorithms must satisfy a correctness requirement, namely if
cpar ← CSetup(1κ), K ← CGen(cpar), (c, d) ← ComK (m),
thenOpenK (c, d, m) = 1. A commitment scheme must also sat-
isfy requirements of hiding and binding. Below we define a statis-
tical notion of hiding and a computational notion of binding since
these are the variants of these notions which our scheme satisfies.
ε-Hiding: For everycpar ← CSetup(1κ), m0, m1 ∈ M, and
K ← CGen(cpar), there is less thanε statistical difference be-
tween distributions ofc’s output byComK (m0) andComK (m1).
A commitment scheme isperfectlyhiding if ε = 0.
(t, ε)-Binding: For anyA running in timet and anycpar ←
CSetup(1κ) the probability of the following event is less thanε:

OpenK (c, d0, m0) = OpenK (c, d1, m1) = 1 ∧ m0 6= m1

where(c, d0, d1, m0, m1)← A(K), K ← CGen(cpar) and prob-
ability goes over coins ofCGen andA.

Homomorphic Commitments: To enable aggregation of outputs
produced byn players into a single short multisignature, our com-
mitment scheme must itself support aggregation. This is possi-
ble if the commitment scheme ishomomorphic. We call a com-
mitment scheme homomorphic for operation⊗m : M×M →

M if there are efficiently computable operations⊗c and⊗d s.t.
if OpenK (c1, d1, m1) = 1 and OpenK (c2, d2, m2) = 1, then
OpenK (c, d, m) = 1 for c = c1 ⊗c c2, d = d1 ⊗d d2, and
m = m1 ⊗m m2. For example, Pedersen commitment [13] isad-
ditively homomorphic, and therefore one can aggregate Pedersen
commitments on separate messages into a single Pedersen commit-
ment on thesumof these messages. Similarly, ElGamal encryption
can be used to implement amultiplicativelyhomomorphic commit-
ment scheme. Our construction is multiplicatively homomorphic,
i.e.⊗m is a group multiplication. For convenience we denote⊗c

as⊗ and⊗d as⊕ in the sequel.

Restricted Equivocability: A commitment scheme isequivoca-
ble if there exists an efficient simulator that generates the commit-
ment keyK , indistinguishable from the real key, together with a
trapdoortd. The trapdoor allows the simulator to create fake com-
mitments which are indistinguishable from the real ones, but the
simulator can later decommit them toanymessage. As far as we
know, no commitment scheme has been proposed that is equivo-
cable and multiplicatively homomorphic at the same time. Peder-
sen commitment is equivocable but only additively homomorphic,
and while the commitment scheme based on ElGamal encryption
is multiplicatively homomorphic, it is perfectly binding, and hence
not equivocable (like every commitment scheme implemented with
standard public-key encryption). Here we do not create such com-
mitment scheme either. Instead we show a simple scheme which
is multiplicatively homomorphic and hasrestricted equivocability
in the sense that the simulator can open its fake commitments only
to messages of certain special form. Namely, we’ll show a mul-
tiplicatively homomorphic commitment scheme onM = G, s.t.
for any elementsg, y∗ in G/{1}, the simulator can open its fake
commitment to a message of the formm = gα(y∗)β , given any
β in Zq which the simulator receivesafter creating the fake com-
mitment. Moreover, while valueα can be chosen by the simulator
after it receivesβ, the distribution ofα’s outputted by the sim-
ulator must be indistinguishable from the uniform distribution in
Zq. Looking ahead, this type of restricted equivocability is enough
to enable straight-line simulation of a Zero-Knowledge Proof of
Knowledge (ZKPK) of discrete logarithmDLg(y) (see section 4.2
below). This ZKPK is a basic building block of any multisignature
based on DL, and the straight-line simulatableand aggregatable
version of this proof system, enabled by our restricted-equivocable
and multiplicatively homomorphic commitment scheme, leads to a
multisignature scheme with fewer rounds and exact security match-
ing that of standard discrete-log based signatures.

Formally, we model this type of restricted equivocability as fol-
lows. Letf be a family of efficiently computable functions indexed
by the commitment parametercpar, fcpar : D×D×S →Mwhere
D andS, like M, are defined bycpar. We call a commitment
schemeε-equivocable for function (family)f if there exist efficient
algorithmstdCGen, tdCom andRstEqv, wheretdCGen(cpar, y∗)

→ (K , td), tdComK (td)→ (c̃, st), RstEqvK (td, st, β)→ (d̃, α),
s.t. for anycpar outputted byCSetup and anyy∗ ∈ S the follow-
ing two properties hold: First, there is at mostε statistical difference
between the distribution ofK values output byCGen(cpar) and by
tdCGen(cpar, y∗). Second, for all(K , td) ← tdCGen(cpar, y∗)
andβ ∈ D, the following two distributions are identical:

{ (c, d, α) | α
r← D; m = fcpar(α, β, y∗); (14)

(c, d)← ComK (m) },
{ (c̃, d̃, α) | (c̃, st)← tdComK (td); (15)

(d̃, α)← RstEqvK (td, st, β) }

4.1 DL-Based Commitment Scheme
We describe a commitment scheme denotedCS, which is multi-

plicatively homomorphic on message space a multiplicative group
G of prime orderq, perfectly hiding, computationally binding un-
der the DL assumption, and equivocable for functionfg : Zq ×
Zq × G/{1} → G, fg(α, β, y∗) = gα(y∗)β . The scheme has
features of both Pedersen Commitment and ElGamal encryption:

• CSetup(1κ): Set cpar ← g, whereg generates groupG
of prime orderq large enough so that theDL assumption
in group G holds with security parameterκ. To simplify
notation we will assume that groupG and its orderq are
implicitly defined byg.

• CGen(g): Picky
r← G/{1} andα1, α2

r← Zq s.t.α1 6= α2.
Seth← gα1 , z ← yα2 , andK ← (g, h, y, z).

• ComK (m): Pick r1, r2
r← Zq and return(c, d) wherec =

(gr1hr2 , yr1zr2m) andd = (r1, r2).

• OpenK (c, d, m): Let c = (c1, c2) andd = (r1, r2). Return
1 iff (c1 = gr1hr2) ∧ (c2 = yr1zr2m).

• tdCGen(cpar, y∗): Pick γ
r← Zq andγ1, γ2

r← Z∗q . Let
h = gγ , y = gγ1 , andz = (y∗)γ2 . SetK ← (g, h, y, z)
andtd← (y∗, γ, γ1, γ2), and return(K , td).

• tdComK (td): Pick r, a, b
r← Zq. Setst ← (r, a, b) and

return(c̃, st) wherec̃ = (gr, ga(y∗)b).

• RstEqvK (td, st, β): Computer2 = γ2
−1(b − β), r1 =

r− γr2, andα = a− r1γ1 (all moduloq), and return(d̃, α)

whered̃ = (r1, r2). Note thatr1, r2, α satisfy the following
set of equations modq:

r1 + γr2 = r , γ1r1 + α = a , γ2r2 + β = b (16)

Therefore form = gα(y∗)β we have(gr1hr2 , yr1zr2m)

= (gr, ga(y∗)b) = c̃, and henceOpen(c̃, d̃, m) = 1.

We argue the claimed security properties:

Perfect Hiding: Note that the commitment produced byComK on
m = yτ is a pair(gr1+α1r2 , yr1+α2r2+τ), and note that this is a
pair of random elements inG × G for everyτ if α1 6= α2 and
(r1, r2)

r← Zq × Zq.

Computational Binding: The commitment schemeCS is (t, ε)-
binding if theDL problem inG is (t, ε)-hard. Indeed, an attacker
A on binding can be used to solve theDL problem as follows:
Given theDL challenge(g, h), the reduction picksy, z

r← G s.t.
DLg(y) 6= DLh(z), and runsA(g, h, y, z). By assumption, with
probability ε, A outputs(c, d, m, d′, m′) s.t. OpenK (c, d, m) =
OpenK (c, d′, m′) = 1 and m 6= m′. Denoted = (r1, r2),
d′ = (r′1, r

′
2), ∆r1 = r1 − r′1 and ∆r2 = r2 − r′2. Since

c = (gr1hr2 , yr1zr2m) = (gr′
1hr′

2 , yr′
1zr′

2m′) it follows that
y∆r1z∆r2 = m′/m andg∆r1h∆r2 = 1. Therefore, either∆r1 =
∆r2 = 0 or DLg(h) = −∆r1/∆r2. But ∆r1 = ∆r2 = 0 implies
thaty∆r1z∆r2 = 1 and hencem = m′. Thus, ifm 6= m′, DLg(h)
can be computed as−∆r1/∆r2.

Multiplicative Homomorphism: The commitment schemeCS is
multiplicatively homomorphic onM = G. Operators⊗ and⊕
are defined as follows: Ifc = (c1, c2) and c′ = (c′1, c

′
2) then

c ⊗ c′ = (c1c
′
1, c2c

′
2), and ifd = (r1, r2) andd′ = (r′1, r

′
2) then

d⊕ d′ = (r1 + r′1, r2 + r′2).

Restricted Equivocability: The commitment schemeCS is (2/q)-
equivocable for functionfg : Zq × Zq × G/{1} → G, where
fg(α, β, y∗) = gα(y∗)β . First note that the statistical difference
between the distribution of keysK = (g, h, y, z) produced by
CGen(g) and tdCGen(g, y∗) is at most2/q, because elementsh
andy are distributed identically in both cases, whilez in CGen is
random inG subject to the constraintDLg(h) 6= DLy(z), and in
tdCGen it is a random generator ofG. It remains to argue that for
everyg ∈ G, y∗ ∈ G/{1}, everyK output bytdCGen(g, y∗),
and everyβ ∈ Zq, triple (c, d, α) in distribution (14) is distributed
identically to triple(c̃, d̃, α) in distribution (15). First note that
commitmentc is a deterministic function ofd andm, and hence,
for everyg, y∗, β, it’s a deterministic function of(d, α) because
m = gα(y∗)β . The fake decommitment̃c is determined by the
same function of(d̃, α). Therefore we only need to argue that
(d, α) and(d̃, α) part of these two distributions are identically dis-
tributed. First note that(d, α) = (r1, r2, α) in the first distribution
is uniform in (Zq)

3. We therefore need to argue that the same is
true about(d̃, α) = (r1, r2, α) in the second distribution. The
reason this holds is that for everyg ∈ G, y∗ ∈ G/{1}, every
γ, γ1, γ2 chosen bytdCGen(g, y∗), and everyβ ∈ Zq, algorithm
RstEqv assigns a unique triple(r1, r2, α) to every triple(a, b, r),
i.e. (r1, r2, α) = F (a, b, r) whereF is a permutation on(Zq)

3.
Since(a, b, r) is chosen uniformly in(Zq)

3 by tdCom, (r1, r2, α)
outputted byRstEqv is uniform in(Zq)

3 as well.

4.2 Aggregatable ZKPK of DL with
Straight-Line Simulation

Three Round HVZK PK of DL: Let G be a prime order group of
orderq and letg be a generator ofG. An honest verifier zero knowl-
edge (HVZK) proof of knowledge (PK) ofDL of a group element
y ∈ G/{1}, denoted by(a, e, s) can be performed by the following
protocol: The prover picksk

r← Zq and computes the first message
a = gk; The verifier picks the challengee

r← Zq and sends it to
the prover; The prover computes the responses = ex + k where
x = DLg(y); Finally the verifier accepts iffgs = aye. For the
purpose of subsequent discussion we briefly recall that this proof
system is HVZK because for any challengee a simulator can pick
the responses uniformly in Zq and compute the first messagea as
gsy−e, and it is a proof of knowledge becausex = DLg(y) can
be computed from two accepting transcripts(a, e, s) and(a, e′, s′)
wheree′ 6= e (such two related transcripts can be achieved by
rewinding the prover) because ifa = gsy−e = gs′

y−e′
then

x = DLg(y) = (s− s′)(e− e′)−1 mod q.

Three Round Straight-Line Simulatable and Computationally
Sound ZKPK of DL in the CRS Model: Using the restricted
equivocable commitment scheme likeCS, one can compile the
HVZK PK of DL described above into a three round straight-line
simulatable and computationally sound ZKPK of DL in the CRS
model following the technique of Damgard [7]. (Even though the
commitment scheme is not fully equivocable, it has enough equiv-
ocability to allow straight-line simulation of this particular proof.)
Let C = (CGen, Com, Open, tdCGen, tdCom, RstEqv) be a com-
mitment scheme for public parametercpar = g over the groupG
generated byg. AssumeC is (tB , εB)-binding andεE-equivocable
for functionfcpar : Zq×Zq×G/{1} → G wherefcpar(α, β, y) =
gαyβ . Let (a, e, s) be a three round HVZK of PK ofDL of a group
elementy ∈ G/{1}. The compilation is as follows: The CRS
is the instance of the restricted equivocable commitment scheme.
The prover computes(c, d) ← ComK (a) and sends commitment
c to the verifier. The verifier picks the challengee ∈ Zq and

1. Setup(1κ): Let G be a multiplicative group of prime orderq, where the DL assumption holds with security parameterκ and
let g be a generator ofG. RunCGen on inputg to obtain the commitment keyK and set hash functionsG : G2 → Zq and
H : G× {0, 1}∗ × {0, 1}∗ → Zq. The public parameter ispar = (g, G, q,K).

2. KGen(par): PlayerPi picks his(ski, pki, πi) tuple as follows:

Pickxi
r← Zq, computeyi ← gxi and setpki ← yi, ski ← xi;

Construct a "proof of possession" ofxi which is a NIZK proof of knowledge ofxi = DLg(yi):
Pickk

r← Zq, sete← G(yi, g
k), s← k + exi (mod q) andπi ← (s, e);

3. KVrfy(par, pk, π): Let pk = y andπ = (s, e); If e = G(y, gsy−e) thenaccept otherwisereject.

4. ProtocolMSign: LetP be the set of players that participate in the protocol. (Each player can determine the setP after the first step
of MSign.) PlayerPi on inputs(par, m, ski), performs the following steps:

4.1 Pickki
r← Zq and computeAi ← gki and(ci, di)← ComK (Ai) and broadcast(yi, ci);

4.2 Upon receiving(yj , cj) for all Pj ∈ P, Sety ←
∏

Pj∈P yj , c←
⊗

Pj∈Pcj ande← H(y, c, m);

Computesi ← exi + ki (mod q) and broadcast(si, di);

4.3 Output multisignatureσ = (s, e, c, d), wheres =
∑

Pj∈P sj , d =
⊕

Pj∈Pdj .

5. Vrfy(par, m, {pk1, pk2, ..., pkn}, σ):

Parseσ as(e, s, c, d) and eachpki asyi and computey ←
∏n

i=1 yi.
If (e = H(y, c, m) ∧ OpenK (c, d, gsy−e) = 1) thenaccept otherwisereject.

Figure 2:MS1, a multisignature scheme in key verification model

sends it back to the prover. The prover responds withs accom-
panied bya and the decommitmentd. The verifier accepts iff
gs = aye andOpenK (c, d, a) = 1. This proof system is straight-
line simulatable: The simulator runstdCGen(cpar) to obtainK
and the trapdoortd. It then computes(c, st) ← tdComK (td)
and sendsc to the verifier. Upon receiving the challenge,e, the
simulator uses therestrictedequivocability property of the com-
mitment scheme to open the fake commitmentc to a first message
a such that the corresponding(a, e, s) be an accepting conversa-
tion of three round HVZK PK ofDLg(y) by computing(d, s) ←
RstEqvK (td, st, e). The simulator sends to the verifiera = gsy−e,
d ands. Since the commitment scheme isεE-equivocable for func-
tion fcpar(α, β, y) = gαyβ , thus the view of the verifier communi-
cating with the simulator and the view of the verifier in the real pro-
tocol is at mostεE apart. This proof system is also computationally
binding based onDL assumption. Namely for any cheating prover
P ∗, there exist an extractor such that given oracle access toP ∗, ex-
tractsx = DL(y) with a probability at least1− εB . The extractor
runs the prover to receive an accepting conversation(c, e, (a, s, d)).
It then rewindsP ∗ to the beginning of the second round and sends
her a different challengee′ 6= e to obtain another accepting con-
versation(c, e′, (a′, s′, d′)). We haveOpenK (c, d, a) = 1 and
OpenK (c, d′, a′) = 1. If a 6= a′ then this is an attack against the
binding property of the commitment scheme and ifa = a′, since
gs = aye andgs′

= a′ye′
, the extractor can extract the witness by

settingx = DLg(y) = (s− s′)(e− e′)−1.

5. DL-BASED MULTISIGNATURE IN
THE KEY VERIFICATION MODEL

We show a two-round multisignature schemeMS1 (figure 2)
secure under the Discrete Logarithm assumption in the Key Verifi-
cation model. TheMS1 scheme relies on a commitment scheme
C = (CGen, Com, Open, tdCGen, tdCom, RstEqv) which is ex-
actly like schemeCS of section 4.1, i.e. multiplicatively homo-
morphic on message spaceG and equivocable for functionfg(α,

β, y) = gαyβ . When instantiated withCS, the schemeMS1 re-
quires just three exponentiation per party for signing and two for
verification, and it is secure under theDL assumption, with reduc-
tion efficiency matching those for standard DL-based signatures.
The length of the resulting multisignature is only4|q| bits, be-
cause in commitment schemeCS the commitment can be omitted
since it can be computed from the message and the decommitment.
The novelty of schemeMS1 is that it achievesO(1)-cost verifi-
cation in the KV model based on only the DL assumption while
using short proofs of key well-formedness,|πi| = 2|q|, each tak-
ing just 1 exponentiation to verify. In contrast, the combined re-
sults of [12] and [9] imply a DL-based KV-model multisignature
with O(1) multisignature verification but with significantly more
expensive proofs, and the scheme is either three rounds (and hence
is less practical) or has worse exact security. The key fact enabling
the security proof is the generalized forking lemma of section 3.

THEOREM 3. If DL problem is(t′, ε′)-hard in groupG andC
is a commitment scheme parameterized withg that is (tB , εB)-
binding,εE-equivocable for functionfg : Zq ×Zq ×G/{1} → G
s.t. fg(α, β, y) = gαyβ , and multiplicatively homomorphic on
groupG, then multisignature schemeMS1 instantiated withC is
(t, ε, n, qs, qh)-secure in the random oracle model where

ε ≤ 8(ε′ + εB) + 9εE

t ≥ ε

8n2qh ln(8n/ε)
min(t′, tB)− qstsign

andtsign is the time required for signing by each party.

PROOF. LetC = (CGen, Com, Open, tdCGen, tdCom, RstEqv)
be a commitment scheme for public parameterscpar = g and the
message spaceM equal toG generated byg. AssumeC is mul-
tiplicatively homomorphic,(tB , εB)-binding andεE-equivocable
for functionfcpar : Zq×Zq×G/{1} → G wherefcpar(α, β, y) =
gαyβ . Given a(t, qs, qh, n, ε)-forgerF , consider two simulators
B0 andB1 that simulate the role of the honest player as in the ex-
perimentExpuu−cma

MS interacting with the forgerF . B0 takes as an

Init:

(td,K)← tdCGen(g, y1);
par← (g, G, H,K); pk1 ← y1;
Construct a "proof of possession" ofx1 which is a
simulatedNIZK proof of knowledge ofDLg(y1):

(e, s)
r← Z2

q; G[
(
y1, g

sy−e
1

)
]← e; π1 ← (s, e);

ExecuteF on input(par, pk1, π1);

SimMSign(m):

1. (c̃, st)← tdComK (td); c1 ← c̃; Send(y1, c1) toF ;
2. Upon receiving(yj , cj) for all Pj ∈ P, do

c←
⊗

Pj∈Pcj ; y ←
∏

Pj∈P yj ; e← H(y, c, m);

(d̃, α)← RstEqvK (td, st, e); s1 ← α; d1 ← d̃;
Send(s1, d1) toF

3. Upon receiving(sj , dj) for all Pj ∈ P, do
d←

⊕
Pj∈Pdj ; s←

∑
Pj∈P sj ;

Returnσ = (e, s, c, d);

SimHash:

HashQueryG(y, u): If (y, u) is anith distinct query ofF toH
or G, then setG[(y, u)]← ei;
ReturnG[(y, u)];

HashQueryH(y, c, m): If (y, c, m) is anith distinct query of
F toH or G, then setH[(y, c, m)]← ei;
ReturnH[(y, c, m)];

Finalize:

Upon receiving a valid forgery(m, σ, {(pki, πi)}i=2..n) from
F , parseσ = (s, e, c, d) andpki = yi andπi = (si, ei) for
i = 2, ..., n; Computey =

∏n
i=1 yi and queryH on (y, c, m)

andG on (yi, g
siy−ei) for i = 2..n.

Return(J, {φj}j∈J) whereJ = {j0, j2, j3..., jn} andj0 is
the index ofe in the hash tableH andφj0 = (m, σ) and for
i = 2..n, ji’s are the indices ofei’s in the hash tableG and
φji = (yi, πi).

Figure 3: Procedures used in the simulation of multisignature schemeMS1

input a set{e1, ..., eqh} whereei’s are inZq and runsSetup pro-
cedure to obtainpar and follows the real protocol (i.e. procedures
KGen andMSign) on behalf of the honest player. Additionally,
B0 answers the forger’s hash queries and performs an extra final-
ization process by following proceduresSimHash andFinalize in
figure 3. The simulatorB1, on the other hand, takes as an input a
DL challengey1 ∈ G/{1} and a set{e1, ..., eqh} whereei’s are in
Zq and follows theInit, SimMSign, SimHash andFinalize proce-
dures detailed in figure 3 to perform the initialization, answering to
signature queries, answering to hash queries and finalization pro-
cesses, respectively. Intuitively, the simulatorB1 embeds theDL
challenge in the public key of the honest player and utilizes the
(restricted) equivocability property of the commitment schemeC
to simulate the signature protocol on behalf of the honest player.
Both B0 andB1, after receiving a valid forgery fromF , perform
a finalization phase in which the message-forged-multisignature
pair and the public-key -forged-POP pairs are returned together
with the set of indices of the hash responses upon which they are
based. Namely bothB0 andB1 return(J, {φj}j∈J) s.t. if we de-
noteJ = {j0, j2, j3..., jn}, φ0 = (m, σ) and for all i = 2..n,
φi = (yi, πi) then the following equations hold:

Vrfy(par, m, {y1, y2, ..., yn}, σ) = 1 (17)

∀i = 2..n : KVrfy(par, yi, πi) = 1 (18)

The simulatorsB0 andB1 set up empty tablesG andH to simu-
late the hash functionsG andH, and use the set{e1, ..., eqh} to
answer the hash queries. (This convention makes it easy to use the
generalized forking lemma in relation toB0 andB1.)

ConsiderGFBl , the forking algorithm associated with simulator
Bl for eitherl = 0 or l = 1. The success event ofGFBl denoted
by EBl is that the algorithmGFBl outputsXl = {ej , φj}(l)j∈J

andX̃l = {ẽj , φ̃j}(l)j∈J , andej 6= ẽj for all j ∈ J , whereJ =
{j0, j2, j3, ..., jn} is the set of indices of the hash responses par-
ticipating in the forgery produced by the first execution ofBl as
run by GFBl . Thus according to theFinalize process in figure
3, φj0 = (m, (s, ej0 , c, d)), φ̃j0 = (m̃, (s̃, ẽj0 , c̃, d̃)) and for
i = 2..n, φji = (yi, (si, eji)) and φ̃ji = (ỹi, (s̃i, ẽji)). Since
for i = 0 and everyi = 2..n, the random coins and the hash
responses of the algorithmBl previous tojth

i query is the same

in the first execution and the execution leading to the addition of
(ẽji , φ̃ji) to X̃l, all the computations and communications and in
particular the queries submitted to the hash functionsH andG be-
fore jth

i query, must be the same, too. Thus the occurrence ofEBl

implies y = ỹ, c = c̃, m = m̃ and for all i = 2..n, yi = ỹi

and gsiy
−eji
i = gs̃i ỹ

−ẽji
i . The success eventEBl can be par-

titioned into two cases (1) eventE
Bl
1 in which EBl happens and

gsy−ej0 = gs̃ỹ−ẽj0 (2) eventEBl
2 in which EBl happens and

gsy−ej0 6= gs̃ỹ−ẽj0 . ObviouslyEBl = E
Bl
1 ∪ E

Bl
2 and hence

Pr[EBl] ≤ Pr[E
Bl
1] + Pr[E

Bl
2]. On the other hand according to

the generalized forking lemma,EBl can be lower bounded byεBl ,
the success probability of the simulatorBl:

εBl

8
≤ Pr[EBl] ≤ Pr[E

Bl
1] + Pr[E

Bl
2] (19)

If ej ’s are uniformly distributed inZq thenF ’s view in inter-
action withB0 is identical to the real execution of the protocol.
As for B1, P1’s public key and proof of possession of secret key,
(y1, π1), is distributed as in the real execution of the protocol. This
is becausey1 is uniform in G andπ1 is uniform in Z2

q. SinceC
is εE-equivocable, by definition, the distributions of the commit-
ment keys in the simulation and the real execution have at mostεE

statistical difference and additionally, the distribution of the tuples
(c1, d1, s1) generated in each signature instance in the interaction
betweenF andB1 is identical to the distribution of the same vari-
ables in the real execution. Thus, since our simulation is straight-
line, total statistical distance betweenF ’s view in interaction with
B1 and in real execution is at mostεE . This implies in particular
that εB0 = ε, |εB1 − ε| ≤ εE and |Pr[EB0

2] − Pr[EB1
2]| ≤ εE .

Thus equation (19) becomes:

ε− εE

8
≤ Pr[EB1

1] + Pr[EB0
2] + εE (20)

The actual reduction algorithmR, runs bothGFB0 andGFB1 .
If E1

B1 happens, thengsy−ej0 = gs̃ỹ−ẽj0 and sincey = ỹ and
ej0 6= ẽj0 thus

∑n
i=1 xi = (s − s̃)(ej0 − ẽj0)

−1 wherexi =
DLg(yi) for i = 1..n. On the other hand, since for alli = 2..n,

yi = ỹi, gsiy
−eji
i = gs̃i ỹ

−ẽji
i andeji 6= ẽji , thus theDL’s for

all yi’s wherei ∈ {2, ..., n} can be computed asDLg(yi) = (si −

1. Setup(1κ): Let G be a multiplicative group of prime orderq, where the DL assumption holds with security parameterκ and letg
be a generator ofG. RunCGen on inputg to obtain the commitment keyK and set the hash functionH : G×{0, 1}∗×{0, 1}∗×
{0, 1}∗ → Zq. The public parameter ispar = (g, G, q,K).

2. KGen(par): PlayerPi picks his(ski, pki, πi) tuple as follows:

Pickxi
r← Zq, computeyi ← gxi and setpki ← yi, ski ← xi andπi to the empty string.

3. KVrfy(par, pk, π): Since the scheme is in the plain model,KVrfy just returnstrue.

4. ProtocolMSign: LetP be the set of players that participate in the protocol. (Each player can determine the setP after the first step
of MSign.) PlayerPi on inputs(par, m, ski), performs the following steps:

4.1 Pickki
r← Zq and computeAi ← gki and(ci, di)← ComK (Ai) and broadcast(yi, ci);

4.2 Upon receiving(yj , cj) for all Pj ∈ P, SetpkSet← {yj}Pj∈P , c←
⊗

Pj∈Pcj andei ← H(yi, c, pkSet, m);

Computesi ← eixi + ki (mod q) and broadcast(si, Ai, di);

4.3 Output multisignatureσ = (s, A, c, d), wheres =
∑

Pj∈P sj , d =
⊕

Pj∈Pdj andA =
∏

Pj∈PAj .

5. Vrfy(par, m, {pk1, pk2, ..., pkn}, σ):

Parseσ as(s, A, c, d) and eachpki asyi. For i = 1, 2, ..., n, setei ← H(yi, c, {y1, y2, ..., yn}, m).
If (gs = A

∏n
i=1 yi

ei ∧ OpenK (c, d, A) = 1) thenaccept otherwisereject.

Figure 4:MS2, a multisignature scheme in the plain model

s̃i)(eji − ẽji)
−1. ThusR can computeDLg(y1) by setting

DLg(y1) =
s− s̃

ej0 − ẽj0

−
n∑

i=2

si − s̃i

eji − ẽji

If E2
B0 happens, thenR immediately translates it into an at-

tack against the binding property of the commitment schemeC
by outputting(c, d, d̃, gsy−ej0 , gs̃y−ẽj0). To see this note that
as argued before,y = ỹ, c = c̃ and sinceE2

B0 occurred, thus
gsy−ej0 6= gs̃y−ẽj0 and due to validity of the forgeries we have
OpenK (c, d, gsy−ej0) = OpenK (c, d̃, gs̃y−ẽj0) = 1. Moreover
the commitment keyK is output byCGen in the execution ofB0.

ThusPr[EB1
1] ≤ ε′ andPr[EB0

2] ≤ εB and hence equation (20)
becomes(ε− εE)/8 ≤ ε′ + εB + εE , which implies:

ε ≤ 8(ε′ + εB) + 9εE

The running timetR of the reduction algorithmR is equal to
(8n2qh/ε) ln(8n/ε) times the maximum of running time of the al-
gorithmsB0 andB1. But the running time ofB0 andB1 is dom-
inated by the running time of the forgerF plus the time spent
by the simulators to answer the hash and signing queries. Thus
tR ≤ (8n2qh/ε) ln(8n/ε)(t + qstsign) wheretsign is the maxi-
mum time spent by the simulatorsB0 andB1 to answer one sig-
nature query. On the other hand sinceR either answers theDL
challenge or outputs an attack against the binding property of the
commitmentC, it must be true thatmin(t′, tB) ≤ tR. Thus:

t ≥ ε

8n2qh ln(8n/ε)
min(t′, tB)− qstsign

The corollary below follows by settingεE = 2/q, tB = t′ and
εB = ε′. Note also that ifMS1 is instantiated with the com-
mitment schemeCS then the signing time consists of one single-
exponentiation and two double-exponentiations and that the time
of one double-exponentiation is 1.2 times the time of a group ex-
ponentiation.

COROLLARY 4. If DL problem is(t′, ε′)-hard in groupG with
prime orderq and theMS1 protocol, described in figure 2 is in-
stantiated with the commitment schemeCS described in subsection
4.1, then the resulting multisignature scheme is(t, ε, n, qs, qh)-
secure in random oracle model where

ε ≤ 16ε′ + 18/q

t ≥ ε

8n2qh ln(8n/ε)
t′ − 3.4qstexp

andtexp is the time of one exponentiation inG.

6. DL-BASED MULTISIGNATURE
IN THE PLAIN MODEL

We show a two-round multisignature schemeMS2 (figure 4)
secure under the DL assumption in thePlain Public Keymodel.
TheMS2 scheme relies on a commitment schemeC = (CGen,
Com, Open, tdCGen, tdCom, RstEqv) with the same properties as
were required by theMS1 scheme of section 4.2, i.e. a commit-
ment scheme which is multiplicatively homomorphic and equivo-
cable for functionfg(α, β, y) = gαyβ . When instantiated with the
commitment schemeCS of section 4, multisignatureMS2 is se-
cure under theDL assumption in the plain model, has fast signing
procedure requiring only three exponentiations per player, and the
resulting multisignature takes4|q| bits. The multisignature verifi-
cation takesO(n) exponentiations, matching the efficiency of the
best previously known DL-based multisignature in the plain model
of [3]. However, the advantage of this scheme over the scheme of
[3] is in reduction of rounds from three to two. The exact security
we show for this scheme matches that of [3], and indeed matches
the exact security bounds shown for standard DL-based signatures.

THEOREM 5. If DL problem is(t′, ε′)-hard in groupG and
there exists a commitment scheme parameterized withg that is
(tB , εB)-binding, εE-equivocable for functionfg : Zq × Zq ×
G/{1} → G wherefg(α, β, y) = gαyβ , and multiplicatively ho-
momorphic on groupG, then multisignature scheme inMS2, de-
scribed in figure 4 is(t, ε, n, qs, qh)-secure in random oracle model

Init:

(td,K)← tdCGen(g, y1); ctr ← 1;
par← (g, H,K); pk1 ← y1;
ExecuteF on input(par, pk1,);

SimMSign(m):

1. (c̃, st)← tdComK (td); c1 ← c̃;
Send(c1, y1) toF ;

2. Upon receiving(cj , yj) for all Pj ∈ P, do
c←

⊗
Pj∈Pcj ; pkSet← {yi}Pi∈P ;

e1 ← H(y1, c, pkSet, m);
(d̃, α)← RstEqvK (td, st, e1);
s1 ← α; d1 ← d̃; A1 ← gs1y−e1

1 ;
Send(s1, d1, A1) toF

3. Upon receiving(sj , dj , Aj) for all Pj ∈ P, do
d←

⊕
Pj∈Pdj ; s←

∑
Pj∈P sj ; A←

∏
Pj∈P Aj ;

returnσ = (s, A, c, d);

SimHash:

HashQueryH(y, c, pkSet, m):

If H[y, (c, pkSet, m)] is undefined, then
If (y, y1 ∈ pkSet) then

ctr ← ctr + 1;
For allyi ∈ pkset s.t.yi 6= y1 do

H[yi, (c, pkSet, m)]
r← Zq;

H[y1, (c, pkSet, m)]← ectr;
else

H[y, (c, pkSet, m)]
r← Zq;

returnH[y, (c, pkSet, m)];

Finalize:

Upon receiving a valid forgery(m, σ, {(pki, πi)}i=2..n from
F , parseσ = (s, A, c, d) andpki = yi for i = 2..n; Let
pkSet = {yi}i=1..n. QueryH on (y1, c, pkSet, m);
Return ({j0}, {φj0}) where j0 is the index of the hash re-
sponse inH[y1, (c, pkSet, m)] andφj0 = (m, σ).

Figure 5: Procedures used in the simulation of multisignature schemeMS2

where

ε ≤ 8(ε′ + εB) + 9εE

t ≥ ε

8qh ln(8/ε)
min(t′, tB)− qstsign

andtsign is the time required for signing by each party.

The proof is similar to the proof of theorem 3 and relies on the
simulator depicted in figure 5. However it uses an interesting tech-
nique to respond to the hash functions that enables the use of the
generalized forking lemma to extract theDL of the challenge in
plain model. More precisely, in order to use the generalized fork-
ing lemma to extractDLg(y1) from several executions of the forger
within the general forking algorithm, we need firstly that the public
key set output as part of the forgery should be the same in these
executions and secondly, certain random oracle responses need to
be the same in these executions of the forger even though the corre-
sponding queries may not occur until after the fork. To address the
first issue, the set of public keys,pkSet, is also included in the hash
query toH and to address the second issue, we assign the responses
to all queries of the form(y, c, pkSet, m) wherey ∈ pkSet when
the first query of that type comes. To have a better idea about
how our algorithm for answering the hash queries works imagine
simulating the hash function as a table whose rows are indexed by
(c, pkSet, m) and whose columns are indexed byy. The hash re-
sponse to query(y, c, pkSet, m) is H[(y, (c, pkSet, m))]. To an-
swer query(y, c, pkSet, m), if y, y1 ∈ pkSet then for allyi ∈
pkSet we assign values to entries indexed by(yi, (c, pkSet, m)).
If y /∈ pkSet or y1 /∈ pkSet, then forgery cannot be built and
we answer the query with a random value. All the entries indexed
by (y1, c, pkSet, m) wherey1 ∈ pkSet are assigned from the set
{e1, ..., eqh} in answering to hash queries so that we can use the
generalized forking lemma as formulated in section 3.

AcknowledgementAli Bagherzandi and Stanislaw Jarecki were
supported by NSF CyberTrust Grant 0430622. Jung Hee Cheon
was supported in part by the SRC Program of KOSEF (R11-2007-
035-01002-0).

7. REFERENCES

[1] A. Bagherzandi and S. Jarecki. Multisignatures using proofs
of secret key possession, as secure as the Diffie-Hellman
problem. InSCN’08.

[2] M. Bellare, C. Namprempre, and G. Neven. Unrestricted
aggregate signatures. Cryptology ePrint Archive, 2006/285.

[3] M. Bellare and G. Neven. Mult-signatures in the plain
public-key model and a general forking lemma. InACM
CCS’06.

[4] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate
and verifiably encrypted signature from bilinear maps. In
Eurocrypt’03.

[5] D. Boneh, B. Lynn, and H. Shacham. Short signatures from
Weil pairing.J. Cryptology, 17(4):297–319, 2004.

[6] C. Castelluccia, S. Jarecki, J. Kim, and G. Tsudik. Secure
acknowledgment aggregation and multisignatures with
limited robustness.Computer Networks, 50(10):1639–1652,
2006.

[7] I. Damgård. Efficient concurrent zero-knowledge in the
auxiliary string model. InEurocrypt’00.

[8] A. DeSantis and G. Persiano. Zero knowledge proofs of
knowledge without interaction. InFOCS’92.

[9] M. Fischlin. Communication-efficient non-interactive proofs
of knowledge with online extractors. InCrypto’05.

[10] J. Groth. Evaluating security of voting schemes in the
universal composability framework. Cryptology ePrint
Archive, 2002/002.

[11] J. Kim and G. Tsudik. SRDP: Securing route discovery in
DSR. InMobiQuitous, pages 247–260, 2005.

[12] S. Micali, K. Ohta, and L. Reyzin. Accountable subgroup
multisignatures. InACM CCS’01.

[13] T. P. Pedersen. Non-interactive and information theoretic
secure verifiable secret sharing. InCrypto’91.

[14] D. Pointcheval and J. Stern. Security arguments for digital
signatures and blind signatures.J. Cryptology,
13(3):361–396, 2000.

[15] T. Ristenpart and S. Yilek. The power of proofs of
possession: Securing multiparty signatures against rogue-key

attacks. InEurocrypt’07.
[16] C. Schnorr. Efficient identification and signatures for smart

cards. InCrypto’89.
[17] V. Shoup and R. Gennaro. Securing threshold cryptosystems

against chosen ciphertext attack.J. Cryptology, 15(2):75–96,
2002.

